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ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8 are utilized in adsorbing nitrogen (N2), methane (CH4), and carbon dioxide (CO2) gases at
temperatures between 25 and 55°C and pressures up to ~1MPa. Equilibrium adsorption isotherms and adsorption kinetics are
studied. The dual-site Langmuir equation is employed to correlate the nonisothermal adsorption equilibrium behavior. Generally,
N2 showed the lowest equilibrium adsorption quantity on the three samples, whereas CO2 showed the highest equilibrium
adsorption capacity. Amid the ZIF samples, the biggest adsorption quantities of N2 and CH4 were onto Zn/Co-ZIF-8, whereas the
highest adsorption quantity of CO2 was on ZIF-8. The isosteric heats of adsorbing these gases on ZIF-8, Co-ZIF-8, and Zn/Co-
ZIF-8 were examined. Moreover, the overall mass transfer coefficients of adsorption at different temperatures were investigated.

1. Introduction

Zeolitic imidazolate frameworks (ZIFs) are convenient sub-
stances for gas separation and purification applications. The
main reason is their outstanding properties such as excellent
chemical and thermal stabilities, surface areas, microporous
structures, and synthesis controllability [1, 2]. ZIF-8 pos-
sesses a large pore size of 11.6Å and a small aperture size
of 3.4Å with a zinc metal center linked by an imidazole-
type of organic linkers, which looks like a neutral zeolitic
sodalite topology [3].

Microwave technology attracted attention in the last
decade for the chemical fabrication of nanoporous materials
[4, 5]. The microwave-irradiation technique is featured with
homogenous and rapid heating with controllable rates [6],
which significantly decreases the synthesis time and increases
the product yield [7]. To the authors’ knowledge, only few
works have tackled the subject of the microwave-assisted
fabrication of ZIF-8 [8, 9]. The preparation of ZIF-8 products
involves several stages of crystal growth, which starts with
unstable clusters under super-saturation conditions [10].

Different variables (e.g., heat, diluent vaporization, and molar
ratios) influence the product formation in the microwave-
assisted preparation process [11].

The climate change phenomenon, which is driven highly
by the CO2 discharge into the atmosphere, draws the concern
of the scientific community from different fields. Therefore,
the reduction of the anthropogenic CO2 gas emissions in
the atmosphere has become one of the most urgent climate
problems to be confronted [12]. Therefore, the improvement
of a proficient adsorbent for carbon dioxide gas is a dire need
and a necessary step to alleviate this problem [13]. Approxi-
mately 30% of CO2 gas emitted to the atmosphere emerges
from fossil-fuel-based power plants and different human life
activities [12]. Hence, it is necessary to separate the CO2
found in flue gases before being exhausted to the atmosphere.
Natural gas is known as an alternative and cleaner energy
source to replace coal and petroleum. Nonetheless, it involves
undesired impurities of CO2 and N2, which cause a corrosive
impact in pipelines and lower the calorific value of natural
gas [14]. Therefore, natural gas requires a pretreatment to
remove these impurities before industrial applications [15].

Hindawi
Journal of Nanomaterials
Volume 2019, Article ID 6130152, 11 pages
https://doi.org/10.1155/2019/6130152

https://orcid.org/0000-0002-9240-930X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6130152


Overall, worldwide research has exerted extreme efforts to
develop concise and decisive methods for removing post
combustion CO2 from gasmixtures [16–18].Methods involv-
ing absorption, cryogenic distillation, and physical adsorp-
tion are developed to split up carbon dioxide, methane, and
nitrogen gas mixtures [19–22].

The aim of this paper is to utilize ZIF compounds, in its
virgin shape and after fractional and complete replacement
of zinc by cobalt (to form Co-ZIF-8 and Zn/Co-ZIF-8), in
order to adsorb CH4, N2, and CO2 gases at four tempera-
tures (ranging from 25 to 55°C) and pressures up to
~1MPa. The influence of conformational metal content
(zinc, cobalt, or zinc/cobalt) of ZIFs on their adsorption
behaviors will be studied. The dual-site Langmuir equation
will be applied to correlate the adsorption equilibrium data
at various temperatures collectively, and the corresponding
adsorption isosteric heats of CH4, N2, and CO2 will be esti-
mated. Moreover, the overall mass transfer coefficients for
the adsorption of these gases on ZIFs will be examined at
various temperatures.

