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Abstract. The governing equation of a classical rectangular coated beam made of two homogeneous layers at top ceramic 
coated layer and bottom metal layer and also single Functionally Graded Material (FGM) as a sub coated layer subjected 
to uniform distributed mechanical load are derived by using principle of virtual displacements and based on Euler-Bernoulli 
deformation beam theory (EBT). In FGM layer the material properties are presumed differ as an exponential function form 
in thickness coordinate. Hence, the aim of this paper is analyzed the static behavior of clamped-clamped thin coated beam 
under mechanical load.    

NOMENCLATURE 

a = Length of beam  cE = Modulus elasticity of ceramic   mE = Modulus elasticity of metal 

b = Width of beam  h = Total thickness of beam  xM = Total moment     
u = Displacement in x direction v = Displacement in y direction    w = Displacement in z direction   

0 0,u w = Displacement mid-plane I = Second moment of area  W = Total virtual work   

IW = Internal virtual work EW = External virtual work   xxD = Flexural rigidity of beam   

 xx = Strain R = Matrix xx = Stress    m =Series member    

  = Row number  F = Force column    iA = Fourier coefficient column  

INTRODUCTION 

Generally, the surface of structures or elements is weaker than the inside of them. Therefore, the coating has been 
used for decades to increase the resistance of the surface of structures, reduce the stress concentration on the surface 
and stop cracks which have been generated. In the conventional surface coating method, one layer as a coated will be 
covered the surface of the body and the thickness range is from a micrometer to several millimeters. The coating 
thickness usually is depended on the type of material which is used as a substrate layer [1]. For example, in Thermal 
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Barrier Coating (TBC) one-layer ceramic is bonded to the substrate layer. The disadvantage of this type of coating is 
that due to the use of two completely different materials (ceramic-metal), the concentration of stress between the two 
layers’ increases, and thus the two layers are separated [2]. To improve the weakness, Functionally Graded Materials 
(FGMs) have lately been suggested to modify the conventional coating [3]. Due to the characteristic of FGM 
composites, the properties of materials in the composite change very gradually between two different materials. This 
property makes the separation between the composite layers not present. Mainly, under a high-temperature atmosphere 
like a nozzle of the shuttle, nuclear fusion reactor, internal combustion engine and so on at the interface of two layers 
due to different thermal expansion, the mismatch will be happened [4]. Coating structures with FGM are called FGC. 
FGC beams under mechanical, thermal and thermos-mechanical loads are studied by several researchers [5-11] 

The present article, a static analysis of FGC beam is studied by using a series displacement as a linear combination 
of known function which satisfies the boundary conditions and unknown parameters. The governing equation of FGC 
beam based on classical beam displacement theory and principle of virtual is derived. The material properties of FG 
layer through the thickness is considered an exponential function. In order to demonstrate the behavioral difference 
of a conventional composite with a modern composite which is consisting of an FGM layer. Two composite models 
are considered. Lastly, the effect of the rectangular clamped-clamped beam under distributed load is investigated. 

EXTRACTING GOVERNING EQUATIONS 

The displacement field components in Timoshenko's beam are considered in the form below [12]: 
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Thus, the axial strain component in mid-plane direction of beam is 
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Based on EBT strains are small in the case of the following terms are negligible compared to equation (2) 
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FGM material properties 

The continuous composition of FGM can be described by using several mathematical models to show the material 
properties of the composite. The material properties of FGM are inhomogeneous microscopically, therefore the 
material properties of FGMs depend on position. One of the mathematical models of material properties was used in 
a lot of research in order to study fracture mechanics, crack propagation, vibration, and bending, is exponential 
function [4, 5, 13-20]. 

