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ABSTRACT 

ABDULKADER SEEBA SULEKHA., Masters : January : 2021 

Masters of Science in Computing 

Title: An efficient PPG Compression Technique for Wearable Health Devices 

Supervisor of Thesis: Dr.Uvais Ahmed Qidwai. 

Photoplethysmography is a simple, widely used, low-cost technique to acquire 

important diagnostic information for assessing significant physiological parameters of 

the human body based on the amount of light reflected from or absorbed by the body. 

Photoplethysmogram (PPG) signal is recognized as one of the most powerful signals in 

the diagnosis of variations in heart rate, blood pressure, oxygenation saturation levels 

etc. With the great advancements in communication, information technology and 

Internet of Things (IoT), wearable health devices have been extensively used to 

measure PPG signals in telemedicine, remote health monitoring, ambulatory systems 

and in several mobile health systems. As these small wearable medical devices are 

battery operated and resource constrained, dedicated and efficient compression 

techniques are required to optimally manage energy and memory requirements, without 

jeopardizing the relevant clinical morphologies. The thesis deals with the study of the 

existing PPG compression techniques, type of the compression used, the basic 

implementation and a comparative analysis of these techniques, which could be helpful 

for choosing a suitable technique for specific applications. The thesis aims to design 

efficient compression techniques for the compression of PPG Signals. The proposed 

techniques exhibit superior performances compared to the state-of-the-art methods. 
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CHAPTER 1: INTRODUCTION 

1.1 Cardiovascular Diseases Detection using Wearable Health Devices 

Recently, the great advancements in wireless communication and mobile 

technologies have brought about a spectacular change in the field of remote health care 

using wireless wearable health devices. The invention of wearable health devices 

(WHD) such as smart watches, wrist bands etc. has revolutionized the treatment pattern 

of life-threatening ailments such as cardiovascular diseases, respiratory diseases, 

arterial diseases etc. The WHD are widely used by clinicians and caretakers for 

physiological monitoring and to study the normal and abnormal bodily functions. These 

devices typically have limited energy and bandwidth and they must continue 

monitoring uninterrupted for a long time, without the need to recharge or to change the 

battery. The WHD can relay vital information such as electrocardiogram (ECG), PPG 

body temperature, blood pressure (BP), etc. from wearable nodes to remote equipment 

or cloud, which can be analyzed to administer correct and timely treatment. The 

therapeutic improvement through smart and intelligent healthcare has significantly 

improved the standard of life of the patients as well as the lifespan of elderly aged 

patients. 

1.1.1 Impact of Cardiovascular Diseases (CVD)  

Cardiovascular illnesses are the prime reason for deaths globally [1]. In 2016, 

CVDs caused about 17.9 million deaths that comprised about 31 % of all the global 

deaths, as shown in Figure 1. As heart attack and stroke causes about 85% of these 

deaths, as indicated in  Figure 2,  these fatalities may be prevented. 
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Figure 1. Global Death Count in 2016 Figure 2. Deaths due to CVDs in 2016 

Pervasive and continuous clinical monitoring of biomedical signals such as 

PPG, ECG etc. is possible through telemedicine services and remote healthcare 

systems. In crisis circumstances, real-time health focus is vital. As indicated by the 

American Heart Association, if a person encountering ventricular fibrillation is treated 

in the initial 12 minutes of heart failure, then the survival rate is from 48% to 75%. The 

rate of survival decreases to 2%-4% once the first 12 minutes expire [2]. With remote 

continuous clinical monitoring systems, data of patients such as PPG, ECG, heart rate, 

BP etc. can be acquired using the WHDs and can be instantly transmitted to clinical 

centres to process and store appropriately. 

1.1.2 Trends in utilizing WHD for CVD management 

The global WHD business is estimated to touch USD 46.6 billion by 2025 from 

USD 18.4 billion in 2020, with a compounded annual growth rate of 20.5% from 2020 

to 2025 [3], as depicted in Figure 3. This, in turn indicates the significance of utilizing 
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WHDs for monitoring crucial signals such as PPG for preventive health care. The 

proliferating lifestyle diseases, busy work schedules, sedentary routine, technological 

innovations in medical care devices, and growing use of remote gadgets might be the 

significant factors fueling this growth [4].  

 

 

Figure 3. The growth of Global WHD Market 

 

1.2 PPG in telemedicine and remote health care 

Photoplethysmography is an inexpensive and non-invasive optical technique 

that measures the variations in the volume of blood flow within the blood vessels [5]. 

The hemodynamic changes in the microvascular bed of tissue beneath the skin, 

associated with each heartbeat can be detected by collecting pulse signal from the body 

extremities, normally the fingertips, wrist, toe-tips or earlobes  [5, 6].The variations in 
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the intensity of light transmitted through the tissues due to the blood flow in the arteries 

can be quantified as a voltage signal called the PPG [7].  The technique makes use of a 

light-emitting diode and a matching photodiode that operates in the red and/or near-

infrared region attached to peripheral body sites [8]. They capture the light intensity 

and gather the vital data from the microvascular system underneath the skin. PPG is 

generally used in several applications ,for example, observing cardiovascular functions, 

assessing variations in  heart rate (HR), estimating the respiratory rate (RR), BP, oxygen 

saturation levels in the blood, monitoring cardiac output, biometric recognition etc.[9]. 

The PPG also finds applications in several clinical physiological monitoring including 

vascular assessment and venous assessment [5]. The major benefit of  using optical 

sensors for medical applications is its inherent safety as the patient has no electrical 

contact with the equipment and its low susceptibility to electromagnetic interference 

[7].  

As biomedical signals are greatly subjective, the symptoms occur randomly. 

The presence of cardiac abnormalities is normally reflected in ECG, PPG, and HR. 

Nevertheless, as per the basic nature of bio-signals, this reflection appears at random 

time. Hence, the analysis of PPG and variations in heart rate need to be conducted for 

a long time, may be for 24 hours. Obviously, enormous amount of the data needs to be 

managed. Consequently, a method to lessen the data storage requirement is necessary 

while preserving the significant characteristics in the reconstructed signal and this is 

the exact objective of various prevailing PPG signal compression techniques[10]. 

Researchers use computerized measurement techniques for analyzing the PPG 

signals to evaluate vital clinical characteristics such as BP, HR, RR etc. Pulse oximetry, 
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a vital parameter monitored in intensive care units and during surgery makes use of the 

PPG principle. Advanced compact portable devices and pulse oximetry are nowadays 

used in PPG acquisition due to its expediency and capability to take continuous 

readings. A long-time and continuous monitoring allows clinicians to remotely monitor 

cardiovascular system and administer timely treatment in case of emergencies [11]. 

Such monitoring presents major advantages such as constant patient observation, 

increased patient mobility and reduction in healthcare costs [12] . 

1.2.1 PPG Signal Characteristics  

  The PPG signal encompasses a pulsatile alternating current (ac) component 

overlaid on a gradually varying direct component (dc) with ultra-low frequency 

components. The ac component relates to cardiac synchronal alterations in the blood 

volume with every heartbeat whereas the dc component is associated with breathing, 

neural activities, and regulation of body temperature [5, 13].The ac component has two 

phases, a rising part known as the anacrotic phase, and a falling part known as the 

catacrotic phase and wave reflections from the periphery, as shown in Figure 4.  

The anacrotic phase indicates systole (ventricular contraction) and catacrotic 

phase indicates diastole (ventricular relaxation). A dicrotic notch is usually visible in 

the catacrotic phase, that corresponds to the transient rise in aortic pressure on aortic 

valve closure. Figure 4 depicts other features of the PPG waveform also such as systolic 

time ts , diastolic time td, pulse amplitude Ph and the pulse width tw. The interval between 

the consecutive systolic peaks has been utilized to analyze heart rhythm and detect 

variations in heart rate [8] .  
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Figure 4. PPG Signal Characteristics 

1.2.2 Significance of PPG as a diagnostic tool 

Electrocardiogram (ECG) and PPG are the prime biomedical signals generally 

used for the analysis of cardiovascular functions [8, 14] . Conventional ECG based 

methods require connection of several electrodes to the human body for recording 

heart’s electrical activities, whereas PPG based acquisition techniques have gained 

popularity as a simple, inexpensive and reliable method for monitoring the heart related 

functions [15]. Because of the simple and reliable acquisition process, PPG signal has 

been distinguished as a powerful diagnostic tool for assessing variations in HR and 

pulse rate during recent years [16] . Utilizing frequency analysis techniques such as 

Fourier transform, the power spectral density, and an adaptive notch filter, the HR can 

be computed from the PPG. As the respiratory component is not evidently seen in the 

PPG, several signal processing methods have been designed to compute RR from the 

PPG [17]. 

Multibody site PPG measurement is required in the diagnosis of vascular 

diseases, studies of ambulatory sleep, detection of sleep disorders, etc. [18]. The 

variation in the symmetry of the PPG signals acquired bilaterally from the lower 

extremities is used for the detection of arterial disease [8].The asymmetries such as 
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reduction in peak amplitude, rise time etc. of the PPG waveforms can be analyzed for 

diagnosing cardiovascular diseases. 

1.2.3 Technologies associated with PPG Signal Transmission 

Wireless communication of medical data using wearable health devices requires 

efficient compression techniques due to the restricted channel capacity bandwidth and 

data transfer rate. Miniaturization of sensors and manufacture of small and compact 

radio frequency modules have facilitated the wireless acquisition of vital biomedical 

signals. Wireless technologies such as  Zigbee, Wi-Fi, and Bluetooth are generally used 

for the acquisition and transmission of PPG signals [11]. Various mobile technologies 

such as GSM, 3G, 4G and 5G are also used for long distance transmission. New medical 

diagnostic tools have been developed utilizing the latest technologies, namely IoT, 

Internet of Medical Things (IoMT), artificial intelligence, genetic algorithms, 

biosensors etc., that led to customized advancements in e-health and healthcare. PPG 

associated with these tools exhibit excellent diagnostic capabilities [18]. 

With the technological advancements in the IoT devices, including wearable 

health devices, and with the bandwidth restrictions disappearing due to 5G 

communications becoming more pervasive, the need for compression may change. 

However, these advancements may take time to be available globally. The requirements 

of the monitoring devices may be explored to cater to the emerging trends. 

1.2.4 PPG Signal Corruption and Denoising  

The PPG is invariably corrupted by noise and motion artifacts (MA), regardless 

of its mode of acquisition, whether it is reflectance or transmittance [19]. As the PPG 
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signals are susceptible to power line interferences and motion artifacts, specialized 

filtering of the data and pre- processing is mandatory for the reliable extraction of the 

clinical attributes. Various techniques have been experimented in denoising PPG 

signals using additional sensors and designing complex algorithms to enhance the PPG 

signal quality [19].  

While PPG denoising using filters, the systolic and diastolic waves should be 

noticeable in the filtered output. In [20], the optimum filter and order of the filter, used 

for signal processing of PPG is found out using the skewness quality index. Study 

results indicate that the 4th order Chebyshev II filter can enhance the quality of the PPG 

signal more efficiently than other filter types [20]. 

1.2.5  PPG Signal acquisition and monitoring  

Generally, a wireless PPG sensing system mainly consists of three units namely, 

a data acquisition unit, a processor and wireless transceiver, as shown in Figure 5 [21]. 

The analogue front-end unit called the data acquisition module is liable for the 

amplification of the weak signals obtained from the sensors, noise filtering and for 

converting the analogue signals to digital. A dedicated, embedded processor handles 

the signal processing functions such as removal of noise from the signal, signal 

compression, extraction of clinical data and data encryption techniques required for the 

PPG application. After preprocessing, the wireless transceiver transmits the sensed 

signals continuously to a remote medical server for clinical evaluation and hence it 

suffers from high power consumption. 
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 Figure 5. A PPG acquisition and monitoring system 

 

It requires approximately 415 KB of memory to store PPG data sampled at 

500Hz rate of 1-minute duration with 16-bit resolution. Due to the subjective nature of 

PPG signals, real time monitoring needs to be done for prolonged periods of time. As a 

huge volume of PPG data needs to be retained in the memory for further clinical 

observation, storage cost also is a matter of concern. The reduction of file size permits 

more information to be stored in the available storage space with less transmission time. 

As the PPG sensor passes light on to the skin surface and then gauges the intensity of 

light coming back, its power consumption and hence battery life is dependent on the 

sampling rate. For prolonged battery life, e-health care systems with PPG sensor should  

use reduced sampling rate [17]. 

The advancements in cloud/edge computing, the bandwidth restriction 

disappearing with latest communication technologies such as 5G, and the enhancements 

in battery life of the WHD, may in future, lead to changes on where the acquired data 
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can be processed.   

1.3 Problem Statement 

When continuous, real-time, long term monitoring of PPG signal is required, 

especially for telemedicine, remote healthcare monitoring services etc., enormous 

volume of data is generated. The huge volume of data makes the storage, processing, 

and communication of the data impractical. Hence data need to be effectively 

compressed for convenient storage, and further transmission to meet the bandwidth 

requirements. Reducing the data size using compression methods can reduce the 

transmission power and hence can extend the lifetime of wireless PPG monitoring 

system, provided the power expended in compression process must be less than the 

power saved due to compression. The limited memory size and constrained battery 

lifetime in WHD also necessitate a reduction in data size. Moreover, reduced data size 

cut down the bandwidth required to transfer the data.  

Compression of PPG signals may distort them. As these biomedical signals 

comprise clinical data required for the diagnosis of ailments and warnings of critical 

conditions, any means of distortion may result in the wrong diagnosis that may prove 

fatal. Nevertheless, for quick and effective communication of huge volumes of medical 

data, a small amount of distortion is acceptable. Hence designing PPG data compression 

technique with tolerable distortion levels is a great task. 

The compression technique chosen should be able to provide sufficient 

compression, as well as it should be able to preserve the clinical characteristics of the 

PPG signal upon reconstruction. Some medical applications require high data 

compression and permits tolerable distortion in return whereas certain other 
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applications require to retain the clinical attributes of the signal on decompression. 

1.4 Thesis Objective 

For early detection, diagnosis, and monitoring of CVDs through tele-

monitoring, large volume of PPG data is required to be transmitted to clinicians and 

hence, an efficient compression technique is a mandate. Although considerable research 

has been conducted on biomedical signal compression, the compression of PPG signals 

is mostly unexplored as of now. Selecting an appropriate PPG compression method for 

the requirements of a specific application poses a great challenge from the 

implementation perspective. The thesis addresses this problem. 

The thesis objective can be summarized as follows: - 

1. Study of different compression techniques used for efficient and reliable 

communication of the PPG signals.  

2. A review and comparative analysis of the various existing PPG compression 

techniques, their implementations, advantages, and disadvantages. 

3. The thesis proposes three efficient compression techniques, two lossy and a 

lossless compression technique is experimented. 

 The first technique is a lossy technique based on a combination of Single 

value Decomposition and lossless compression for effective and reliable 

compression of PPG Signals. 

 The second technique is a lossless compression technique based on some 

efficient grouping techniques. 

 The third technique is a very efficient, quality guaranteed lossy 
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compression technique based on the fusion of the proposed lossless 

compression technique with the SVD method. 

