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ABSTRACT 

ALOK, MAIAN, SALEM, Masters : June : 2020, Applied Statistics 

Title: Diagnostic checking for linearity in time series models  

Supervisor of Thesis: Esam Bashir Mahdi. 

In this thesis, I studied the well-known portmanteau tests appearing in the time 

series literature. In particular, I interest in reviewing the test statistics that can be used 

to check the adequacy of the fitted Autoregressive and Moving Average (ARMA) 

models, the Generalized Conditional Heteroskedasticity (GARCH) models, and 

special nonlinear models that are proposed early and widely used specially in 

financial time series. I estimate the empirical levels of these tests based on the Monte-

Carlo significance tests and show that the Monte-Carlo tests provide an accurate 

estimate for these levels. I conduct a simulation power comparison between these 

tests and show that the Monte-Carlo significance test presented based on the 

determinant of a matrix which include four matrices of auto correlation of residual, 

auto correlation of squared residual and cross correlation between the residual and 

squared residuals has higher power than the other tests in many cases. I demonstrate 

the usefulness of the Monte-Carlo tests by applying these tests on the daily log-returns 

of Ooredoo Qatar.   

Keywords: Portmanteau tests, ARMA model, GARCH model, Nonlinear model 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

In the time-series statistical analysis, it is common to use the autoregressive-

moving-average (ARMA) model and the autoregressive conditional heteroskedasticity 

(ARCH) to forecast the future values. The ARMA model is built on the assumption 

that the error terms are weak stationary and white noise. This means that, the errors 

(innovations or shocks) are homoscedastic and show no serial correlations. When the 

variance of the shocks is not a constant and depends on previous values of the 

process, the ARCH (or more generally GARCH) model can be used to estimate the 

volatility. The GARCH model stands for generalized autoregressive conditional 

heteroskedasticity where the volatility models are referred to as conditional 

heteroscedastic models. 

After the identification and estimating of the parameters of a time series 

model, the diagnosis of the fitted model is the most important next step as suggested 

by the Box–Jenkins (1970) method. If the fitted model is adequate, the residuals 

should show no pattern and almost uncorrelated in time. Box and Pierce (1970) 

proposed to literature the portmanteau test under the assumptions of the ARMA 

model to check the validity of the assumptions and using the limiting distribution of 

the residual autocorrelation coefficients. Ljung and Box (1978) improved the Box-

Pierce test by replacing the residual autocorrelation coefficients with their 

standardized values. 

Monti (1994) proposed another portmanteau test based on the partial 

autocorrelations and showed that, the test is more powerful than initially proposed 

portmanteau test by Box and Pierce (1970) and Ljung and Box (1978), particularly 

when the fitted model underrate the order of the moving average component. The 
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three tests of Box-Pierce, Ljung-Box, and Monti have the same asymptotic 

distribution as Chi-square. Peña and Rodríguez (2002) proposed a test based on the 

Toeplitz autocorrelation matrix. They considered their test based on the  th
 root of 

the determinant of the  th
 order of the autocorrelation matrix. They derived the 

limiting distribution of their test as a linear combination of Chi-squared distributions 

that was approximated by a Gamma distribution using the standardized values of 

residual autocorrelations. They showed that their test is more significant than the 

previous tests by Ljung and Box (1978) and Monti (1994) in many situations.  

Peña and Rodríguez (2006) used the natural logarithm of the   plus one root 

of the determinant of the  th
 Toeplitz autocorrelation matrix proposed by Peña and 

Rodríguez (2002). They derived the limiting distribution approximation of their test 

statistic as Gamma and showed that this test estimates the size more accurately than 

Peña and Rodríguez (2002).  

One problem noticed by Lin and McLeod (2006) that is the size of the Peña 

and Rodríguez test statistics may not be significant based on the asymptotic 

approximation. To overcome this issue Lin and McLeod (2006) introduced the idea of 

using the Monte-Carlo significance test. They showed that the Monte-Carlo 

significance test provides a portmanteau test with the correct size with higher power 

than previous tests. 

To check the linearity assumption in time series, many portmanteau tests have 

been proposed. Granger and Anderson (1978) and Maravall (1983) suggested testing 

for neglected nonlinearity in time series by looking at the autocorrelation function of 

the squared values of the time series. If the residuals are independent, then the squared 

residuals must be independent. If the model is nonlinear and the residuals are 

uncorrelated but not independent, then the plot of the autocorrelation function of 
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residuals will show no serial correlation, whereas the plot of the autocorrelation 

function of squared residuals will indicate a serial correlation. In this regard, McLeod 

and Li (1983) introduced a portmanteau test to detect nonlinearity in time series 

models. Their test is essentially is the same as Ljung and Box (1978) where they 

squared the residuals in the autocorrelation coefficients instead of using directly the 

autocorrelation coefficients of the residuals. 

Peña and Rodríguez (2002, 2006) showed that their tests may extend to test for 

nonlinear models including GARCH models by replacing autocorrelation of the 

residuals in the  th
 order of the autocorrelation matrix by the autocorrelation of the 

squared residuals. They showed that their tests are more powerful in detecting the 

nonlinearity in time series than the McLeod and Li (1983) tests in many cases.  

Rodríguez and Ruiz (2005) proposed a test for conditional heteroskedasticity 

takes into account not only the magnitude of the sample autocorrelations but also 

possible patterns among them. They noted the performance of their test with various 

alternative tests and showed that their test has more power than McLeod and Li 

(1983) and Peña and Rodríguez (2002) in many situations.  

Mahdi and McLeod (2012) generalized Peña and Rodríguez (2002, 2006) and 

Lin and McLeod (2006) to the multivariate case. They found that the portmanteau test 

based on the Monte-Carlo significance test almost always outperforms the one based 

on the limiting distribution. 

Recently, Psaradakis and Vávra (2019) proposed a portmanteau test for 

linearity of stationary time series using the generalized correlations of residuals from 

a linear model. The generalized correlations are the cross-correlations between 

different powers of the residuals (r, s) and autocorrelations for some natural numbers 

r, s which was introduced by Lawrance and Lewis (1985, 1987). Psaradakis and 



  

4 

   

Vávra (2019) applied their test for several linear and nonlinear models including 

ARMA and GARCH models and showed that their test is useful for testing ignored 

nonlinearity in time series models. 

1.2 Thesis Layout 

This thesis is divided into five chapters. The first chapter is the introduction, 

where we give a brief introduction about time series models and portmanteau test. The 

second chapter is a literature review for different portmanteau tests that have been 

published since 1970 till 2020, showing how the tests have been improved and 

updated throughout the years to be eligible to be used on various time series models. 

In the third chapter, we explained the Monte-Carlo significance portmanteau test 

proposed by Mahdi (2020) based on the autocorrelation and cross-correlation of the 

residuals and their squares. The fourth chapter includes the simulation study. The 

simulation study is divided into two parts: in section one type I error is estimated 

based on fitting AR (1), MA (1), ARCH and GARCH. Then a comparison is made 

between the tests. The second part of the chapter will compare the power of the tests 

based on the Monte-Carlo significance test as suggested by Lin and McLeod (2006). 

In the fifth chapter, we concentrate on the application part, where we use real 

financial data and check the adequacy of the fitted model based on the portmanteau 

statistics that we discuss in this thesis.  

1.3 Research Objectives  

1- To use the portmanteau test to check the linearity assumption in time series models.  

2- We perform a simulation study comparing new test with popular portmanteau tests 

in time series literature.  

3- We simulate data from ARMA/GARCH models.  
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4-We compare the performance of ARMA/GARCH models to get the best of the 

fitted model that can be used for forecasting. 

5-We implement the advanced diagnostic checks in financial time series models on 

real data of Ooredoo returns. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The process for modeling and analyzing the linear time series can be split into 

two parts of preprocessing and building the predictive model. In the preprocessing it 

requires to look through the raw data and calculate the asset return from the existing 

prices in the raw data, after that the stationary, autocorrelation, dynamic dependence 

of the time series should be checked. For analyzing time series, it is required that the 

time series satisfy at least weakly stationary. Where weak stationary means that the 

joint distribution of the return value of the asset over time should be time-invariant. 

Based on the pattern realized in the return value of a stationary time series, simple 

autoregressive model (AR), simple moving average model (MA), mixed 

autoregressive and moving average (ARMA), or models representing the seasonality 

in the data could be fitted, the appropriate L lag autocorrelation could be used for 

identifying the order of a moving average model and L lag partial autocorrelation is 

used for finding the proper lags for the autoregressive model. The extended 

autocorrelation function could be used for deriving the order for a simple ARMA 

model.  

Mixing the AR and MA models is done in some cases to create a model that 

can adequately explain the dynamic structure of the data. The autoregressive and 

moving average ARMA (p,q) model has the following form: 

   

                                         , (1) 

 

After implementing AR or MA model, the residual should be checked to be 

normally distributed without serial correlation. There should be a constant variance in 
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the residual. If the residual variance is not constant and has an increasing pattern over 

time, then the residual will have heteroskedasticity. In such cases, the error volatility 

could be modeled using the Autoregressive conditional heteroscedastic model. This 

methodology was developed by Engle (1982). If the residual shows a time-dependent 

pattern, then it could be modeled as two portions of time-dependent residual and a 

random term: 

 

         

 

where    is the innovation in time  ,    is time-dependent standard deviation and    is 

white noise. In the ARCH (q) model the time-dependent standard deviation part could 

be estimated by the following formula:  

 

   
           

          
   (2) 

 

For evaluating the q in the ARCH model, the Lagrange multiplier test was 

suggested by Engle (1982). If the residual variance follows the AR model (it is 

serially correlated), then the ARCH method could be used for modeling the residual 

variance. Thus, in ARMA model one is modeling asset return and does predict the 

mean value of the asset return in a future period, whereas in the ARCH model, one is 

modeling the volatility of the asset return and will be able to predict the future 

variance of the asset return.  