2. Materials and Methods

2.1. Materials. Zinc nitrate hexahydrate (98%, Sigma Aldrich),
cobalt nitrate hexahydrate (≥99.99%), and 2-methylimidazole
(97%) were purchased from Sigma-Aldrich. Methanol
(99.8%) was supplied from Alfa Aesar. Gases (CH4, N2, and
CO2) were of high purity (99.999%) and were supplied from
the National Industrial Gas Plants (NIGP, Doha, Qatar). All
chemical reagents were utilized without further purification.

2.2. ZIF Compound Preparation. Various ZIF compounds
(Zn-ZIF (i.e., ZIF-8), Co-ZIF-8, and Zn/Co-ZIF-8) were syn-
thesized by a microwave-assisted method as detailed else-
where [23].

2.3. Characterization. The characterization results of these
ZIFs are found in a previous work [23]. Adsorption equilib-
rium isotherms of CH4, N2, and CO2 gases were measured
via a Hygra magnetic suspension microbalance (MSB,
Rubotherm), with microgram sensitivity, following the same
procedures described elsewhere [24].

2.4. Theory

2.4.1. Adsorption. The multisite Langmuir model supposes
that a heterogeneous surface of an adsorbent is composed
of patches with distinctive adsorption energies. Each patch
is thus considered as a homogeneous portion of the adsor-
bent surface, and the total quantity adsorbed of a gas compo-
nent can be correlated as

nads = 〠
J

j=1

mjbjP

1 + bjP
, ð1Þ

where J is the number of homogeneous adsorption patches
and it depends on the extent of surface heterogeneity (usu-
ally, J is set to 2, corresponding to the dual-site Langmuir
(DSL) model), j refers to adsorption patch number, P indi-

cates pressure,mj refers to the quantity of monolayer satura-
tion on patch j, and bj indicates the tendency (affinity) for
adsorbing the molecules on patch j as estimated by

bj = b0j exp
εj
RT

� �
, ð2Þ

where b0j refers to the adsorption affinity on patch j at infinite
temperature, εj refers to the characteristic adsorption energy
on patch j, R refers to the universal gas constant, and T refers
to absolute temperature.

2.4.2. Isosteric Heat of Adsorption. The isosteric heat of
adsorption (Qst) can be estimated by the Clausius-
Clapeyron approximation [25] as

Qst = −R
∂lnP
∂ 1/Tð Þ

� �
n

: ð3Þ

The dependence of Qst on surface coverage is an implicit
indicator of energetic characteristics between the adsorbed
molecules and the adsorbent [26].

2.4.3. Adsorption Kinetics. The adsorption rate is determined
by the linear driving force (LDF) approximation as [27]

nt
ne

� �
= 1 − e−kt
� �

, ð4Þ

where nt (mole/kg) refers to the adsorbed quantity at time
t (sec), ne (mole/kg) refers to the adsorbed equilibrium
quantity at the corresponding temperature and pressure,
and k denotes the overall mass transfer coefficient (sec-1).
The k-value can be estimated from experimental dynamic
adsorption results at a specific temperature and pressure
by plotting the −ln ð1 − nt/neÞ against t until reaching the
equilibrium state.

2.4.4. Regression Analysis. Regression was used to obtain the
optimum fitting parameters. The least sum of squared errors
(LSSE) is widely utilized for regression as [28]

LSSE =Minimum 〠
N

i=1
ni,Calc − ni,measð Þ2

" #
, ð5Þ

where i indicates measured data point numbers, N denotes
the total number of measured data points, and ni,Calc and
ni,meas refer, respectively, to the calculated and measured
quantities adsorbed.

