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ABSTRACT

TRENT,STEPHEN,D., Masters: January: 2021,

Masters of Science in Mechanical Engineering

Title: Generative Adversarial Networks as a Method to Predict Stresses in Structures 

Supervisor of Thesis: Dr Jamil Renno

There have been continuous advances in the field of Finite Element Analysis 

(FEA) allowing designers, architects, engineers and the public at large increasing ease 

and access. The methods of implementation however, have remained largely unchanged 

since their inception in the 1960s relying predominantly on costly computational soft-

ware and hardware to carry out time and computing resource intensive calculations. fur-

thermore, alterations to any simulation inputs, constraints or design parameters poten-

tially nullify the previous results and require subsequent additional simulations. While 

there have been strides made towards adaptive FEA software [such as Ansys Discovery 

live®for instance] these too tend to be prohibitively more costly or resource intensive 

than their contemporary counterparts. As an additional consequence, the analysis of a 

component, structure or system is almost always done remotely, and ideally well before 

manufacture. Similarly, in situations which require active monitoring, the telemetry is 

required to be passed to remote systems capable of carrying out the FEA computations.

With the advent and rapid development of Artificial Intelligence (AI), more 

specifically advancements in Artificial Neural Networks (ANNs) as a new toolset for 

the solution of complex problems, the question arises, "Can Neural Networks be trained 

to emulate Finite Element Analysis?". This is the basis on which this work centres:

Utilising a conventionally generated FEA dataset, a conditional Generative Ad-
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versarial Network (cGAN) is "taught" the physical behaviour of platework of varying

geometry and material properties and subjected to randomly placed varying loadings.

The subsequent "trained" model is hence capable of generating predictions for arbitrary

inputs which correspond to the domain of input on which it was trained. Three exper-

iments resulted in separate cGAN generator models trained to infer deflections from

forces, stresses from deflections and stresses from forces respectively. After a mod-

erate training regime of 200 Epochs each, the outputs of the models are shown to be

in reasonable agreement to the ground truth with mean errors in the range of 5-10 %.

Whilst not perfect FEA replacements, the trained models show potential for improve-

ment and in their existing implementation allow for near real-time iterations or testing

of hypothetical force additions via a purpose built application. Furthermore, this adds

credence to deploying systems which implement purpose trained models for the ablity

to self monitor structures in situ in realtime.
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1 Introduction

1.1 Background

Real world systems, processes and mechanisms are fairly complex or sophis-

ticated often requiring the usage of approximation based experimental studies or nu-

merical methods when a straightforward analytical equation or solution is unavailable.

Furthermore, many physical laws and phenomena are described by the use of partial dif-

ferential equations (PDEs). Since most PDEs cannot be solved analytically, their solu-

tions can be obtained through discretization followed by numerical methods. The Finite

Element Method (FEM) is one such numerical technique which relies on the discretiza-

tion of a problem into smaller discrete constituent parts i.e. ’finite elements’. Various

assumptions and idealisations may be utilized to simplify the problem but ultimately

equations describing these finite elements are incorporated into a larger arrangement

of equations which collectively model the entire problem. The subsequent solution of

these sets of equations accurately approximates the desired solution, within the con-

straints of the aforementioned assumptions and idealisations. Finite Element Analysis

(FEA), the practical application of FEM, allows for the accurate study of systems and

for estimations to be made about them under varying scenarios. Today FEM and by ex-

tension FEA are amongst the most widespread approaches employed in the prediction

of material responses to real-world forces, vibration, heat, fluid flow and other physical

effects. The earliest roots of which can be traced back to a 1956 paper by M.J. Turner

et al and in which the term "finite elements" is coined [1]. Following shortly there-

after NASA developed the first structural analysis software "NASA Structural Analysis"

(NASTRAN) which employed the FEA theoretical methodologies available at the time

1



towards the development of vehicles in their aerospace programmes [2]. Although rudi-

mentary by modern standards, the success of such software drove continual advances in

FEA research and development. Whilst not yet fully eliminating the need, the growing

sophistication and trust in contemporary commercial applications such as ABAQUS,

ANSYS, COMSOL, LS-DYNA, and NASTRAN, among others, has led to a significant

reduction in the number of physical experiments and prototypes required during design

and optimization of processes, devices and products. Today the usage of FEA in the

fields of civil, structural, and mechanical engineering is ubiquitous with further appli-

cations in the fields of biology and medicine [3; 4] to geology [5] and oceanography

[6; 7] becoming increasingly common.

1.2 Fundamental Concepts of the FEM

The following subsections, whilst by no means comprehensive, aim to provide

a concise understanding of the fundamental underlying concepts and principles behind

FEM and FEA. For additional information about FEM, the interested reader is advised

to consult [8; 9; 10]. For those familiar with the topic, feel free to advance ahead to

Section 1.3.

1.2.1 Stress and Strain

Continuum mechanics is a branch of physics which assumes that a substance,

body, or object entirely fills the space it occupies. It ignores discontinuities (i.e. inter-

atomic distances) as length scales are usually orders of magnitude larger. Many physics

laws such as conservation of energy, mass, and momentum are based on this postulation

with a continuum of known boundary referred to as a domain. To determine the reaction

2



of a body under an applied force (internal or external), it is required to know the force

intensity and the body’s cross sectional area. In a continuous material, stress (σ ) is

defined as the average intensity of the force(s) divided by the body’s cross sectional area.

Strain (ε) corresponds to the amount of elongation or shortening per unit length caused

due to the stress. These basic definitions refer to average values, as stress and strain can

be irregularly distributed over the cross section of the body. Strain is a dimensionless

parameter, whilst stress is usually referenced in Pascals (1Pa = 1N
m2 ) and psi (1psi =

1lb f
in2 ). Figure 1.1 and Figure 1.2 illustrate both concepts.

Strain(ε) =
Elongation

Original length
=

δ

L0
(1.1)

Figure 1.1: Elongated solid bar under axial load. Average strain is defined by elongation, δ ,

divided by the bar’s original length, Lo. [11]

Stress(σ) =
Force

Cross− sectional Area
=

F
A

(1.2)

Stresses are broadly classified as either compressive, tensile, or shear stress.

Compressive and tensile stresses act perpendicular to the cross-sectional area of an el-

3



Figure 1.2: Solid rod under axial loading. Average normal stress can be defined by force

divided by the bar’s cross-sectional area [11]

ement, inducing shortening or elongation of a material when applied. Shear stress is

coplanar with a material’s cross section. Stress acting at an angle can be expressed in

terms of its normal components. Sign conventions in literature establish that the magni-

tudes for normal tensile stresses are positive whereas for compressive stresses are nega-

tive. Stress elements are a useful representation of stress acting in a determined point on

a body. Figure 1.3 (a) shows the general stress state of an infinitesimal body element.

For Cartesian coordinates, normal stress components are identified by subscripts x, y

and z which relate to each Cartesian axis. Hence σx, σy and σz act on surfaces perpen-

dicular to the x, y and z axes respectively. Shear stresses require two subscripts where

the first indicates the perpendicular surface upon which the shear stress acts, and the

second denotes its direction. For instance Figure 1.3 illustrates how τxy acts on a sur-

face perpendicular to the x-axis, with direction along the y-axis. For equilibrium, shear

4



stresses with crossed subscripts generally have the same magnitude (i.e. τAB = τBA).

Therefore, τxy equals τyx, τzx equals τxz, and τzy equals τyz.

Figure 1.3: Component stresses on an infinitesimal element. Adapted from [9]

1.2.2 Stress-Strain curve and Young’s Modulus

An important engineering consideration when analysing materials under stress

and strain is the relationship exhibited between these two parameters themselves. This

is frequently accomplished by inspecting the stress-strain curve produced by measuring

the amount of strain a material undergoes within tensile or compressive stress ranges.