GARCH model was developed by Bollerslev (1986), The GARCH (p,q) model could 

be written as below:  

   
           

          
        

          
   (3) 
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Where,   represents the error term at previous lags and   represents the time-

dependent standard deviation in previous lags. To test the existence of the GARCH 

(p,q) process, first, an AR(p) model will be fitted to the data. Then the correlation 

matrix for the residual will be calculated. This method is used when the residual 

include serial correlation and it has grown over time (heteroskedasticity) like the 

ARCH model. The difference is that in ARCH the residual follows the AR model. It 

means that partial autocorrelation function for residual show significant 

autocorrelation at some lags which suggests AR-pattern in the residual. In another 

way, using a Portmanteau test, the significance of serial correlation in the residual 

could be tested. If the residual follows the AR model, then the ARCH method is 

applicable. But if the residual follows the ARMA model, the methodology proposed 

by Bollerslev (1986) which suggests using a GARCH model is applicable. In 

literature, several types of GARCH models can be used for modeling the conditional 

heteroskedasticity. The GARCH-in-mean (GARCH-M) model proposed by Engle et 

al, (1987) adds a heteroskedasticity term into the mean equation that can be 

interpreted as a risk premium.The threshold GARCH model was developed by 

Zakoian (1994) is commonly used to handle leverage effects. This method suggests 

using a threshold for positive and negative error terms. The threshold was 

implemented by using dummy variables to separate the positive and negative 

coefficients of the error term in the GARCH formula. The formula of TGARCH (p,q) 

is as below:  

 

        
     
      

     
      

     
      

     
          

         
(4) 

Where     
  represents positive error terms and hence positive theta are coefficients 

for positive thresholds and     
  represent negative error terms and the negative theta 
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is coefficients for negative thresholds. The equation relates the standard deviation of 

the error term by previous standard deviation lags and previous error terms. This is 

essentially the same model proposed by Glosten et al, (1993). After TGARCH the 

Quadratic GARCH (QGARCH) model was proposed by Sentana (1995). 

The exponential GARCH model (EGARCH) was proposed by Nelson (1991), the 

formula for this method is as below:  

 

              
     ∑      

 

 

   

 ∑        
 

 

   

  (5) 

 

This model differs from GARCH because it uses the log of variance instead of 

variance.  

In 1970 Box-Jenkins introduced an approach called stochastic model building, this 

model is used to analyze and forecast time series models. A stochastic model is a 

process that is made up of three main stages: 

1- Identification: detect the underlying pattern in the data using autocorrelation 

function and finding the most appropriate model using cross validation on the 

testing data or the model information criteria like Akaike information criteria 

(AIC) or Bayesian information criteria (BIC). 

2- Estimation: fitting a proper model to the data using conditional sum of squares 

or the maximum likelihood estimation (MLE) and finding the parameter 

estimates for the model. 

3- Diagnostic Checking: checking the assumptions of the model. The normality 

of the residuals. Whether the residual has constant variance and is 

homogenous or there are problems like non-constant variance or the residual is 
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heteroscedastic. Verifying that the residuals are independent from each other 

and there is no serial dependence in the residuals. 

In my thesis, I concentrate on the third stage which the diagnostic checking using the 

portmanteau tests for linear and for nonlinear models. 

2.2 Portmanteau Tests for Linear Models 

Box and Pierce (1970) have analyzed the diagnostic of the model fit 

confirmation. They have written that "a proper model fit should lead to a residual 

which is like white noise (independent and identically distributed with mean zero and 

constant variance)". Thus, an appropriate model will have a residual which is not 

serially correlated and have constant variance. This means that there should be zero 

autocorrelation in the residual for an appropriate model fit. Box and Pierce (1970) 

have proposed the portmanteau test to check the residual autocorrelation, based on the 

null hypothesis that the autocorrelation of the residual at lag m (m is a natural 

number) equal to zero. Where the null hypothesis is Ho :                 

and the alternative hypothesis Ha:       for some (         ). The proposed 

portmanteau statistic is given by:  

 

   ( )    ∑  ̂   
 ( )

 

   

  (6) 

 

where T is the sample size and  ̂   ( ) is the autocorrelation of the residuals at lag 

(         ). They showed that the test   ( ) is asymptotically distributed as 

Chi-squared distribution with m degrees of freedom. For an AR(p) process the degree 

of freedom will be      , for an MA(q) process the degree of freedom will be 

      and for a mixed ARMA(   ) process the degree of freedom of the Chi-
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squared distribution will be         . Hence, if the p-value of the portmanteau 

test is more than the significant level (usually 5%), then the test could not reject the 

null hypothesis at a 5% significance level and the assumption of no serial correlation 

is met. Box and pierce (1970) have tested the autocorrelation of the residual, for an 

AR process (autoregressive), MA process (moving average) and a mixed 

autoregressive moving average process (ARMA).   

Ljung and Box (1978) have modified the portmanteau test proposed by Box 

and pierce (1970) to increase the power of the test. They presented some 

considerations about the power and robustness of the portmanteau test when the 

innovations are not normally distributed. The modified portmanteau test is given by:  

 

  ( )   (   )∑
 ̂   
 ( )

   

 

   

     (7) 

 

They showed that the  ( ) statistics has a asymptotic Chi-squared 

distribution with degree of freedom of          for an ARMA (p, q) process. 

Ljung and Box (1978) have done Monte Carlo study to compare the power of their 

presented test with the previous portmanteau test and showed that the test  ( ) was 

highly improved especially in small samples. In the calculation of  ( ), there is 

more emphasis on the later autocorrelation compared with    ( ). This is an 

advantage when the serial correlation occurs in the higher lags since the denominator 

takes value in lags (    ), so it could be seen that the weight of the autocorrelation 

of higher lags is more compared with lower lags in the calculation of  ( ) statistic. 

Monti (1994) proposed a portmanteau test statistic by using the residual partial 

autocorrelation. It was shown that the proposed test is more powerful when the fitted 
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model of the ARMA process underestimates the order of the moving average 

component (q). The performance of the test was checked by implementing using 

Monte Carlo experiment. The portmanteau test proposed by Monti (1994) has the 

same formula as Ljung and Box (1978), just the difference is that Monti uses residual 

partial autocorrelation instead. The presented test is given by: 

 

  ̃( )   (   ) ∑
 ̂   
 ( )

   
  

 

   

  (8) 

 

where   ̂    ( ) is the  th lag partial autocorrelation of the residual. For a white noise 

residual, it is expected to have no partial autocorrelation in the residual, so the partial 

autocorrelation of the residual should not be significantly different from zero. The test 

statistics have asymptotically a Chi-squared distribution with m – p – q degree of 

freedom in an ARMA (p, q) model.  

Peña and Rodríguez (2002) proposed a portmanteau test based on the  th
 

order of autocorrelation matrix they showed that it is more powerful than the Ljung 

and Box (1978) and Monti (1994) test statistics. The proposed portmanteau test was 

tested on models with various sample sizes. Peña and Rodriguez (2002) have shown 

that the new test depending on sample size could improve and be more powerful than 

previous tests up to 50%. This test is capable of detecting nonlinearity in the residuals 

by replacing the autocorrelation of the residuals by the autocorrelation of the squared 

residuals. Researchers showed by examples and simulation that the test is, in general, 

more powerful than previously done test by McLeod and Li (1983). The presented test 

by Peña and Rodríguez (2002) is based on the determinant of the autocorrelation 

matrix. So in this test researchers first calculate the autocorrelation matrix for m lags 
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and then      th
 root of the determinant for that autocorrelation matrix is calculated 

and is used in the formula for measuring the portmanteau test statistics. The 

researchers mentioned that this test could be seen as a linear combination of partial 

autocorrelations instead of autocorrelations. The proposed portmanteau test is as 

below: 

 

  ̂    (  | ̂ |
 
  )   (9) 

 

where  ̂  is the   lag autocorrelation matrix of the residual for a stationary time 

series. T is the sample size and | ̂ |
 

  is the  th
 root of the determinant of the 

autocorrelation matrix that is given by: 

 

  ̂   

[
 
 
 
                       ̂   ( )

 ̂   (  )  
 

 ̂   ( )

 ̂   (   )

   
      ̂   (  )  ̂   (   )   ]

 
 
 
  (10) 

 

The asymptotic distribution of this proposed Portmanteau test was shown to be 

a linear combination of the Chi-squared distribution. Peña and Rodríguez (2002) 

showed that the test statistics could be approximated as a Gamma distribution. The 

proposed statistics can be interpreted in two ways. The first one can be done by the 

utilization of recursive expression of the determinant of the correlation matrix  ̂   the 

expression   | ̂ |
 

  is explained as the coefficient of average squared correlation. 
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The second method of interpretation of the proposed portmanteau statistic is by the 

coefficient of partial autocorrelation. The expression of the statistic using the second 

method is given below: 

  ̂  | ̂ |
 
  ∏(   ̂   

 ( ))(     )  
 

   

  (11) 

 

From the above relation, it is shown that the term | ̂ |
 

  is the weighted function of 

initial m residual coefficients of partial autocorrelation. The significance level of the 

portmanteau test was studied in detail. In addition to this, the power of the new 

statistics was also judged and compared to the previous portmanteau test of Ljung and 

Box (1978) and Monti (1994). In the portmanteau test proposed by Monti (1994) and 

Ljung-Box (1978), the significance level and the power of the test statistics were 

measured using the percentiles distribution of the    while in this test this was done 

by a Gamma distribution. The significance level of the  ̂    portmanteau statistics 

was tested using both, low order Autoregressive (AR) as well as Moving Average 

(MA) models. The test was conducted using 100 samples of observations with values 

of m (5, 10 and 20). The nominal levels were kept the same (1% & 5%) as they were 

used in the previous proposed test.   

In most cases, it has been observed that the significance level of the Ljung-

Box portmanteau test is greater than the corresponding nominal level. When the 

nominal level is 5 percent, the significance level of portmanteau test statistics lies in 

between the interval of (.041 to .055) while that of the Ljung-Box test lies in between 

the interval of (.052 to .069). From these results, it appears that the value of m does 



  

15 

   

not affect the significance level of portmanteau statistics. To analyze the power of the 

test, 24 different models given by Monti (1994) are applied and in each case, it is 

found that the power of the test is inversely proportional to the value of m, so that 

increasing values of m result in a decrease of power of the portmanteau test. The 

performance of the test was also tested for a small sample of data. The performance 

test shows that before a decrease in power due to an increase in the value of m, the 

proposed statistics almost remain the most powerful and an increase in power can be 

up to 75 percent. 

