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Abstract: Data-driven models are essential tools for the development of surrogate models that can be
used for the design, operation, and optimization of industrial processes. One approach of developing
surrogate models is through the use of input–output data obtained from a process simulator.
To enhance the model robustness, proper sampling techniques are required to cover the entire domain
of the process variables uniformly. In the present work, Monte Carlo with pseudo-random samples
as well as Latin hypercube samples and quasi-Monte Carlo samples with Hammersley Sequence
Sampling (HSS) are generated. The sampled data obtained from the process simulator are fitted to
neural networks for generating a surrogate model. An illustrative case study is solved to predict the
gas stabilization unit performance. From the developed surrogate models to predict process data,
it can be concluded that of the different sampling methods, Latin hypercube sampling and HSS have
better performance than the pseudo-random sampling method for designing the surrogate model.
This argument is based on the maximum absolute value, standard deviation, and the confidence
interval for the relative average error as obtained from different sampling techniques.

Keywords: surrogate model; sampling technique; stabilization unit; process simulation; process
systems engineering (PSE)

1. Introduction

The integration of simulation tools with rigorous mathematical programming techniques is a
challenging process due to the inherent complexity of calculations with a process simulator [1,2].
To overcome this limitation, a surrogate model for the process is derived based on the simulation
results and included within an optimization framework. The surrogate models of a process flowsheet
are generated based on the input parameters and output results of the process. The entire process or
system is treated as a black box with input and output data, and the surrogate models are generated
based on the sampled data. To obtain the sampled data, data of the input variables are exported from
the process flowsheet, and the corresponding output data are calculated.

Several methods may be used to develop surrogate model generation including Kriging models,
artificial neural networks (ANN), and simple table lookup method [3]. In this work, ANN fitting is
used to predict the output variables (Y), from a set of input variables (X). The number of variables
(dimension of X) corresponds to the dimension of the sampling space. In an artificial neural network,
a specific input to a specified output is mapped. The network achieves this by a self-organizing process.
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ANN is capable of learning complicated functional relations by creating a general trend from a limited
number of input data; hence, it works as a black-box model for different systems such as nonlinear,
multivariable static, and dynamic systems. Based on the input and output data set obtained from
a process, the approach of artificial neural networks is implemented to generate surrogate models.
The ability of ANN to learn from observed data is the main advantage of the process [4]. Therefore,
it was applied to the present case study for surrogate model generation. Several important applications
have been reported in the literature. For example, a new method for optimizing crude oil distillation
systems which consider an ANN model for representing the distillation process has been proposed by
Ochoa-Estopier et al. (2013) [5].

The distillation column and the accompanied heat exchangers network have been considered in
an optimization study to thoroughly define the parameters that enhance the economic aspects of the
process. One of the important issues in that field is optimizing the process parameters to favor a higher
yield from the high-value products and at the same time decreases the yield of the lower value products.
The feasibility of these parameters is represented in terms of utility cost and equipment limitations.
In this specific study, the input variables of the distillation column are represented in the crude oil
properties and the distillation column specifications. On the other hand, the output variables are the
distillation products specifications. Hence, the ANN model is built based on these input and output
parameters. Liau et al. (2004) [6] designed a similar system to examine the effect of input parameters
on the end product of the distillation column. The results of the system were used as a database for
further operational optimizations. The built system can provide on-line optimal operating information
of the distillation process to the operators corresponding to the change of crude oil properties.

Motlaghi et al. (2008) [7] optimized a crude oil distillation column using a genetic algorithm (GA)
with the aim of the system’s output minimization and product rate requirement maximization for a
system of distillation columns for crude oil. The input data for the system was a set of operational
parameters such as crude oil flow rate, feed temperature to optimize the crude oil properties based on
desired specifications. Osuolale and Zhang (2015) [8] proposed a new approach for energy consumption
optimization for the same topic. The proposed model incorporates ANN that is used to improve system
performance and predictability. An economic analysis of the system revealed possible energy saving
opportunities by using more efficient process parameters. Similarly, Arce-Medina and Paz-Paredes
(2009) [9] developed ANN model to predict the performance of the hydro-desulfurization process for
the prediction of sulfur removal from naphtha.