1.5 Thesis Outline 

The layout of the thesis is as follows. Chapter 2 discusses the types of PPG 

compression techniques, lossless and lossy, and the different performance metrices 

used for assessing the quality of compression. Chapter 3 deals with the literature review, 

and the implementations and analysis of some of the existing PPG compression 

techniques. Chapter 4 explains the implementation and the results of the lossy SVD-

LAC PPG Compression technique. Chapter 5 explains the algorithm and the results of 

the proposed lossless PPG compression technique called IEGLC. The chapter also 

discusses the algorithm and performance results of a third technique formed by the 

fusion of SVD and the proposed lossless technique. The performance comparison of 

the proposed techniques with the existing PPG compression techniques is also included 

in this chapter. Chapter 6 concludes with the findings of the thesis and recommends 

some future work. 
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CHAPTER 2: STUDY OF BASIC COMPRESSION TECHNIQUES 

2.1 Significance of Compression 

 Compression technique plays a significant part in prognosis, diagnosis, and 

analysis of various heart as well as respiratory diseases. The important considerations 

for selecting the right PPG compression technique are storage requirements, 

computational complexity of the algorithm, power consumption and communication 

link utilization. Generally, data can be compacted by removing redundant data. The 

benefits of compression include reducing the data size, storage requirement and storage 

costs as well as reducing the power and time requires to transmit and receive the data. 

The original data can be transformed to its compressed form by identifying and utilizing 

the patterns existing in the data. 

Biomedical signal compression techniques are employed to save the memory 

size without losing the clinically important information, by eliminating the irrelevant 

data in the signal at a permissible rate. The efficiency of the compression methods 

relates to the fact that the algorithm used should be good enough to preserve the clinical 

data for analysis upon reconstruction. The authors in [22] indicate that the acceptable 

distortion level for the most common clinical applications is less than 10%. 

Among the several methods that have been developed over decades for 

biomedical signal compression, Discrete Cosine Transformation (DCT), Discrete 

Wavelet Transformation (DWT), Fast Fourier Transformation (FFT), and Compressive 

Sensing (CS) are the popular methods [5, 23]. 

2.2 Types of Compression 
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Lossy and lossless type of compression techniques are used for biomedical 

signal compression. Existing signal compression methods for biomedical signals can 

be broadly classified as follows:  

2.2.1 Lossless Compression 

Lossless compression lessens the data volume without any information loss. The 

original data can be fully recovered after uncompressing the file. The compressed file 

produced in a lossless type will be larger in size when compared to lossy type. The 

reconstructed signal is identical to original signal in lossless compression [24]. In 

certain applications, such as medical imaging, text, military imagery, satellite imaging, 

law forensics etc., loss of information is not acceptable. 

There is another technique called near lossless compression method that 

provides quantifiable guarantees about the type and amount of distortion introduced. It 

enables compression of videos, hyper spectral images, medical image etc. It is mainly 

used in medical imaging applications and for compression where the difference 

between the original signal and decompressed signal can be varied from the respective 

values in the original data by not greater than a user-defined amount known as 

maximum absolute distortion (MAD) [24].  

2.2.2  Lossy Compression 

In late 1980s, the lossy compression was first introduced [22]. In lossy 

compression, the file size can be permanently reduced by eliminating the redundant or 

irrelevant data. Such techniques are preferred in applications, where the reconstructed 

signal need not be precisely identical to the original signal, but an approximation of 
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original signal is also admissible. The compression ratio (CR) for lossy compression 

techniques are higher in return for accepting the distortion in the reconstructed signal. 

Lossy compression makes use of the limitation of the perception of human ears or eyes. 

Likewise, in signal compression, lossy compression eliminates the redundant data from 

the signal segments and various channels. 

Generally, such compression algorithm encompasses three processes, namely, 

transformation, quantization and encoding [24]. A good transform coding method 

removes the redundant or unwanted signal and represent the original signal in frequency 

domain using fewer number of coefficients. The selected coefficients undergo 

quantization process and are then encoded using specific methods to obtain the 

compressed output bit stream. The reverse process occurs during decompression, at the 

decoder end. The DCT and the DWT are some of the transform coding techniques [25]. 

Quantization is a lossy technique used to reduce a range of values to a discrete value. 

The DCT, the DWT, and vector quantization are the most widely used quantization 

methods. The final step could be executed using arithmetic encoder, Set Partitioning in 

Hierarchical Trees (SPIHT) or predictive coding [22].  

2.3 Taxonomy of Data Compression Techniques 

The existing data compression techniques may be broadly categorized into 

three, namely, transformation domain methods, direct data compression methods, and 

parameter extraction methods [15]. When employed in biomedical signal compression, 

direct data compression methods have more efficacy than the other techniques. This 

method reduces the redundancy in the data series by analyzing the neighboring samples, 

eg:- Delta Modulation  [26] . 
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2.3.1 Transformation domain methods  

These methods transform the signal into a suitable transform domain and send 

only chosen coefficients in lieu of the original data sequence. The compression 

performance dependent on the number of transform coefficients chosen and the 

representation accuracy rely on how many and which all coefficients are preserved. 

Transform based methods take advantage of transformations such as the DCT, the 

DWT, and the FFT [27]. Although these schemes have high compression capabilities, 

the computational burden is high for wearable devices. These methods are inherently 

lossy. 

2.3.2 Direct Data processing methods 

In this compression method, a few of the original signal samples are rejected 

and then linear approximation is applied to compact the data. AZTEC (Amplitude Zone 

Time Epoch Coding) used for real-time ECG monitoring works on this concept, 

whereas in LTC, the approximation of the original time sequence is done through 

piecewise line segments. The two endpoints of the segments are transmitted instead of 

the in-between points [28]. Although these methods use lightweight algorithms, their 

compression and reconstruction capabilities are poor when compared to transform 

based methods, which have high computational complexity and high memory 

requirements. 

2.3.3 Parameter extraction methods 

The rationale is to process and acquire some knowledge from the temporal 

series and then predict the signal morphology utilizing this knowledge. The algorithms 
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exhibit good performance to extract the signal features. These parameter extraction 

methods utilize Neural networks, Compressed Sensing, Vector Quantization and 

Pattern Matching. Denoising encoders are also found to be used as universal 

approximators of biomedical signals [29]. 

2.4 Basic Signal Compression Techniques 

The conventional method to compress a signal involves the following process: 

 Sampling the signal at the Nyquist rate 

 Compressing the sampled signal by employing techniques such as the DWT, 

DCT etc. 

 Preserving and quantizing the relevant coefficients and rejecting the 

unnecessary ones. 

 Transmission of the compressed signal following which it is decompressed. 

  Signal Compression techniques works on two different paradigms. Some use 

the correlation between subsequent patterns known as segments, while other methods 

take advantage of the correlation within the same segment. The first method is known 

as the inter-segment correlation, and the latter is termed as intra-segment correlation. 

Vector quantization, online dictionary, and autoencoders are the techniques that belong 

to the inter-segment class, while those based on principal component analysis (PCA), 

LTC, DCT and DWT take advantage of intra-segment correlation properties. Figure 6 

depicts the categorization of data compression techniques based on different criteria 

[24]. 
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Figure 6. Classification of Data Compression Techniques 
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2.4.1 Discrete Fourier Transform  

In digital signal processing, DFT is a powerful tool that can be utilized to trace 

the spectrum of a finite-duration signal. An analog continuous-time signal which may 

extend to positive infinity can be represented as a finite duration sequence. A time 

periodic signal can be considered as several harmonically related sine and cosine waves. 

The DFT can be used to represent a discrete sequence into its equivalent frequency 

domain representation. The FFT is the algorithm for computing the DFT. The FFT 

decreases the computational complexity required for N points from 2N2 to 2N log2 N. 

2.4.2 Discrete Cosine Transform  

  This method transforms a signal into its fundamental frequency components. It 

represents a series of finitely numerous data points as a sum of cosine functions that 

oscillates at various frequencies. The DCT is commonly utilized for the compression of 

data, especially for image compression. It gives near optimal performance for signals 

having high correlations within adjacent samples. It is effective in concentrating more 

energy to lower order coefficients than higher order coefficients. 

  Decomposition of signals based on DCT algorithm is a four-step process [30] . 

 The signal is divided into N sub-blocks. 

 DCT is computed for each block.  

 The DCT coefficients undergo Thresholding and Quantization.  

 The quantized DCT coefficients are encoded. 
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2.4.2.1 Classification of DCT  

Depending on the adopted coefficient selection approach, DCT can be classified 

as follows: 

DCT Cardinality Thresholding: In the approach, the number of coefficients to 

be preserved is given as input, and the coefficients are selected beginning from the 

lowest frequencies. Fine tuning of CR can be done using this strategy, but the error on 

reconstruction at the decompressor cannot be guaranteed.  

DCT Energy Thresholding: In this process, the selection of coefficients is done 

in such a way that an energy threshold constraint is met. The coefficients that possess 

a fixed fraction (Eth), of the entire DCT spectrum energy (E), are retained. The 

coefficients are chosen in the ascending order of frequencies, utilizing the energy 

compaction property of the DCT. Hence encoding of the frequency position of the 

coefficients is not necessary.  

2.4.3 Discrete Wavelet Transformation 

DWT is applied for filtering and compressing biomedical signals. In DWT, only 

a subset of the transform coefficients is transmitted as majority of the signal information 

is contained in very few transform coefficients. The DWT algorithm selects the 

coefficients of signals with a considerable energy and reject the others that have a very 

small fraction of the total energy. This method analyzes a signal in both the domains, 

i.e. time and frequency. Figure 7 depicts the  multiresolution decomposition of a signal 

into ‘n’ levels in different frequency bands using DWT [30]. The input signal is first 

decomposed into approximation coefficients that constitutes the low frequency band of 
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processing signal and detailed coefficients that constitutes the high frequency band of 

processing signal. Each level further splits the signal into approximation coefficients 

and detail coefficients and the process repeats n times. The energy of different 

frequencies and time position corresponds to a particular coefficient in every level of 

decomposition [31]. DWT provides high CR with low loss of signal, but it has high 

computational burden, exhausts memory, and expends considerable energy [32]. 

 

 

Figure 7. Multilevel Decomposition of a signal using DWT 

2.4.3.1 Classic DWT Technique 

In 1994, Donoho & Johnstone put forth the classic DWT technique that includes 

three main steps: 

1. Signal decomposition 



  

   

22 

 

2. Identifying the coefficients with low energy and discarding it. (thresholding) 

3. Reconstructing the new coefficients. 

2.4.3.2 Classification of DWT 

The strategy for selecting the significant coefficients for signal reconstruction 

is the main differentiator among the prevailing techniques. The main selection 

approaches are 

 DWT-Level Thresholding: The rationale is to discard all the coefficients 

coming under a particular threshold. It is generally used for denoising. 

Normally, each level of decomposition has a specific threshold.  

 DWT-Energy Thresholding: The method is analogous to DCT-Energy 

Thresholding.  

 DWT-Cardinality Thresholding: The approach is like DCT-Cardinality 

Thresholding as it retains only a predetermined number of coefficients and 

rejects the ones with the lowest absolute values. Although the approach 

permits fine tuning the CR in DCT, it is hard to accurately control the 

resultant reconstruction quality in DWT. 

2.4.4 Compressive Sensing 

The main concept behind Compressive Sensing is to directly capture data in a 

compressed form. The CS method takes benefit of the sparseness of the signal in a 

specific domain to reconstruct the signal with significantly lesser number of samples. 

As per Nyquist sampling theorem, when a signal is sampled, the rate of sampling should 

be greater than the Nyquist Rate , which is double the signal bandwidth [12]. Normally, 
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this method works with lesser number of samples than Nyquist rate. The CS also takes 

advantage of the incoherence principle i.e. measurement matrix used for signal 

acquisition must be incoherent with the dictionary which sparsely characterizes the 

signal. Incoherence extends the duality between time and frequency and communicates 

that objects that have a sparse representation must be spread out in the domain in which 

they are acquired. Generally, data consist mostly of relatively small numbers, rather 

than being mostly zeroes. Smaller coefficients can be zeroed out and the large ones can 

be used to get a compressed or de-noised version of the data.  

In compressive sensing also called compressed sensing, a given signal, ‘z’ is k-

sparse in the standard basis, implies that it has maximum ‘k’ non-zero coordinates. For 

a signal of sparsity level ‘k’  and length ‘n’, let A be an m × n matrix with m = Θ(k log 

𝑛

𝑘
) rows, with each of its mn entries, independently selected from the standard Gaussian 

distribution. With high probability over the selection of A, each k-sparse signal ‘z’ can 

be effectively retrieved from b = Az [33].  

The compressive sensing method can be mathematically explained as follows: 

The objective is to design a small number of linear measurements in a manner that their 

results enable the unique and effective reconstruction of an unknown sparse signal. 

 Design ‘m’ linear measurements a1, . . ., am ∈ ℝn 

 Consider an unknown signal, say, an n-vector z ∈ ℝn  

 Get the measurement results b1 = (a1, zi ), b2 = (a2, zi ), . . . bm = (am, zi ).  

 From the m-vector b, restore the n-vector z. 
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From the available ‘m’ samples of data, ‘n’ data samples of the original signal, 

can be reconstructed on solving a convex optimization problem, by finding the 

minimum L1-norm solution. Other methods such as subspace pursuit, NESTA etc. can 

also be used for signal recovery[28]. 

The CS is suitable to WHD, mobile, or low power devices since it lessens the 

data volume as well as the resources needed in the microcontroller and the Analog-to-

Digital Converter (ADC). It also offers power reduction during signal acquisition, 

compression process and the wireless transmission. Nevertheless, there is a trade-off, 

as the computational needs of CS reconstruction and power consumption is 

considerably higher comparative to other compression methods [12]. 

2.4.5 Online Dictionary/Codebook based compression  

  This is a lightweight procedure based on the idea of motif extraction. The 

technique works for biometric signals such as PPG, ECG, respiratory signals etc., that 

exhibits recurring patterns. The principle is to identify recurring patterns and a runtime 

codebook is built based on the most representative among them. For every single input 

pattern, the related index in the codebook is sent instead of the initial data series. To 

enable faithful signal reconstruction, the codebook must be in synchronization with the 

decompressor. Figure 8 explains the whole compression processes.  

2.4.5.1 Processes involved in Codebook based Compression  

The processing functions involved in this method include 

 Passband filtering:  The process removes high frequency noise, artifacts, and 

the DC component 
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 Peak detector: It identifies the peaks of the signal. 

 Frame extractor: The data samples between successive peaks is extracted as 

segments and these form the input segments to the compressor algorithm. 

The codebook is then constructed using machine learning algorithms.  

 Pattern Matching:   It checks whether the current input segment matches 

with any of the codewords in the codebook, that is created and updated at 

runtime. A matching criterion called Dynamic Time Warping (DTW), is 

widely used for comparing patterns of varying length. It can be executed in 

linear time. 

 Codebook manager: It has two major tasks.  

o A well representative and updated codebook must be maintained 

o Input patterns must be encoded to the related indices from the codebook.  