  Peña and Rodríguez (2006) gave their modification of a portmanteau test for 

goodness of fit test in time series using the log of the determinant for the 

autocorrelation matrix. Their modified statistic is asymptotically equivalent to  ̂  

given in (11), but the modified test is 25 percent more powerful than their previous 

test especially in the case when the sample size is small. Two approximations are 

utilized for the test statistic. The first is normal and the other is Gamma 

approximation. The proposed portmanteau test proposed is given by: 

 

   
   

 

   
   | ̂ |   (12) 

 

where  ̂  is the autocorrelation matrix of m lags given in (10). After suitable 

modifications in the above expressions, the statistic in (12) can be written as: 

 

   
    ∑

(     )

   
   (   ̂    ( ))

 

   

  (13) 
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The   
 statistic is proportional to squared partial autocorrelation coefficients 

weighted average in which the large weights are assigned to low order coefficients 

and smaller weights are assigned to large order coefficients. Where  ̂     is the partial 

autocorrelation between the residuals. The distribution of this statistic is 

asymptotically distributed as a sum of independent Chi-square that can be 

approximated by Gamma, but the performance has improved for the finite size of 

samples. Peña and Rodríguez (2006) showed that   
 can increase the power up to 50 

percent than the test statistics of Ljung-Box, and Monti, depending upon the sample 

size and model.  

Recently, Fisher and Gallagher (2012) proposed a weighted portmanteau test 

based on the trace of the square autocorrelation matrix and show that the asymptotic 

distribution is a sum of Chi-square that can be approximated as Gamma distribution. 

Their simulation study suggests that the weighted test is more powerful than Ljung-

Box, Mahdi, and McLeod (2012) test in the ARMA process and it has easy 

computation and is numerically stable. The weighted Portmanteau test proposed by 

Fisher and Gallagher (2012) is presented below:  

 

  ̃ ( )   (   )∑(
     

 
)
 ̂   
 ( )

   

 

   

  (14) 

 

This test is like the Ljung-Box test, but it is a weighted Ljung-Box test which 

gives the most weights to lag 1 and the lowest weight to lag m in the calculation of the 

portmanteau test statistics. This test also could be derived by using partial 

autocorrelation instead of the autocorrelation function and then will be called as a 
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weighted Monti test statistic. The presented formula for the weighted Monti test 

which used partial autocorrelation is:  

  ̃ ( )   (   )∑(
     

 
)
 ̂   
 ( )

   

 

   

   (15) 

The formula is the same as the previous formula and just uses the partial 

autocorrelation of the residual ( ̂    ) instead of autocorrelation. 

2.3 Portmanteau Tests for Nonlinear Models 

Sometimes the time series has a nonlinear pattern that requires implementing 

nonlinear analysis because the linear model is less flexible and has a bias in the 

computation. Testing the linearity assumption could be categorized into two groups. 

The first group is based on the Volterra expansion of stationary time series Wiener 

(1958). The formula of the Volterra expansion is given by:  
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(16) 

 

Looking at the above formula, it could be seen that the time series is not only 

related to the linear term of the previous residual and not also linear related to the 

second and third-order of the residuals. The test for linearity assumption will be 

performed to see whether the higher-order coefficients are significantly different from 

zero or the null hypothesis is true, and the higher orders are set to zero. The above 

formula is for a strong stationary time series, where strong stationary is given when 

the distribution does not change over time instead it stays the same even when a shift 
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in time is happened.   is the mean of the series of (    )  are the regression 

parameters. If any of the higher-order coefficients of residuals (   ) (    ) shown to 

be non-zero, then the time series will be nonlinear. Special cases of (15) will be 

introduced in the simulation chapter.  

The linearity assumption is considered to be one of the most important 

assumptions in the ARMA model. When the time series is linear in the mean but not 

linear invariance, we will move to the ARCH model proposed by Engle et al. (1987) 

test that can be used to check the significance of the ARCH effect. For the second 

group of the tests, the linearity assumption will be tested by using the autocorrelation 

function on the higher order of time series (squared value). McLeod and Li (1983) 

proposed a test statistic to detect the nonlinearity in the time series, based on the 

autocorrelation of the squared residuals. McLeod and Li (1983) have used the idea 

that the autocorrelation of the squared residual is very useful in the diagnostic of the 

non-linear types of the serial dependence in the residual, for an ARMA process which 

shown by Granger and Anderson (1978). Their test statistic is given by  

    
   (   )∑

 ̂   
 ( )

   

 

   

   (17) 

 

Where 

 

  ̂  ( )  
∑ (  ̂

   ̂ )(  ̂  
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   (18) 

 

McLeod and Li (1983) showed that the squared residual autocorrelation 

follows asymptotically a multivariate normal distribution with the unit covariance 

matrix. They have tested the validity of their proposed test in the small sample size. 
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They have done a review on the literature proposed for the portmanteau test and 

mentioned that Granger and Anderson (1978) have found instances of time series. 

That was modeled by Box and Jenkins (1976) which hadn't any dependence on the 

residual (the residual autocorrelation was not significant). But there was seen 

significant autocorrelation in the squared residual of the same time series. For this 

situation, Granger and Anderson (1978) were suggested that by fitting a bilinear 

model to the residual of the ARMA process the forecast result could be improved. 

McLeod and Li (1983) also found numerous time series in which although the 

residual of the best fitted ARMA model did not have any serial dependence and 

significant autocorrelation and although they met the model fit adequacy. But the 

squared residual of the ARMA model has significant autocorrelation. Therefore, the 

presented portmanteau test by McLeod and Li (1983) is the same with the Ljung and 

Box (1978) by this difference that instead of the autocorrelation of the residual they 

have used the autocorrelation of squared residual, with  ̂  ∑   ̂
    

   , is the 

variance of the squared residual. McLeod and Li (1983) have tested the performance 

of their statistic by small sample simulation using 21 models with 10,000 times for 

each one. It was shown that the performance of the    
  was almost consistent for low 

and larger sample size only in four models out of 21 models which had low sample 

size (T = 50) the    
  was slightly less than lower bound of the 95% confidence 

interval for the number of rejection of the null hypothesis. Fisher and Gallagher 

(2012) proposed a weighted test of McLeod-Li statistic and show that the asymptotic 

distribution of this statistic is Gamma where the power of the weighted test is almost 

always higher than McLeod-Li statistic in detecting nonlinearity. The weighted 

statistic is given by: 
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    (19) 

 

Li and Mak (1994) noticed that the Box and Pierce test statistic cannot be 

approximated accurately to Chi-square distribution based on the squared residuals 

when the process has an ARCH structure. In this regard, Li and Mak (1994) proposed 

a modified test statistic under the assumptions of ARCH(b) model: 
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where  ̂  is the sample conditional variance. They estimate the asymptotic distribution 

of their test by Chi-square distribution with degrees of freedom    . Fisher and 

Colin (2012) proposed a weighted version of Li and Mak (1994). Their test statistic is 

given by 

   (   )   ∑
(    (   ))

 
 ̂   
 (

 

     

  ̂
 ( )  ̂ )   (21) 

 

The portmanteau statistic of Fisher and Gallagher (2012) is found to be 

linearly combined Chi-squared random variables that can be approximated to a 

Gamma distribution. Fisher and Gallagher (2012) showed that the power of their test 

statistic is more than the other tests. This fact has been revealed by the results of the 

simulations done during the test. The test is more efficient especially, in the case of 

non-linear models 'detection which has a long memory.  
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Peña and Rodríguez (2002, 2006) extended their test statistics to test for 

nonlinear models including GARCH models by replacing autocorrelation of the 

residuals in the  th
 order of the autocorrelation matrix by the autocorrelation of the 

squared residuals.  

The two statistics, respectively, are 
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 )|   (23) 

 

where  ̂ (  ̂
 ) is the autocorrelation matrix of the squared residuals. The asymptotic 

distribution of the two test statistics is estimated by Gamma. They showed that their 

tests are more powerful in detecting the nonlinearity in time series than the McLeod 

and Li (1983) tests in many cases.   

Rodriguez and Ruiz (2005) proposed another portmanteau test statistic which is a 

powerful and improved version of previous tests. The test was proposed for the 

analysis of financial time series having high consistent volatilities. Rodriguez and 

Ruiz (2005) extended the  ̂  and proposed a modification in that proposed statistic 

by introducing the logarithm of the determinant. Although the proposed test of 

squared residuals by Peña and Rodríguez (2002) was more powerful than the test 

statistics of McLeod and Li (1983), this test bears some more unique properties 

especially for large values of m making the test attractive and more powerful. The 
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improved statistic of the portmanteau test proposed by  Rodriguez and Ruiz (2005) is 

given below: 

  

   
 ( )   ∑ [∑ ̂(   )

 

   

]

 
   

   

             (24) 

 

where  ̂(   ) denotes the standard samples of autocorrelation and (   ) denotes 

the order of these samples. The asymptotic distribution of the test in (24) has been 

approximated by two distributions and they are Normal and Gamma approximations. 

The test is powerful and possesses a unique property of providing two useful 

information. The test not only checks the deviation samples of autocorrelations with 

zero but also gives information regarding the patterns of coefficients  ( ) that can be 

possibly made from these samples. The power of their portmanteau test was tested 

concerning short memory models and long memory models. Artificial series was 

generated through the Autoregressive stochastic volatility model for finite samples to 

investigate the power of test statistic   
 ( ). Comparing the powers of their test 

statistic with other previous tests, for a sample of size 100, suggested that the 

  
 ( ) is higher than the other previous tests. 

Lin and McLeod (2006) showed that most often the asymptotic distribution of 

the test statistic of Peña and Rodríguez does not correspond very well to Gamma 

approximation. The lack of correspondence occurs in the case of a small number of 

lags used in the test. The researchers suggested using the non-parametric Monte Carlo 

significance test of Peña and Rodríguez (2002). They showed that for a series of 

lengths less than 1000, the asymptotic distribution of the statistics of this test may be 
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very slow therefore Monte-Carlo test is recommended owing to the fact of its higher 

power as compared to the test of Peña and Rodríguez and Ljung-Box portmanteau 

statistics.  