In all the above methods process data as obtained for the ANN model generation was gathered via
Monte Carlo sampling. In the present work, the focus is given to the accuracy of data generation and
the coupling with input-output data generators such as process simulators. The surrogate model must
be generated using the equivalent distribution of sampling points for each variable such that the whole
design space is covered. In this work, the developed surrogate model is robust enough to represent the
original process. The case study will investigate how the selection of sampling techniques influences
the performance of the surrogate model. An investigation on how to sample the design space for a
surrogate model fitting is done. Three different sampling techniques are considered: Pseudo-random
Sampling, Latin hypercube sampling (LHS), and quasi-monte Carlo using Hammersley Sequence
Sampling (HSS) are used in our analysis.

Eason and Cremaschi (2014) [10] proposed new adaptive sequential sampling algorithms: the first
is only adaptive and the second combines adaptive and space-filling properties for determining and
minimizing the number of samples required to generate an efficient surrogate model. The mixed
adaptive sampling algorithm was found to be more efficient; reducing the size of the sample needed
by up to 40% compared to a space-filling design in optimizing the CO2 capture process using
aqueous amines.

A computational algorithm for LHS was developed by McKay et al. [11]. It was further developed
by Iman and Shortencarier [12] and then by Stein [13]. LHS can improve efficiency compared to the
Monte Carlo. HSS is also an efficient sampling technique developed by Diwekar and co-workers
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(Kalagnanam and Diwekar, 1997) [14]. It uses Hammersley points to sample a unit n-dimensional
hypercube uniformly. It causes the sampling process distributed uniformly over n-dimensional space.
Simulation with HSS results in faster conversion. It is possible because HSS has n-dimensional
uniformity. For example, to find the morphology of polymers in dilute solution n-dimensional
uniformity of sampling is required to obtain the optimal configuration. It is shown that HSS has led to
an optimized system that cannot be achieved by random sampling [15].

An accurate model of chemical processes comes with increasing complexity which leads to a
substantial computational effort. When a clear relationship between input variables and their responses
is not accessible to the designer, it is challenging to perform optimization and study sensitivity and
reliability analysis. A surrogate model, on the other hand, can replace these complex, underlying
models with simple models which has several advantages including much faster simulation [16].
In recent times we see increasing use of surrogate model within the chemical process engineering
particularly for model predictive control (MPC) [17], model-based optimization [18], sensitivity
analysis [19], reliability assessment [20] among others. In this work, we developed a surrogate model
using ANN method for natural gas (NG) stabilizing unit. Natural gas stabilization unit is the primary
unit of any gas processing facility. Optimal separation of residual gas and condensate is required
for maximum profit. The model is intended to perform model-base optimization of the operating
conditions to meet the specifications with the minimum operating cost. For the case of the stabilization
unit, we want to optimize the stabilizer reboiler temperature to find the proper Reid Vapor Pressure
(RVP) value.

ANNs are reliable and flexible surrogate models that can be used to simulate challenging processes
such as natural gas stabilization units by identifying the nonlinear relationships between independent
and dependent variables. Overall, the numerical performance of ANNs models is diverse, and it
depends on the specific simulated process. Some of the available surrogate models could show
limitations based on the nature of the process. Through the ANN-based model, we can predict the
dependent variable after learning from a given sample set. Hence, it is essential to fine-tune the ANN
by optimizing the sampling method. In the case of NG stabilization unit, finding an appropriate
sampling technique is a paramount step that can ascertain how successful the surrogate model can be.
This is the first paper in the series, and the prime of this work is to demonstrate that different sampling
techniques can affect the model accuracy and identify the appropriate sampling technique and thus the
model. The work will then be extended to apply the framework and optimize the operating conditions
of a fully integrated facility (more than one processing unit) such as Liquefied natural gas (LNG)
facility with more specifications i.e., Wobbe index, H2S, CO2 content, and so on.