 

  

Figure 8 Codebook-based compression algorithm 
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This method is somewhat based on vector quantization. Consider zt denotes a 

segment obtained from the frame extraction unit, at the generic time t = 0, 1, 2, … 

assuming discrete time, relating to the new segment arrival. Let the codebook at time t, 

be Ct = {c1, , , , cN} and the codewords be ci, i = 1, , ,N. The segment zt of length ‘W’ 

is remapped into another segment xt of the same size. For    i = 1, , , N, size(ci) = size(xt) 

= W. The new segment, xt is got through linear resampling and eliminating offset ot and 

gain gt from zt. For all codewords ci in the codebook, an appropriate distance function 

d (xt ,ci) is calculated. Then the codeword ci, with index i*, that has the least distance, 

is selected. Then, if the distance function <= ε, then the codeword ci* is considered as 

the best representative of the current segment zt, else xt is included as a new codeword 

in the codebook, with i* as the related index. The parameter ‘ε’ can be used to control 

the fidelity of signal reconstruction during decompression. Finally, instead of sending 

the entire segment, the index i* is sent along with the original segment length, lt , ot and 

gt . If a match for zt is obtained from the codebook, as per the criteria, the associated 

index is sent, along with lt, , ot and gt. Thus, the entire signal is processed to get a 

compressed bitstream. The decompressor reconstructs the initial time sequence from 

this bitstream, using the reverse process. 

The decompressor specifically applies some transforms to codeword i* from the 

codebook: 

 Renormalizes it with respect to offset and gain  

 Resamples as per the original segment length lt.  

If zt has no match in the codebook, then it is included as a new codeword in the 

codebook. Then, its normalized form along with the related index are sent to the decoder 
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to keep the dictionaries at the compressor and the decompressor always in 

synchronization. ‘ε’ influences the codebook size and hence, the required memory. If 

the codebook exceeds the permissible memory space, implementation of codeword 

removal from it can be done according to last used timestamps. 

2.4.6 Gain Shape Vector Quantization 

  The technique takes advantage of the redundancy of information among 

neighboring samples. Figure 9 shows the processes involved in GSVQ compression. 

The signal is divided into segments and the period is normalized to a fixed length and 

amplitude. Then using this normalized data, a codebook, that has a fixed number of 

codewords K, is built. GSVQ creates the codebook or dictionary via an offline training 

phase. The codebook is created from previously collected datasets and a stream of 

residuals is sent to recompense for the changes in the signal statistics at runtime. A 

GSVQ compression system has two parts an encoder and a decoder. After dictionary 

formation, the technique relates every normalized data to the closest codeword, 

transmits the index of the codeword in lieu of the original time sequence. The offset, 

the gain, and the length of the original segment is also encoded. In the final step, the 

encoder computes the difference between the current data and the codeword chosen, 

and utilizes the AREA algorithm, an adaptive sampling method for single dimensional 

signals that acquires added information, to enhance the reconstruction quality. The 

residual encoding phase encodes and transmit a smaller number of significant 

coefficients to limit the error on reconstruction. On receival of an encoded packet, the 

decoder, regains the associated codeword from its local dictionary copy, does a 
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denormalization using the gain, the offset, and the length, and add up the remaining 

stream to the regenerated signal. The performance of GSVQ is mostly dependent on its 

residual encoding phase as the threshold used for residual encoding is mainly 

responsible for the transmitted data volume. 

 

 

Figure 9. Illustration of the GSVQ compression method 

2.4.7 Lightweight Temporal Compression  

It is a simple and fast technique that requires very little storage. It is based on 

method based on linear approximation. Data can be sampled at high rate with this 
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compression scheme.  Let x[i], i = 0, 1, 2, . . .  be the original time sequence. First, x[0] 

is selected as the left endpoint of the current approximating segment. The resulting 

points x[i], with i > 0 are converted into vertical intervals x[i]- ε,  x[i]+ ε],  ε > 0 . Here, 

ε is an error margin on the regenerated signal. On considering point i > 1, LTC takes 

the segment with boundaries (x[0], x[i]) and examines if this segment is within any of 

the previously obtained vertical intervals between x[1], x[2],  ,x[i -1]. In that case, the 

algorithm takes the vertical interval for the current point ‘i’ and does the check for (i + 

1). Or else, the procedure stops, considering x [i -1] as the right endpoint of the present 

segment. Then, along with the segment length ‘í’, x[0] and x[i -1] are sent as the left 

and right endpoints of the current segment as an approximation to values {x[0],x[1], , , 

, x[i-2], x[i-1]}.The process repeats by taking another approximating segment, and 

using x[i -1] as the left endpoint. In LTC, the maximum error margin (ε) between an 

original and reconstructed data point can be arbitrarily set. ε works as a regulator to 

fine-tune the tradeoff  between compressed data size and accuracy. [34]. 

2.4.8 Principal component Analysis 

 It is a statistical technique that aims to compact the data presented by a huge 

set of mutually related variables into a few variables with lower dimensionality called 

principal components. Every principal component is calculated as a linear combination 

of the initial variables, and the combination weights are selected such that the 

components are not correlated mutually. The method proved successful in a lot of 

applications, that include PPG and ECG etc. In PCA, there is no previous information 

of the basis in which the signal is sparse. The rationale of the method is to scrutinize 
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the data set and find out the “best” basis for approximately representing it as linear 

combinations of a small set of k orthonormal vectors. The estimation of the original 

data points onto the top k principal components can be regarded as a sparse 

approximation of the original data set, with only k non-zeros per data point in the new 

basis. Determining the singular value decomposition (SVD) of a matrix, which is a low-

rank matrix approximation, that retains only its top k singular vectors and values can 

also be considered in this manner[28] . 

2.4.9 Autoencoders 

Autoencoders are neural networks (NN), that can work as universal 

approximators [35]. The dimension of the input and output layers of the network are 

the same, say, W. The layers between them are called hidden. The deepest hidden layer 

has a lower dimension h, where h < W. wij
1 and wij

2 denote the autoencoder weights 

from neuron i to neuron j of the input to the output layer. The information in the original 

segments, of size W can be compressed to a much smaller space, h neurons, using 

autoencoders as a non-linear dimensionality reduction technique.  Figure 10 shows the 

graphical representation of an autoencoder 

The NN is trained through an unsupervised learning algorithm that utilizes 

several training examples, x ε ℝW that are fed as the autoencoder input. The 

backpropagation is accomplished by fixing the output y = x and the NN weights wij
1 

and wij
2 are corrected for the autoencoder to work as an identity function. Figure 10 

graphically represents an autoencoder. After the autoencoder is trained, the weights wij
1, 

and wij
2 fully specify the compressor and the decompressor, respectively. After 
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preprocessing, each segment is fed as autoencoder input and the values of ‘h’ related to 

the neurons in the compression layer is obtained in return. The ‘h’ values along with 

the original segment length and are sent to the receiver. Lastly at the receiver, the 

decompressor utilizes the values of these h inner neurons, along with weights wij
2, to 

get back’ y’ through the decoder.  

 

 

Figure 10. Graphical representation of an autoencoder 

The aim of an autoencoder is to learn an efficient coding for a set of data, usually 

for reducing the dimensionality, by training the network to ignore signal noise. The 
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output of the autoencoders would be more accurate if denoised data is fed to 

autoencoders. Denoising autoencoders can be used to approximate the input biomedical 

patterns. Contrary to traditional linear dimensionality reduction methods, for example 

PCA, neural networks depend on non-linear functions which makes them more 

attractive. 

The thesis implements a very efficient compression technique for compressing 

the PPG Signals. It is based on a combination of Singular Value Decomposition and 

lossless compression using some grouping techniques. These techniques will be 

explained in detail in Chapter 1V. The work also proposes a lossless compression 

technique based on some extensive grouping techniques. Finally, the proposed lossless 

technique is combined with SVD to form a reliable and efficient lossy technique. 

2.5  Performance Metrices 

Various metrices are defined for analyzing the performance of signal 

compression algorithms. The complexity of the algorithm, the memory used for 

computation, the computational speed, the volume of compression and the quality and 

the fidelity of regenerated data are considered for performance evaluation. For better 

understanding of the metrices, consider a PPG signal compression of N samples, where 

x[i] is ith sample of the original PPG signal, 𝑥̂[𝑖] is the ith sample of the decompressed 

signal, µx and µx̂ is the mean of the original signal and decompressed signal 

respectively. Then, the performance metrices can be defined as follows: 

Compression ratio (CR) 



  

   

33 

 

  CR is the most popular metric used to calculate the efficacy of a compression 

technique and it is calculated as the ratio of total number of bits needed to represent the 

data prior compression and total number of bits needed to represent the data after 

compression. A higher CR means algorithm performs better [36]. 

                (2.1) 

The CR can also be calculated related to file size. The file CR is computed as 

the ratio of the uncompressed file size to compressed file size. File CR is also used as 

a performance metric to evaluate the compression performance by researchers. 

Percentage root-mean-squared difference (PRD) 

 It is a popular metric used to quantify the distortion between two signals [5]. 

PRD can be viewed as a quality controlling metric of the decompressed signal. It gives 

a quantitative estimate of the sample to sample squared reconstruction error [8] . 

                 (2.2) 

To prevent the effect of mean value in computing the rate of distortion , the PRD 

is calculated by subtracting the mean of the signal from the original signal [36]. The 

efficiency of the decompressor can be better assessed by analyzing the PRD and PRD 

normalized (PRDN). 

                 (2.3) 
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Root Mean Square Error (RMSE)  

  It is determined by computing the standard deviation of the differences between 

original data and the reconstructed data and normalizing it with respect to the peak-to-

peak amplitude (App) of the signals [36]. It gives a direct indication of the 

reconstruction fidelity of the signal [29]. 

                (2.4) 

Quality score (QS) 

  It is a numeric representation of the general performance of a compression 

technique [37] . 

QS = 
𝐶𝑅

𝑃𝑅𝐷
                              (2.5) 

The higher values of QS, the better the compression [38]. 

Cross Correlation (CC) 

CC is a metric used to define the similarity between the original and 

decompressed PPG signal. The range of CC varies between 0 and 1 [36]. 

                  (2.6) 

Signal to Noise ratio (SNR) 

The Signal to Noise ratio is calculated as 
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SNR =10log10   
∑ 𝑥([𝑖]2

∑|𝑥[𝑖]−𝑥̂[𝑖]|2                              (2.7)

   

The performance metrices such as CR, PRD, CC, RMSE and QS were mainly 

used for the evaluation in this thesis. The CR in PPG signal compression denotes the 

efficiency of the compression algorithm. It indicates the amount of data reduction 

possible, and hence can be used to assess the bandwidth and the power required to 

transmit the data. In PPG Signal compression and regeneration, the PRD can be used 

as a standard quality controlling metric as it is a measure of the distortion between the 

original and the regenerated PPG signal. The CC indicates the similarity between the 

original and the reconstructed PPG signal. The RMSE is an indication of the 

reconstruction faithfulness of the PPG signal. The QS is a quantitative measure that is 

used to evaluate the overall performance of a PPG compression algorithm. 

On analyzing the above performance metrices, the overall quality and fidelity 

of the reconstructed signal can be assessed. 
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CHAPTER 3: LITERATURE REVIEW 

3.1 Existing Compression Techniques of PPG Signals 

Compression of biomedical signals has two advantages in monitoring vital 

physiological parameters: low storage requirements and efficient utilization of 

communication channel bandwidth. Very few techniques have been designed for 

dealing with the compression of PPG data. Compressive Sensing (CS), DCT, DWT, 

Lightweight Temporal Compression (LTC) and Gain Shape Vector Quantization 

(GSVQ) are some of the prevailing methods used by researchers for PPG Compression 

[35]. While data compression, tradeoffs exists between various factors such as the 

extent of compression, the level of distortion occurred, and the computational resources 

needed to compress and reconstruct the data. An efficient algorithm compresses the 

bio-signals acquired by the smart devices, with high CR and good reconstruction 

fidelity [29] . 

In [39], Malgina et al discusses  an amplitude threshold compression (ATC) 

algorithm that is suitable for compressing real-time bio-signals. In ATC, the amplitude 

difference between the previous and succeeding neighboring samples is compared with 

a chosen threshold value. If the difference is larger than the threshold, then the sample 

is stored, else it is eliminated. The first sample is automatically retained. The 

compressed signal is constituted by the stored samples. Signals are regenerated using 

the Cubic spline approximation algorithm.   

In [8], Gupta, R. presents a lossless, real-time compression technique for PPG 

signals using a fusion of second order delta and Huffman encoding (HC) with the 

objective of creating a compression algorithm of low complexity. The encoding for this 
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algorithm is done using the delta values representing the difference between two 

successive data samples. Two delta arrays are created and are biased in a way suitable 

for efficient compression by Huffman coding. The modified arrays are then made to 

undergo Huffman coding where in, initially the number of occurrences of each distinct 

element called the Huffman symbol, is computed along with its probability to construct 

a Huffman tree. Then the Huffman symbols, the number of bits used to denote each 

symbol along with the Huffman code are compressed. Then compressed Huffman 

coded bit stream are zero padded and converted into bytes. This encoded data along 

with header bytes that contain vital information regarding the data within the data 

packet, are used to form PPG data packets which are then saved into the memory. For 

decompression, the exact reverse sequence is followed. 

  Systolic upstroke time, pulse width and systolic amplitude are the three vital 

clinical features that are used for analyzing the impact of compression on diagnostic 

quality of the signal. The technique has a CR of 2.223, PRD of 0.127 and PRDN of 

0.187. It has a low time complexity that makes it an inexpensive, real-time PPG 

measurement technique for health monitoring. 

Reddy et al, in [21] introduces a unique approach that employs a cycle-by-cycle 

Fourier Series analysis (CFSA) , to eliminate MA from corrupted PPG signals along 

with data compression with the aim of reducing the impact of MA on pulse oximeter 

readings. The acquired data is filtered utilizing the Savitzky–Golay (SG) smoothing 

filter to eliminate the noise at high frequencies. Using CFSA, the PPG signals are 

regenerated in a cyclic manner. Results suggest that the technique is insensitive to HR 

variation and causes only negligible processing error. Moreover, this technique retains 
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all the morphological features of PPG and achieves and overall reduction of 35 dB in 

MA and a total data compression factor of 12. The error caused while selecting the pulse 

periods reduces the performance of this technique. 

A distinct method of delta modulation for efficient PPG signal compression for 

use in real-time measurements and monitoring applications was described in  [40] . 

Another method in [26] also uses Delta modulation for achieving higher compression. 

A novel approach for reducing power consumption, using an integrated data 

compression and pulse rate measurement technique, for wireless IOT enabled PPG 

monitoring devices was presented by Reddy et al, in  [36]. The PPG signals are 

compressed using a combination of differential pulse code modulation (DPCM) and 

Huffman coding techniques. Once the differential signals are generated, the pulse rate, 

is extracted from it in a timely manner. IIR Chebychev type-1 filter is used to filter out 

all the noise. Henceforth DPCM is used to perform compression by correlating the 

samples with the focus on reconstructing the PPG signal without any slope overload 

error. Then, Huffman Encoder is used to encode the error signals by assigning code 

words to the signals based on their frequency of occurrence. The decompression stage 

consists of a Huffman decoder that receives the binary sequence and produces a 

quantized error signal, a predictor to reconstruct the signal, and a moving average filter 

to denoise the data. The method achieves an average CR of 4.76, PRD of 0.19%, SNR 

of 27.9 dB. 

The PPG Compression technique put forth by Sadhukhan D., et al  in paper [41] 

makes use of the inherent signal redundancy in the frequency domain. Besides 

achieving high CR, the technique is noise robust and adopts simple computation for its 
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adaptation in portable monitoring devices. Depending on the characteristics of each 

signal, an adaptive estimation of the useful bandwidth required for faithful 

reconstruction of the signal is chosen, to optimize compression. The significant 

frequencies of the blocks of PPG data are represented with DFT coefficients. To reduce 

the Gibbs oscillation effect at the ends of the segment, an overlapping data 

segmentation method is selected. The calculated DFT coefficients are subjected to 

adaptive quantization ensuring that most of the coefficient energy is retained. These 

coefficients are finally encoded utilizing optimum bit allotment scheme to enhance 

compression. 