The curve generated is unique for individual materials and allows for the inference of

resultant mechanical properties. In Figure 1.4 a generic stress-strain curve with two

primary stages is identified. The first, an "elastic" region, extends from the zero-load

condition to the point referred to as the yield stress, σyield . At any point within this

region the application and subsequent removal of loads would result in the material de-

forming yet returning to its original dimensions. If stresses are applied beyond the yield

strength into the second "plastic" region, the material "yields" and permanent defor-

mations occur. The ultimate stress, σultimate, is the point of maximum stress along the

5



stress-strain curve beyond which further stress eventually leads to material failure/rup-

ture. Brittle materials such as ceramics have little to no plastic regions and rupture just

beyond ultimate stress. Conversely ductile materials such as aluminium, steel or copper,

exhibit considerable plastic regions and experience far larger amounts of strain before

rupture.

The slope of the stress-strain curve within the elastic region is referred to as Young’s

(or Elastic) modulus and is a measure of the resistivity to deformation of a material

when forces are applied. Soft materials such as rubber would thus have a flatter slope

and be relatively easily deformed whilst tougher materials such a steels require signif-

icant more force to induce deformation and hence have steeper slopes. Figure 1.4 in

conjunction with Equation 1.3 and Equation 1.4 provide the means to calculate E.

E =
Stress
Strain

=
σpl

ε
(1.3)

substituting from Equation 1.2 and Equation 1.1 yields:

E =
F/A
δ/L0

=
FL0

Aδ
(1.4)

1.2.3 Material Isotropy and Poisson’s ratio

Materials which exhibit uniform mechanical properties at all locations and along

all directions within the material are referred to as ’isotropic’. Typically this is common

of fluids and gasses as well as commercial metal grades of copper, steel and aluminium.

Corollary anisotropic materials are characterised by mechanical properties that vary

directionally. This can be found naturally within wood or in materials such as layered
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Figure 1.4: Generic Stress-Strain curve for a ductile material indicating mechanical properits

such as elastic and plastic regions, elastic modulus and fracture stresses [11].

composites like carbon fibre which can be tailored to meet directional tensile needs.

Furthermore manufacturing processes such as cold rolling may also induce anisotropic

behaviour due to the alignment of the crystalline cells within metals [11].

When an isotropic material undergoes uniform compression (or axial elonga-

tion) its behaviour can be quantified by its Bulk modulus, B. This is a measure of how

compressible a material is with relation to its volume, V (or density, ρ) and applied

loading, P as given in Equation 1.5 and Equation 1.6:

B =−V
dP
dV

(1.5)

or

B = ρ
dP
dρ

(1.6)
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When in elongation, the material experiences transversal compression opposite

to the axis of elongation (see Figure 1.5). Within the elastic range the ratio of transverse

to longitudinal strains is referred to as Poisson’s ratio, v. A Poisson’s ratio of 0 would

thus imply a material is perfectly compressible whilst a value of 0.5 implies perfectly

incompressible. Metals have Poisson’s ratio values around 0.3.

Figure 1.5: Illustration of Poisson effect due to material under axial tensile load. The applied

load both elongates the bars material whilst resulting in a transverse compression as a result of

the Poisson effect [11] .

The relationship between Bulk modulus, Elastic modulus and Poisson’s ratio for

an isotropic material within the elastic region is expressed in Equation 1.7.

B =− E
3(1−2v)

(1.7)

1.2.4 Plane, Principal and Maximum Shear Stresses

The magnitude of normal and shear stresses varies with rotation angles along

the planes in which they are measured. If we seek to obtain values at specific angles we

can do so through transformation along these planes as illustrated in Figure 1.6. The
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transformed planar stresses are calculated using Equations (1.8) to (1.10):

σx′ =
σx +σy

2
+

σx−σy

2
cos(2θ)+ τxysin(2θ) (1.8)

σy′ =
σx +σy

2
+

σx−σy

2
cos(2θ)− τxysin(2θ) (1.9)

τx′y′ =−
σx−σy

2
sin(2θ)+ τxycos(2θ) (1.10)

Figure 1.6: State of plane stress on an element.(a) referenced to axes {xyz}, referenced to

rotated axes {x′y′z′} [12].

The normal and shear stresses vary during axes rotation, reaching minimum and

maximum magnitudes at 90o intervals. The maximum and minimum normal stresses,

σmax and σmin, are called principle stresses with the principle angle, θp defining their

positioning. These values can be located through the derivative of Equation 1.8 with

respect to θ which yields Equation 1.11.

tan(2θp) =
2τxy

σx−σy
(1.11)
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1.2.5 Degrees of Freedom

Objects which inhabit our physical world are beholden to the laws of physics

which govern it and as such are capable of moving, vibrating or deforming in complex

ways. The complexity of this behaviour is assessed by identifying the number of inde-

pendent motions which are required to represent all important motions of the system.

These motions are referred to as "degrees of freedom" (DOFs) and are independent if

they can still occur when all other DOFs are deliberately restrained. Within physics

DOFs can refer to any number of independent parameters that define a systems config-

uration or state however in mechanics we tend to limit to the 6 DOFs of translation and

rotation (see Table 1.1 and Figure 1.7) [13]:

1. Heaving - translation up and down

2. Strafing - translation left and right

3. Surging - translation forward and backward

4. Yawing - swivelling left and right

5. Pitching - tilting forwards and backward

6. Rolling - pivoting side to side

1.2.6 Meshing and Element Types

In order to translate from the problem statement/system definition to the FEM

of the system it is necessary to discretize domains and/or geometries into constituent

finite elements. Several geometric arrangements are employed as FEA elements for de-

termined cases or circumstances and which are collectively referred to as the element
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Figure 1.7: Illustration of the 6 DOFs of a unrestrained body (shown here as a cylinder) in

Cartesian space [13].

Table 1.1: DOFs and force vectors in FEA for different Engineering disciplines [14]

Discipline DOF Force Vector
Structural/solids Displacement Mechanical forces
Heat conduction Temperature Heat flux
Acoustic fluid Displacement potential Particle velocity
Potential flow Pressure Particle velocity
General flows Velocity Fluxes
Electrostatics Electric potential Charge density
Magnetostatics Magnetic potential Magnetic intensity

library within software packages (See Table 1.2 for an example for common element

types employed in ANSYS). Within an element each node corresponds to a coordinate

in the model where DOFs are defined. For problems of structural analysis, these DOFs

describe the displacement of a node as a result of loads imposed on the system. The re-

sultant translational and rotational DOFs can be associated with the forces and moments

transmitted through the nodes respectively. Correspondingly, strains can be determined

from the relative motion of nodes, while the stresses are calculated from the strains and

material properties [14]. Elements may have one or more discrete integration points

(which may or may not correspond to nodal locations) at which the stress and strain

values are calculated and monitored. Should values at nodes be sought, the results are

copied or interpolated/extrapolated from the nearest integration points.

Elements can generally be classified into one-dimensional ’line’, two-dimensional
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’surface’ and three-dimensional ’solid’ / ’volume’ elements. See Figure 1.8 and Ta-

ble 1.2 for the elements shapes as well an excerpt of element types from the ANSYS

element library.

Figure 1.8: The common element shapes utilized in ANSYS. From Top: Line elements;

triangular elements; rectangular and quadrilateral elements; tetrahedrons, prisms and

hexahedrons (for volume elements) [15].
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Table 1.2: Excerpt of common ANSYS element types for structural analysis [15]

Element Order Shape Nodes Physics DOFs
PLANE182 2D Quad 4 Structural UX, UY
PLANE183 2D Quad 8 Structural UX, UY
SOLID185 3D Brick 8 Structural UX, UY, UZ
SOLID186 3D Brick 20 Structural UX, UY, UZ
SOLID187 3D Tet 10 Structural UX, UY, UZ

Figure 1.9: Example of meshed FE geometry. Left: Original unmeshed geometry. Right:

Meshed geometry. Note the inclusion of triangular, rectangular and quadrilateral element

shapes [14]

1.2.7 Mass, Damping and Stiffness matrices

A meshed FE model (as shown in Figure 1.9) includes 3 translation DOFs at

each node point in the model. The FE node points are locations where the motions of

the elements are calculated and reported from. The DOFs of a model can be arranged

as members of an n×1 array:

U(t) = [u1(t) u2(t) u3(t) u4(t) · · ·un(t)]
T (n×1) (1.12)
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where ui typically represent physical translations or rotations. A ’linear model’ ex-

presses forces as either explicit functions of time or linear functions of the motion vari-

ables i.e. displacements, velocities, and accelerations. Thus, equilibrium equations for

the linear model have the general form of Equation 1.13



m11 m12 · · · m1n

m21 m22 · · · m2n

...
... . . . ...

mn1 mn2 · · · mnn





ü1(t)

ü2(t)

...