The test statistics of these tests are considered to correspond well to 

autoregressive conditional heteroskedasticity (ARCH) models but they show some 

power lacking in other non-linear models that do not have obvious autoregressive 

conditional heteroskedasticity (ARCH) structures. In this regard, in addition to the test 

for cross-correlations between residuals and their squares, Psaradakis and Vavra 

(2019) proposed a new portmanteau test. Their test is used for checking the adequacy 

of fitted stationary time series using the generalized correlations of residuals from a 

linear model. They applied their test to several linear and nonlinear models including 

ARMA and GARCH models and showed that their test is useful for detecting ignored 

nonlinearity in time series models. The test statistics proposed for testing the linearity 

is given below: 
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where    , and   are some natural numbers such that the sum of   and     and   

is less than  . The asymptotic distributions of these tests are Chi-square. They 

claimed that their tests are more powerful than McLeod and Li (1983) in many cases.  

Recently, Mahdi (2020) proposed a new that can be used simultaneously for both 

ARMA and ARCH/GARCH models. He proposed a new autocorrelation and cross-

correlation test given by: 
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    | ̂( )|    (27) 

 

where | ̂( )| is the determinant of the block matrix with a dimension of  (   ) ×

 (   ) which is given by: 
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where ′ stands for the transpose of the matrix and 
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Thus, the extended version of | ̂( )| is 
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Here,  ̂  ( ) is the autocorrelation coefficient between residuals,  ̂  ( ) is the 

autocorrelation coefficient between the squared-residuals, and  ̂  ( ) is the cross-

correlation between the residuals and their squares values at lag time   that is defined 

as follows: 
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where  
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  (32) 

 

Under the null hypothesis that the fitted model is accurate, we expect that the 

sample autocorrelations and the sample cross-correlations at different lag times to be 

very close to zero. Thus, for small values of | ̂( )| that are close to zero, the null 

hypothesis will be rejected and the model is not good (linearity assumption is not 

valid). On the other hand, for large values that are close to one, the fitted model is 

good.  
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CHAPTER 3: COMPUTATION STUDY 

In the field of a portmanteau test, many researchers have proposed different 

methods of calculating the portmanteau value for different time series models. Some 

have worked with ARMA and others worked on ARCH and GARCH. Recently, 

Mahdi (2020) proposed a new that can be used simultaneously for both ARMA and 

ARCH/GARCH models. He proposed a new autocorrelation and cross-correlation 

test. 

In this regard, Mahdi (2020) derived the asymptotic distribution of the test in 

(27) as a linear combination of Chi-square random variables and approximates it to a 

Gamma distribution. One limitation that the asymptotic distribution can distort the 

empirical size and the Monte-Carlo significance test is recommended in such a case.  

The Monte-Carlo significance test is recommended by Lin and McLeod (2006) and 

Mahdi and McLeod (2012) and can be done by following steps: 

1. Generate data from the ARMA-GARCH model or other nonlinear models.  

2. Fit a time series model and find the residuals of this fitted model.  

3. Apply the portmanteau test on the residuals and get the value of the test 

statistic. I call this value as an observed value. 

4. Simulate data from the fitted model in step 2, 

5. Fit a time series model to this simulated data, 

6. Get the residuals of this fitted model, 

7. Apply the portmanteau test on the residuals and get the value of the test 

statistic. I call this value as a calculated value,  

8. Compare the observed value with the calculated value,  

9. Replicate the steps I-V, 1000 times and count the average that the calculated 

value is greater than or equal to the observed value. The result of these steps 
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will give us the p-value of the portmanteau test for fitting the model in Step 2 

to the simulated model in Step 1. 

10. Replicate steps 1-3, 500 times and compute the estimated p-value based on the 

rejection frequencies. 

In total there will be 1000 simulation and each simulation include 500 

replications. The total number of iterations in this study will be 500000 iterations. 

In the simulation study, we use the technique of the Monte-Carlo significance 

test to estimate the observed significance levels (type I error probability) of the test 

statistics𝐶           ̅    ̅    ( )  ̃ ( )   
     

   ̃  ( )   and 

  
 (  ̂

 ) given in (27), (25), (25), (26), (26), (7), (14), (13), (17), (19), and (23) 

respectively. The tests 𝐶           ̅    ̅   are essentially checked the adequacy of 

the fitted model based on the cross-correlations between the residuals and their 

squares values,  ̂  , the tests  ( )  ̃ ( )   
  check the adequacy of the fitted 

model based on the autocorrelations of the residuals, and the tests    
   ̃  ( ) 

  
 (  ̂

 ) check the adequacy of the fitted model based on the autocorrelations of the 

squared-residuals. We used the nominal levels of 𝛼          5  and 𝛼      . After 

that, we study the power of the tests (1- type II error) by comparing the performance 

of these portmanteau tests.  We conduct this simulation study by using different 

sample sizes for different linear and nonlinear models. In my simulation study, we 

have used some trusted R packages published in well-reputed journals: forecast, 

tseries, portes, TSA, rugarch, fGarch packages.  

3.1. Significance Level 

In this section we have presented the results found by fitting a model to a data 

generated by some ARMA and GARCH process. Table 1 shows the estimated 
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significant levels correspond to nominal levels 0.01, 0.05, and 0.10, based on the test 

statistics 𝐶           ̅    ̅    ( )  ̃ ( )   
     

   ̃  ( )   and   
 (  ̂

 ), 

when a true AR(1) model is fitted to a series of length       generated by AR(1) 

process with parameters ∅        3   6  and 0.9 at lags      and 20. As seen 

from the table results, all empirical significant levels are estimated very well and have 

close values to their nominal levels. We also estimate the significant level by 

considering the case of fitting a true MA(1) model to a series length       

generated by MA(1) process with parameters          3   6  and 0.9. The results 

are shown in Table 2 and suggest that the use of the Monte-Carlo version of the 

portmanteau test accurately estimates the size of the test. Besides, we checked the 

performance of the Monte-Carlo significance test in the case of ARMA-GARCH 

models at lags   6 and 12. We generated data of different sample sizes 100, 300, 

500, and 1000 from four different models and then we fit the true model. After that, 

we calculate the empirical level for the nominal level 0.05 by considering the Monte-

Carlo significance of the tests 𝐶           ̅    ̅      
   ̃   ̃  ( )   

 (  ̂
 )  

  (   ) and   (   ), where  (   ) and   (   ) are given in (20) and (21). 

 It is worth to note that we did not consider the tests  ( )  ̃ ( )   and   
  

as these tests are not designed to work with GARCH models. Tables 3 we use the four 

models are taken from the literature Psaradakis and Vavra (2019) that is widely used 

in financial time series: 
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Model 1: ARCH (1) 

       , where   
        6    

  , 

Model 2: ARCH (2) 

       , where   
             

         
  , 

Model 3: GARCH (1,1) 

       , where   
       5    

    9    
  , 

Model 4: AR (1)-ARCH (1) 

                          ,        where       
             

    

(33) 

The results indicate that the Monte-Carlo technique is applicable to check the 

significance level correctly for the new test and for the previous proposed tests and 

the results indicates that for the four models the tests gives a result near to the nominal 

value in most of the cases. 
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Table 1. Empirical size at 1%, 5% and 10% for AR (1) model fitted as AR (1) for T = 100. 

    ∅   Based on   ̂       Based on  ̂     Based on  ̂   

𝐶           ̅    ̅    ( )    ̃ ( )    
      

   ̃  ( )   
 (  ̂

 ) 

𝛼       

10 0.1  0.014 0.006 0.006 0.011 0.012  0.015 0.016 0.014  0.009 0.003 0.015 

  0.3  0.013 0.005 0.004 0.012 0.009  0.016 0.014 0.018  0.012 0.004 0.013 

  0.6  0.010 0.007 0.002 0.009 0.012  0.013 0.015 0.011  0.015 0.008 0.011 

  0.9  0.009 0.003 0.003 0.010 0.011  0.014 0.011 0.008  0.019 0.011 0.007 

20 0.1  0.013 0.005 0.004 0.011 0.011  0.015 0.015 0.013  0.007 0.002 0.015 

  0.3  0.011 0.005 0.005 0.011 0.010  0.016 0.012 0.016  0.011 0.002 0.014 

  0.6  0.010 0.006 0.001 0.010 0.012  0.014 0.014 0.010  0.014 0.007 0.008 

  0.9  0.009 0.002 0.002 0.011 0.010  0.010 0.011 0.008  0.016 0.008 0.006 

𝛼     5 

10 0.1  0.044 0.031 0.028 0.044 0.042  0.036 0.038 0.039  0.041 0.041 0.040 

  0.3  0.042 0.023 0.027 0.046 0.040  0.039 0.037 0.039  0.042 0.042 0.041 

  0.6  0.043 0.024 0.024 0.048 0.043  0.037 0.040 0.041  0.043 0.044 0.042 

  0.9  0.045 0.032 0.020 0.041 0.050  0.040 0.039 0.043  0.040 0.044 0.041 

20 0.1  0.042 0.030 0.025 0.043 0.041  0.035 0.039 0.037  0.040 0.040 0.038 

  0.3  0.040 0.021 0.024 0.044 0.040  0.037 0.041 0.036  0.041 0.040 0.039 

  0.6  0.043 0.022 0.021 0.046 0.042  0.036 0.045 0.040  0.043 0.043 0.040 

  0.9  0.044 0.030 0.018 0.040 0.048  0.038 0.045 0.042  0.038 0.041 0.037 

𝛼       

10 0.1  0.096 0.041 0.051 0.097 0.095  0.061 0.096 0.088  0.064 0.067 0.065 

  0.3  0.093 0.058 0.052 0.097 0.095  0.067 0.098 0.087  0.065 0.076 0.064 

  0.6  0.098 0.057 0.047 0.099 0.100  0.070 0.097 0.089  0.057 0.065 0.074 

  0.9  0.101 0.050 0.059 0.102 0.099  0.073 0.098 0.083  0.069 0.057 0.056 

20 0.1  0.093 0.040 0.047 0.096 0.094  0.060 0.094 0.087  0.061 0.064 0.065 

  0.3  0.095 0.056 0.049 0.097 0.093  0.065 0.092 0.085  0.063 0.075 0.058 

  0.6  0.096 0.054 0.044 0.096 0.099  0.069 0.096 0.086  0.055 0.064 0.071 

  0.9   0.099 0.047 0.056 0.101 0.100   0.070 0.097 0.080   0.067 0.057 0.053 
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Table 2. Empirical size at 1%,5% and 10% for MA (1) model fitted as MA(1) for T = 100. 