Elimination of the redundant frequency components makes the scheme noise 

robust and hence minimal data preprocessing is sufficient. A header that comprises the 

details about the adaptive bandlimits, the quantization level and the number of bits 

needed for encoding the coefficients is generated for appropriate decompression. 

During decompression, the entire coefficient set is recreated by replacing zero in lieu 

of the insignificant coefficients and the data blocks are reconstructed using the 

coefficients. 

Paper [9] introduces a quality controlled, lossy PPG compression technique that 

is capable of keeping the global and local distortion of data within pre-specified limits 

using PCA approach to select the dominant principal components (PC) required for 

compression. The algorithm normalizes the whole data array to the magnitude from 0 

to 1. 

The algorithm first detects the foot and systolic peaks from the first derivative 

of the scaled dataset called the velocity photoplethysmogram which in turn is smoothed 
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using cubic spline interpolation technique. Then a beat matrix which is a multivariate 

time series data is generated. Eigen value decomposition is done on the covariance 

matrix of the beat matrix, after which the PC are selected in a recursive manner. The 

levels of quantization are adjusted till the reconstructed signals attain the desired 

quality. This is done using a convergence test algorithm with the minimum quantization 

level for PC as 7 bits. The PC and eigenvectors are quantized using a linear formula. 

The output of this test is a quantized PC array, quantization level for PCs, quantized 

eigenvectors array and extrema of the PC and eigenvectors. After this the quantized PC 

and eigenvectors are encoded in a specific format to form data packets. 

The eigenvectors and PC obtained here are compressed in the next stages. If the 

number of PC selected is greater than 2, the quantized eigen vector matrix is 

compressed using a differently formatted delta encoder, else they are contained directly 

in the packet along with the obtained extrema values. The method however obtained 

lower CR and PRDN with PPG applications corrupted with MA and Gaussian noise but 

managed to maintain an acceptable quality. This method preserves the fidelity in 

reconstruction and can be used to construct an embedded system that can act as 

standalone PPG monitoring application. 

Dhar, S., et al. in [37] proposes a lossless, high performing and reliable PPG 

signal compression and encryption method comprising of several steps. Initially, the 

signal noise is eliminated using a Butterworth low-pass filter of order 9 with a 25 Hz 

cut off frequency and then down-sampling is done to eliminate all the high frequency 

noise. The signal is amplified after truncation to second decimal places and computing 

the second difference. The algorithm operates on a block of 8 samples each and sign 
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byte is generated for each block. To enable efficient compression, the amplified integers 

are categorized into different groups using various grouping techniques. The grouped 

integers are encrypted to cipher text using a symmetric key. The reduced dataset is 

encoded and stored in the form of American Standard Code for Information Interchange 

(ASCII) characters in the output file. The reverse algorithm is used to regenerate the 

PPG signal. The technique is highly efficient and robust and do not depend on complex 

mathematical transforms. An attractive CR and low PRD indicates the compression 

efficacy, and the encryption ensures better data security. The algorithm has a limitation 

that if the amplitude-range is greater than a threshold, say 15 mV, it cannot process the 

PPG signals in a proper manner. 

A PPG compression and tele-monitoring technique  based on  ASCII character 

encoding- was put forth by Mukhopadhyay et al. in [42] whose CR is greater than that 

of the techniques described in [8, 21, 26, 40].But  the algorithm has the same amplitude-

range limitation as in [37] 

Mukhopadhyay et al presents a highly efficient quality guaranteed PPG signal 

compression technique called StePPGcomp, based on single value decomposition 

(SVD) and lossless ASCII character coding in [38]. It can be used to reduce 

steganographed PPG signals as well, that contains patient information also. The PPG 

signal is preprocessed by denoising it through a zero phase, fourth order Butterworth 

bandpass filter with cutoff frequencies in the range 0.05 Hz and 25 Hz. The signal is 

amplitude normalized to maintain it in the range from -1 to 1 and then downsampled so 

that the sampling frequency does not fall below 100Hz. The systolic peaks are detected 
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to calculate the HR. The beat lengths are extracted and normalized using FFT based 

interpolation technique. The signal is then subjected to SVD to get the left singular 

matrix(U), singular value matrix (S) and right singular matrix(V). The singular values 

in the S matrix is arranged in decreasing order and most of the signal information is 

contained in the first few rows of the matrix. 

Depending on the user defined value of signal distortion, the S matrix is 

truncated by selecting an optimum number of singular values. Truncation of singular 

values leads to reduction in the dimensions of the matrices U, S and V, which in turn 

aids data reduction and better compression. The ASCII values private data  of the 

patient is concatenated with the U matrix and the U matrix is subjected to a lossless 

compression, which uses a low complexity algorithm The algorithm uses various 

grouping techniques for data reduction and has high compression performance. The 

grouping techniques are completely reversible to enable proper separation of 

coefficients during signal reconstruction. The truncated V matrix undergoes a near 

lossless compression through quantization process and ASCII character encoding. 

Finally, a dynamic security key is generated using crucial information and transmitted 

along with the data. At the other end, the PPG signal is regenerated, and all crucial data 

is recovered using the reverse of StePPGcomp algorithm. The algorithm exhibits higher 

values of CR, QS and CC and lower values of PRD and RMSE. 

Paper  [12] introduces Compressive Sensing, which is a representative method 

beyond the Nyquist Shannon sampling Theorem. It makes use of the sparseness of the 

signal in a specific domain to substantially reduce the number of samples required to 

recreate the original signal. It can faithfully reconstruct the initial signal from a 
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compressed signal sampled at a rate lower than the Nyquist sampling rate. CS can only 

be applied to a sparse signal or when the signal can be transformed to a sparse signal. 

Trials reveal that the performance is insufficient when CS is applied to non-sparse bio 

signals [12]. 

Paper [43] put forth an approach where cardiac signal identification of an 

individual is performed using a compressed sensing method where in signals are 

reconstructed with very few measurements and performs sampling and data 

compression in a synchronous manner. The method is suitable for portable cardiac 

acquisition devices. In order to determine the sparse representation that is better in 

representing cardiac signals, a comparative experimental analysis was done on the 

effects of the cardiac signals reconstructed using DCT and KSVD when they are 

combined with a reconstruction procedure such as orthogonal matching pursuit (OMP) 

and a Gaussian measurement matrix. It is observed that the pulse compression and 

reconstruction algorithm formed by combining DCT and OMP led to serious distortions 

while the K-SVD and OMP compression and reconstruction algorithms displayed less 

distortion and hence was adopted for this approach. 

To ensure better stability in reconstruction and higher accuracy, a modification 

of OMP algorithm, known as stagewise weak orthogonal matching pursuit (SWOMP) 

was used along with a Gaussian measurement matrix to reconstruct the signals. Since 

the SWOMP algorithm has some defects and is unstable, an improved version of this 

algorithm called sparsity weak adaptive matching pursuit (SWAMP) which has 

relatively more stability and better accuracy is used. The filtered cardiac signals are 

further denoised using wavelet transform method based on coif3 function. After pre-
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processing the signals, feature vectors are extracted for identification, which is done 

using signal derivative method for the PPG signals. The extracted feature vectors 

undergo a normalization process and then a recognition training is performed. Finally, 

these vectors are classified using a one-to-one Support Vector Machine (SVM) 

Classifier. Analysis results indicate that the rate of recognition is almost similar prior 

and after reconstruction, thus proving the efficacy of this technique. 

A Subject-Adaptive coMpression technique for biomedical quasi-periodic 

signals called SAM was proposed by Vadori et al in [35]. The method utilizes a subject-

adaptive dictionary, that is learned and updated at runtime using the time-adaptive self-

organizing map (TASOM) unsupervised learning neural networks. The technique also 

exploits vector quantization (VQ) and motif extraction techniques along with TASOM 

for real time learning. Quantitative results reveal that the technique can achieve a CR 

of up to 35 for PPG and hence considered much superior when compared most of the 

state-of-the-art techniques. 

In [28], an online dictionary (OD) based compression method that involves 

several functions such as passband filtering, peak detection, segment extraction, pattern 

matching and a codebook manager. The period of the extracted segments is normalized 

using linear interpolation. The PPG signal compression utilizing autoencoders (AE) is 

also explored in [28]. 

Table 1 presents a comparison of the existing works in PPG Compression. 

Abbreviations used in Table 1 

MR- Memory requirement; NS-Noise Sensitivity; CB-Computational Burden 
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Table 1. Comparison of existing works of PPG Compression 

Authors [Ref.] SF CR PRD PRDN MR NS CB 

R. Gupta et al [8] 125 2.223 0.127 0.187 H H H 

S. Mukhopadhyay et al [38] 125 30.27 0.22 0.33 M H H 

K.S. Chong et al [26] 1000 16 0.392 - L H L 

Reddy et al [21] 200 12 1.67 - M L H 

S. Alam et al [40] 125 3.84 5.82 7.57 H H H 

Alam, S., Gupta, R., and Bera, J 

[9] 

60 13.5 - - - H H 

Dhar et al [37] 500 122.24 0.02 0.03 M - H 

Sadhukhan, D, Pal, S. and, Mitra, 

M [41] 

125 35.95 3.88 6.21 L L L  

 

3.2 Analysis of Different Compression Techniques 

The lossless, low complexity compression process based on Huffman coding of 

second order delta proposed in  [8] is suited for short range, real-time applications. It 

exhibits poor performance, and the CR is low. The delta modulation technique detailed 

in [26] to compress PPG signal is advantageous only if the sampling rate of the signal 

is high. The method offers good CR and a low PRMSE and is appropriate for low data 

rate and low power wireless protocol. Improper step size selection will change the 

signal characteristic. Adaptive Delta Modulation (ADM) can solve this issue by varying 

the step size continuously to adapt to the changes in signal variations. In [11], suitable 

step size selection enabled the reconstruction incorporating the real time changes of the 

PPG signal as well as by retaining the signal morphology. The paper [44] details the 

effect of the step size in DM technique on the PPG signal under different scenarios: 

with MA and without MA. Although both methods have similar CR values, there is a 

difference in the quality of reconstructed signals. As the step size becomes smaller, the 
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percentage RMSE increased due to the slope overloading effect. The CSFA data 

compression method in [21] attenuates MA from the noise corrupted PPG signals. The 

method can faithfully regenerate the PPG Signal with its main clinical features using 

the initial seven significant Fourier coefficients. The method reduced the computational 

error of oxygen level in blood (SpO2) from 37% to 2%. The compression performance 

is low owing to the error in identifying the pulse periods. 

In [37], a reliable, high performing PPG compression and encryption technique 

that utilizes the grouping techniques is presented. The method provides a high CR of 

122.24 and a PRD of 0.02%, which is superior to most of the other techniques. The 

algorithm is easier to implement on real time systems, has a low computational burden 

and further, encryption is done to increase the data security. 

StePPGcomp algorithm proposed in [38] can also be used for steganographed 

PPG signals that contains patient’s personal data. The highlight of the algorithm is that 

it can precisely control the clinical quality of the regenerated signal and it has a superior 

CR when compared to other algorithms. The reconstruction error is independent on the 

steganographic process and on the size of the patient’s personal information. Also, the 

restored patient’s data shows no error. The method in [28] proved very effective, 

exhibiting excellent approximation capabilities, high compression performance and 

low computation burden. 

The different techniques were analyzed to assess the compression performance, 

the reconstruction fidelity and clinical importance of the reconstructed signal. The 

computational burden, memory requirement and noise sensitivity of these techniques 
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were also examined. When power consumption of the device is a concern, the 

compression technique with low computational burden will be the better option. When 

effective memory utilization is prime need, the compression method with higher CR 

will be the best option [15]. Most of these compression techniques mainly aim to 

maximize the compression ratio and a few techniques attained good CR. Very few 

methods talk about the clinical acceptability of the regenerated signals, even though it 

is mentioned that the error is low. Majority of the techniques had no control over the 

required quality of the regenerated data. More works need to be done in future for 

introducing quality control in PPG compression algorithms. 

3.3 Basis of the proposed Compression Techniques 

The lossy SVD-LAC compression technique proposed in the thesis will be a 

variation of the compression method proposed in [38].The lossless compression 

technique based on iterative extensive grouping introduced by this thesis will be an 

enhancement on the Grouping methods employed in the compression methods used in 

[37] . 
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CHAPTER 4: IMPLEMENTATION OF THE PROPOSED SVD_LAC TECHNIQUE 

4.1 Singular Value Decomposition and Lossless ASCII character encoding-

based Compression  

The proposed lossy compression technique is based on a combination of 

Singular Value Decomposition and lossless ASCII character encoding-based quality 

guaranteed PPG compression (SVD-LAC). The lossless compression is done using 

some grouping techniques. 

The algorithm of SVD-LAC technique consists of six steps. 

1. Preprocessing 

2. Singular Value Decomposition of the preprocessed signal 

3. Truncation of Singular Values 

4. Estimating the optimal number of Singular Values  

5. Lossless Compression of the truncated Left Singular Matrix  

6. Near Lossless Compression of the truncated Right Singular Matrix  

Figure 11 demonstrates the schematic of the proposed SVD-LAC technique. 
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Figure 11. Schematic of the proposed SVD-LAC algorithm 

4.1.1 Preprocessing 

The preprocessing involves filtering, down-sampling, finding first difference 

and identifying systolic peaks. The bandwidth of the PPG signal that contains useful 

clinical information ranges from 0.05Hz to 25 Hz. The filtering of the PPG signal is 

done using a fourth order Butterworth band pass filter having lower cut off frequency 

of 0.05Hz and   higher cut off frequency of 25Hz.   Hence, sampling frequency (SF) of 

the signal should be greater than 50 Hz. Figure 12 shows the original PPG signal, the 

signal after filtering and the signal after finding the first difference.  



  

   

50 

 

 

Figure 12. Original PPG signal, the filtered signal and the signal after first difference 

If the SF is very high, say, 500 Hz, then it should be down-sampled so that the 

SF should not come below 100 Hz. Down-sampling process involves the following 

steps. Let DF denote the down-sampling factor. 

1. DF= (SF of the original PPG Signal)/100 

2. if DF<2, down-sampling factor =1 

3. else   down-sampling factor=DF 

4. Down-sample the PPG signal by DF. 

Now for enhancing the high slope regions, the first difference of the down-

sampled signal is calculated. The highest amplitude can be obtained after the first 

difference computation. The samples that have an amplitude within 30% of the highest 

amplitude are identified and their indices are marked. The identified samples indicate 

the rising edges of the PPG beat. The slope reversal events in the time domain of the 

signal which follow the identified marked samples are detected as systolic peaks. The 
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HR is computed by dividing the number of detected systolic peaks by duration. The 

beat locations are identified. The heart rate can be computed from the number of 

identified systolic peaks. Then the peak to peak interval is split into two halves and the 

PPG beat is separated. Because of the high quasi-periodic nature of the PPG signals, 

the PPG beat lengths might not be the same and therefore the number of samples per 

PPG beat also might not be equal. Hence, the beat length needs to be normalized. 