The paper assesses the impact of selecting the sampling technique on the model robustness and
introduces a computational approach to the coupling of surrogate models with optimization platforms.
A case study on natural gas stabilization is used to demonstrate the proposed approach. The remainder
of the paper is structured as follows: The relevant previous works on natural gas stabilization are
discussed in Section 2. The overall methodology is mentioned in Section 3. Section 4 discusses the case
study findings. Finally, concluding remarks are stated in Section 5.

2. Process Description: Gas Stabilization Unit

The natural gas stabilization unit is used to recover the heavy components from the feed stream
to sell them as products. Sale of optimal liquids products maximizes profits by optimizing the
fraction of liquids recovered while achieving the requirement for the residual gas sent to subsequent
units. The stabilized liquid has two important characteristics that must be met to achieve safe and
environmental handling, processing, and exportation. The stabilization process is performed in the
chemical industry through fractionation. Flash vaporization is an old technique and is not being used
in the gas plant [21]. It is replaced by gas stabilization by fractionation as an accepted approach in the
industry. The gas stabilization is typically carried out in an absorber with a reboiler and internal trays.
Figure 1 shows the flow diagram of the gas stabilization unit. The used of a refluxed distillation tower
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is enhances the separation. The condensate product is benchmarked based on its RVP. The RVP can be
adjusted by the bottom reboiler temperature. The surrogate model will only be fitted to one output;
the RVP value of the outlet gas of the stabilization unit. A detailed discussion can be found in GPSA
(2004) [22].
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3. Methodology

The overall methodology of this work consists of six steps that include simulation, variable,
and operating range identification, data generation using sampling techniques, dimension reduction,
space fitting, and deviation estimation. Figure 2 shows the sequential framework adapted to develop a
surrogate model for stabilization unit.
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3.1. Step One: Process Simulation

Steady state simulation of gas stabilization unit is performed using ASPEN HYSYS under different
operating conditions to estimate the material and energy requirements.

3.2. Step Two: Key Variables and Range Identification

Variable selection is a crucial step and requires an understanding of the process. The usefulness of
the pseudo-model and its applicability depends on the choice of an optimal set of variables that are
essential and sufficient. Initial process variable selection can be made using the process knowledge.
With many variables, a reduced order model can be accomplished through a data-driven approach
using input–output data using partial least squares-variable importance in the projection (PLS-VIP)
method [23].

3.3. Step Three: Data Generation Using Different Sample Techniques

In this step, different sampling techniques used for our analysis are presented. An overall
approach using different sampling techniques is also presented. It is followed by an explanation of the
dimension reduction of the input space to have less computational cost.

3.3.1. Pseudo-Random Sampling

The pseudo-random sampling method is the most basic form of the sampling technique. In this
sampling technique, samples randomly over the entire space. It does not take into account the previous
sampling points when it generates new points. Therefore, one can run into the risk of only a sample in
one region. Homogeneous sampling over the design space is not certain, but with a sufficient amount
of sampling, it may converge to a homogeneous distribution of points.

3.3.2. LHS

LHS ensures that a sample does not appear more than once in the design space. In the LHS
method, for each input variable M, Np sampling points are used. Each variable M is divided into Np
equal probable intervals. The sampling space is designed in the way that only one of every sample
is the only one in its axis-aligned hyperplane containing it. The advantage of this method is that it
ensures a more orderly random sampling space. Another advantage is that the sampling space does
not increase when additional input variables are chosen since each variable is chosen from Np with
equal likelihood.