        Based on   ̂       Based on  ̂     Based on  ̂   

𝐶           ̅    ̅    ( )    ̃ ( )    
      

   ̃  ( )    
 (  ̂

 ) 

𝛼       

10 0.1  0.015 0.008 0.007 0.011 0.015  0.018 0.011 0.015  0.014 0.016 0.015 

 
0.3  0.016 0.014 0.016 0.010 0.011  0.016 0.015 0.014  0.013 0.016 0.014 

 
0.6  0.014 0.016 0.015 0.012 0.012  0.017 0.009 0.014  0.013 0.014 0.014 

 
0.9  0.012 0.014 0.013 0.009 0.012  0.014 0.012 0.013  0.012 0.013 0.013 

20 0.1  0.014 0.007 0.005 0.010 0.012  0.017 0.011 0.015  0.013 0.017 0.014 

 
0.3  0.013 0.012 0.013 0.010 0.010  0.016 0.013 0.016  0.012 0.015 0.013 

 
0.6  0.011 0.015 0.013 0.011 0.011  0.016 0.007 0.014  0.012 0.012 0.014 

 
0.9  0.012 0.013 0.011 0.008 0.010  0.012 0.011 0.014  0.012 0.011 0.012 

𝛼     5 

10 0.1  0.044 0.033 0.045 0.045 0.046  0.039 0.039 0.042  0.039 0.043 0.041 

 
0.3  0.045 0.042 0.044 0.049 0.048  0.043 0.043 0.043  0.042 0.045 0.041 

 
0.6  0.043 0.036 0.035 0.046 0.047  0.035 0.040 0.041  0.040 0.042 0.039 

 
0.9  0.047 0.037 0.042 0.048 0.048  0.040 0.041 0.044  0.037 0.040 0.042 

20 0.1  0.043 0.032 0.042 0.043 0.045  0.037 0.037 0.041  0.037 0.042 0.041 

 
0.3  0.045 0.041 0.044 0.048 0.046  0.041 0.041 0.041  0.040 0.043 0.040 

 
0.6  0.042 0.034 0.033 0.044 0.044  0.031 0.036 0.044  0.037 0.040 0.037 

 
0.9  0.046 0.036 0.038 0.046 0.047  0.037 0.037 0.048  0.044 0.038 0.040 

𝛼       

10 0.1  0.096 0.061 0.065 0.095 0.093  0.081 0.082 0.094  0.073 0.078 0.083 

 
0.3  0.095 0.059 0.067 0.095 0.096  0.082 0.083 0.095  0.064 0.076 0.076 

 
0.6  0.098 0.067 0.057 0.096 0.097  0.075 0.079 0.097  0.078 0.070 0.087 

 
0.9  0.104 0.063 0.058 0.098 0.102  0.078 0.087 0.098  0.072 0.078 0.069 

20 0.1  0.092 0.060 0.065 0.093 0.091  0.080 0.080 0.094  0.072 0.074 0.082 

 
0.3  0.093 0.054 0.064 0.095 0.094  0.082 0.081 0.093  0.064 0.074 0.073 

 
0.6  0.097 0.061 0.054 0.095 0.095  0.074 0.075 0.098  0.074 0.068 0.084 

 
0.9   0.102 0.060 0.057 0.097 0.101   0.073 0.084 0.103   0.071 0.075 0.067 
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Table 3: Empirical size at 5% under GARCH models 

        Based on  ̂     Based on  ̂   

 𝐶           ̅    ̅       
   ̃  ( )   

 (  ̂
 )  (   )   (   ) 

Model 1: ARCH(1) model is fitted to data from ARCH(1) process 

6 100  0.045 0.039 0.032 0.044 0.035  0.037 0.034 0.038 0.037 0.036 

  300  0.047 0.039 0.036 0.046 0.036  0.035 0.037 0.040 0.038 0.038 

  500  0.049 0.042 0.043 0.048 0.040  0.038 0.040 0.041 0.041 0.040 

  1000  0.050 0.044 0.045 0.052 0.053  0.040 0.041 0.039 0.043 0.041 

12 100  0.043 0.038 0.033 0.042 0.032  0.036 0.030 0.039 0.036 0.037 

  300  0.045 0.037 0.034 0.044 0.035  0.035 0.038 0.037 0.035 0.037 

  500  0.047 0.040 0.038 0.046 0.040  0.037 0.040 0.041 0.040 0.039 

  1000  0.049 0.043 0.042 0.049 0.049  0.040 0.041 0.042 0.041 0.040 

Model 2: ARCH(2) model is fitted to data from ARCH(2) process 

6 100  0.048 0.036 0.037 0.047 0.043  0.037 0.042 0.036 0.036 0.039 

  300  0.047 0.038 0.038 0.046 0.046  0.040 0.040 0.038 0.039 0.038 

  500  0.048 0.042 0.042 0.047 0.046  0.041 0.043 0.039 0.041 0.040 

  1000  0.049 0.045 0.045 0.053 0.051  0.039 0.045 0.043 0.040 0.042 

12 100  0.046 0.037 0.039 0.045 0.046  0.035 0.035 0.037 0.034 0.039 

  300  0.048 0.039 0.041 0.045 0.045  0.038 0.038 0.036 0.039 0.037 

  500  0.047 0.042 0.043 0.046 0.047  0.039 0.041 0.039 0.038 0.040 

  1000  0.047 0.045 0.042 0.048 0.049  0.040 0.043 0.042 0.042 0.041 

Model 3: GARCH(1,1) model is fitted to data from GARCH(1,1) process 

6 100  0.046 0.036 0.040 0.045 0.043  0.035 0.037 0.037 0.038 0.034 

  300  0.047 0.039 0.041 0.046 0.045  0.034 0.039 0.039 0.035 0.037 

  500  0.049 0.045 0.045 0.047 0.047  0.037 0.045 0.041 0.036 0.036 

  1000  0.052 0.045 0.043 0.049 0.048  0.039 0.043 0.043 0.041 0.041 

12 100  0.047 0.035 0.039 0.046 0.045  0.037 0.040 0.036 0.037 0.037 

  300  0.049 0.037 0.044 0.048 0.048  0.036 0.038 0.035 0.033 0.036 

  500  0.050 0.041 0.041 0.049 0.049  0.038 0.042 0.039 0.040 0.039 

  1000   0.052 0.042 0.040 0.053 0.051   0.042 0.045 0.040 0.041 0.040 

Model 4: AR(1)-ARCH(1) model is fitted to data from AR(1)-ARCH(1) process 

6 100  0.048 0.037 0.041 0.047 0.045  0.037 0.034 0.038 0.040 0.039 

  300  0.048 0.036 0.039 0.045 0.045  0.039 0.037 0.037 0.039 0.038 

  500  0.050 0.040 0.038 0.048 0.046  0.042 0.041 0.040 0.041 0.042 

  1000  0.051 0.044 0.042 0.050 0.049  0.045 0.042 0.040 0.043 0.041 

12 100  0.048 0.041 0.040 0.047 0.046  0.034 0.038 0.039 0.040 0.038 

  300  0.047 0.043 0.041 0.046 0.045  0.036 0.040 0.039 0.038 0.039 

  500  0.051 0.047 0.039 0.050 0.052  0.038 0.043 0.040 0.040 0.043 

  1000   0.049 0.048 0.045 0.049 0.048   0.042 0.046 0.041 0.042 0.043 
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3.2. Power Study 

In this section we conduct a similar study of Monti (1994) and Peña and Rodríguez 

(2002, 2006) in order to investigate the power of the test statistics 𝐶           ̅    ̅   

  ( )  ̃ ( )   
     

   ̃  ( )   
 (  ̂

 )  (   ) and   (   ).  Although, Monti 

(1994) and Peña and Rodríguez (2002, 2006) and other researchers investigate the power of 

the portmanteau tests when a false AR(1) model is fitted to a data generated by 12 

ARMA(2,2) process as well as when a MA(1) model is fitted to a data generated by another 

12 ARMA(2,2) process, we focus my attention to investigate the power of the portmanteau 

test statistics in the case of ARMA-GARCH models. In this regard, we generated my data 

from 24 ARMA(2,2)-ARCH(1) models, where the parameters of the ARMA(2,2) are the 

same parameters studied by Monti (1994) and Peña and Rodríguez (2002, 2006), whereas 

the parameters of the ARCH(1) are selected to be (      )  (      6). After that, we 

calculated the empirical power of the test statistics 

𝐶           ̅    ̅    ( )  ̃ ( )   
     

   ̃  ( )  and   
 (  ̂

 ), based on the 

Monte-Carlo techniques, when a false AR (1) (or MA (1)) model is fitted to the generated 

data. we also check the power for detecting nonlinearity in the following eight nonlinear 

models taken from the model in (16):  

 

                          3       5       , 

                  3                            5    
  , 

      3                3       5            , 

                       3       5           8        , 

(34) 

 

      5                3     (  8    5    )        , 

      6        5  (           )        , 

      7        8    
      , 

(35) 
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      8           3     (               5    )     , 

The first four models (34) studied by Keenan (1985) and the other (35) were studied 

by Psaradakis and Vávra (2019). For these eight models, I estimate the empirical power of 

the statistics 𝐶           ̅    ̅      
   ̃  ( )  and   

 (  ̂
 ) by fitting a false AR(p) 

model, where the order       will be selected by the Akaike information criteria AIC 

(Akaike, 1974).  

We finished this section by studying the power of the tests for detecting nonlinearity 

in some GARCH models that are commonly used in financial time series. In particular, we 

calculate the power the test statistics  𝐶           ̅    ̅      
   ̃  ( )  (   ) and 

  (   ), when a false ARCH(1) is fitted to data generated by ARCH(2), ARCH(3), and 

AR(1)-GARCH(1,1) models. 