ün(t)


+



c11 c12 · · · c1n

c21 c22 · · · c2n

...
... . . . ...

cn1 cn2 · · · cnn





u̇1(t)

u̇2(t)

...

u̇n(t)



+



k11 k12 · · · k1n

k21 k22 · · · k2n

...
... . . . ...

kn1 kn2 · · · knn





u1(t)

u2(t)

...

un(t)


=



f1(t)

f2(t)

...

fn(t)



(1.13)

where mi, ci and ki are the nodal masses, damping coefficients and stiffness ratios re-

spectively, whilst üi, u̇i and ui are the nodal accelerations, velocities and displacements,

respectively. Equation 1.13 can be written in abbreviated form as:

MÜ +CU̇ +KU = f (t) (1.14)

An objective of the FEM is to define the mass, damping, stiffness and force matrices M,

C, K, f (t) given an FE mesh and load description.
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1.2.8 Example FEM of Linear Springs

As an illustrative example we look at the behaviour of a linear elastic spring ca-

pable of supporting only axial loading, where the elongation (or contraction) is directly

proportional to the axial load applied and given by its spring stiffness k. Given that the

springs supports only axial loading we select a local coordinate system along elements

lengthwise x-axis as shown in Figure 1.10.

Figure 1.10: Linear spring element. (a) Linear spring element with nodes 1& 2, nodal

displacements ui, and nodal forces fi. (b) The springs load-deflection curve representative of

its spring constant, k [13].

If it is assumed that nodal displacements are both zero when the spring is unde-

formed, the net spring deformation is given by

δ = u2−u1 (1.15)

and the resultant axial force in the spring is hence

f = kδ = k(u2−u1) (1.16)
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For equilibrium

f1 + f2 = 0 or f1 =− f2 (1.17)

which can be expressed in terms of applied forces using Equation 1.16 as

f1 =−k(u2−u1)

f2 = k(u2−u1)

(1.18)

In matrix form this is expressed as

 k −k

−k k




u1

u2

=


f1

f2

 or [ke]{u}= { f} (1.19)

where [ke] is defined as the element stiffness matrix in the element coordinate

system (or local system), {u} is the column vector of nodal displacements and { f} is

the vector of element nodal forces [13].

Equation 1.19 shows that the element stiffness matrix for the linear spring ele-

ment is a 2× 2 matrix owing to the fact that the element exhibits two nodal displace-

ments (or DOFs) which are not independent since the body (spring) is continuous and

elastic. Additionally, the matrix is symmetric as a result of the symmetry of the forces

(equal and opposite to ensure equilibrium).

To illustrate the influence of additional elements we look at the inclusion of a

second linear elastic spring as shown in Figure 1.11.

Repeating the process of Equation 1.15 through (1.19) for both elements yields
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Figure 1.11: Illustration of two Linear spring element system. Free Body Diagrams: (a) spring

element 1 (b) spring element 2 (c) node 1 (d) node 2 (e) node 3 [13]

Equation 1.20

 k1 −k1

−k1 k1




u1
(1)

u2
(1)

=


f1
(1)

f2
(1)

 k2 −k2

−k2 k2




u1
(2)

u2
(2)

=


f2
(2)

f3
(2)


(1.20)

We can relate the element displacements to the system displacements through

compatibility conditions as in Equation 1.21

u1
(1) =U1 u2

(1) =U2 u1
(2) =U2 u2

(2) =U3 (1.21)
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Therefore Equation 1.20 becomes:

 k1 −k1

−k1 k1




U1

U2

=


f1
(1)

f2
(1)

 k2 −k2

−k2 k2




U2

U3

=


f2
(2)

f3
(2)


(1.22)

Here, we use the notation fi
( j) to represent the force exerted on element j at node i.

Expanding each equation in Equation 1.22:


k1 −k1 0

−k1 k1 0

0 0 0




U1

U2

0


=


f1
(1)

f2
(1)

0


k2 −k2 0

−k2 k2 0

0 0 0




U2

U3

0


=


f2
(2)

f3
(2)

0



(1.23)

Summing member by member:


k1 −k1 0

−k1 k1 −k2

0− k2 k2




U1

U2

U3


=


f1
(1)

f2
(1)+ f2

(2)

f3
(2)


(1.24)

Referring to the free-body diagrams in Figure 1.11 of each of the nodes:

f1
(1) = F1 f2

(1)+ f2
(2) = F2 f3

(2) = F3 (1.25)
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gives the final form:


k1 −k1 0

−k1 k1 −k2

0 −k2 k2




U1

U2

U3


=


F1

F2

F3


(1.26)

As with Equation 1.19, Equation 1.26 can be written in abbreviated form as

[K]{U}= {F} (1.27)

where,

• [K] - Global stiffness matrix

• {U} - Vector of displacements

• {F} - Vector of applied forces

The solution of Equation 1.27 may be found mathematically using a matrix inversion

method to obtain:

[K]{U}= {F} ⇒ {U}= [K]−1 {F} (1.28)

Here [K]−1 is the inverse stiffness matrix. Whilst this could certainly be achieved

manually for the simplistic example here, real world problems may have upwards of

thousands or even millions of more sophisticated elements. Hence the reliance on com-

puterized solutions today.
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1.3 Advances in Real-time Structural Analysis

With FEA being a numerical method of problem solving it relies extensively

on the usage of modern computing hardware to carry out the calculations and as such

is typically performed “offline” which is to say at stages preceding usage; be it for

analysing or simulating the iterative changes to a design or process; or post implemen-

tation such as investigating the root causes of a problem or failure. Typically, FEA is

carried out in Three stages [8]:

1. A model is prepared in the pre-processor during which inputs such as geometries,

material properties, loads and boundary conditions are defined.

2. A solver calculates a solution to the problem with respect to the aforementioned

inputs.

3. Finally, the post-processor offers a means for the analyst to observe and assess

the solution output.

The complexity of the problem may lead to the disconnect between parsing in-

puts to the solver and receiving outputs being a substantial amount of time. Whilst this

is the generally accepted norm, there are situations which arise in which it would be

preferable to be able to receive results in a timelier manner. These situations broadly

include categorical time critical problems such as:

• Predictive control

• Interactive virtual environments

• Health monitoring or medical procedures
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• Design / Process optimization

As demand has increased, several strategies have been employed in attempts to move to-

wards establishing “online” real-time (or near real-time) approaches and methodologies

capable of performing FEA tasks and models in situ. These strategies can be grouped

into 3 primary distinctions [16]:

1. Use of powerful computational hardware, including altering the methods in how

the components are used.

2. Code optimization, faster algorithms and parallelization of computation.

3. Development of alternate formalisms and formulations for structural analysis.

The first can be attributed to the increases in raw processing power which follows a

trend commonly referred to as “Moore’s Law” which states that the number of tran-

sistors on an integrated circuit doubles roughly every two years [17] (See Figure 1.12).

Furthermore, purpose built discrete components capable of performing computationally

intensive operations are increasingly commonplace with the most widely adopted being

Graphic Processing Units (GPUs) used as co-processors alongside conventional CPUs

[18].

The second, is closely tied to the first in that developments on the levels of software and

programming languages as well as the ability to distribute calculations to networked

computing devices allow for computational loads to be shared and executed in an in-

creasingly rapid and efficient manner.