The averaged relative error (ARE, %) was utilized in
order to estimate the accuracy of fitting to describe measured
data as [29]

ARE %ð Þ = 100%
N

〠
N

i=1

ni,Calc − ni,meas
�� ��

ni,meas
: ð6Þ
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3. Results and Discussion

3.1. Adsorption Equilibrium Isotherms. The adsorption of
nitrogen, methane, and carbon dioxide gases onto ZIF-8,
Co-ZIF-8, and Zn/Co-ZIF-8 at different temperatures is pre-
sented in Figures 1–3, respectively. Broadly, it is seen that the
adsorption quantity decreases at higher temperatures. Over-
all, N2 gas exposes the lowest adsorbed quantity, whereas
CO2 shows the highest adsorbed quantity. The DSL equation
is applied to fit the experimentation results of nitrogen,

methane, and carbon dioxide as a function of both tempera-
ture and pressure. The fitting parameters registered in
Table 1 exposed a good relation with measured results as seen
in the solid lines in Figures 1(a)–1(c) to Figures 3(a)–3(c) and
by values of ARE (%) in Table 1. Figures 1(a)–1(c) exhibit the
adsorption results of nitrogen, methane, and carbon dioxide,
respectively, on ZIF-8. It is observed that adsorption
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Figure 1: The adsorption equilibria of (a) nitrogen, (b) methane,
and (c) carbon dioxide gases on ZIF-8 at different temperatures.
The symbols indicate measured results and the lines indicate
DSL fitting.
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Figure 2: The adsorption equilibria of (a) nitrogen, (b) methane, and
(c) carbon dioxide on gases Co-ZIF-8 at different temperatures.
The symbols indicate measured results and the lines indicate
DSL fitting.

3Journal of Nanomaterials



equilibria of these gases were fitted perfectly, with a minor
deviation, by DSL formula for the whole range of pressures
and temperatures. Further, the adsorption equilibria of var-
ious gases on the ZIF-8 sample exhibited a Henry’s law
trend that did not seem to reach the saturation limit within
the examined pressure scale. Figures 2(a)–2(c) display
adsorption equilibrium isotherms of nitrogen, methane,

and carbon dioxide, respectively, on Co-ZIF-8. It is
observed that the DSL model has deviated slightly from
experimental points of nitrogen, methane, and carbon
dioxide adsorption isotherms. Figures 3(a)–3(c) show,
respectively, the adsorption equilibrium of nitrogen, meth-
ane, and carbon dioxide adsorptions on Zn/Co-ZIF-8.
Excellent fit of the DSL model to experimental data points
is observed in the entire range of temperatures. Further-
more, Table 1 shows that for variety of the studied
adsorption systems, one adsorption site was sufficient to
describe the corresponding isotherm data (as exhibited
by the sufficiency of J = 1), which reduces to the regular
Langmuir adsorption isotherm and refers to an energeti-
cally homogeneous adsorbent surface towards the corre-
sponding gas. It is noted that the results of ZIF-8
reported in Awadallah-F et al. [30] are used here for the
purpose of comparison.

Figures 4(a)–4(c) illustrates the influence of various
adsorbents (i.e., ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8) on the
adsorption equilibria of nitrogen, methane, and carbon diox-
ide, respectively, at 25°C (25°C was selected as an illustration
for the purpose of briefness). It is observed that the quantity
adsorbed on Zn/Co-ZIF-8 is the largest in the case of N2 and
CH4 gases, whereas ZIF-8 exhibits the biggest adsorption
capacity of CO2 gas (and the lowest adsorption capacity in
the case of N2 and CH4 gases). Therefore, it can be said that
insertion of cobalt ions into ZIF-8 leads to a noticeable
change in adsorption equilibrium quantities of CH4, N2,
and CO2 gases.

3.2. Rate of Adsorption. Figures 5–7 illustrate the correlation
between the overall mass transfer coefficient (k, sec-1) of
adsorbing nitrogen, methane, and carbon dioxide on ZIF-
8, Co-ZIF-8, and Zn/Co-ZIF-8, correspondingly, against
the reciprocal pressure (1/P) at different temperatures. Sym-
bols and lines denote, correspondingly, measured data and
linear regression. The regression constants were recorded
in Table S1 (see Supplementary File Data). As an overview,
it was noticed that k-values rise via rising temperature and
via diminishing pressure (or rising reciprocal pressure).
Furthermore, the k-values approach zero at extreme
pressures (i.e., as 1/P→0), and the influence of temperature
in this case is nil. Otherwise, at mild pressures, the k
-values were in the rough order of 10-3 s-1.