3.3.3. HSS

The pseudo-random number generator creates samples grouped in a specific region of the unit
hypercube and is which will lead to non-uniform samples. To avoid this, pseudo-random sampling
with the Monte Carlo technique requires many samples. To increase the efficiency of pseudo-random
number-based Monte Carlo sampling, variance reduction techniques are used. LHS, and HSS use such
techniques. HSS generates quasi-random numbers based on Hammersley sequences. Typically, the
samples generated by HSS are more uniformly distributed than other samples generated by different
techniques (Kalagnanam, 1997) [14]. HSS has been used for several implementations to improve the
efficiency of simulations (Mukherjee and Diwekar, 2016 [15], Dige & Diwekar, 2018 [24]). In this study,
we are exploring the use of LHS and quasi-random technique to demonstrate the process which cannot
be done through the pseudo-random number.

3.4. Step Four: Dimension Reduction Using Principle Component Analysis (PCA) Score

PCA transforms the original input space using a linear transformation technique. It is an
unsupervised method of dimension reduction. The transformed dataset with a smaller dimension
(depending on the number of principal components used) contains most of the variability of the
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original information. In PCA, the normalized eigenvectors (Q) of the covariance matrix of the original
input space (X) are in order of reduction in variance (eigenvalues, ∆). The first eigenvector with the
highest eigenvalue corresponds to a direction of maximum variance. The second eigenvector with
the next highest eigenvalue corresponds to the direction of the next variance and so on. Only a small
number of the eigenvectors will be chosen based on the sum of the variance or information of the
input space. Generally, surrogate optimization is useful if applied to the entire data space. In cases
where the input space is high dimension cases applying PCA scores seem reasonable [25]. The original
variables in the lower dimensional space are represented by PCA scores (T) given as:

XL = T (1)

where L =
√

∆Q is the loading matrix.

3.5. Step Five: Surrogate Model Creation Using ANN

In this step, a brief theoretical background of ANN and how they are used in the present problem.
It starts with the explanation of the ANN model structure and how surrogate models are generated
using ANN in the present case.

A popular way to model a nonlinear system is through ANN-based modeling. ANNs have
many highly interconnected nodes, also called artificial neurons that provide a nonlinear “black-box”
system [26]. Model development using ANNs involves adapting or learning in response to variation in
the environment through a training mechanism. Once a model is developed, ANNs can be re-trained
to deal with minor changes in the environment. An ANN model can have a single input single output
or multiple inputs and multiple output variables or a combination of both. For the present problem,
multiple inputs single output model is chosen.

ANNs perform an input-output mapping of the data that can be used for multivariate pattern
recognition. All possible patterns that need to be recognized should be present in the training data.
The result may not be reliable if the training data is small. For that purpose, a large amount of data
and rich in variation are used for training. It should be noted that due to the limitations of training
data that may not be well distributed in the entire space, ANNs might be accurate in some zone and
not in other. In the present case, data is generated for training purposes using both pseudo-random
sampling, LHS, and quasi-Monte Carlo HSS. The HSS is expected to cover the entire range of the input
variables. This is to ensure that output data is generated mainly by interpolation.

ANNs typically have multi-layered interconnected neurons that relate the input-output data in a
nonlinear way. The nonlinear model has three basic attributes:

A set of connections (synoptic weights) that describes the influence of a node on nodes in the next
layer. It can be positive or negative to excite or inhibit, respectively.

A summation operator of input signals weighted by the synopsis of the neuron
An activation function ϕ(.), limited by the amplitude of the output of the neuron. The range of

the amplitude is in closed interval [0,1] or [−1,1]. The activation function defines the output in terms of
the activation potential. Typical activation function includes step function or sigmoid function.

In NN, the neuron k is related to the input and outputs through the following equations:

uk =
m∑

J=0

wkj x j (2)

vk = uk + bk; bk = wk0 (bias) (3)

yk = ϕ(vk) (4)
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where x1, x2, . . . , xm are the input signals, wk1, wk2, . . . , wkm are the synoptic weights of the neuron, uk is
the linear combined output of the input signals, vk is the activation potential and yk is the output signal
of the neuron. The bias is an external parameter, which provides a transformation to the output uk.