The third, and most relevant to our investigation, pertains to the advances in

modelling methodologies and procedures. A non-exhaustive summary of these method-

ologies is discussed:
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Figure 1.12: Extrapolated projection for number of components per integrated function vs year

commonly referred to as "Moore’s Law". Left: Moore’s 1965 original [17]. Right: Updated

plot as of 2015 for consumer CPUs [19]

1.3.1 Full Extent Finite Element Models

If there were no limits on computational power, we would undeniably choose

to execute as comprehensive and theoretically rigorous a model as possible so as to ar-

rive at a solution which most accurately describes the real-world counterpart. However,

even systems of moderate complexity and number of DOFs result in systems of equa-

tions which are too prohibitively large to execute in real-time. Hence several attempts

have been made to alter the way the problems are formulated and solved with an accept-

able loss of accuracy in order to meet the objective of “real-time” simulation. It is not

uncommon to limit models to the linear regimes in situations in which this assumption

not only significantly reduces computational load but also falls within a level of accu-

racy which adequately approximates the ground truth. Furthermore since a large portion

of the computation time is dedicated to solving the inverse of the stiffness matrix, [K]−1

(as discussed in subsection 1.2.7), it is advantageous to precalculate the inverse matri-
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ces where possible. This was the approach carried out by Nikitin et al [20] for their

Virtual Reality (VR) simulation of elastic bodies. Similarly Huang et al [21] coupled

wireless sensors distributed within an environment to relay loads for which solutions

were generated by an FEA in or order to overlay stress predictions using Augmented

Reality (AR) in real-time (see Figure 1.13(a)). Their assumption of linear and semi-

static conditions, with non-variable geometry, allowed their approach to make use of

precalculated inverse stiffness matrices. This precomputation step greatly reduces the

computational loads during the real-time phase of execution allowing for frames rates

of between 30 down to 5 frames per second (fps) for models comprising between 500

to 4000 nodes (see Figure 1.13(b)) .

Figure 1.13: Real-time AR projection of a step ladder’s stresses. (a) Real-time AR output. (b)

Frame rate vs Number of Nodes "Node Number" [21]

In a more advanced approach Cerracchio et al [22] used an inverse Finite Ele-

ment Method (iFEM) to reconstruct the deformed structural shape of a composite stiff-

ened panel from in situ strain measurements. The reconstruction of the deformed shape
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from strain data enables the full-field reconstruction of structural strains and stresses

and is known as shape sensing. It allows for the application of failure criteria for struc-

tural health assessment. To achieve this, a high-fidelity NASTRAN model in the linear

elastic regimes was first modelled as the basis for the strain results which were then

utilized against the strain measurements to inversely obtain the deformed shape. The

iFEM methodology has the additional benefit of not requiring applied loading, material

constants, or inertial and damping characteristics to arrive at a solution.

Figure 1.14: Deformed shape of a composite panel subjected to Thermal load: (a) Nastran

evaluated deflection and (b) iFEM prediction [22]

There have been numerous studies which look to emulate the characteristics of

soft biological tissues such as skin [23; 24], muscle [25; 26], internal organs [27; 28]

and even brain tissue [29]. Due to the complexities unique to each of the biological ma-

terials’ structures and behaviours however, most models are required to be non-linear

or include hyper-elasticity. This unfortunately prohibits the models from being run in

time frames nearing anything that can be considered real-time. For the purposes of vir-

tual operations and training procedures where real-time execution is a requirement, the

linear elastic assumption once again dominates but is augmented in several instances to

improve accuracy in the regions of primary interest. One such example by Picinbono et

al [30] incorporates a linear-elastic FE model alongside transversely isotropic proper-
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ties with an additional external membrane to better represent the tougher outer surface

skin of internal organs in order to provide realistic haptic feedback to the surgeon.

Another approach denoted as a ’hybrid condensed FE model’ by Wu et al [31]

proposes partitioning the model into two separate regions, namely a region being in-

teracted with and the remainder of the model. A complex non-linear FE model able to

deal with topological change is used to model a small-scale operational region, whilst

a linear and topology-fixed FE model is used to model the large-scale non-operational

region. Doing so whilst also allowing for the extent of the regions to be changed dy-

namically allows for the resultant virtual surgery training system to be employed on

contemporary hardware.

1.3.2 Mass-Spring Systems

In instances where the predominant physical behaviour is dependent on the

membrane stiffness as opposed to the bending or shear stiffness, mass-spring approxi-

mations may serve as suitable simplifications of the system. This methodology has been

used in order to achieve levels of accuracy which simulate plausible physical behaviour

in softer materials such as cloth simulations in entertainment [32] or soft tissue defor-

mations in the medical and biological fields and in which exact numerical solutions are

not a requirement. For instance, Wang et al [33] developed a mass-spring model for use

in VR vascular surgery which closely mimics the physical behaviour of thin walled vas-

cular tissue. The approach amounts to discretizing the component(s) into point masses,

representing the internal forces between points as massless elastic springs and com-

puting the positions and velocities at discrete timesteps. Additional springs may be
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incorporated to account for shear and bending stresses should it be desired. The relative

simplicity of the resultant stiffness matrix allows for higher computational speeds at the

loss of accuracy.

Figure 1.15: Illustrative representation of a Mass-spring structure. [33]

1.3.3 Model Order Reduction Techniques

FE models by both name and nature are characterized by the discretization of the

system/geometry under investigation. This discretization leads to a system of equations

of high-dimensionality, the solution of which constitutes most of the time and resource

consuming processes of the FEA i.e. execution of the Solver. The ability to reduce

the dimensions of the system and in doing so the ultimate processing cost whilst still

retaining a desired level of accuracy is the underlying motivation to seek methods of

Model Order Reduction (MOR).

One such technique, Mode Shape Extraction is based on modal vectors and coordi-

nates. At its basis, several prior computations are performed during which the orthog-

onal mode shapes are determined. These mode shapes are thereafter used as the DOF

in determining the resultant deformational component of the analysis. The advantage

of this approach is that it is possible to reduce a system with an immense number of

DOFs (in the order of millions) down to a few dozen orthogonal mode shapes. Fur-
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thermore, the use of orthogonal mode shapes also assists in the reduction process as

they are decoupled from one another. This approach as a general idea is commonly

utilized within FEA to determine structural transient responses within the linear do-

main. Recent research by Ferhatoglu et al [34] have developed a promising technique

for superposition in the non-linear domain they refer to as Response Dependent Non-

linear Mode (RDNM) which appears to produce results with accuracy comparable to

a non-reduced Full Solution method. The RDNM method makes use of a calculated

complex stiffness matrix called the ’nonlinearity matrix’ which for given displacement

amplitude levels represents the corresponding nonlinearity. The RDNMs of the system

are derived through solution of the Eigen Value Problem (EVP) which corresponds to

the pattern and displacement level for which the matrix was determined. As changes

are made to the excitation frequency, the pattern and correspondingly the steady state

response level changes, in turn resulting in new and different equivalent stiffness matri-

ces and therefore different EVPs. Essentially the method uses variable linear stiffness

matrices which can be superimposed.

Another method is the usage of Component Mode Synthesis (CMS) techniques

wherein the DOFs for an elastic structure are divided between interior or boundary

DOFs. The boundary DOFs correspond to the nodes retained in the simulation model

for the purpose of kinematic and dynamic boundary conditions. Thereafter the modes

for the constraint and the normal modes for the fixed boundary are determined. For

the constraint, the modes are static with their number corresponding to the number

of DOFs of boundary. To obtain the constraint modes, a unit displacement is applied

to one of the boundaries DOFs while all remaining DOFs at the boundary are fixed.

To obtain the fixed-boundary normal modes conventional modal analysis is conducted
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Figure 1.16: Comparative results for Displacement of the tenth DOF for Linear Response vs

Nonlinear and RDNM models [34]

where all boundary DOFs are fixed. This combination of modes does not make an

orthogonal set of modes. The obtained set of modes is normalized prior to simulation

in order to keep the numerical benefits of a decoupled system, doing so however causes

the modes to lose their interpretability much like the creation of orthogonal axes in

the statistical technique Principal Component Analysis (PCA)1. With either of these

reduction techniques the modes are determined from the undeformed initial conditions

1Principal component analysis is a procedure that convert a set of possibly correlated variables into
a set of linearly uncorrelated variables and often employed in statistical methods for the purposes of
dimensionality reduction. Technique developed by Karl Pearson as early as 1901 [35]. A tutorial on its
usage is provided in [36]
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and are thus intended for linear analysis and are correspondingly applicable for small

deformations.