The normalized beat length, Ns is obtained using the calculation. 

Ns =  
60xSF

HR
                   (4.1) 

Let ‘B’ be the number of PPG beats. All the PPG beats are length normalized 

and they are positioned to form a beat matrix of dimension, Ns x B. 

 4.1.2 Singular Value Decomposition   

The SVD is a most popular and broadly applied matrix factorization technique 

that factorizes a matrix into the product of three other matrices: an orthogonal matrix, 

a diagonal matrix and the transpose of an orthogonal matrix [45] [46]. A non-zero, real, 

rectangular matrix P of dimension, Ns x B can be decomposed into three other matrices 

of the form, 

  P Ns x B = U Ns x Ns S Ns x B VT
BxB.               (4.2) 

Here, U and V are orthogonal matrices and S is a diagonal matrix. The SVD of 

a matrix P comprises of computing the eigen values of PP T and P TP. The eigen vectors 

of PPT and PTP are the columns of the left singular matrix, UNs x Ns = =[u1,u2,…..u Ns]    

and  right singular matrix, V BxB=[v1,v2,…..v B] correspondingly. The singular values 

(µ) are the square roots of the eigen values from either PP T or P TP. The ‘µ’ values are 
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real and positive and are placed in descending order. Mathematically, the total 

information-energy of PNs x B may be written as  

χ =∑ µ𝑖
2𝐵

𝑖=1   where  µ1
2 ≥  µ2

2 ≥  σ𝐵
2 ≥ 0              (4.3)  

Since µ is placed in descending order, the term, uiµivi with smaller ‘i’ values 

contains majority of the information. The data size can be reduced by truncating the μ 

values to an optimal number of coefficients, thus the compression performance can be 

increased. The percentage of information-energy preserved in the truncated singular 

values can be represented as  

  χTE= 
∑ µ𝑖

2𝑌
𝑖=1

χ
 .100%               (4.4) 

4.1.3 Truncation of Singular Values 

The compression performance is based on the singular value truncation factor, 

𝛾. The lower the 𝛾 value, the higher the compression performance, and vice-versa. 

Depending on a user defined threshold value of the signal distortion measure, called 

UDPRD (User Defined Percentage Root mean square Difference), an optimum number 

of singular values (𝛾𝑜𝑝𝑡) are chosen. The size of S matrix decreases from Ns x B to 𝛾𝑜𝑝𝑡 

x 𝛾𝑜𝑝𝑡. Subsequently, the dimensions of the Ū matrix reduces from Ns × Ns to Ns × 𝛾𝑜𝑝𝑡 

and 𝑉 matrix reduces from 𝐵×𝐵 to 𝐵× 𝛾𝑜𝑝𝑡. 

4.1.4 Estimation of an optimal number of singular values  

When a PPG signal is compressed and regenerated, there will be small data loss, 

mainly due to three reasons. 

 Down-sampling 

 Normalization of beat-length 
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 Truncation of singular values.  

The overall loss of data due to the operations can be assessed beforehand, which 

enables to precisely control the quality of the regenerated PPG signal. For measuring 

distortion, PRD is used as the standard metric for controlling the quality of the 

regenerated signal. To meet the predefined Quality measure, a user-defined threshold 

value, 𝑈𝐷𝑃𝑅𝐷 is fixed. The optimal number of singular values, 𝛾𝑜𝑝𝑡 to meet the 

UDPRD needs to be estimated. The algorithm to estimate the value of 𝛾𝑜𝑝𝑡 based on 

𝑈𝐷𝑃𝑅𝐷, is as follows: 

Step 1: Set 𝛾=1 

Step 2: Reconstruct the signal using the truncated 𝑈𝑁𝑠×𝛾, 𝑆𝛾×𝛾 and 𝑉𝐵×𝛾𝑇
    

Reconstructed signal, 𝑅Ns x B =𝑈𝑁𝑠×𝛾 𝑆𝛾×𝛾 𝑉𝑇𝐵×𝛾                         (4.5) 

Step 3: One dimensional (1D) PPG signal is approximately recreated from 𝑅𝑁𝑠×𝐵 

by restoring the length of each PPG-beat., In case, if the PPG signal was down 

sampled in the preprocessing stage before compression, up-sampling operation 

must be performed.  

Step 4: Computation of 𝑃𝑅𝐷. 

If the computed 𝑃𝑅𝐷>𝑈𝐷𝑃𝑅𝐷  

𝛾=𝛾+1   

Step 5: 𝑔𝑜𝑡𝑜 𝑆𝑡𝑒𝑝 2 

𝑒𝑙𝑠𝑒  

𝛾𝑜𝑝𝑡. = 𝛾  

𝑃𝑅𝐷𝑒 =𝑃𝑅𝐷 (𝑃𝑅𝐷𝑒 is the estimated 𝑃𝑅𝐷 upon regeneration) 
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𝑒𝑛𝑑  

 4.1.5 Lossless Compression of the truncated Left Singular Matrix using 

Grouping Techniques 

LAC is used to compress the truncated Left Singular Matrix (Ū matrix) 

coefficients. LAC is a low-complexity compression algorithm that compacts the signal 

in a lossless manner with a high compression performance. The process runs on a set 

of 8 coefficients at a time. The algorithm starts with the computation of the first 

difference of the Ū matrix coefficients. The first 8 consecutive coefficients are taken 

together. Then, it computes the sign bit of each of the 8-coefficients by marking a binary 

0 and 1 for the positive and negative coefficients, respectively. The 8 binary bits is 

converted into its decimal equivalent and thus the sign-byte, sb[] for the first 8 samples 

is generated.  All the 8-coefficients are made positive post sign-byte generation. Then, 

the neighboring coefficients are combined by employing different grouping techniques 

for reducing the size of the data. The grouping is a fully reversible technique and 

therefore the grouped coefficients can be fully retrieved during data reconstruction. The 

grouping techniques are described in 4.1.5.1. 

4.1.5.1 Grouping Techniques 

Grouping is an efficient technique to decrease the size of the PPG data file.  

Technique I: If all the 8 samples are the same, then only a single integer needs 

to be sent. 

Technique II: If Technique 1 is not applicable, i.e. if all the 8-coefficients are 

not identical, then two neighbor coefficients are taken and examined whether both the 
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coefficients are less than 10 or not. If two neighbor coefficients are ≤ 10, then the first 

one is multiplied by 10 and added with its next. Thus, a single integer is obtained by 

grouping the two neighbor coefficients.     

Technique III: While grouping, if all the coefficients in a set belong to Grouping 

Technique II and if each of those grouped integers are ≤15, then once again they are 

grouped in their binary domain. Each regrouped integer is transformed into 

corresponding 4-bit binary (4bits =1 nibble). An 8-bit string is formed by concatenating 

two such neighbor nibbles and converted into its decimal equivalent. Thus, from 8-

coefficients, using Technique III, the data is reduced to 2 integers.   

Figure 13 illustrates an example of Technique II and Technique III.  

 

Coefficients  1 4 1 1 1 2 0 9 

Technique II  14 11 12 9 

4-bit binary 

T
ec

h
n
iq

u
e 

II
I 

1110 1011 1100 1001 

8-bit binary 11101011 11001001 

Decimal equivalent 235 201 

 

Figure 13. Illustration of Technique II and Technique III 

 

Technique IV: If both Technique I and Technique II are not valid for a pair of 

nearby coefficients, then those coefficients are sent unchanged along with an extra byte, 



  

   

56 

 

e[] that is used to indicate their index. Figure 14  illustrates Technique IV and the 

implication of the e[]. If the extra byte associated with a coefficient, e[]=0,  then it 

implies that the coefficient corresponding to this index has already been grouped. Else, 

if e[]=1, then it means that the coefficients are sent unaltered. After grouping of every 

8 coefficients of the Ū matrix, the length of the grouped integers is computed and stored 

in the length byte, say l[]. The compressed data is accompanied by the length byte, sign 

byte and extra-byte. 

 

Coefficients 1 6 4 5 15 7 12 89 

Reduced data 16 45 15 7 12 89 

Extra byte e[] 0 0 0 0 1 1 1 1 

Decimal equivalent of e[] 15 

 

Figure 14. Illustration of Technique IV 

The grouping technique is used repeatedly till the entire Ū matrix coefficients 

are compressed. Ultimately, the grouped, non-grouped and regrouped coefficients are 

transmitted along with their associated overheads such as length byte, sign-byte, and 

extra byte. The workflow of the lossless compression of Ū matrix using Grouping 

Techniques is shown in Figure 15. 
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Figure 15. Workflow of Lossless Compression of   Ū matrix using Grouping Technique 

4.1.6 Near-lossless compression of the truncated right-singular matrix 

coefficients 
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The coefficients of the truncated right singular matrix (𝑉𝐵×𝛾𝑜𝑝𝑡) are quantized 

using a uniform quantizer of 216 levels and the quantized values are encoded using 16-

bits. 

4.1.7 Formation of compressed data file 

Finally, the compressed data file encompasses the following  

 starting location of each of the PPG beats 

 Compressed truncated Ū matrix coefficients in the form of ASCII 

characters 

 Compressed 𝑉𝐵×𝛾𝑜𝑝𝑡 coefficients as ASCII characters 

 Optimally truncated singular values 

The file containing the above information is transmitted for enabling PPG signal 

reconstruction at the receiving end.   

4.2 PPG Signal Reconstruction 

The PPG signal is regenerated, utilizing the reverse process of the SVD-LAC 

algorithm. The reconstruction algorithm comprises of 3 steps: 

 Decoding the Ū matrix coefficients  

 Decoding the 𝑉𝐵×𝛾𝑜𝑝𝑡 matrix coefficients 

 Reconstructing the PPG signal. 

4.2.1 Decoding the Ū matrix coefficients    

      The lossless compression is a fully reversible technique and so, the Ū matrix 

coefficients can be decoded with no loss. The received data file contains the grouped 

and non-grouped integers along with the length byte, l[], sign byte, sb[] and extra byte, 
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e[]. Grouped and regrouped integers are segregated properly applying the reverse 

grouping techniques.  

From the received input stream, l[],  sb[] and e[] are extracted and the depending 

on the length in l[], corresponding bytes are taken as retrieved data, which is in the 

compressed form. Figure 16 shows the format of one set of the data retrieved from the 

compressed file. 

 

Length 

byte 

l[] 

Sign 

byte 

sb[] 

Extra 

byte 

e[] 

Compressed data based on different 

Grouping Technique 

 

1 byte 1 byte 1 byte Data length specified by l[]. l[] value 

depends on the Grouping Technique 

 

Figure 16. Data format of one set of retrieved data 

To decompress this data, reverse grouping techniques are employed. If there is 

only one integer in a set in the retrieved data, i.e., l [] =1 it implies that the data was 

grouped employing Technique1 and all the 8- integers are same, hence reconstruction 

is easy in this case. If a retrieved set contains two integers i.e., l [] =2, it indicates that 

the data belong to Grouping Technique III. Next, the two integers are converted to the 

8-bit binary equivalent form. Each 8-bit string is separated into two nibbles. The four 
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nibbles thus obtained are converted into their decimal equivalents. Then, applying the 

reverse algorithm of Grouping Technique II, these four integers are ungrouped into 

eight integers. 

If there are four integers, i.e., l [] =4, it indicates that grouping was done utilizing 

Technique II. Every integer is divided by 10. The quotient and the modulus constitute 

the two ungrouped integers. Thus, eight integers are got by ungrouping the four grouped 

integers. If there are more than 4 integers in a set, then they are ungrouped based on the 

value of e []. If the value of e [] =1, then the retrieved integers form the ungrouped data. 

If e [] =0, then depending on the length in l [], corresponding ungrouping methods are 

used to get back the eight integers.  The 8-integers are ungrouped using the reverse 

algorithm of Grouping Technique IV. The ungrouping can be illustrated with the 

following example in Figure 17. 

 

Decimal equivalent of e [] 15 

Binary equivalent of e [] 0 0 0 0 1 1 1 1 

Retrieved Grouped data 16 45 15 7 12 89 

Ungrouped data 1 6 4 5 15 7 12 89 

 

Figure 17. An example of Ungrouping data from retrieved compressed data 

The sign-byte of each set is reverted into its corresponding 8-bit binary 

equivalent using which the 8 reconstructed integers are changed to its signed form. If 
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any sign bit is found to be 1 in the binary bit stream, the ungrouped integer in the 

corresponding position is made negative. 

Figure 18 shows the Original Ū matrix coefficients obtained after SVD decomposition, 

Decoded Ū matrix coefficients, using which signal is reconstructed and the error 

between them. The data is obtained while compressing and decompressing PPG signal 

of id no: s01182 of bidmc_data.mat. Details of the database is given in section 4.3.1. 

4.2.2 Decoding the 𝑉𝐵×𝛾𝑜𝑝𝑡 matrix coefficients 

The highest and lowest values of the 𝑉𝐵×𝛾𝑜𝑝𝑡 matrix coefficients are taken and 

using these two values, the V matrix coefficients are restored by decoding the 16-bit 

data words. Lastly, the 𝑉𝐵×𝛾𝑜𝑝𝑡 matrix is reconstructed by arranging the regenerated 

coefficients. 

4.2.3 Reconstructing the PPG signal      

The following equation is used to form the two-dimensional (2D) PPG beat-

matrix 

𝑃𝑎𝑝𝑝𝑟𝑜𝑥=𝑈𝑁𝑠×𝛾𝑜𝑝𝑡 x 𝑆𝛾𝑜𝑝𝑡×𝛾𝑜𝑝𝑡 x𝑉𝐵×𝛾𝑜𝑝𝑡.                                                                      (4.6) 

Every column of the PPG beat-matrix, 𝑃𝑎𝑝𝑝𝑟𝑜𝑥 comprises a length-normalized 

PPG-beat. The real lengths of all the PPG beats are obtained from the received data file,  
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 Figure 18. Original Ū matrix coefficients, Decoded Ū matrix coefficients and the 

error between them 

 

Then, the length-normalized PPG-beats are reinstated to their original lengths 

by resampling. 
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The 1D PPG signal is recreated by the concatenation of all the length- reinstated 

PPG-beats. In case, if down-sampling was done before compression, then the 1D PPG 

signal is up sampled applying the linear interpolation method to return it to its initial 

sampling rate.  

4.2.3.1 Calculation of Compression ratio. 

In this study, the CR is computed in 2 different ways, namely CR and File CR. 

Let ‘d’ denote the duration of the PPG signal in minutes, ‘Nb’ be the number of beats 

in the signal, ‘n’ the number of optimum singular values, ‘Un’, the number of elements 

in truncated U matrix and ‘Vn’ ,the number of elements in the truncated V matrix .Let 

CR be the bit-level compression ratio taking resolution of the signal into account. The 

dataset A has a resolution of 16 bits. As the truncated U matrix coefficients have only 

8-bit resolution, CR is calculated as 

CR=
16∗60xdurationxSF

(24∗n)+(16∗Nb)+(8∗Un)+(16∗Vn)
               (4.7) 

The file CR is calculated as the ratio of the size of the original PPG file to the 

size of the compressed output file. 

File CR = 
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐹𝑖𝑙𝑒𝑠𝑖𝑧𝑒
                                    (4.8) 

4.3 Datasets used for simulating the SVD-LAC Algorithm  

Two datasets are used for testing the SVD-LAC algorithm. 