Table 4 shows the power of the statistics 𝐶           ̅    ̅    ( )  ̃ ( )  

  
     

   ̃  ( ), and   
 (  ̂

 ) corresponding to the significance level 0.05 at lags 10 

and 20 when an AR (1) model is erroneous fits to a Gaussian series of length 100 generated 

by from 12 ARMA (2,2)-ARCH(1) models. The parameters of the ARMA(2,2) are the 

models from 1 to 12 taken from Monti (1994) and Peña and Rodríguez (2002, 2006), 

whereas the parameters of the ARCH(1), which are studied by Psaradakis and Vávra 

(2019), are selected to be (      )  (      6). The results suggest that the Power of the 

test 𝐶  is higher than the other tests in most cases. It can be seen from the results in Table 4 

that the power of the test 𝐶  corresponds to models 2, 5, 9, and 11 tends to be less than the 

powers of the tests    
   ̃ ( )   

 (  ̂
 ), where the test  ̃ ( ) is more powerful than the 

other tests for the models 2, 5, and 9, whereas the statistic   
  has the highest power in 

model 11. 

 Table 5 shows the power of the statistics 𝐶           ̅    ̅    ( )  ̃ ( )   
  

    
    ̃  ( ), and   

 (  ̂
 ) corresponding to the significance level 0.05 at lags 10 and 
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20 when an MA(1) model is erroneous fits to a Gaussian series of length 100 generated by 

from 12 ARMA(2,2)-ARCH(1) models. The parameters of the ARMA(2,2) are the models 

13-24 studied by Monti (1994) and Peña and Rodríguez (2002, 2006), whereas the 

parameters of the ARCH(1), which are studied by Psaradakis and Vavra (2019), are 

selected to be (      )  (      6). we noticed that the power of the test 𝐶  is the highest 

except for the models 14, 15, 17, 21, and 24, where the test   
 (  ̂

 ) tends to have the 

highest power. 

Table 6 gives the power of the statistics 𝐶           ̅    ̅      
   ̃  ( )  and 

  
 (  ̂

 ) when a false AR (p) model, where the     , is fitted to a sample of length 

200 generated by the eight nonlinear models given by (34) and (35) consider the lags 7 and 

12. Here, the order p is selected via the Akaike information criteria AIC (Akaike, 1974). I 

used the function auto.arima () available from the R package “forecast" to select the best 

model with the smallest AIC value. The power of the statistic 𝐶  is much higher than the 

other tests suggesting that the 𝐶  has substantially improved for detecting nonlinearity in 

time series.   

Finally, Table 7 shows the power of the tests statistics 

𝐶           ̅    ̅      
   ̃  ( )   

 (  ̂
 )  (   ) and   (   ) at significance 

level 0.05 and lags 6 and 12, when a false ARCH (1) model is fitted to a series of length 

100, 300, and 500 are generated by three different AR-GARCH models. The first model is 

ARCH (2) model with parameters(           ). The second model is ARCH (3) with 

parameters (               ) and the last one is an AR (1)-GARCH(1,1) model with 

parameters (0.2, 1, 0.05, 0.90).  As seen from this table, one can conclude that the Monte-

Carlo significance test of the statistic 𝐶  almost always gives the highest power comparing 

to the other tests.  
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Table 4. Power of the tests when data generated from ARMA(2,2)-ARCH(1)and AR(1) fitted  

M
o

d
el

  
              

  
Based on   ̂    Based on  ̂    Based on  ̂   

𝐶           ̅    ̅      ( )    ̃ ( )    
        

   ̃  ( )    
 (  ̂

 ) 

Lag 10 

1 ---- --- -0.5 ---  0.741 0.256 0.158 0.298 0.312  0.012 0.169 0.125  0.658 0.711 0.754 

2 --- --- -0.8 ---  0.674 0.147 0.274 0.301 0.320  0.011 0.120 0.147  0.874 0.894 0.841 

3 --- --- -0.6 0.30  0.595 0.127 0.098 0.374 0.410  0.147 0.305 0.039  0.555 0.541 0.500 

4 0.1 0.30 --- ---  0.649 0.197 0.035 0.084 0.090  0.269 0.224 0.210  0.612 0.619 0.589 

5 1.3 -0.35 --- ---  0.756 0.307 0.198 0.274 0.314  0.097 0.127 0.078  0.894 0.971 0.310 

6 0.7 --- -0.4 ---  0.761 0.123 0.325 0.355 0.333  0.147 0.123 0.169  0.478 0.347 0.674 

7 0.7 --- -0.9 ---  0.572 0.105 0.214 0.421 0.458  0.199 0.201 0.310  0.511 0.498 0.537 

8 0.4 --- -0.6 0.3  0.681 0.175 0.099 0.441 0.384  0.232 0.238 0.156  0.632 0.674 0.567 

9 0.7 --- 0.7 -0.15  0.945 0.164 0.147 0.217 0.204  0.397 0.300 0.268  0.952 0.981 0.902 

10 0.7 0.2 0.5 ---  0.798 0.087 0.213 0.458 0.461  0.101 0.185 0.247  0.718 0.785 0.751 

11 0.7 0.2 -0.5 ---  0.753 0.151 0.247 0.574 0.074  0.223 0.157 0.081  0.832 0.859 0.910 

12 0.9 -0.4 1.20 -0.30  0.997 0.214 0.222 0.468 0.374  0.486 0.119 0.121  0.912 0.974 0.934 

Lag 20 

1 ---- --- -0.5 ---  0.704 0.203 0.114 0.264 0.294  0.006 0.137 0.101  0.631 0.689 0.721 

2 --- --- -0.8 ---  0.651 0.111 0.254 0.279 0.299  0.005 0.099 0.113  0.843 0.855 0.811 

3 --- --- -0.6 0.30  0.543 0.099 0.047 0.345 0.387  0.111 0.259 0.020  0.521 0.501 0.474 

4 0.1 0.30 --- ---  0.592 0.159 0.020 0.065 0.045  0.219 0.198 0.187  0.589 0.587 0.562 

5 1.3 -0.35 --- ---  0.702 0.287 0.158 0.255 0.283  0.047 0.107 0.041  0.854 0.935 0.287 

6 0.7 --- -0.4 ---  0.705 0.092 0.301 0.310 0.302  0.114 0.092 0.124  0.436 0.311 0.651 

7 0.7 --- -0.9 ---  0.531 0.085 0.198 0.397 0.401  0.155 0.157 0.287  0.487 0.451 0.511 

8 0.4 --- -0.6 0.3  0.631 0.153 0.050 0.411 0.355  0.209 0.203 0.121  0.604 0.642 0.541 

9 0.7 --- 0.7 -0.15  0.908 0.133 0.114 0.196 0.187  0.364 0.281 0.234  0.935 0.943 0.897 

10 0.7 0.2 0.5 ---  0.755 0.063 0.198 0.424 0.426  0.087 0.150 0.216  0.674 0.732 0.724 

11 0.7 0.2 -0.5 ---  0.702 0.119 0.207 0.541 0.035  0.186 0.107 0.023  0.801 0.831 0.899 

12 0.9 -0.4 1.20 -0.30  0.957 0.187 0.197 0.430 0.344  0.438 0.096 0.094  0.899 0.934 0.901 

 



  

37 

   

Table 5: Power of the tests when data generated from ARMA (2,2)-ARCH(1)and MA(1) fitted 

M
o

d
el

  

              

  
Based on   ̂    Based on  ̂    Based on  ̂   

𝐶           ̅    ̅      ( )    ̃ ( )    
        

   ̃  ( )    
 (  ̂

 ) 

Lag 10 

13 0.5 --- --- ---  0.919 0.354 0.219 0.231 0.427  0.654 0.521 0.614  0.853 0.891 0.759 

14 0.8 --- --- --- 
 

0.615 0.278 0.306 0.489 0.502 
 

0.547 0.630 0.798 
 

0.681 0.803 0.841 

15 1.10 -0.35 --- --- 
 

0.581 0.397 0.289 0.352 0.419 
 

0.484 0.514 0.811 
 

0.874 0.740 0.983 

16 ---- --- 0.8 -0.5 
 

0.820 0.219 0.347 0.498 0.301 
 

0.539 0.761 0.617 
 

0.708 0.698 0.541 

17 --- --- -0.6 0.3 
 

0.532 0.238 0.141 0.316 0.487 
 

0.697 0.478 0.570 
 

0.413 0.814 0.893 

18 0.50 --- -0.7 --- 
 

0.819 0.341 0.387 0.397 0.398 
 

0.414 0.613 0.784 
 

0.597 0.650 0.614 

19 -0.50 --- 0.7 --- 
 

0.925 0.174 0.474 0.314 0.147 
 

0.358 0.877 0.562 
 

0.669 0.841 0.726 

20 0.30 --- 0.8 -0.5 
 

0.823 0.439 0.411 0.479 0.213 
 

0.674 0.612 0.710 
 

0.741 0.512 0.801 

21 0.80 --- -0.5 0.3 
 

0.436 0.310 0.463 0.147 0.318 
 

0.479 0.687 0.661 
 

0.587 0.496 0.734 

22 1.20 -0.5 0.9 --- 
 

0.809 0.427 0.374 0.298 0.204 
 

0.591 0.510 0.719 
 

0.749 0.698 0.417 

23 0.30 -0.2 -0.7 --- 
 

0.996 0.251 0.310 0.599 0.421 
 

0.687 0.841 0.397 
 

0.452 0.532 0.630 

24 0.90 -0.4 1.20 -0.3 
 

0.689 0.399 0.474 0.497 0.471 
 

0.699 0.447 0.477 
 

0.706 0.754 0.996 

Lag 20 

13 0.5 --- --- ---   0.878 0.322 0.195 0.197 0.364   0.601 0.487 0.587   0.801 0.853 0.623 

14 0.8 --- --- ---   0.594  0.339  0.289  0.453  0.480    0.513  0.605  0.742    0.654  0.729 0.800 

15 1.10 -0.35 --- ---   0.563  0.347  0.262  0.304  0.387    0.432  0.494  0.784    0.862  0.713  0.952 

16 ---- --- 0.8 -0.5   0.785  0.294  0.301  0.436  0.276    0.510  0.729  0.601    0.693  0.649  0.522 

17 --- --- -0.6 0.3   0.504  0.107  0.202  0.299  0.423    0.647  0.438  0.526    0.402  0.784  0.864 

18 0.50 --- -0.7 ---   0.774  0.300  0.330  0.351  0.341    0.353  0.574 0.747     0.576  0631  0.587 

19 -0.50 --- 0.7 ---   0.903  0.128  0.433  0.217  0.120    0.307  0.831  0.507    0.631  0.811  0.692 