1.3.4 Training of Neural Networks based on FEA data

A relatively new and exciting field of research with respect to application in the

physical sciences is the rapidly advancing field of Artificial Intelligence (AI) and its

usage of Artificial Neural Networks (ANN) within Machine Learning (ML) and Deep

Learning (DL). This is in no small part due to their seemingly endless application and

growing usage case potentials.

Within the realm of FEA itself, neural networks have been used as a form of

indirect Model Order Reduction technique looking to generalise volumes of data into

condensed representations of the data domain of all potential data configurations (for

the problem or system under investigation that is). This is achieved through purpose-

built architectures which are trained on said data with the goal of producing a model

which ideally inherently “understands” the system on which it was trained. Should this

be achieved, the trained model is expected to be capable of inferring predictions at rates

considerably quicker and using less computational resources than through conventional

means. A caveat of the training/learning process however is that the dataset required

typically still needs to be initially obtained through conventional means. When pertain-

ing to structural models this necessitates conventional FEA means.

Hambli et al [37] utilized an architecturally simple neural network in order to

achieve the real-time prediction of tennis ball and racket deformations for usage in

Virtual Reality (VR) simulations. A dataset of randomly generated parameters such as

velocity, angle of impact and impact location were used as input whilst deformations

29



(of ball and strings), impact forces and deflection angles formed the output dataset

(see Figure 1.17). For the factors identified, only discrete values were retained for

generating the datasets. five values for ball velocity, four values for impact angle and

thirteen impact zones. The combination of all factors produced a two hundred and sixty

(13×5×4) design of experiments (DoE) combinations for the FE simulation to study

the effect of each variable and the interaction between them. The trained model can

predict the resulting (1 of 260 discrete) dynamic interactions with haptic feedback to

the user in real-time.

Figure 1.17: VR Tennis Racket parameters. Left: Tennis racket impact zones and Right:

output responses for real-time model developed by Hambli et al [37]

Ordaz-Hernandez et al [38] developed a model capable of predicting the non-

linear responses of a cantilever beam via a multi-layer feed-forward neural network re-

ferred to as a ‘universal approximator’ multi-layer perceptron (see Figure 1.18). Com-

paring their results to two FE models; one linear and fast yet less accurate, one non-

linear but slower and more accurate; they found that their neural network performed

with the speed of the linear FEA but accuracy comparable to the non-linear model

within the domain of training inputs.
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Figure 1.18: Left: Architecture of "universal approximator" multilayer perceptron wherein

variables P, L, A, I, E fed in and the predicted responses of ux, uy, uz for the cantilever beam

free end are returned. Right: Great displacements domain case. The nonlinear model requires

five steps to complete its response. The linear and the reduced model require only one step.

Ordaz-Hernandez et al [38]

Morooka et al [39] developed a system reliant on neural networks to determine

the deformations of a liver model consisting of 729 vertices and 512 cubic elements.

Their ‘neuroFEM’ model was able to return results which were in close agreement with

those provided by conventional non-linear FEA methods (see Figure 1.19). Using a

modest computer (Pentium4 2.8 GHz with 1Gb RAM) the computational time of the

neuroFEM is also stated to be roughly 1,000 times faster than that of the non-linear

FEM.

1.4 Problem Statement

With the advances and increasing number of techniques in AI, more specifically

ML and DL, it is likely that there exist several novel, as of yet untested, methodolo-

gies which could be strong candidates for application in FEA with the potential ability

31



Figure 1.19: Comparison of methods between Morooka et al. [39] (top row) and non-linear

FEM (bottom row). (a) and (b) generated from two forces in training dataset whilst (c) and (d)

are from arbitrary forces applied to original model.

to produce real or near-real-time results. One such candidate is the Image-to-Image

translation capable Generative Adversarial Network (GAN). Whilst GANs have been

predominantly used for abstract or even artistic use cases, I however propose that their

powerful image generating capabilities have the potential ability to infer the physical

force-deflection-stress relationships found in static FEM. Furthermore, they may be

capable of doing so at resolutions and rates at or in excess of those discussed in subsec-

tion 1.3.4.

1.5 Objectives

The aim of this thesis is to develop and utilize purpose-built ML models to

learn the inherent physical behaviour of a domain of commonplace FEA problems

in order to produce user requested predictions in real-time. We will use the case of

isotropic rectangular platework of varying geometric and material properties subjected
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to several varying loads.

To fulfil this aim, several objectives need to be achieved:

1. Create a dataset(s) containing the inputs and responses of the FEA "problem set"

2. Implement a working ANN capable of training on the Dataset(s)

3. Generate trained model(s) using the ANN

4. Verify the validity of the model(s)

5. Implement a Graphic User Interface (GUI) for prediction of user inputs.

1.6 Structure of the Thesis

chapter 1 provides a brief background of FEA, the fundamentals of FEA, the

significance of the issue, the problem statement, objectives and structure of the study.

chapter 2 provides information regarding contemporary developments in AI, The

working principles of AI and its constituent sub sections as well as breakdown of the

conditional GAN “Pix2Pix” on which this work is primarily based.

chapter 3 covers the methodology and process of implementation of dataset creation,

neural network creation, training, result verification and GUI implementation.

chapter 4 discusses the results of the model training. The comparison between a

sequentially stepped stress prediction (ie force to deflection to stress) and directly from

force to stress are analysed as well as a discussion on the GAN as a feasible alternative

to conventional FEA.

chapter 5 presents the conclusions drawn as well as a discussion on potential future

work.
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Thereafter ancillary media such as the Appedices and References are provided.
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2 Literature Review

This chapter serves to cover the theoretical and operating principles behind AI,

Machine Learning and related sub-topics. Readers familiar with these topics may ad-

vance to section 2.7 for discussions of GANs, cGANs and their applicability to FEA for

the purposes of this thesis.

2.1 Artificial Intelligence vs Machine Learning vs Deep Learning

Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL)

have increasingly become more common and popular buzzwords, often used inter-

changeably. When speaking of AI the implication is that systems, be they physical

machines or software, are capable of performing one or more of the following tasks

[40]:

• understanding human behaviour or language,

• performing mechanical tasks involving complex manoeuvring,

• solving complex computer-based problems often involving large data in a very

short time.

ML is a subset of the field of AI wherein machines, or more precisely algorithmic archi-

tectures acquire knowledge automatically from the data presented to them. In this way

the internal algorithms are said to "learn" the required relationships, features, functions

or actions required in order to fulfil the task for which it was created. This learning can

be achieved in a number of ways but broadly speaking is carried out through the ML

architecture systematically analysing data samples and adjusting its internal parameters
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until such time that a model of suitable accuracy is achieved.

DL in turn is a subset of ML which relies on networks that make extensive usage of

hidden layers. This hidden aspect of the architecture is what gives DL its “depth”. Fur-

thermore, some sources distinguish ML and DL by the level of feature extraction or

data pre-processing required by the user, with ML generally requiring features to be

defined up front whilst DL does not [41]. The relationship between these classes and

subclasses is illustrated in Figure 2.1.

Figure 2.1: Relationship between Artificial Intelligence, Machine Learning and Deep Learning

[41].

2.2 Types of Machine Learning

Machine Learning can be divided into several groupings according to the way

in which their learning feedback is approached, namely Supervised, Semi-supervised,

Unsupervised and Reinforcement Learning [42].
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2.2.1 Supervised Learning

In Supervised learning the dataset is comprised of collections of labelled exam-

ples {(xi,yi)}Ni=1 wherein each element xi contains a vector of features [x j, · · · ,xD]
T

which describe it. These features could be of any type or class from descriptive text to

discrete or continuous numeric values.