4.3.1 Dataset 1 

The dataset used for testing the Compression and Reconstruction algorithm was 

taken from the publicly physionet database available in 

https://physionet.org/content/bidmc/1.0.0/bidmc_data.mat. [47-49] . Figure 19  shows 
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the physionet database link. 

 

 

Figure 19. Physionet Database link 

This dataset consists of signals and numeric obtained from the bigger MIMIC 

II matched waveform Database. The dataset consists of 53 PPG recordings, each of 8-

minute duration, sampled at 125 Hz.  

Figure 20 shows the Physionet Database downloads of the file, bidmc_data.mat 

of size 29110 KB. 20 recordings from this dataset is taken to form the Database ’A’ in 

this study. 
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Figure 20. Physionet Database download link of the file, bidmc_data.mat 

4.3.2 Dataset 2  

Another dataset was also used for testing the different compression techniques. 

It was also taken from the publicly available database, Capnobase. available in the link 

https://www.capnobase.org/index.php?id=857. [50, 51]. 

The TDBME2013-PPGRR-BENCHMARK_R3.zip was downloaded from the 

link shown in Figure 21. The data is the Benchmark data for RR estimation from the 

Photoplethysmogram used in [51] .The data set contains raw PPG signals of 42 cases 

each of 8 minutes duration, sampled at 300 Hz. 20 recordings from this dataset were 

used to form the Database ’B’ in this work. 
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Figure 21. Capnobase Database download link  

 

4.4 Implementation Environment 

The PPG signal compression and reconstruction procedure were implemented 

on MATLAB(R2018a) platform in a laptop computer with 64-bit Windows 10 

Operating system, Intel (R) Core™ i7-8550U CPU @ 1.80 GHz, 16.0 GB RAM. Table 

2 details the implementation environment. 

 

Table 2. Implementation Environment 

Property Type 

Processor  Intel(R) Core™ i7-8550U CPU  

RAM  16 GB  

Operating System Windows 10 

Platform MATLAB(R2018a) 

System Type 64-bit 
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The algorithm is coded in MATLAB. The compression and decompression 

algorithm were tested using Database and Database B. 20 PPG Signals from Database 

A, each sampled at 125 Hz for a duration of 8 minutes and consisting of 60000 samples 

i.e. (125x8x60). were used for testing. The algorithms were also tested for 20 PPG 

signals from Database B, each sampled at 300 Hz for a duration of 8 minutes and 

comprising of 144000 samples. 

 

4.5 Results and Discussion 

 

Figure 22 depicts the original signal, the reconstructed signal and the error of a 

PPG Signal, Id: s01795, third recording of bidmc_data.mat. 

 

 

Figure 22. Original signal, the reconstructed signal, and the error  
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 According to the globally considered standard [52], the quality of the 

reconstructed biosignal is considered to be ‘very good’ if the PRD values lie in within 

the ranges 0 to 2% and  ‘good’ if it is within the range 2% to 9%. 

  

Abbreviations used in Table 3 

Id-Corresponding file Id in the database. 

PRDr -Actual PRD value upon PPG signal reconstruction 

PRDe -Estimated PRD based on a user defined quality measure (UDPRD)  

Table 3 and Table 4 shows the performance of the proposed SVD-LAC technique on 

Database A for UDPRD values of 9 and 8. The technique works for efficient signal 

reconstruction for UDPRD values of 9 and 8. The  reconstructed signal quality degrades 

for UDPRD value, 7. 
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Table 5 depicts the performance for UDPRD=7.For lower values of UDPRD, the 

performance is not consistent. 

Abbreviations used in Table 3 

Id-Corresponding file Id in the database. 

PRDr -Actual PRD value upon PPG signal reconstruction 

PRDe -Estimated PRD based on a user defined quality measure (UDPRD)  

Table 3. Performance of the SVD-LAC technique on Database ‘A’ for UDPRD=9% 

Id OSV File CR CR PRDr PRDe   CC RMSE QS 

s01182  6 39.72 11.36 8.73 8.72 0.9962 0.011 1.24 

s01241  6 38.87 11.11 8.19 8.14 0.9966 0.017 1.29 

s01795  4 65.31 18.68 8.74 8.54 0.9962 0.017 2.02 

s03386  2 102.39 29.30 8.53 8.46 0.9964 0.019 3.30 

s03386  2 93.09 26.64 7.73 7.61 0.9970 0.018 3.32 

s03386  2 84.54 24.19 8.37 8.26 0.9965 0.021 2.80 

s03386  3 80.74 23.10 7.65 7.48 0.9971 0.016 2.87 

s08452  4 46.71 13.36 7.69 7.70 0.9971 0.018 1.69 

s08936  6 43.64 12.48 8.40 8.40 0.9965 0.021 1.40 

s09483  4 55.23 15.80 8.20 8.20 0.9966 0.013 1.85 

s11342  7 37.98 10.86 8.71 8.66 0.9962 0.011 1.17 

s17497  5 47.44 13.56 8.92 8.67 0.9960 0.019 1.45 

s17735  7 37.37 10.68 8.52 8.43 0.9964 0.013 1.18 

s22348  3 83.63 23.93 9.25 8.88 0.9957 0.023 2.46 

s24455  5 46.02 13.16 9.08 9.00 0.9959 0.026 1.38 

s25323  6 46.57 13.32 8.40 8.32 0.9965 0.022 1.48 

s29093  2 100.29 28.70 8.45 8.39 0.9964 0.021 3.27 

s29125  5 45.73 13.07 8.41 8.22 0.9965 0.018 1.49 

s29622  7 48.08 13.75 8.74 8.71 0.9962 0.023 1.44 

s31400  3 69.87 19.99 7.32 7.18 0.9973 0.018 2.63 
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Table 4. Performance of the SVD-LAC technique on Database ‘A’ for UDPRD=8% 

Id OSV File CR CR PRDr PRDe CC RMSE QS 

s01182  8 30.81 8.81 7.80 7.81 0.9970 0.010 1.07 

s01241  7 33.97 9.71 7.44 7.37 0.9972 0.016 1.24 

s01795  5 54.21 15.50 8.00 7.98 0.9968 0.016 1.83 

s03386  3 76.32 21.83 6.93 6.87 0.9976 0.016 3.01 

s03386  2 93.09 26.64 7.73 7.61 0.9970 0.018 3.32 

s03386  3 63.20 18.08 6.51 6.43 0.9979 0.016 2.68 

s03386  3 80.74 23.10 7.65 7.48 0.9971 0.016 2.87 

s08452  4 46.71 13.36 7.69 7.70 0.9971 0.018 1.69 

s08936  7 38.11 10.90 7.22 7.20 0.9974 0.018 1.42 

s09483  5 45.90 13.12 7.27 7.27 0.9974 0.011 1.73 

s11342  9 30.29 8.66 7.91 7.91 0.9969 0.010 1.03 

s17497  7 35.45 10.13 7.53 7.52 0.9972 0.016 1.27 

s17735  8 33.20 9.49 7.93 7.92 0.9969 0.012 1.13 

s22348  4 66.40 18.99 7.97 7.96 0.9968 0.020 2.25 

s24455  7 34.42 9.84 6.85 6.67 0.9977 0.019 1.37 

s25323  7 40.69 11.63 7.84 7.84 0.9969 0.021 1.38 

s29093  3 74.77 21.39 6.57 6.42 0.9978 0.016 3.12 

s29125  6 39.11 11.18 7.44 7.31 0.9972 0.016 1.44 

s29622  10 34.78 9.94 7.97 7.96 0.9968 0.021 1.14 

s31400  3 69.87 19.99 7.32 7.18 0.9973 0.018 2.63 
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Table 5. Performance of the SVD-LAC technique for UDPRD=7% 

Id OSV File CR CR PRDr PRDe   CC RMSE QS 

s01182  14 18.42 5.26 6.91 6.90 0.9976 0.009 0.72 

s01241  8 30.17 8.62 6.70 6.67 0.9978 0.014 1.22 

s01795  14 21.43 6.13 7.00 7.00 0.9976 0.014 0.82 

s03386  3 76.32 21.83 6.93 6.87 0.9976 0.016 3.01 

s03386  3 69.55 19.89 6.22 6.19 0.9981 0.014 3.08 

s03386  3 63.20 18.08 6.51 6.43 0.9979 0.016 2.68 

s03386  5 53.41 15.27 6.84 6.84 0.9977 0.015 2.11 

s08452  5 38.84 11.10 6.76 6.59 0.9977 0.016 1.59 

s08936  8 33.85 9.68 6.58 6.51 0.9978 0.016 1.38 

s09483  6 39.28 11.23 6.62 6.52 0.9978 0.010 1.62 

s11342 15 18.85 5.39 6.94 6.94 0.9976 0.009 0.73 

s17497  9 28.30 8.09 6.99 6.99 0.9976 0.015 1.09 

s17735  14 19.83 5.67 6.98 6.98 0.9976 0.011 0.76 

s22348  6 47.15 13.48 6.55 6.49 0.9979 0.016 1.93 

s24455  7 34.42 9.84 6.85 6.67 0.9977 0.019 1.37 

s25323  15 20.20 5.77 7.00 7.00 0.9976 0.018 0.77 

s29093  3 74.77 21.39 6.57 6.42 0.9978 0.016 3.12 

s29125  7 34.17 9.77 6.80 6.80 0.9977 0.015 1.37 

s29622  120 3.12 0.89 7.57 7.57 0.9971 0.020 0.11 

s31400  4 55.70 15.93 6.71 6.66 0.9978 0.016 2.28 

 

 

 From the above 3 tables, it is clear that, as UDPRD is reduced the CR decreases, 

but there is an increase in cross correlation and a reduction in reconstruction error.  

Table 6 shows the performance of the proposed technique on the second database 

Database B for UDPRD values of 9. 

 

Table 6. Performance of the SVD-LAC method on Database B for UDPRD values of 9 

Id OSV File CR CR PRDr PRDe CC RMSE QS 

0029  4 185.30 48.28 11.17 8.32 0.9938 0.046 4.08 
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Id OSV File CR CR PRDr PRDe CC RMSE QS 

0031  4 182.89 48.38 10.11 8.24 0.9949 0.033 4.51 

0035  3 156.97 41.65 11.70 6.50 0.9931 0.058 3.46 

0103  3 157.42 42.01 13.08 7.35 0.9914 0.055 3.13 

0104  2 196.56 51.28 12.81 8.93 0.9918 0.060 3.91 

0122  2 299.25 77.75 11.50 8.49 0.9934 0.049 6.47 

0125  3 211.91 54.82 12.29 7.90 0.9924 0.046 4.27 

0128  5 160.44 41.47 11.72 8.39 0.9931 0.040 3.33 

0133  4 184.31 47.63 10.96 8.13 0.9940 0.041 4.13 

0134  3 228.20 59.02 10.47 7.93 0.9945 0.043 5.36 

0148  3 209.08 54.20 10.93 8.01 0.9940 0.046 4.72 

0311  2 310.32 81.77 10.51 8.57 0.9945 0.051 7.38 

0312  7 142.61 37.56 9.97 8.60 0.9951 0.018 3.41 

0313  3 117.19 31.17 13.73 6.72 0.9905 0.056 2.24 

0322  2 294.24 77.29 10.73 8.62 0.9942 0.048 6.86 

0325  1 450.13 118.81 18.49 8.85 0.9830 0.078 6.21 

0329  3 188.06 49.43 11.16 8.01 0.9938 0.048 4.27 

0330  1 440.60 116.04 20.08 8.12 0.9799 0.100 5.60 

0331  4 192.93 50.27 10.27 7.71 0.9948 0.035 4.62 

0332  2 296.46 77.86 11.10 8.37 0.9939 0.049 6.73 

 

 The Database A is having a mean CR of 17.35 and PRD of 8.40 whereas 

database B has achieved a mean CR of 60.33 and PRD of 12.14, for a UDPRD of 9.The 

SVD-LAC technique exhibits a very good CR with tolerable distortion.The 

performance comparison of SVD-LAC Technique with other existing techniques is 

shown in Table 7. 

 

Table 7. Performance comparison of SVD-LAC method with other existing techniques  

Algorithms SF(Hz) FileCR CR PRD (%) QS CC RMSE 

Gupta et al [8] 125  2.223 0.127 17.5 -  

Alam et al [40] 125  3.84 5.82 0.7 -  
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Algorithms SF(Hz) FileCR CR PRD (%) QS CC RMSE 

CFSA [21] 200  12 1.67 - -  

Delta 

modulation [26] 

1 K  16 0.000392 40816 -  

Dhar et al. [37] 500 122.24  0.02 7228.41 0.9988  

Mukhopadhyay 125 60.78 
 

2.34 24.21 0.9966 0.03 

et al. [38] 250 114.92  0.05 1159.58 0.9970 0.02  
500 471.02  1.94 100.92 0.9973 0.006 

Mukhopadhyay 125 28.77  2.34 24.21 0.9966 0.03 

et al. [42] 250 30.52  0.05 1159.58 0.9970 0.02 

 500 30.852  1.94 100.92 0.9973 0.006 

Proposed SVD- 125 60.66 17.35 8.40 1.99 0.9965 0.018 

LAC Technique 300 230.24 60.33 12.14 4.73 0.9923 0.050 
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CHAPTER 5: IMPLEMENTATION OF THE PROPOSED ITERATIVE 

EXTENSIVE GROUPING LOSSLESS COMPRESSION TECHNIQUE  

5.1 Lossless Compression based on Iterative Grouping Techniques 

The proposed compression technique is an efficient and reliable lossless 

technique based on iterative extensive grouping techniques. This technique is an 

enhancement on the grouping technique implemented in  [37] where five grouping 

techniques were used to group the PPG data samples and reduce the data. Although the 

method achieved good compression ratio, there was a limitation that it could process 

signals that are only within a specific amplitude range (less than 15mV). The proposed 

method overcomes that limitation.  

Figure 23 shows the schematic of the proposed Iterative Extensive Grouping 

based Lossless Compression (IEGLC)Technique. 

5.1.1 Processes involved in lossless compression 

The technique constitutes the following steps. 

 Filtering the signal 

 Down-sampling (if the sampling frequency is very high). 

 Second difference and amplification 

 Sign byte Generation 

 Grouping  

5.1.1.1 Filtering  

Most of the useful information in a PPG signal is contained in frequencies below 

15 Hz. Hence, to eliminate the high frequency noise and power line interferences, the 
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signal is filtered using a low pass order 9 Butterworth filter with a cutoff frequency of 

25 Hz. If the PPG signal obtained from the database is sampled at a very high frequency 

eg: 400Hz, then it must be downsampled to 100 Hz.  

5.1.1.2 Down-sampling 

Down-sampling reduces the data size and hence the computational time 

complexity. In 1978, W.C.Mueller first introduced  down-sampling in biomedical 

signal compression[53].  

 

 

Figure 23. Schematic of the proposed Iterative Extensive Grouping based 
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Lossless Compression Technique  

5.1.1.3 Second difference and amplification 

The down sampled PPG signals are truncated to 2 decimal places, which in turn 

boosts compression. After truncation, the second difference of these signals are 

computed (SDPPG) and are amplified by 100 to make them integers. The SDPPG 

samples are experimentally observed to be always less than 0.150mV  [37]. Figure 24 

shows the original signal, filtered signal and the signal after first difference and second 

difference. 