Figures 5(a)–5(c) display the k-values for adsorbing
nitrogen, methane, and carbon dioxide, respectively, on
ZIF-8. It is noted that the adsorption of carbon dioxide on
ZIF-8 is slowest, whereas the adsorption of methane is the
fastest. The sequence of gas adsorption rates on ZIF-8 is
CH4 > N2 > CO2. Figures 6(a)–6(c) elucidate the k results of
adsorption on Co-ZIF-8 against 1/P. It is noted that the
adsorption of nitrogen on Co-ZIF-8 is quicker than that of
both carbon dioxide and methane. Moreover, the adsorption
of CH4 is faster than the adsorption of CO2. The sequence of
gas adsorption rates on Co-ZIF-8 is N2 > CH4 > CO2.
Figures 7(a)–7(c) expose that the adsorption of CH4 on
Zn/Co-ZIF-8 is the most rapid amid the gases used, whereas
carbon dioxide gas was the slowest. The sequence of gas
adsorption rates on Zn/Co-ZIF-8 is CH4 > N2 > CO2.
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Figure 3: The adsorption equilibria of (a) nitrogen, (b) methane,
and (c) carbon dioxide gases on Zn/Co-ZIF-8 at different
temperatures. The symbols indicate measured results and the lines
indicate DSL fitting.
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Figure 8 shows the influence of the ZIF sample type (i.e.,
ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8) on the k results of nitro-
gen, methane, and carbon dioxide gases at the temperatures
of 25 and 55°C (note that these temperatures were selected
as examples for the purpose of briefness). It was observed
from Figures 8(a) and 8(b) that, at both temperatures,
adsorbing N2 is fastest onto the Co-ZIF-8 sample, followed
by Zn/Co-ZIF-8 and then ZIF-8. Figures 8(c) and 8(d) indi-
cate that the adsorption rate of the CH4 gas at both tempera-
tures followed the trend of ZIF‐8 > Co‐ZIF‐8 > Zn/Co‐ZIF‐8.
Additionally, it is noted from Figures 8(e) and 8(f) that the
rate of CO2 adsorption follows the order of Zn/Co‐ZIF‐8 >
ZIF‐8 > ZIF‐8. It is noted that the results of ZIF-8 reported
in Awadallah-F et al. [30] were used here for the purpose
of comparison.

3.3. Isosteric Heat of Adsorption. Isosteric heats of adsorption
(Qst) were determined from the numerical differentiation of
the experimental adsorption data at various temperatures in
accordance to Clausius-Clapeyron’s equation (Equation
(3)). Figures 9(a)–9(c) expose the isosteric heats (Qst) of
nitrogen, methane, and carbon dioxide adsorbed on ZIF-8,
Co-ZIF-8, and Zn/Co-ZIF-8, respectively. In general, it was
observed that the Qst of different components rises to various
levels when the loading of each gas on the ZIF surface rises.
This is a sign of auspicious interactions amid the molecules
adsorbed to the ZIF surface [26]. The consequent trend of
adsorption isosteric heats of different components (at similar
gas loadings) is methane > carbon dioxide > nitrogen, which
reflects their affinity for adsorption.

Nevertheless, it is noticed from Figure 9(a) that the Qst of
nitrogen on ZIF-8 augments from ~9 kJ/mole at a loading of
0.048 mole/kg up to ~11 kJ/mole at 0.3 mole/kg. Then, it set-
tles at about this amount, which reveals either adsorption on
a nearly nonheterogeneous surface of ZIF [26] or an equiva-
lence between positive and negative interactions. The Qst of
carbon dioxide augments from ~14 kJ/mole at 0.36 mole/kg
to ~33 kJ/mole at 2.81 mole/kg. Further, the Qst of methane
rose from ~16 kJ/mole at a loading of 0.10 mole/kg up to
~31 kJ/mole at 1.2 mole/kg.

Figure 9(b) displays that the Qst of nitrogen adsorbed
on Co-ZIF-8 settled at ~10 kJ/mole for loadings up to
~0.75 mole/kg. The Qst of carbon dioxide gas rises from
~24 kJ/mole to ~31 kJ/mole when augmenting its loading
from 0.25 to 2.56 kg/mole. Furthermore, it is seen that the
Qst of CH4 rises from ~32 kJ/mole at ~0.23 mole/kg to
~41 kJ/mole at 1.40 mole/kg.