For example, a dataset of drug trial patients could have features such as age (in

discrete years), weight (continuous kg’s), gender (discrete options of M/F), dosage (in

mg/number of pills) and "received placebo" (true/false). For each element of the dataset,

their features will be structurally the same with each elements feature x( j)
i corresponding

to the same feature and type of information as the other elements x( j)
N .

The Label, yi can be an element of a finite set of classes {1,2, · · · ,C} or a real

number, a vector or a multidimensional matrix etc. This could for instance be whether

the patients of the aforementioned dataset where (cured, had no effect, condition wors-

ened, died).

The goal of supervised learning is to attempt to create a model capable of cor-

relating and predicting the label of an input from its feature set. A commonly taught

and cited example of which is the MNIST dataset which is used to train networks in

recognizing numeric characters from handwritten inputs [43]. Figure 2.2 shows extract

of handwrittern numbers from the MNIST dataset.

2.2.2 Unsupervised Learning

In Unsupervised learning the dataset may possess similar feature vectors as those

in Supervised learning. However, the primary difference is that the labels that categorise

the elements of the dataset are not present {xi}Ni=1. As a result, Unsupervised learning
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Figure 2.2: Excerpt from the ’MNIST’ handwritten numerical character dataset [43]

typically aims to group or cluster datasets along the features or could be used for the

purposes of dimensionality reduction much like is done within statistical methods such

as PCA [44].

2.2.3 Semi-supervised Learning

In semi-supervised learning, the dataset is comprised of both labelled and unla-

belled elements. The number of labelled elements is usually outweighed by the number

of those unlabelled. The objective of the labelled elements is to assist in allowing the

model to self-categorise/infer labels for the remainder from the feature vectors and in

doing so, typically, arrive at a better model than that derived from a purely unlabelled

dataset.

It should be noted however that having labels does not guarantee better mod-

els as it is possible for unsupervised models to infer abstract relationships (from the

perspective of human interpretation) which might otherwise not be apparent and which
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drive the model to learn more efficiently than those of human labelled datasets [45].

2.2.4 Reinforcement Learning

In Reinforcement learning the model is developed as an ‘agent’ which inhabits

an environment and is given sensors as a means to perceive it. Its perception is a vector

of features. Furthermore, it is given the ability to perform actions within the framework

of its environment. The outcome of its actions results in rewards (or punishments)

which serve to drive change in the model. The end goal of the Reinforcement Learning

model is to derive a set of actions or a “policy” which maximizes the expected rewards.

Reinforcement learning is often utilized in situations where problems require sequential

action and for this reason are frequently used for the artificial intelligences of a game-

playing nature [46], stock trading and finance [47; 48] or robotics ([49] - see Figure 2.3).

Figure 2.3: Reinforcement learnt model able to transfer the locomotion to mannequins of

different configurations performing varying tasks such as (a) following a path/heading (b)

carrying objects (c) dribbling a ball and (d) transferring leant skills between skeletal

configurations [49]

Summarily, Machine Learning is a broad field which is continuously growing
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to include additional capablilities and tasks, many of which were considered beyond

the capablilites of machines not too long ago. Figure 2.4 serves as a non exhaustive

summation of contemporary ML capabilities [50].

Figure 2.4: Commonly performed Machine learning tasks and their grouping [50]

2.3 Artificial Neural Networks

The working principle behind ML relies on a network of interconnected nodes,

commonly referred to as ‘neurons’ or ‘perceptrons’. These neurons are arranged pro-

gressively from input layer to output layer in what is referred to as an Artificial Neural

Network (ANN). The specific layout and degree to which neurons and layers are in-

terconnected is known as the “connectivity pattern” or “architecture” of the network.

During each cycle of learning or ‘training’, each neuron in the input layer receives a

single input (variable, feature etc) from the feature vector of a sample of the dataset
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being ‘taught’ and through connections to subsequent neurons in subsequent layers, re-

lay information deeper through the network until arriving at the output layer. During

transmission itself, the weights, w of the neural connections and biases, b of the inter-

nal neurons affect to what extent data is transmitted to the next connected neuron in

the network. At the neurons themselves these weighted inputs are linearly aggregated

along with that neurons bias. Thereafter various ‘activation functions’ are applied to

the aggregate value of the neuron, z resulting in the ’activation’ value, a, of that neuron.

The neurons activation value is transmitted as inputs to the next connected neuron. This

occurs recursively for each subsequent neuron in each subsequent layer. This is rep-

resented diagrammatically in figure 2.5 and a summation of commonly used activation

functions is presented in Table 2.1.

The output for each neuron can be represented mathematically as:

aout = g(z) (2.1)

where

z =
N

∑
i=1

(ai×wi)+b (2.2)

and,

a1...an - neuron activation values.

w1. . .wn - neural connection weights.

b - neural bias.

z - Aggregated sum of all inputs to neuron.

g(z) - activation function.

Furthermore, should a loss function form part of the network such as in cases
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Figure 2.5: Working principle of a single artificial neuron. Arrows indicate direction of data

flow where a are neuron activations, w connection weights, b neuron bias, z aggregated sum of

the linear product of nodal activations and weights as well as the nodal bias, g activation

function [51].

of supervised learning, it usually serves to calculate the degree to which the output re-

sponse is inaccurate. To achieve an accurate output the error needs to be minimized.

This is commonly achieved through ’gradient descent’and ‘back-propagation’ which

are the processes by which adjustements are applied to the networks ’learnable pa-

rameters’ i.e. network weights and biases. This repeated parameter self-adjustment

ultimately results in the iterative improvement and learning of the model.

2.3.1 Loss Functions

For learning tasks such as regression learning, models are tasked with finding

patterns in the data - a functional relationship between the inputs X and output Y com-

ponents of the data. If our domain set of X is Ri (for i number of input variables) and

the set of Y "labels" is the set of R Real numbers it may be more adequate to call Y

the "target" set. The training data remains a finite sequence of {(xi,yi)}Ni=1 and the
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Table 2.1: Frequently used Activation Functions

Name Equation Derivative Plot

Identity f (x) = x f
′
(x) = 1

Binary
Step f (x) =

{
0 for x < 0
1 for x≥ 0

f
′
(x) =

{
0 for x 6= 0
?1 for x = 0

Logistic /
Soft Step f (x) = 1

1+e−x f
′
(x) = f (x)(1− f (x))

TanH f (x) = 2
1+e−2x −1 f

′
(x) = 1− f (x)2

ArcTan f (x) = tan−1(x) f
′
(x) = 1

(x)2+1

Rectified
Linear
Unit

f (x) =

{
0 for x < 0
x for x≥ 0

f
′
(x) =

{
0 for x < 0
1 for x≥ 0

Parametric
Rect. Lin-
ear Unit

f (x) =

{
αx for x < 0
x for x≥ 0

f ′(x) =

{
α for x < 0
1 for x≥ 0

Exponential
Linear
Unit

f (x) =

{
α(ex−1) ; x < 0
x for x≥ 0

f
′
(x) =

{
f (x)+α ; x < 0
1 for x≥ 0

SoftPlus f (x) = loge(1+ ex) f
′
(x) = 1

1+e−x

output a function model that maps X to Y . The measure of success can be evaluated as

the quality of a hypothesis function, h : X → Y , by a measure of difference between the

true labels / targets and their predicted values. For example a square difference would

be given by Equation 2.3

LD(h) def
= E

(x,y)∼D
(h(x)− y)2 (2.3)

Since the hypothesis function may be any number of formulae it is possible to

generalize Equation 2.3 [52]; Given any set of Hypotheses H and some domain Z

let ` be any function from H ×Z to the set of non-negative real numbers, ` : H ×

Z → R+. Such functions are called loss functions. We can define risk functions as the
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expected loss of a classifier, h ∈H with respect to a probability distribution D over Z,

namely,

LD(h) def
= E

z∼D
[`(h,z)] (2.4)

This states that we consider the expectation of the loss of h over objects z picked ran-

domly according to D . Similarly we can define empirical risk as the expected loss over

a given sample S = (z1, · · · ,zm) ∈Z m, namely,

LS (h) def
=

m
Σ

i=1
[`(h,zi)] (2.5)