 

 

 

Figure 24. Original signal, filtered signal, signal after first difference and second 

difference 
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5.1.1.4 Sign byte Generation 

The algorithm works on 8 samples each. After amplification, the sign byte of 

the amplified integers is created in the same way as in SVD -LAC technique. After sign 

byte generation, all the integers are made positive and categorized into different groups. 

5.1.1.5 Grouping 

Grouping is the most significant procedure in compacting the PPG data. In the 

proposed method, extensive grouping techniques are applied in an iterative manner to 

reduce the number of integers required to reconstitute the signal. In [37], four different 

grouping types, Type I to Type V are applied to classify the data and compress it. The 

proposed method is based on extensive grouping that employs 8 different grouping 

types, Type 0 to Type 7 to categorize the 8-bit samples. 

 The new extensive grouping procedure can significantly reduce the data size of 

these samples than the method used in [37]. The reduced samples obtained after 

extensive grouping is subjected to further grouping using the same extensive grouping 

procedure. The extensive grouping technique is applied to the data samples in an 

iterative manner till the data size reaches a limit, further which no reduction is possible. 

On reaching this limit, the algorithm stops, and the output data then obtained will be 

the minimum possible reduced data. 

The algorithm of Iterative Extensive Grouping Technique is as follows: 

The grouping algorithm starts by fetching 8 integers at a time from the input array, for 

example, a[], as in  

13 24 10 8 15 12 5 11 
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Figure 25. 

  

 

 

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] 

13 24 10 8 15 12 5 11 

 

Figure 25. Input array 

 

Each of the eight integers are grouped using the Grouping Types defined below. 

Checking initially starts with Grouping Type 0. Checking continues through Group 0 

to Group7 until the integers are grouped and sent to the output array.  

5.1.1.5.1 Grouping Type 0 

If all the 8 integers are same, then the data can be represented by a single integer 

and it goes to the output array as shown in Figure 26.  

 

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] 

3 3 3 3 3 3 3 3 
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Figure 26. Grouping Type 0 

 

 

5.1.1.5.2 Grouping Type 1 

 If Type 0 is not valid, then Type1 is to be checked. It primarily checks if first 6 

elements are the same and the last 2 elements are the same. Next it verifies whether all 

elements are less than 16 or not. 

a) if all elements are less than 16, then the then first element is multiplied by 16 

and added with the last element. 

b) If not, the first and last elements are sent unchanged. 

5.1.1.5.3 Grouping Type 2 

If Type 1 is not valid, then Type 2 is to be checked. It primarily checks if first 2 

elements are same and the last 6 elements are same. Then it verifies whether all 

elements are less than 16 or not. 

a) if all elements are less than 16, then the then first element is multiplied by 

16 and added with the last element. 

b) If not, the first and last elements are sent unchanged. 

5.1.1.5.4 Grouping Type 3 

If Type 2 is also invalid, then type 3 checking is done. In type 3, the initial step 

b[1] 

3 
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is to check whether the first 4 integers are the same and the last 4 integers are the same. 

Case a: if all of them are below 16, then first integer is grouped with the last integer. 

i.e., the first integer is multiplied by 16 and added with the last integer to get a single 

integer output, as shown in  

Figure 27. 

 

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] 

5 5 5 5 7 7 7 7 

     

  

 

       

Figure 27. Grouping Type 1, Case a 

 

Case b: But in the same case, if the first four integers and the last four integers 

are greater than 16, then the first integer and the last integer is sent to the output 

array as shown in Figure 28 . 

 

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] 

25 25 25 25 17 17 17 17 

b[1] 

87 
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Figure 28.  Grouping Type 1,Case b 

 

 

5.1.1.5.5 Grouping Type 4 

  Type 4 checking is done if Type 3 is also invalid. In Type 4, out of the 8 integers, 

it is checked whether the first 4 integers are the same, the next 2 integers are the same, 

the last 2 integers are the same. Once this condition is satisfied, the algorithm goes for 

the second level checking and further grouping is based on that. 

a) If all the integers or the first six integers are below 16, then the first one is 

multiplied by 16 and the fifth integer is added to it. The last integer is sent 

unchanged. 

b) If the first four integers and last two integers are below 16, then first one is 

multiplied by 16 an added with the last integer. The fifth integer is sent 

unchanged. 

c) If last four integers are below 16, then the fifth one is multiplied by 16 and 

added to the last integer. The first integer is sent unchanged. 

d) If none of the above, the first, fifth and last integer is sent unaltered. 

5.1.1.5.6 Grouping Type 5 

b[1] b[2] 

25 17 
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  The algorithm does the Type 5 check if Type 4 cannot be applied.  In Type 5, 

the primary check of the 8 integers is done at first. i.e. if first 2 integers are the same, 

the next 2 integers are same and the last 4 integers are same. Then comes the second 

level checking that evaluates and groups the integers in the following manner. 

a) if all the integers or the last six integers are below 16, the third integer is 

grouped with the last one, whereas the first one is sent unaltered. 

b) If first two and last four integers are below 16, then first integer is multiplied 

by 16 an added to the last one. The third integer is sent unchanged. 

c) If the first four integers are below 16, then the first integer is grouped with 

the third. The last integer is sent unchanged. 

d) If none of the above, the first, third and last integer is sent unaltered. 

5.1.1.5.7 Grouping Type 6 

If Type 5 also fails, the algorithm proceeds to check for Type 6. The type 6 

primary check is that if first 2 integers are same, the next 4 integers are same, and the 

last two integers are same  

a) if all the integers or the first six integers are below 16, then the first integer 

is grouped with the third integer. The last integer is sent unchanged. 

b) if last four integers are less than 16, then the third integer is grouped with 

the last integer. The first integer is sent unchanged. 

c) if first two integers and last two integers are less than 16, then first integer 

is grouped with the last integer. The third integer is sent unchanged. 

d) if none of the above, the first, third and last integer is sent unaltered 

5.1.1.5.8 Grouping Type 7 
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Two categories come under Type 7. 

a) If the integer set taken does not fall in any of the group types, Type 0 to 

Type 6. 

b) If the length of the last set of integers is less than 8, then those coefficients 

also come under Type 7. In that case , the last set of integers are sent 

unchanged. 

The grouping is then done in the following way. 

If the first pair of integers is below 16, then first integer is grouped with its next. 

If not, the two integers are sent unchanged. Similar check is done for the second, third 

and fourth pair and they are grouped in the same manner. 

Thus, all the integers in the input array are fetched and grouped to form the 

output array. The output array is further reduced by reapplying the same grouping 

Techniques. The newly formed output array is subjected to iterative looping for further 

compression until a point is reached where further compression is impossible. The 

reduced output thus obtained forms the final compressed data.   

During compression, the sign byte and a type byte is also generated and sent 

along with the output array for enabling easy ungrouping. The number of iterations 

involved during compression is also sent. 

The first 4 bits (MSB) of the Type byte are the extra bits that carry information 

whether the 4 pairs of data fetched at a time are less than 16 or not. Each bit corresponds 

to a pair. The last four bits (LSB) of the type byte denote the Grouping type of the 

fetched integers. Example of a type byte is shown in Figure 29. 
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t[1] t[2] t[3] t[4] t[5] t[6] t[7] t[8] 

1 1 0 0 0 1 0 0 

 

Figure 29. Example of a Type byte 

 

In this example, the 4 extra bits in the type byte indicates that the first two pairs 

of integers are greater than 16 and the last 2 pairs of integers are less than 16. The last 

4 bits denotes that the set belong to Type 4 Grouping. The type byte is converted to 

decimal and sent along with the compressed data. 

Finally, the compressed data file comprises of the compressed integers, the sign 

byte, the type byte, and the number of iterations as shown in Figure 30. 

 

 

Figure 30. Data format of the compressed data after performing IEGLC 

 

5.1.2 PPG Reconstruction. 

The reconstruction process involves the following steps. 

 Ungrouping. 
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 Sign byte regeneration 

 Interpolation 

5.1.2.1 Ungrouping 

From the received output array, the number of iterations required for 

ungrouping is first extracted. Then the exact reverse operations are performed on the 

grouped data to get back the original integers. The last 4 bits of type byte is used to 

identify the grouping type and then the data is segregated into different groups. 

Depending on the retrieved group type, the reverse grouping process is applied to 

ungroup and get back the original integers. 

5.1.2.2 Sign byte regeneration 

After the final iteration of ungrouping, the 8-bit binary equivalent of the sign 

byte is retrieved to revert the ungrouped integers to its signed form. 

5.1.2.3 Signal regeneration  

The ungrouped signed integers are then de-amplified by dividing the integers 

with the amplification factor to get back the SDPPG signals. The second difference data 

is manipulated to get back the original PPG samples. 

5.1.2.4 Interpolation 

In case of down-sampled signals, the original signals are regenerated by linear 

interpolation. 

5.2 Results and Discussion 

 

The algorithm was able to reconstruct the signal with very low PRD, very high 

correlation, and a good CR and a very good file CR. The performance of the proposed 
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IEG LC technique while compressing PPG signals in Database ‘A’ is shown in Table 8 

and Database ‘B’ is shown in  

Table 9. 

Abbreviations used in Table 8 and Table 9 

Id-Corresponding file Id in the database. 

 

Table 8. Performance metrices of IEG- LC technique for Database ‘A’ 

Id File CR CR PRD CC QS 

s01182  12.63 3.16 0.615 0.9990 5.14 

s01241  11.21 2.80 0.586 0.9998 4.78 

s01795  11.36 2.84 0.637 0.9998 4.46 

s03386  11.50 2.87 0.649 0.9998 4.43 

s03386  11.25 2.81 0.581 0.9998 4.84 

s03386  11.25 2.81 0.587 0.9998 4.80 

s03386  11.22 2.81 0.595 0.9997 4.71 

s08452  11.96 2.99 0.564 0.9998 5.31 

s08936  11.35 2.84 0.612 0.9998 4.64 

s09483  11.29 2.82 0.645 0.9995 4.38 

s11342  12.11 3.03 0.588 0.9992 5.15 

s17497  11.10 2.78 0.647 0.9998 4.29 

s17735  11.32 2.83 0.581 0.9996 4.88 

s22348  11.59 2.90 0.629 0.9998 4.61 

s24455  11.22 2.80 0.590 0.9998 4.75 

s25323  11.54 2.88 0.588 0.9998 4.90 

s29093  11.01 2.75 0.155 1.0000 17.77 

s29125  11.35 2.84 0.569 0.9998 4.98 

s29622  11.06 2.76 0.145 1.0000 19.12 

s31400  11.20 2.80 0.608 0.9998 4.61 
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Table 9. Performance metrices of IEG- LC technique for Database ‘B’ 

Id File CR CR PRD CC QS 

0029  25.34 6.34 11.15 0.9938 0.57 

0031  25.96 6.49 9.18 0.9958 0.71 

0035  28.29 7.07 7.27 0.9973 0.97 

0103  29.51 7.38 6.38 0.9980 1.16 

0104  26.96 6.74 9.89 0.9951 0.68 

0122  24.67 6.17 8.66 0.9953 0.71 

0125  26.76 6.69 6.78 0.9971 0.99 

0128  26.95 6.74 8.14 0.9957 0.83 

0133  26.49 6.62 7.52 0.9963 0.88 

0134  28.43 7.11 6.51 0.9969 1.09 

0148  28.40 7.10 5.86 0.9976 1.21 

0311  29.34 7.33 5.93 0.9974 1.24 

0312  32.10 8.02 6.11 0.9982 1.31 

0313  33.23 8.31 5.47 0.9985 1.52 

0322 32.15 8.04 6.88 0.9977 1.17 

0325  32.06 8.01 6.56 0.9979 1.22 

0329  32.17 8.04 7.81 0.9970 1.03 

0330  32.03 8.01 6.76 0.9977 1.18 

0331  32.08 8.02 7.16 0.9975 1.12 

0332 32.03 8.01 7.21 0.9974 1.11 

 

The IEG LC algorithm attained a mean file CR of 11.43, CR of 2.86, PRD of 

0.56, CC of 0.9997 and a QS of 6.13 for Database A whereas it could achieve a file CR 

of 29.25, CR of 7.31, PRD of 7.36, CC of 0.9969 and a QS of 1.03 for database B. The 

sampling rate of Database B was 300 Hz and hence it was downsampled by a DF of 3. 

 

Figure 31 and  
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Figure 32 shows the original signal, the reconstructed signal and the error occurred 

while using IEGLC technique, for file id:s31400 of Database A, and file id: 0332 of 

Database B respectively. 

 

 

Figure 31. Original signal, reconstructed signal, and the error for IEGLC, Database A 

 

Figure 32. Original signal, reconstructed signal, and the error for IEGLC, Database B 
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5.2.1 Advantages of the IEG-LC Technique 

  IEG-LC is a lossless compression-based technique that can deliver a reasonably 

good CR with very low PRD and high correlation coefficient. The original PPG signal 

is regenerated with minimum distortion, thereby preserving the clinical characteristics 

of the original signal. The algorithm imposes no amplitude limitation on the input signal 

when compared to other algorithms which uses Grouping techniques for lossless data 

reduction. It can process input PPG signal of high amplitudes without normalization, 

hence the error on reconstruction will be the minimum. This can be used to provide 

lossless compression for all 1D signals. The algorithm can process digitized PPG 

signals regardless of their sampling frequencies. Table 10 shows the performance 

comparison of the IEGLC technique with prevailing techniques. 

 

Table 10. Performance Comparison of the IEGLC technique with prevailing techniques  

Algorithms SF(Hz) FileCR CR PRD (%) QS CC 

Gupta et al [8] 125  2.223 0.127 17.5 - 

Alam et al [40] 125   3.84 5.82 0.7 - 

CFSA [21] 200  12 1.67 - - 

Delta modulation 

[26] 

1 K  16 0.000392 40816 - 

Dhar et al. [37] 500 122.24 
 

0.02 7228.41 0.9988 

Proposed IEG-LC 

Technique 

125 

300 

11.43 

29.25 

2.86 

 7.31 

0.56 

7.36 

6.13 

1.03 

0.9997 

0.9969 

 

5.3 Implementation of some Basic Compression Techniques 

Some basic compression techniques were also implemented in this study to 
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understand the performance of these techniques. 

5.3.1 DCT Compression 

The DCT compression was implemented using the Database A. In this 

technique after filtration, DCT is applied. All the non-zero samples are identified and 

those samples within the range 0.22 and -0.22 were discarded and transmitted. At the 

receiver, inverse DCT operation is performed to retrieve the signal.  

 

Figure 33 illustrates the DCT compression. The original signal, the 

reconstructed signal from DCT Compressed data and the error on reconstruction of a 

PPG Signal are shown. Even though the CR obtained is very high, the signal is 

regenerated with significant distortion and there is no guarantee on preserving the 

clinical characteristics of the PPG signal. Table 11 shows the performance metrices of 

DCT Compression using Database ‘A’. 
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Figure 33. DCT Compression- Original Signal, Reconstructed Signal and error 

 

Table 11. Performance of DCT Compression  

Id CR PRD CC 

s01182  99.30 125.81 0.9621 

s01241  97.74 100.46 0.9864 

s01795  98.46 92.37 0.9874 

s03386  99.00 64.28 0.9916 

s03386  99.34 41.30 0.9946 

s03386  99.09 70.54 0.9911 

s03386  98.96 73.34 0.9885 

s08452  98.69 71.93 0.9903 

s08936  96.15 107.06 0.9857 

s09483  99.11 81.07 0.9826 

s11342  99.07 142.32 0.9605 

s17497  98.06 113.04 0.9843 

s17735  98.83 94.69 0.9816 

s22348  98.07 86.08 0.9892 

s24455  98.42 90.39 0.9872 

s25323  97.74 74.68 0.9895 

s29093  96.76 33.09 0.9990 

s29125  96.95 139.15 0.9816 

s29622  92.60 25.12 0.9992 

s31400  98.89 59.33 0.9918 
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5.3.2 FFT Compression 

The filtered PPG signals were compressed using FFT Compression Technique. 