The activation function depends on the type of problem to be addressed and can be a threshold
function, piecewise linear function, a sigmoid function, hyperbolic tangent function, or a Wavelet
function. In the present work, a nonlinear function is used expecting the nonlinearity of the problem.
The Levenberg-Marquardt training algorithm is used to fit the function. This algorithm generally
uses more memory, but computes in less time. Training stops when generalization stops improving,
as marked by an elevation in the mean square error of the validation samples. Multiple neurons can be
linked with each other to form a network through a single-layer feedforward network or a multi-layer
feedforward network. To keep the problem simple, we consider a single-layered feedforward network.

The neural fitting tool is used to fit the input–output data from the simulated process into a
network. The data collected is being divided into three main sets; training, validation, and test set.
The training set is used to fit the parameters (i.e., weights) of the classifier. The validation set is used to
adjust the parameters of a classifier. Finally, the test set is used to assess the performance of a fully
specified classifier. The performance of fitting is benchmarked based on the mean squared error and
the regression R-value. Mean squared error (MSE) is the average squared difference between outputs
and targets. The optimized ANN model is generated by minimizing the MSE between the output from
the process simulator and that predicted by the ANN model.

4. Case Study: Results and Discussion

The HYSYS simulated process diagram of a gas stabilizing unit shown in Figure 3 is considered.
The goal of the gas stabilization unit is to produce a condensate product with a RVP value between
10 to 12 psi. This range ensures that the light component of the stream will not be separated into a
light gas phase while transporting the liquid stream. The separation of the feed stream is performed
in a 3-phase separator (V-100) to remove the water and light components. The condensate is then
expanded through (VLV-200) and sent to the flash drum (V-200). Acid gas is then removed in the flash
drum, and liquid hydrocarbon which C6 represents most of it with a mass fraction of approximately
62% is expanded in VLV-201. The expanded stream is sent to the column (T-200) without a reflux unit
that operates at a pressure of 250 kPa. C6 and heavy hydrocarbons are condensed in the column with a
certain RVP, and light components are mixed with the acid gas outlet of the flash drum.
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The main defined variables in this flowsheet are the feed temperature, pressure, and flow rate.
These variables will be altered and varied to see their effect on the RVP of the condensate. The surrogate
model is generated based on the temperature and pressure of the feed. The sampling range of these
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variables is shown in Table 1. These data represent different interactions between the three main
variables and the resulted RVP due to the different data combinations.

Table 1. Input parameters range.

Temperature (◦C) 15–30

Pressure (kPa) 1600–2500

It is worth mentioning that this range does not cover all the possible operational conditions.
However, this range is taken to examine the effect of the sampling domain on the performance of this
specific ANN.

4.1. Sampling

Random samples from the probability distribution of the inputs when running through the
model system will create a distribution of the output. In the simplest form, the input distribution is
approximated by the random samples (Monte Carlo method) with a uniform distribution U (0,1) with
n samples on a k dimensional unit hypercube. The numbers are random as they are generated by a
specific algorithm. The uniformity properties of a sampling technique are important since the sample
must approximate the entire domain by finite samples. Otherwise, larger sample sizes are needed.

For increasing the efficiency of random simulations, variance reduction techniques have been
developed using LHS and quasi-Monte Carlo methods. The error of approximating the entire domain
by a finite sample depends on the equidistributional properties of the sample used for U (0, 1) rather
than on its randomness. The LHS and HSS are used in the present work for constructing uniform
sequences that are typically referred to as low-discrepancy sequences. Figure 1 illustrates the procedure
for evaluating each sampling technique. The main criterion is the error between ANN prediction
and the actual simulation value. In the present work, only two input variables are used for model
generation. Thus, dimension reduction is not considered. An error of 2% or lower is considered to
be acceptable.