Figure 9(c) exposes that the Qst of the adsorption of
nitrogen on Zn/Co-ZIF-8 augments from ~8 kJ/mole up
to ~11 kJ/mole when increasing the corresponding loading
from 0.05 mole/kg to 0.76 mole/kg. TheQst of carbon dioxide
gas remains at around~20-21 kJ/mole for theentire rangeof its
loading. In contrast, theQst ofmethane rises from~20 kJ/mole
at an adsorbed amount of 0.14 mole/kg up to ~27 kJ/mole at
1.51 mole/kg.

Figures 10(a)–10(c) elucidate a disparity between the
isosteric heat values of nitrogen, methane, and carbon
dioxide, respectively, on various ZIFs. Overall, it was
noticed from Figure 10(a) that the Qst values of N2 obeys
the trend ZIF‐8 > Zn/Co‐ZIF‐8 > Co‐ZIF‐8. Additionally,
the Qst of the adsorption of nitrogen augments with the
adsorbed amount of gas on Zn/Co-ZIF-8, ZIF-8, and to a
lesser extent on Co-ZIF-8. Figure 10(b) displays that the
order of Qst for CH4 is Co‐ZIF‐8 > Zn/Co‐ZIF‐8 > ZIF‐8
in the range from 0.15 to 0.97 mole/kg. After 0.97 mole/kg,
the order of Qst for CH4 turns out to be Co‐ZIF‐8 > ZIF‐
8 > Zn/Co‐ZIF‐8. It is seen from Figure 10(c) that the Qst
value of CO2 was always highest for Co-ZIF-8. The Qst
for CO2 on Zn/Co-ZIF-8 was nearly constant at values
higher than that on ZIF-8 up to a loading of 1.57 mole/kg,
after which the isosteric heat on ZIF-8 becomes greater
than that on Zn/Co-ZIF-8. It is noted that the results of
ZIF-8 reported in Awadallah-F et al. [30] were used for
the purpose of comparison.

4. Conclusions

ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8 were produced by a
microwave-irradiation technique. The adsorption of CH4,
N2, and CO2 on ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8 was

Table 1: The fitting constants of the DSL equation for CH4, N2, and CO2 on ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8.

Constants

Specimens
ZIF-8 Co-ZIF-8 Zn/Co-ZIF-8

Gas

Nitrogen Methane
Carbon
dioxide

Nitrogen Methane
Carbon
dioxide

Nitrogen Methane
Carbon
dioxide

m1 (mole/kg) 38359 9.58 97.28 12139 7.37 21.83 13139 8.45 42.85

b0 (MPa-1) 1:84 × 10−6 9:98 × 10−4 2:14 × 10−9 3:91 × 10−6 1:90 × 10−3 1:38 × 10−5 40:10 × 10−6 1:17 × 10−3 2:45 × 10−4

ε/R (K) 693.55 1582 5038 881.97 1535.11 2917.13 861.97 1649.61 1904.60

m2 (mole/kg) 0 0 27.89 0 0 0 0 0 0

b0 (MPa-1) 0 0 7:61 × 10−2 0 0 0 0 0 0

ε/R (K) 0 0 0 0 0 0 0 0 0

SSE 0.020 0.0082 1.07 2.04 0.13 0.22 1.52 0.11 0.22

ARE (%) 8.82 3.54 7.46 34.61 12.15 27.98 45.30 9.32 18.26
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studied at a range of temperatures (25 to 55°C) and pressures
(~0 to ~1MPa). The dual-site Langmuir (DSL) model was
used to describe experimental adsorption equilibria at differ-
ent pressures and temperatures. Zn/Co-ZIF-8 displays the
largest capacity to adsorb nitrogen and methane at various
temperatures, while ZIF-8 shows the largest capacity to