With application to the ML tasks of classification or regression for example

yields Equation 2.6 and Equation 2.7 respectively:

1. 0-1 loss: Random variable z ranges over the set of pairs X ×Y and the loss func-

tion is

L0−1(h,(x,y))
def
=


0 if h(x) = y

1 if h(x) 6= y

(2.6)

2. Square Loss: Random variable z ranges over the set of pairs X ×Y and the loss

function is

Lsq(h,(x,y)
def
= (h(x)− y)2 (2.7)

2.4 Gradient Descent

The goal of ML is to minimize the risk function, LD(h) of Equation 2.4. Ordi-

narily we could not do this directly as it depends on the unknown distribution D and
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we would instead use the empirical risk based on a training sample set S and attempt

to minimize the empirical risk of an hypothesis function, LS (h). A method which at-

tempts to minimise the risk function directly and which has found considerable favor

and usage in ML is Stochastic Gradient Descent (SGD). SGD attempts this using a gra-

dient descent procedure as its name implies. SGD is an optimization technique which,

recursively improves the solution by iteratively taking steps along the negative of the

gradient of the function to be minimized at the present location. Instead of a single

hypothesis function however it looks to a vector W of hypotheses of convex hypothesis

class, H . Furthermore since D is an unknown, the gradient of LD(W) is also unknwon.

SGD bypasses this by permitting the technique to take a step in a random direction pro-

vided the value of the direction is expected to be the negative of the gradient [52]. This

procedure is conceptually illustrated in Figure 2.6.

Figure 2.6: Illustrative representation of process of gradient descent which iteratively seeks to

move towards a local/global minima along the path of steepest gradients [53]
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2.4.1 Gradient Descent Algorithms

Gradient descent is a method to minimize an objective function, J(θ), parametrized

by a model’s parameters θ ∈ Rd . It does so through modifying the parameters in the

direction opposite that of the gradient of the objective function, ∇θ J(θ) with respect

to the parameters.The magnitude of the steps taken to reach a (local) minimum is de-

termined by the learning rate η . Simply put, gradient descent follows the slope of the

objective function surface downhill until the base of a valley is reached [54]. Gradient

descent can be separated into three groupings depending on the amount of data used to

compute the gradients, namely

2.4.1.1 Batch gradient descent

Batch gradient descent is an idealised approach in that it is assured to converge

to the global and local minimums for convex and non-convex error surfaces respec-

tively. The caveat however is that to achieve this the gradient is calculated using the

entire training dataset per update. Consequently this results in Batch gradient descent

being prohibitively slow or even unachievable for large datasets which do not fit in the

available memory. Furthermore, this eliminates it from ’online’ usage as it is unable to

update when presented with additional data. The Batch gradient descent update to the

parameters is given by Equation 2.8:

θ = θ −η .∇θ J(θ) (2.8)
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2.4.1.2 Stochastic gradient descent

Stochastic gradient descent (SGD), in contrast to Batch gradient descent, per-

forms updates to parameters for every training example xi and label yi as expressed in

Equation 2.9

θ = θ −η .∇θ J(θ ;x(i);y(i)) (2.9)

Where Batch gradient descent may perform computations which are redundant for large

datasets as it recalculates gradients for similar entries prior to updating each parameter,

SGD removes this redundancy by consecutively performing updates. Consequently,

SGD is usually much faster and has the added ability to learn ’online’ as it can accept

new data continuously. A caveat of SGD is that owing to its response to each data point

in the training set it is likely to fluctuate significantly. In the end however, SGD exhibits

the same convergence to minima when the learning rate is gradually decreased during

training. [54]

2.4.1.3 mini-batch gradient descent

Mini-batch gradient descent falls between Batch and Stochastic gradient descent

methods with respect to responsiveness and computational speed and load. Mini-batch

gradient descent performs updates for each n "mini-batch" grouping of training exam-

ples.

θ = θ −η .∇θ J(θ ;x(i:i+n);y(i:i+n)) (2.10)

The benefits of this are two-fold:

1. Reduction in the parameter updates variance, which may result in convergence

that is more stable.
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2. Allowance to incorporate common matrix optimizations of contemporary pro-

gramming libraries which results in improved operational speeds and efficiencies.

Generally speaking ML and DL models usually opt for some form of mini-batching, so

much so that the term SGD is used synonymously with mini-batched gradient descent

[55]. Similarly, we adopt this naming convention in subsequent sections.

2.4.2 Gradient descent optimization algorithms

Over the years there have been several optimization techniques developed to im-

prove the efficiency and rate of convergence of gradient descent methods implemented

specifically within ML and DL systems. These optimizations are outlined here and

summarised in Table 2.2 [55].

2.4.2.1 Momentum

SGD experiences difficulties navigating areas where the surface curved steeper

along one axis than another which may occur around local optima. In such circum-

stances SGD may oscillate between adjacent slopes of topological ’ravines’ whilst mak-

ing only slight progress along the floor of the ravine towards the local optimum. In

attempt to dampen this oscillation an additional fraction γ of the previous step’s update

vector is added to the current update vector as reflected in Equation 2.11:

vt = γvt−1 +η∇θ J(θ)

θ = θ − vt

(2.11)

The resultant effect is that the "momentum" term containing γ increases for dimensions

whose gradients slope in the same direction and reduce updates for those which are
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counter directed. The net result is faster convergence and reduced oscillation.

2.4.2.2 Nesterov accelerated gradient

Nesterov accelerated gradients (NAG) works with momentum as its basis and

attempts to give foresight with respect to expecting the slope to flatten before rising

again and thus decrease the momentum preemptively:

vt = γvt−1 +η∇θ J(θ − γvt−1)

θ = θ − vt

(2.12)

In Equation 2.12 we retain momentum through the momentum term γvt−1 how-

ever by computing θ − γvt−1 we look ahead by calculating the gradient with respect to

the approximate future position of the parameters.

2.4.2.3 Adagrad

Where the two aforementioned optimizations improve convergence specifically

for slope of the objective (error) function, Adagrad is an algorithm for optimizations

based on individual parameters. It adapts the learning rates which are applied on a

per parameter basis, performing larger updates for infrequent parameters and smaller

updates for frequent parameters. Consequently it is suitable for handling sparse data.

As Adagrad uses a different learning rate for every parameter θi for every timestep t we

set gt,i to be the gradient of the objective function with respect to the parameter θi at
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timestep t

gt,i = ∇θ tJ(θt,i)

θt+1,i = θt,i−η .gt,i

(2.13)

Modifying Equation 2.13 to apply specific per parameter learning rates of Equa-

tion 2.13 yields Equation 2.14:

θt+1,i = θt,i−
η√

Gt,ii + ε
.gt,i (2.14)

Gt ∈Rd×d in Equation 2.14 is a diagonal matrix where each diagonal element

i, i is the sum of squares of the gradients with respect to θi up to time-step t and ε is

a small (usually of order 1e-8) smoothing term that avoids division by zero. Since Gt

contains the sum of squares of previous gradients relative to all parameters θ along its

diagonal, the implementation Equation 2.14 can be vectorized by element-wise matrix-

vector multiplication � between Gt and gt to arrive at Equation 2.15.