20 0.30 --- 0.8 -0.5   0.798  0.419  0.397  0.431  0.174    0.651  0.451  0.689    0.705  0.497  0.775 

21 0.80 --- -0.5 0.3   0.401  0.280  0.421  0.102  0.299    0.458 0.649   0.623    0.546  0.450  0.705 

22 1.20 -0.5 0.9 ---   0.797  0.404  0.337  0.237  0.193    0.563  0.496  0.687    0.717  0.674  0.398 

23 0.30 -0.2 -0.7 ---   0.984  0.229  0.301  0.540  0.397    0.640  0.810  0.352   0.431   0.498  0.611 

24 0.90 -0.4 1.20 -0.3   0.621  0.350  0.432  0.531  0.432    0.652  0.406  0.408    0.686  0.719  0.934 
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Table 6. Power of the test of fitting false AR(p) on eight nonlinear models 

M
o

d
el

 Lag 7 Lag 14 

𝐶           ̅    ̅      
   ̃  ( )   

 (  ̂
 ) 𝐶           ̅    ̅      

   ̃  ( )   
 (  ̂

 ) 

1 0.708 0.170 0.241 0.361 0.497 0.684 0.697 0.571 0.673 0.159 0.210 0.323 0.442 0.652 0.654 0.521 

2 0.742 0.364 0.374 0.544 0.301 0.541 0.456 0.498 0.709 0.321 0.321 0.518 0.284 0.510 0.418 0.432 

3 0.100 0.674 0.447 0.855 0.347 0.716 0.741 0.398 0.943 0.614 0.408 0.814 0.326 0.684 0.700 0.364 

4 0.984 0.431 0.458 0.413 0.578 0.621 0.657 0.479 0.923 0.401 0.419 0.398 0.521 0.603 0.611 0.421 

5 0.987 0.145 0.217 0.413 0.356 0.347 0.310 0.401 0.954 0.123 0.184 0.362 0.313 0.307 0.299 0.389 

6 1.000 0.654 0.574 1.000 0.741 0.147 0.521 0.784 0.979 0.608 0.512 0.988 0.721 0.103 0.497 0.762 

7 0.897 0.441 0.703 0.544 0.630 0.368 0.987 0.600 0.861 0.409 0.689 0.511 0.610 0.327 0.943 0.589 

8 0.520 0.147 0.129 0.639 0.497 0.478 0.590 0.578 0.483 0.104 0.103 0.605 0.441 0.439 0.555 0.543 
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Table 7: Power of the tests at 5% for four nonlinear models and fitted model is ARCH (1) 

        Based on  ̂     Based on  ̂   

 𝐶           ̅    ̅       
   ̃  ( )   

 (  ̂
 )  (   )   (   ) 

Model 1: ARCH(1) model is fitted to data from ARCH(2) process with parameters (           ) 

6 100  0.344 0.096 0.040 0.147 0.170  0.341 0.471 0.479 0.321 0.429 

  300  0.426 0.214 0.189 0.189 0.192  0.247 0.400 0.421 0.350 0.402 

  500  0.450 0.198 0.174 0.236 0.269  0.311 0.321 0.425 0.420 0.378 

12 100  0.323 0.072 0.021 0.120 0.147  0.310 0.444 0.449 0.300 0.389 

  300  0.410 0.187 0.143 0.143 0.140  0.222 0.386 0.399 0.323 0.473 

  500  0.437 0.157 0.132 0.204 0.209  0.287 0.302 0.400 0.402 0.348 

Model 2: ARCH(1) model is fitted to data from ARCH(3) process with parameters (               ) 

6 100  0.485 0.201 0.214 0.127 0.184  0.297 0.347 0.398 0.441 0.471 

  300  0.587 0.258 0.350 0.274 0.257  0.348 0.451 0.477 0.548 0.530 

  500  0.609 0.177 0.210 0.238 0.279  0.471 0.574 0.558 0.614 0.601 

12 100  0.441 0.174 0.187 0.101 0.142  0.257 0.322 0.342 0.411 0.450 

  300  0.537 0.211 0.321 0.249 0.239  0.309 0.427 0.439 0.517 0.509 

  500  0.574 0.147 0.198 0.207 0.244  0.423 0.531 0.527 0.582 0.564 

Model 1: ARCH(1) model is fitted to data from AR(1)-GARCH(1,1) process with parameters (0.2, 1, 0.05, 0.90) 

6 100  0.741 0.319 0.247 0.301 0.341  0.581 0.739 0.689 0.674 0.698 

  300  0.846 0.387 0.398 0.241 0.297  0.498 0.687 0.839 0.812 0.739 

  500  0.970 0.410 0.420 0.355 0.399  0.502 0.874 0.964 0.955 0.972 

12 100  0.705 0.287 0.223 0.283 0.311  0.542 0.701 0.641 0.641 0.662 

  300  0.819 0.352 0.347 0.202 0.247  0.468 0.643 0.815 0.783 0.701 

  500  0.950 0.374 0.392 0.304 0.363  0.479 0.837 0.925 0.913 0.954 
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CHAPTER 4: APPLICATION OF REAL FINANCIAL DATA 

4.1 Application part 1 

The financial time series field had faced new development in recent years, in stochastic 

volatility, high-frequency trading, and new software utilities. In financial time series, the 

valuation of the asset over time is taken into account. The behavior of the financial market could 

be realized empirically however statistical theories play an important role in making an 

inference in financial time series. Instead of direct analysis on price, in most cases, the return 

series is considered for the statistical analysis. Also, volatility is considered an important 

variable in option pricing and risk management. The volatility of the return series varies over 

time and it could be separated in certain clusters. The evolution of the conditional variance in 

the time series of return is required to be analyzed to make inference in option pricing and risk 

management. Tsay (2009) 

In this chapter, we demonstrate the efficiency of the Monte-Carlo significance test by 

considering a real data set. we consider the case of running the analysis on the daily log closing 

returns of Ooredoo Qatar. The data has been retrieved from the website link 

https://www.ooredoo.com/en/investtors/share_information/historical-share-prices/ over the 

market days starting from 11/09/2008 till 26/02/2020 (excluding weekends). The series length 

has 2984 days. For the aim of the analysis, we analyze the returns of Ooredoo instead of the 

prices. So, the time series data will be more stationary. Also, log return is used instead of 

returns, as using log eliminates the non-stationary properties of the data set in a way of making 

the data more stable. The plot in Figure 1 shows the daily log returns versus time. As shown in 

the figure the mean of log return is constant and almost zero, but the volatility gets higher 

between 2012-2014.  

https://www.ooredoo.com/en/investtors/share_information/historical-share-prices/
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Figure 1: Ooredoo daily Stock price and log returns from 2008-2020 

 



  

42 

   

Figure 1 shows the daily stock price of Ooredoo from 2008-2020 and the second figure 

shows the log return from 2008-2020. Moreover, Figure 2 and Figure 3 shows the log-returns 

using a histogram and Q-Q Plot. Both figures confirm that the data does not follow a normal 

distribution. That can be also checked from the value of the Kurtosis. Where kurtosis checks and 

measures the spread of the distribution if it's too peaked that's mean that the distribution is 

narrow and most of the responses are in the middle. Three types of kurtosis can be shown by a 

set of data: Mesokurtic, Leptokurtic, and Platykurtic. Starting with Mesokurtic distribution, 

which is the nearest to the normal distribution which means that the maximum value of the 

distribution is similar to normal distribution. The second distribution is the Leptokurtic, where it 

shows more values in the tail of the distribution and mostly close to the mean value. An example 

of Leptokurtic is the T-distribution with a small degree of freedom. The final type of distribution 

is the Platykurtic, where it has the shortest tail and shows fewer values in the tails with a fewer 

value near to mean. An example of this is the uniform distribution. The descriptive statistics 

table for Ooredoo stock is presented in the below table: 

Table 8. Descriptive statistics for Ooredoo stock price and log-return 

Variable mean median Mode Std IQR Skewness Kurtosis 

Price 9.475 9.330 9.018 2.224 2.914 0.557 2.835 

Log 

return 
0.000 0.000 -0.004 0.017 0.012 -0.047 11.422 

 

From the descriptive statistics, the value of Kurtosis is 11.422 which is larger than 

normal distribution kurtosis usually equal to 3. The result indicates that the distribution of the 

log-returns of Ooredoo follows a Leptokurtic distribution and not a normal distribution. The 

skewness value is -0.047 which is close to zero. The distribution of prices is right skewed with 

skewness equal 0.55 is different from the skewness of normal distribution which is equal zero. 

Shapiro-Wilk test of normality rejects the null hypothesis of having normal distribution for both 

price and log-return series (W = 0.873, P-value < 2.2e-16). Kolmogorov-Smirnov normality test 
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also rejects the null hypothesis of having normal distribution (D=0.471, P-value < 2.2e-16). 

Aderson-Darling test (updated version of Kolmogorov-Smirnov test which gives more weight to 

the tails of the distribution) also rejects the null hypothesis of having normal distribution (A = 

2974, p-value < 2.2e-16). The deviation from normality also could be seen in the qqplot which 

is presented in Figure 3. 

 

 

Figure 2: Histogram of Stock price and log-returns of Ooredoo 
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Figure 3: Q-Q plot of Ooredoo log returns 

 

To fit the model to Ooredoo data, we checked whether the data model can be estimated 

by ARIMA, ARCH, and GARCH. We used the information criteria (AIC) proposed by Akaike 

(1974) to select the best model. The model with the smaller information criteria value is 

assumed to be the best model. We start first by fitting the ARIMA model under the null 

hypothesis that there is no trend. After running the R-code the results show that no ARIMA has 

been detected. On the other side, I fit ARCH and GARCH, and I tried the following models: 

GARCH (1,0), GARCH (1,1), GARCH (2,0), GARCH (2,1), GARCH (2,2) and GARCH (3,0). 

The results in Table 10 compare the AIC values for the six models. The results indicate 

that the best model is GARCH (1, 1), as it has the lowest AIC. Where Akaike equals to -5.6668 

and BIC equal to -5.6587, so I choose GARCH (1,1) to continue my analysis.  