adsorb carbon dioxide. The order of adsorption quantities
of nitrogen and methane gases on different ZIFs is Zn/Co‐
ZIF‐8 > Co‐ZIF‐8 > ZIF‐8. Moreover, the order of adsorp-
tion capacities of carbon dioxide gas onto different ZIFs is
ZIF‐8 > Zn/Co‐ZIF‐8 > Co‐ZIF‐8. The overall mass transfer
coefficients have been evaluated to indicate the rates of
adsorbing CH4, N2, and CO2 gases on various ZIFs. Overall,
the mass transfer coefficients were augmented when raising
the temperature or reducing the pressure. Furthermore, the
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Figure 4: Influence of ZIF types (ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-
8) on their adsorption of (a) nitrogen, (b) methane, and (c) carbon
dioxide at the temperature of 25°C. The symbols indicate
measured data and the lines indicate DSL fitting.
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Figure 5: k-values for adsorbing (a) nitrogen, (b) methane, and (c)
carbon dioxide gases on ZIF-8 samples at diverse temperatures.
Symbols and lines indicate, respectively, estimated data and linear
regression.
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adsorption of CO2 gas was slowest on all ZIFs. On the other
hand, the adsorption of CH4 gas was the fastest on ZIF-8 and
Co/Zn-ZIF-8, while nitrogen adsorption was fastest on Co-
ZIF-8. These disparities, which are due to the existence of
cobalt into the matrix of ZIFs, can be utilized to boost the
kinetic separations of CH4, N2, and CO2 mixtures. Addition-

ally, the isosteric heats of adsorbing CH4, N2, and CO2 gases
on ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8 were estimated.
Across study findings, it has been noticed that the isosteric
heats vary in accordance with the ZIF type utilized, but they
were mostly highest for CH4 and lowest for N2.

Data Availability

The data used to support the findings of this study are
included within the article.

1/P (MPa–1)

35 °C

45 °C

55 °C

25 °C

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
130

140

150

160

170

180

190

200

210
k

N
2 
× 

10
4

 (s
ec

–1
)

(a)

1/P (MPa–1)

35 °C
45 °C

55 °C

25 °C

0 1 2 3 4 5 6
0

10

20

30

40

50

60

k
CH

4 
× 

10
4

 (s
ec

–1
)

(b)

1/P (MPa–1)
0 2 4 6 8 10 12

0

2

4

6

8

10

35 °C
45 °C
55 °C

25 °C

k
CO

2 
× 

10
4

 (s
ec

–1
)

(c)

Figure 6: k-values for adsorbing (a) nitrogen, (b) methane, and (c)
carbon dioxide gases on Co-ZIF-8 samples at diverse temperatures.
Symbols and lines denote, respectively, estimated data and linear
regression.

0 2 4 6 8
0

5

10

15

20

25

30

35

40

55 °C

25 °C

35 °Ck
N

2 
× 

10
4

 (s
ec

–1
)

1/P (MPa–1)

(a)

55 °C

45 °C
35 °C

25 °C

0 2 4 6 8 10 12
0

10

20

30

40

50

60

k
CH

4 
× 

10
4

 (s
ec

–1
)

1/P (MPa–1)

(b)

55 °C

25 °C

35 °C

45 °C

0 2 4 6 8
0

5

10

15

20

25

k
CO

2 
× 

10
4

 (s
ec

–1
)

1/P (MPa–1)

(c)

Figure 7: k-values for adsorbing (a) nitrogen, (b) methane, and (c)
carbon dioxide gases on Zn/Co-ZIF-8 samples at diverse
temperatures. Symbols and lines denote, respectively, estimated
data and linear regression.
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Figure 8: Impact of ZIF types (i.e., ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8) on k for (a, b) nitrogen, (c, d) methane, and (e, f) carbon dioxide at
25°C (a, c, e) and 55°C (b, d, f). Symbols and lines denote to estimated data and linear regression, correspondingly.
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Supplementary Materials

S1: regression of mass transfer coefficients. Table S1 sum-
marizes the regression of mass transfer coefficients for the
adsorption of nitrogen, methane, and carbon dioxide gases
onto different adsorbents of ZIFs: ZIF, Co-ZIF-8, and
Zn/Co-ZIF-8. Table S1: regression and the coefficients of
determination (R2) for the overall mass transfer coefficient
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Figure 9: Qst of adsorption of nitrogen, methane, and carbon
dioxide gases upon (a) ZIF-8, (b) Co-ZIF-8, and (c) Zn/Co-ZIF-8.
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104 × k (s-1) against 1/P (MPa-1) for adsorption of methane,
nitrogen, and carbon dioxide gases on ZIF-8, Co-ZIF-8,
and Zn/Co-ZIF-8 adsorbents at different temperatures.
(Supplementary Materials)
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