The results from different sampling techniques are illustrated in Table 2. It shows that the
constructed ANN has excellent predictability when the range of the operational condition is within
the same limit of the HYSYS operation condition with a maximum relative error value around 1%.
However, choosing operating conditions outside the selected HYSYS range will result in a deviation of
RVP values. The deviation magnitude depends on how far the selected operating conditions is from
the HYSYS operation range. For example, in test number 1, the selected pressure is outside the HYSYS
range, but the temperature is within the range. Therefore, the error value is acceptable.
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Table 2. Results obtained from different sampling techniques.

Temperature
◦C

Pressure
kPa

HYSYS®

RVP psi
ANN RVP

psi
Random
Error %

LHS
Error

Hammersley
Error

16.1 1728.6 11.5 11.5 0.5 1.74 1.74
24.4 1737.5 14.2 14.2 0.4 0.21 0.21
24.0 1630.9 13.6 13.6 0.3 0 0
24.7 1617.6 14.4 14.5 0.7 0.14 0.14
22.0 1684.2 12.0 12.0 0.2 0 0
22.9 1622.1 12.4 12.3 0.8 0.40 0.40
19.7 1662.0 11.8 11.8 0.2 0 0
24.9 1804.1 14.9 14.8 0.4 0.67 0.67
24.0 1693.1 13.6 13.6 0 0 0
17.7 1781.9 11.5 11.6 1 0.87 0.87
17.9 1693.1 11.7 11.7 0.1 0 0
20.4 1688.7 11.9 11.9 0 0 0
20.8 1688.7 11.9 11.9 0.1 0 0
19.0 1746.4 11.7 11.7 0.4 0 0
24.9 1768.6 14.9 14.8 0.2 0.07 0.20
16.8 1630.9 11.7 11.6 0.8 0.68 0.17
22.4 1741.9 12.1 12.1 0.3 0.74 0.74
22.0 1715.3 12.0 12.0 0 0.83 0.67

4.2. Maximum Absolute Error

The maximum error on the performance for different sampling methods, sizes, and various
combinations of the independent variables was calculated. Figure 4 shows a different maximum error
in percentage for the different neural network fittings. In 4 cases (test numbers 1, 8, 17, and 18) we
found that the sampling using pseudo-random number has a lower maximum error when compared
to LHS and HSS. We found that LHS and HSS in 12 other cases (test numbers 2, 3, 4, 5, 6, 7, 10, 11, 13,
14, 15, and 16) have better performance. In 2 other cases (test numbers 9 and 12), the three sampling
methods performed equally well with no error. Thus, in most of the cases, the random sampling
method showed significantly higher maximum error than LHS and HSS. The maximum absolute error
did not show any sign of decreasing when the sampling space increased.
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5. Conclusions

LHS and HSS is a better alternative than pseudo-random sampling for the performance of the
surrogate model. When compared between LHS and HSS, HSS is found to be the best. This can be
seen in the differences in maximum absolute error and the standard deviation. HSS ensures that the
whole sampling space is covered and therefore has the best performance of the three different methods
that were compared.

The surrogate model developed in the present case is found to be robust enough to predict
process output with error as low as 0% even when the input temperature parameter is out of range.
The pseudo-random sampling has relatively high standard deviations and maximum absolute error
as found from most of the test cases. The sampling size will become too big for validation and the
computational time for generating the surrogate model will be time-consuming. HSS, because of
n-dimensional uniformity, shows a lower absolute error. Future work is to study how the performance
of the surrogate model change when the sampling space in the most important variables for the outlet
pressure increases. Different combinations of the number of neurons in each hidden layer for the
neural network can give a different performance on the surrogate model and should be investigated.
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Abbreviations

ANN Artificial Neural Network
GA Genetic Algorithm
AGRU Acid Gas Recovery Unit
RVP Reid Vapor Pressure
LHS Latin Hypercube Sampling
RND Random Sampling
xj input signals
wkj synoptic weights of neuron
uk linear combined output of the input signals
yk output signal of the neuron
ϕ activation function
vk activation potential
VLV Valve
MIX Mixer
E Heat Exchanger
T Distillation Column
K Compressor
V Flash Drum
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