Figure 34 demonstrates the FFT Compression. The error on reconstruction due to FFT 

compression of a PPG Signal is presented. In this technique, although the CR is very 

high, the reconstructed signal is significantly distorted. It is evident that some peaks are 

missed during reconstruction and the error is also high. So accurate recovery of clinical 

characteristics is not possible. The performance metrices of FFT Compression using 

Database A is given in Table 12. 

 

 

Figure 34. FFT Compression-Original Signal, Reconstructed Signal and error 
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Table 12. Performance of FFT Compression 

Id CR PRD CC  

s01182  97.93 59.29 0.9823  

s01241  95.23 31.19 0.9958  

s01795  96.22 28.42 0.9961  

s03386  97.27 28.14 0.9963  

s03386  97.98 24.56 0.9968  

s03386  96.75 27.56 0.9965  

s08452  96.92 23.71 0.9968  

s08936  93.27 29.98 0.9960  

s09483 97.86 37.01 0.9921  

s11342  97.29 62.58 0.9828  

s17497  95.34 37.65 0.9948  

s17735  97.17 37.23 0.9928  

s22348  95.78 30.39 0.9962  

s24455  96.31 31.22 0.9956  

s25323  95.78 22.09 0.9969  

s29093  91.62 12.61 0.9996  

s29125  93.23 39.52 0.9948  

s29622  89.64 7.80 0.9998  

s31400  97.31 29.45 0.9959  

 

5.4 SVD-IEGLC technique (Fusion of IEGLC with the SVD Compression) 

The thesis also proposes a more efficient lossy compression technique that is 

based on a combination of Singular Value Decomposition and IEGLC based quality 

guaranteed PPG compression (SVD-IEGLC). The lossless compression is done using 

iterative extensive grouping techniques. 

The algorithm of SVD-IEGLC technique consists of six steps. 

1. Preprocessing 

2. Singular Value Decomposition of the preprocessed signal 

3. Truncation of Singular Values 
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4. Estimating the optimal number of Singular Values  

5. Lossless Compression of the truncated Left Singular Matrix  

6. Lossless Compression of the truncated Right Singular Matrix  

 

Figure 35 demonstrate the schematic of the proposed SVD-IEGLC technique. 

The first four steps of SVD-IEGLC technique is same as that of SVD-LAC. 

After SVD compression, the optimal number of singular values, 𝛾𝑜𝑝𝑡 is found. Based on 

𝛾𝑜𝑝𝑡, the singular value matrix (S), the left singular matrix(U) and the right singular 

matrix (V) are truncated. The U matrix is subjected to IEGLC for reducing the number 

of coefficients. The V matrix undergo 16-bit quantization and is then subjected to 

IEGLC for reducing the number of coefficients. Finally, the actual lengths of all the 

PPG beats, the optimally truncated singular values, the compressed U matrix, and the 

compressed V matrix constitutes the compressed data file. Besides the bit wise 

compression ratio, the file size compression ratio was also calculated for this technique  

 The reconstruction algorithm consists of the following parts. 

1. Decoding the U matrix coefficients 

2. Decoding the V matrix coefficients 

3. Regenerating the signal using the beat lengths, S, U and V matrices. 
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Figure 35. Schematic of the proposed SVD-IEGLC algorithm 

 

Table 13 and  

Table 14 shows the performance of the proposed SVD-IEGLC technique on Database 

‘A’ and Database ‘B’ for UDPRD values of 9. 

Abbreviations used in Table 13 and  

Table 14 

PRDr -Actual PRD value upon PPG signal reconstruction 

PRDe -Estimated PRD based on a user defined quality measure (UDPRD) 

 

Table 13. Performance of the SVD-IEGLC technique on Database ‘A’ for UDPRD=9% 
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Id OSV File CR CR PRDr PRDe CC RMSE QS 

s01182  6 91.03 22.79 10.81 8.72 0.9941 0.014 2.11 

s01241  6 85.61 21.43 10.15 8.14 0.9948 0.022 2.11 

s01795  4 143.58 35.97 10.40 8.54 0.9946 0.021 3.46 

s03386  2 227.38 57.03 9.40 8.46 0.9956 0.021 6.07 

s03386  2 197.53 49.53 10.02 7.61 0.9959 0.023 4.94 

s03386  2 165.52 41.48 12.02 8.26 0.9931 0.030 3.45 

s03386  3 177.84 44.58 9.01 7.48 0.9959 0.019 4.95 

s08452  4 102.89 25.76 10.09 7.70 0.9949 0.024 2.55 

s08936  6 94.56 23.67 10.15 8.40 0.9948 0.025 2.33 

s09483  4 122.45 30.67 10.25 8.20 0.9947 0.016 2.99 

s11342  7 88.38 22.12 10.49 8.66 0.9945 0.014 2.11 

s17497  5 109.74 27.48 9.94 8.67 0.9951 0.022 2.77 

s17735  7 89.17 22.32 10.15 8.43 0.9948 0.016 2.20 

s22348  3 172.97 43.35 10.46 8.88 0.9945 0.026 4.15 

s24455  5 103.38 25.88 10.96 9.00 0.9940 0.031 2.36 

s25323  6 102.72 25.72 10.06 8.32 0.9949 0.026 2.56 

s29093  2 227.70 57.12 9.06 8.39 0.9960 0.022 6.30 

s29125  5 103.00 25.79 10.32 8.22 0.9947 0.022 2.50 

s29622  7 106.81 26.74 10.07 8.71 0.9949 0.026 2.65 

s31400  3 151.18 37.88 9.29 7.18 0.9958 0.023 4.08 

 

Table 14. Performance of the SVD-IEGLC technique on Database ‘B’ for UDPRD=9% 

Id OSV File CR  CR PRDr PRDe CC RMSE QS 

0018 3 218.51 54.70 14.29 6.55 0.9897 0.053 3.83 

0023 3 275.80 69.06 13.90 7.89 0.9908 0.063 4.97 

0029 6 251.42 62.95 12.86 8.80 0.9917 0.048 4.90 

0030 6 530.14 132.96 12.02 8.76 0.9931 0.052 11.06 

0031 6 251.42 62.95 12.86 8.80 0.9917 0.048 4.90 

0035  5 286.07 71.64 11.53 8.20 0.9933 0.034 6.21 

0103  3 292.09 73.15 14.84 8.28 0.9890 0.063 4.93 

0104  3 294.48 73.75 14.01 8.66 0.9914 0.065 5.26 

0122  3 402.23 100.81 13.06 7.80 0.9928 0.054 7.72 

0125 4 328.95 82.40 13.65 8.66 0.9908 0.051 6.04 

0128  5 303.72 76.07 13.76 8.60 0.9907 0.045 5.53 

0133  4 352.94 88.42 13.03 8.61 0.9915 0.050 6.79 

0134  4 324.69 81.33 12.79 8.57 0.9918 0.052 6.36 

0148  6 225.18 56.37 12.64 8.35 0.9920 0.049 4.46 
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Id OSV File CR  CR PRDr PRDe CC RMSE QS 

0311  2 571.43 143.35 12.67 8.31 0.9923 0.059 11.32 

0312  5 379.45 95.08 11.14 8.62 0.9938 0.020 8.54 

0322  2 566.65 142.15 11.86 8.42 0.9942 0.054 11.98 

0325  1 807.29 202.82 12.59 8.95 0.9926 0.052 16.12 

0331  4 377.83 94.67 11.71 7.93 0.9932 0.038 8.08 

0332  2 530.14 132.96 12.02 8.76 0.9931 0.052 11.06 

 

5.4.1 Advantages of SVD-IEGLC over SVD-LAC  

 The SVD-IEGLC provides better CR than the SVD-LAC as the truncated V 

matrix also undergoes lossless compression. Although the SVD-LAC method achieved 

good compression performance, it can process PPG signals of higher amplitude range. 

The proposed SVD-IEGLC method overcomes the amplitude range limitation faced in 

[37] and [42]. The original PPG signal is regenerated with minimum distortion, thereby 

preserving the clinical characteristics of the original signal.  Table 15 illustrates the 

comparison of compression performance of SVD IEGLC & SVD-LAC techniques.The 

comparison is done taking the mean values of the CR, PRD, CC, RMSE and QS of all 

the 20 recordings in the dataset.  

Abbreviations used in Table 15 

CT-Compression time in seconds, DT-Decompression time in seconds 

 

Table 15. Comparison of performance of SVD IEGLC & SVD-LAC techniques  

Technique Database  CR PRD CC RMSE QS CT DT 

SVD IEGLC A 33.37 10.16 0.9949 0.022 3.33 1.55 0.30 
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Technique Database  CR PRD CC RMSE QS CT DT 

SVD LAC A 17.35 8.40 0.9965 0.018 1.99 1.41 0.29 

SVD IEGLC B 100.76 12.85 0.9920 0.051 7.97 1.27 0.30 

SVD LAC B 60.33 12.14 0.9923 0.050 4.73 0.97 0.25 

 

 The above results reveal that both the techniques have superior compression 

performances than most of the existing PPG Compression techniques. The compression 

performance of the SVD-IEGLC technique is much advanced than the SVD-LAC 

technique. 

On analyzing the time complexities of the proposed techniques, it was found 

that  the time required for compression is low i.e. in the range  from 0.25 seconds to 

1.45 seconds whereas that required for decompression is less than half a second. 

Table 16 shows the comparison of the time complexities of the three proposed 

tehcniques,SVDLAC,IEGLC and SVDIEGLC. 

 

Table 16. Time complexities of SVDLAC, SVDIEGLC and IEGLC techniques 

Technique  Database Number of 

samples 

Compression 

time 

Decompression 

time 

SVD IEGLC A 60000 1.43 0.30 

SVD LAC A 60000 1.41 0.29 

SVD IEGLC B 144000 1.12 0.28 

SVD LAC B 144000 0.97 0.25 

IEGLC A 60000 0.30 0.16 

IEGLC B 144000 0.26 0.09 
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5.5  Comparison of the three proposed techniques with the existing techniques 

The three proposed techniques exhibit excellent performance when compared 

to the existing PPG compression techniques. Both the lossy methods provide very high 

file CR, CR and CC with acceptable PRD and low RMSE. The lossless IEGLC 

technique provides good CR and high CC with very low PRD. All the three techniques 

are quality guaranteed and can regenerate the signal with minimum distortion thereby 

preserving the clinical characteristics of the signal. All the three methods exhibit 

superior performance when compared to the state-of-the-art methods. Table 17 shows 

the comparison of the overall performance of the three proposed techniques with the 

existing PPG compression techniques. 

 

Table 17. Performance comparison of the three proposed PPG compression techniques 

with the existing techniques 

Algorithms SF(Hz) FileCR CR PRD (%) QS CC RMSE 

 

Gupta et al [8] 125  2.223 0.127 17.5 -  

Alam et al [40] 125  3.84 5.82 0.7 -  

CFSA [21] 200  12 1.67 - -  

Delta modulation 

[26] 

1 K  16 0.000392 40816 -  

Dhar et al. [37] 500 122.24  0.02 7228.41 0.9988  

Mukhopadhyay 125 60.78 
 

2.34 24.21 0.9966 0.03 

et al. [38] 250 114.92  0.05 1159.58 0.9970 0.02  
500 471.02  1.94 100.92 0.9973 0.006 

Mukhopadhyay 125 28.77  2.34 24.21 0.9966 0.03 

et al. [42] 250 30.52  0.05 1159.58 0.9970 0.02 

 500 30.852  1.94 100.92 0.9973 0.006 

Sadhukhan, D, 

Pal, S. and, 

Mitra, M [41] 

125  35.95 3.88    

Proposed SVD- 125 60.66 17.35 8.40 1.99 0.9965 0.018 

LAC Technique 300 230.24 60.33 12.14 4.73 0.9923 0.050 
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Algorithms SF(Hz) FileCR CR PRD (%) QS CC RMSE 

 

Proposed IEGLC 

Technique 

125 

300 

11.43 

29.25 

2.86 

7.31 

0.56 

7.36 

6.13 

1.03 

0.9997 

0.9969 

0.0029 

0.2713 

Proposed SVD 

IEGLC technique 

125 

300 

133.17 

401.86 

33.37 

100.76 

10.16 

12.85 

3.33 

7.97 

0.9949 

0.9920 

0.022 

0.051 
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CHAPTER 6: CONCLUSION ANF FUTURE WORK 

The chapter concludes the thesis and presents some ideas for future work that 

can be done based on this work. 

6.1 Conclusion 

The thesis started with a survey on the significance of PPG signal 

compression in e-health and remote health monitoring. The contribution of 

wearable health devices in wireless medical field was also surveyed. A detailed 

study was done on the basic compression techniques that can be employed for 

biomedical signal compression. A thorough review was done on the 

implementation of the existing PPG compression techniques available in published 

literature. 

The different compression techniques were analyzed to assess the compression 

performance, the reconstruction fidelity and clinical importance of the reconstructed 

signal. The computational burden, memory requirement and noise sensitivity of these 

techniques were also examined.  

The thesis proposed three efficient compression techniques for compressing the 

PPG Signals, two lossy compression techniques and a lossless compression technique. 

The first lossy technique was based on a combination of Singular Value Decomposition 

and lossless ASCII compression. The second technique called the IEGLC, is a lossless 

compression technique based on some iterative extensive grouping techniques. Finally, 

in the third technique, the proposed IEGLC technique was integrated with the lossy 

SVD technique to get better compression performance and guaranteed quality.  The 

compression performances of all the three proposed techniques were much superior, 
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when compared to most of the existing techniques in published literature.                                    

6.2 Challenges faced 

1. The availability of public PPG Dataset is restricted. Labelled PPG datasets 

are not freely available. 

2. Only limited published literature is available for comparison of compression 

performances of PPG Signals. 

6.3 Future Work 

Most of these compression techniques mainly aim to maximize the CR and a 

few techniques attained good CR. Very few methods talk about the clinical 

acceptability of the regenerated signals, even though it is mentioned that the error is 

low. Majority of the techniques had no influence over the required quality of the 

regenerated signal. More works need to be done in future for instituting quality control 

in PPG compression techniques, while maintaining high compression ratios.  

More effective compression techniques need to be explored using a combination 

of the proposed grouping technique with other techniques such as SVD, DWT etc. 

Another future work that can be proposed is to incorporate a classification 

module in the SVD-IEGLC compression framework itself, to categorize the sick and 

the healthy persons by analyzing the compressibility of the PPG signals. The lesser the 

optimum number of singular values needed for PPG signal reconstruction, the signal 

will be more structured, and it is more likely that the person is healthier. The accuracy 

of the technique in classification must be verified using labelled PPG signals. One of 

the challenges will be the availability of a labelled, public PPG dataset, which is 

required to verify the correctness of the classification of the sick and the healthy people.  
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