Position dependent material properties with exponential function of FGM are 
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Governing equation of beam 

To derive the governing equations of the beam, we use the principle of virtual work defined as [21]: 
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Where IW  and EW  are virtual work cause of internal forces and virtual work cause of external forces respectively.  
The boundary conditions of clamped-clamped beam are  
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Also, the variation form of the beam should satisfy the equation (6): 
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The stress-strain relation in the mid-plane direction is 
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Substitution equation (2) into equation (8), the resulting moment per unit length of the beam is  
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The total internal virtual work done is 
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The virtual work done by external distributed load by using the virtual displacement is  
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By using equations (10) and (11) into equation (5) and with consideration the boundary conditions (equations (6) and 
(7)), it can be obtained the governing equation of beam, taking into account Euler-Bernoulli theory, according to the 
following: 
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Where  xx feD IE z   

SOLUTION TO RECTANGULAR COATED BEAM 

An approximate solution, the deflection of the beam will be obtained based on boundary conditions (equation (7)) 
and geometry which is occupying the space defined by 

0
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Where a  and h   are the length of the beam and the total thickness of beam included the three layers respectively. 
To find the answer to equation (12), based on boundary condition and geometry of beam, an approximate solution 

is obtained as: 
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By using the solution equation (14) and variation form of solution in equation (12) we get 
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NUMERICAL CALCULATIONS  

In order to analyze the behavior of coated beam, two cases are considered. In case one, the coated beam has two 
layers (coating ceramic layer with (4 mm) thickness on top and substrate metal layer with (6 mm) thickness on bottom).  
Case two, the coated beam has three different layers. The homogeneous ceramic layer with (2 mm) thickness as a 
coated, FGM layer with (2 mm) thickness as an under coated (bonded) of coated layer and substrate as a homogeneous 
metal layer with (6 mm) thickness which are located from top to bottom of the model in thickness direction 
respectively. In the whole layers of the coated beam, the Poisson’s ratio was presumed to be constant  0.3  [22, 

23]. In the exponential function which defined in Equation (4), the ratio of Young’s modulus m

c

E
E
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 was assumed 

constant and equal to  1
10 , ( 10mE   GPa and  100cE   GPa).  

Static analysis 

To illustrate the numerical approach, the dimensions of the coated beam in both cases were taken as a = 50 cm,  
b = 5cm and h = 1cm. The coordinate axes were located in the middle of the volume of the coated beam. The uniformly 
distributed load is assumed to be 0 22P kPa  on top of the beam with clamped-clamped boundary conditions 

(Equation (6)). With consideration 2i    in equation (15), the series of the solution will be achieved with two 
members.   
In Figure (1), the deflection of the coated beam is shown for two cases. The behavior of beam in both case slightly 
was almost identical, yet, in FGM beam (case two) it was apparent that the deflection at the middle of the beam was 
observed to be less than 2mm bigger in contrast with the conventional coated beam (case one). Figure (2) shows the 
variation of the stress  xx  throughout the thickness of the coated beam for both cases. In case one, it clearly shows 
that the stress singularity at the interface between the ceramic layer and substrate layer. Because of this phenomenon, 
de-bonding will appear at the interface between two layers. For FGM beam graph or case two in Figure (2), because 
of FGM layer at the interface between the ceramic coated layer and substrate layer, it was observed that the stress 
gradually changed. Thus, stress concentration and singularity will be decreased. It means, in case two, there is the 
possibility to create separation at interface two layers will be much less compared to case one. 
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Fig. 1. The deflection  w  of coated beam in case I and case II along x axis 
2 2
a ax    
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Fig. 2. The stress  xx  throughout the thickness of the coated beam in case I and case II  

CONCLUSION  

The static analysis of conventional coated and FGC under coated rectangular beam under the transverse distributed 
load was performed. The exponential function in demonstrating the material’s properties behavior was considered. 
Henceforth, the governing equation was then derived based on the Euler-Bernoulli theory and exponential function 
for FGM layer by using the virtual work principle with only the transverse displacement and stress throughout the 
thickness of the beam being considered. In conclusion, the obtained approximation function for the displacement or 
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behavior of structure under mechanical load was found. It should be noted that this approximation function is 
supported by the clamped-clamped boundary conditions. Clearly, from this study, the superiority of FGC composite 
against conventional coated composite has been demonstrated. 
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