Table 9. Information criteria for the 6 GARCH models 

 GARCH 

(1,0) 

GARCH 

(1,1) 

GARCH 

(2,0) 

GARCH 

(2,1) 

GARCH 

(2,2) 

GARCH 

(3,0) 

Akaike -5.5757 -5.6668 -5.6114 -5.6666 -5.6665 -5.6287 

Bayes -5.5696 -5.6587 -5.6033 -5.6565 -5.6544 -5.6186 

Shibata -5.5757 -5.6668 -5.6114 -5.6666 -5.6665 -5.6287 

Hannan-Quinn -5.5735 -5.6639 -5.6085 -5.6629 -5.6622 -5.6250 
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To check the adequacy of the chosen model GARCH (1, 1), we apply the Monte-Carlo 

tests of four tests and compare the results. The four tests are Li-Mak (1994) test, weighted Li-

Mak(1994) which is proposed by Fisher and Colin (2012), Cross-correlation test proposed by 

Psaradakis and Vávra (2019) and lastly the Monte-Carlo version of Mahdi (2020) test. Table 10 

shows the p-value of the Monte Carlo process for L(b,m),   (   )          𝐶 . The results 

are recorded at different lags from lag 5-50. As the p-value gets closer to 0.05 or less that shows 

that the model is not good. We reject the null hypothesis and we should look for a complicated 

model, not the GARCH model. On the other hand, if a p-value greater than 0.05, then this 

suggests that the model is good. Table 10 show the results of the four tests where two of the test 

accept the model and believe that it is a good model. But the other two test reject the model and 

believe the model is not good and something is hidden as their p-value is smaller than 0.05 in 

most or all the lags. 

Table 10. The p-value for the tests L(b,m), LW(b,m), Qrs  ,Cm. 

Lag L(b,m) LW(b,m) Qrs Cm 

5 0.064453 0.6037 0.6745 1.4049     

10 0.064724 0.6965 0.8286 4.5104     

15 0.050050 0.3625 0.7697 1.4927     

20 0.014009 0.2547 0.6656 1.0259     
25 0.028626 0.2633 0.4645 3.3564     

30 0.030019 0.2499 0.4167 1.5279     

35 0.030981 0.1652 0.3390 5.5945     

40 2.3072     0.0659 0.1151 2.0973     

45 6.1240     0.0221 0.1805 2.0973     

50 1.0277     0.0098 0.2437 1.9356     

 

4.2 Application part 2 

In the second part, we used the same data for Ooredoo but the analysis is divided into 

two parts: before the blockade of Qatar from the airspace of Saudi Arabia, UAE, Bahrain and 

Egypt and after. The blockade starts on 5/June/2017 and still going till now. The dataset is 

divided into two parts before and after which will allow me to see the effect the blockade had on 

TABLE 10 
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Ooredoo returns. The descriptive statistics table for Ooredoo stock before and after blockade is 

presented in the below table: 

Table 11. Descriptive statistics for Ooredoo stock before and after blockade 

Variable Blockade mean median Mode 
Standard 

deviation 
IQR Skewness Kurtosis 

Price 
Before 10.060 9.960 10.058 2.185 2.650 0.282 2.861 

After 7.610 7.300 7.241 0.964 1.471 0.679 2.412 

Log 

return 

Before 0.000 0.000 -0.004 0.017 0.011 -0.065 13.121 

After -0.001 0.000 -0.004 0.017 0.014 0.010 6.253 

 

 The descriptive statistics for Ooredoo log-returns before blockade has kurtosis equal 

13.12 and after blockade it is equal 6.25 both are deviated from the kurtosis of normal 

distribution and are Leptokurtic. The skewness of the log-return are -0.065 and 0.01 for before 

and after blockade which are close to zero. Stock prices are skewed to right for both before and 

after blockade. But the skewness increases clearly after blockade event. (0.282, 0.679). Stock 

prices and log return for both before and after blockade do not follow a normal distribution. 

Shapiro-Wilk test of normality rejects the null hypothesis of having normal distribution for both 

split of before and after blockade. The results of the test for log-return before and after blockade 

are W=0.847, P-value < 2.2e-16 and W=0.942, P-value = 5.235e-16 respectively. Anderson-

Darling test of normality also rejects the null hypothesis of having normal distribution for both 

splits of the time series for before and after blockade, the results of this test for both splits are A 

= 2244.7, p-value < 2.2e-16 and A = 702.09, p-value < 2.2e-16 respectively. 

 Figure 4 shows the log returns for Ooredoo before and after the blockade, it showed 

clearly from the plot that Ooredoo has been affected by the crisis and returns have decreased.  

Figure 4 shows the log-returns plot against time. It's clear from the plot that Ooredoo has lower 

returns after the blockade than before.   
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Figure 4. The Stock price before and after blockade 

 

 

 

Figure 5. Histogram of Stock price before and after blockade 

 

The same analysis has done in the first part will be repeated the only difference is that 

the data is divide into two parts. 

 Figure 6 and Figure 7 reflect the results for the log-returns before and after the blockade. 

As shown in the figures before blockade the returns had a lower variability than after. This 
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indicates that Ooredoo returns have been affected strongly by the crisis. The figure shows in 

both cases before and after still the retunes does not follow a normal distribution. 

 

 Figure 6. Daily log returns plot and histogram for Ooredoo returns before the blockade 

 

 

Figure 7. Daily  log returns plot and histogram for Ooredoo returns after blockade 

 

We start first by fitting the ARIMA model under the null hypothesis that there is no 

trend. After running the R-code the results show that no ARIMA has been detected. On the other 

side, we fit ARCH and GARCH, and we tried the following models: GARCH (1,1), GARCH 

(2,0), GARCH (2,1), GARCH (2,2) AND GARCH (3,0), GARCH (3,1). 

The results in Table 12 compare the information criteria values for the six models. The 

results indicate that the best model is GARCH (1, 1), as it has the lowest AIC. Where Akaike 

Figure 6 
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equals to 1.6874 and BIC equal to 1.7130, so we choose GARCH (1,1) to continue my analysis. 

Table 12. Information criteria vales for GARCH models 

 GARCH 

(1,1) 

GARCH 

(2,0) 

GARCH 

(2,1) 

GARCH 

(2,2) 

GARCH 

(3,0) 

GARCH 

(3,1) 

Akaike 1.6874 1.6908 1.6918 1.6946 1.6944 1.6977 

Bayes 1.7130 1.7165 1.7238 1.7331 1.7264 1.7361 

Shibata 1.6873 1.6908 1.6917 1.6945 1.6943 1.6975 

Hannan-Quinn 1.6973 1.7007 1.7042 1.7095 1.7067 1.7125 

 

To check the adequacy of the chosen model GARCH (1, 1), we apply the Monte-Carlo 

tests of four tests and compare the results. The four tests are Li-Mak (1994) test, weighted Li-

Mak(1994) which is proposed by Fisher and Colin (2012), Cross-correlation test proposed by 

Psaradakis and Vávra (2019) and lastly the Monte-Carlo version of Mahdi (2020) test. Table 13 

shows the results of the four test the first three tests in most of the lags they accept the model 

and think it’s a good model. But for the Cm test is the only test that reject the model as it believe 

that something is hidden and the model is not working perfectly. Which shows that the Cm test 

has found something that other test did not and the results shows consistency as it reject the 

model at all the lags. But for the first test (L(b,m)) it suffer from consistency as it reject the 

model in some lags and accept the model in others lags which is not a good sign of testing. In 

general, in statistics we believe more with the model that reject more as it is easy to accept but 

it’s very hard to reject and figure out something that others didn’t. 

Table 13. P-value for L(b,m), LW(b,m), Qrs  ,Cm. 

Lag L(b,m) LW(b,m) Qrs Cm 

5 0.421 0.445 0.462 0 

10 0.799 0.746 0.739 0 

15 0.408 0.603 0.633 0 

20 0.610 0.616 0.677 0 

25 0.0225 0.430 0.552 0 

30 0.067 0.288 0.439 0 

35 0.111 0.241 0.418 0 

40 0.158 0.217 0.411 0 

45 0.271 0.223 0.430 0 

50 0.277 0.227 0.457 0 
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CHAPTER 5: CONCLUSION 

5.1 Conclusion  

Various approaches for testing the adequacy of the model for both linear and nonlinear 

models were compared in this study with the one which released lately by Mahdi (2020). The 

portmanteau test on simulated data by AR(p), MA(p), ARMA(p,q), ARCH and GARCH process 

were compared together using Monte Carlo simulation. The results for power of the tests shown 

clearly that the lately extended portmanteau test by Mahdi (2020) for testing the adequacy of the 

fit had the best performance comparing with other tests in 15 out of 24 models including both 

linear and nonlinear models. In 5 of the models, the statistics presented by Peña and Rodríguez 

(2002, 2006) for the squared residuals had the best performance. In 4 models the test statistics of 

Fisher and Gallagher (2012) which is a weighted statistics of  McLeod and Li had the highest 

power compared with other tests. The presented statistics of Mahdi (2020) also were tested on 

the real-time series data (Ooredoo Qatar data). Four lately extended tests were implemented to 

check the serial correlation in the residuals of the fitted model (for L(b,m), LW(b,m), Qrs  ,Cm). 

ARMA and GARCH models were fitted to the Ooredoo data and it was seen that the 

GARCH(1,1) model had the lowest AIC. The best model found by AIC was tested by these four 

portmanteau tests and two tests of Li-Mak and Mahdi test shown that the model is not adequate 

since there is still a significant serial correlation in the residuals. In the final step, the Ooredoo 

data was split into two parts before the crisis of blockade in 2017 and after the blockade. The 

data was analyzed and the best model was seen to be GARCH(1,1) according to the AIC. The 

four mentioned tests were implemented on the resultant model. The only test which still rejects 

the null hypothesis and shows that the model is not adequate is Mahdi test and the other three 

tests agree that there is no serial correlation in the residuals and since the residuals of the 

GARCH(1,1) model do not follow a normal distribution, it means that the Mahdi (2020) test 

could correctly detect the adequacy of the fit compared with the other tests.  
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5.2 Suggestions for Further Study 

Some suggestions that could be helpful and useful to implement in future work is to 

extend the Cm test for generalized correlations (autocorrelation between residuals at different 

powers). In addition, the Cm test statistic may be modified to check the adequacy of the fitted 

model in multivariate data and with other types of data, for example, environmental. As in this 

thesis we focused on time series data. Moreover, this test could be to implement it on seasonal 

time series data. 
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