θt+1 = θt−
η√

Gt + ε
�gt (2.15)

A primary benefit of the Adagrad technique is the lack of need to manually ad-

just the learning rate. The primary weakness however is its accumulation of the squared

gradients in the denominator - Since each consecutive addition is positive the accu-

mulated sum grows indefinitely which ultimately results in the learning rate becoming

negligably small after which the algorithm ceases learning and is unable to update for

additional knowledge.
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2.4.2.4 Adadelta

A technique which aims to improve upon the aggressive decreasing learning rate

of Adagrad is Adadelta. Instead of accumulating all past squared gradients, Adadelta

limits the accumulation to a moving window of fixed size w. Furthermore, the sum

of the gradients is recursively defined as a decaying average of past squared gradients

instead of storing w previous gradients. The running average, E
[
g2]

t , at time step t

then depends only on the the current gradient and the previous average by a fraction γ

(similar to momentum in Equation 2.11)

E
[
g2]

t = γE
[
g2]

t−1 +(1− γ)gt
2 (2.16)

For clarity, standard SGD update of Equation 2.8 is rewritten in terms of the parameter

update vector ∆θt :

∆θt =−η .gt;i

θt+1 = θt +∆θt

(2.17)

The parameter update vector of Adagrad derived previously in Equation 2.15 subse-

quently takes the form:

∆θt =−
η√

Gt + ε
�gt (2.18)

We replace the diagonal matrix Gt with the decaying average over previous squared

gradients E
[
g2]

t :

∆θt =−
η√

E[g2]t + ε
gt (2.19)
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As the denominator is just the root mean squared (RMS) error criterion of the gradient,

we can replace it with the criterion short-hand:

∆θt =−
η

RMS[g2]t
gt (2.20)

The units of Equation 2.20 do not match as they dont have the same units as the param-

eter. To account for this, another exponentially decaying average, this time of squared

parameter updates is defined:

E
[
∆θ

2]
t = γE

[
∆θ

2]
t−1 +(1− γ)∆θt

2 (2.21)

The root mean squared error of parameter updates is thus:

RMS[∆θ ]t =
√

E[∆θ 2]t + ε (2.22)

Since RMS[∆θ ]t is unknown, we approximate it with the RMS of parameter updates

until the previous time step t−1. Replacing the learning rate η in Equation 2.20 with

RMS[∆θ ]t−1 yields the final Adadelta update rule of Equation 2.23

∆θt =−
RMS[∆θ ]t−1

RMS[g2]t
gt

θt+1 = θt +∆θt

(2.23)

The primary advantage of Adadelta is the removal of the need to set a default learning

rate, as it is eliminated from the update rule.

52



2.4.2.5 Adam

Adaptive Moment Estimation (Adam) is a method that also computes adaptive

learning rates for each parameter. Adam stores an exponentially decaying average of

past gradients mt in addition to the exponentially decaying past squared gradients vt as

done by Adadelta [56]:

mt = β1mt−1 +(1−β1)gt

vt = β2vt−1 +(1−β2)gt
2

(2.24)

In Equation 2.24 mt and vt are estimates of the mean and uncentered variance of the

gradients and are referred to as the first and second moments respectively. The moments

would be biased towards zero as they are implemented as vectors of 0’s during the initial

steps, so to counter this, ’bias-corrected’ first and second moments are defined:

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

(2.25)

The bias-corrected moments of Equation 2.25 are used to update the parameters which

produces the Adam update rule Equation 2.26

θt+1 = θt−
η√

v̂t + ε
m̂t (2.26)

The authors of the paper [56] propose default values of β1 = 0.9, β2 = 0.999 and ε =

10−8.
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2.4.2.6 AdaMax

In the Adam update rule of Equation 2.26, the vt factor scales the gradient in-

versely proportionally to the L2
2 norm of the prior gradients through the vt−1 term and

current gradient |gt |2:

As an extention of Adam by the same authors [56], they propose AdaMax which

generalizes to the Lp norm3

vt = β2vt−1 +(1−β2)|gt |2 (2.27)

Furthermore β2 is also parameterized as β
p
2 :

vt = β
p
2 vt−1 +(1−β

p
2 )|gt |p (2.28)

Norms for large p values generally become unstable, however L∞ generally ex-

hibits stable behavior. Consequently, AdaMax proposes that vt with L∞ converges to

the more stable value as follows

ut = β
∞
2 vt−1 +(1−β

∞
2 )|gt |∞

= max(β2 · vt−1, |gt |)
(2.29)

In Equation 2.29 ut denotes the infinity norm-constrained vt : Substituting Equation 2.27

through Equation 2.29 into the Adam update of Equation 2.26 by replacing
√

v̂t +ε with

2L2 norm is a standard method to compute the length of a vector in Euclidean space. Given x =
[x1x2 · · ·xn]

T , L2 norm of x is defined as the square root of the sum of the squares of the values in each
dimension.[57]

3Lp norm is length of a vector in p space. For a real number p ≥ 1, the p-norm or Lp-norm of x is
defined by ‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p . [58]
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ut produces the AdaMax update rule:

θt+1 = θt−
η

ut
m̂t (2.30)

Note that due to the liance on the max operation for ut , it is not as likely to

bias towards zero as mt and vt in Adam, which is why there is no need to derive a bias

correction for ut . The authors proposed default values for β1 = 0.9, β2 = 0.999 and

η = 0.002.

Table 2.2: Summary of SGD optimization algorithms. Table created by author

Method Rule Advantages
Momentum vt = γvt−1 +η∇θ J(θ) Faster convergence

θ = θ − vt Reduced Oscillation
NAG vt = γvt−1 +η∇θ J(θ − γvt−1) Anticipates slope flattening

θ = θ − vt
AdaGrad gt,i = ∇θ tJ(θt,i) Adapts learning rate per parameter

θt+1 = θt− η√
Gt+ε
�gt Suitable for sparse data

Adadelta ∆θt =−
RMS[∆θ ]t−1

RMS[g2]t
gt Removes need to set learning rate

θt+1 = θt +∆θt
Adam m̂t =

mt
1−β t

1
, v̂t =

vt
1−β t

2
Suited large data/parameters situations

θt+1 = θt− η√
v̂t+ε

m̂t Appropriate for noisy/sparse gradients
AdaMax ut = max(β2 · vt−1, |gt |) Suitable for time variant data

θt+1 = θt− η

ut
m̂t

2.5 Backpropogation

The preceding section outlined the goal of gradient descent and its optimization

methods concerned with rapidly and efficiently arriving at a minima along the multi-

dimensional surface which defines the objective (generally loss) function. In order to

actually take a step along the surface, within the context of neural networks, an addi-

tional step is required to make alterations to the internal parameters which define the
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network - The process by which the network learnable parameters / weights and biases

are changed is called back-propogation. The process was first proposed by Rumel-

hart, Hinton and Williams in 1986 [59]. Their described means of implementation has

changed very little and is currently the defacto means by which the majority of ML and

DL architectures are adjusted during training. To quote the paper directly;

"The procedure repeatedly adjusts the weights of the connections in the network so

as to minimize a measure of the difference between the actual output vector of the

[neural] net and the desired output vector. As a result of the weight adjustments,

internal ’hidden’ units which are not part of the input or output come to represent

important features of the task domain, and the regularities in the task are captured

by the interactions of these units"

In implementation the back-propogation algorithm is essentially an application

of the chain rule which runs recursively backwards from the last network layer to

the first along every internal neural connection. We frequently encounter situations in

which the quantities appearing in a function are themselves functions of another vari-

able. Accordignly, the chain rule states that if you have three functions f , g and h with

f being a function of g and g being a function of h then the derivative of f with respect

to h is equal to the product of the derivative of f with respect to g and the derivative of

g with respect to h [60]:

∂ f
∂h

=
∂ f
∂g

∂g
∂h

(2.31)

Consider the hypothetical network in Figure 2.7. The network is composed of L

layers (an input layer, an output layer, and L−2 hidden layers). Each layer consists of

Nv neurons, where v = 1,2, · · · ,L is the index of the layer. Figure 2.7 displays a closer
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Figure 2.7: Architecture of a Hypothetical Neural Network. Adapted from [61].

look at an arbitrary neuron of layer k.

During training, the input sample is propagated in the forward direction until the

output emerges from the output layer. This output can be viewed as a nonlinear function

of the input in terms of the current weights, biases and thresholds of the activation

functions applied (if any). A cost/loss function (or more generally an objective function)

is then used to compute the error between the actual output of the network and the

desired target output associated with that input sample. Thereafter, the error is back-

propagated from the output layer through the hidden layers and finally to the input layer.

During the back-propagation process, the sensitivity of error to each weight, bias and

threshold in the network is obtained. These sensitivities are used to update the weights

and thresholds of the network according to the gradient decent method. This process
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of forward-propagation, back-propagation, and weights updating is iterated until the

network parameters (i.e. weights, biases and activation function thresholds) converge

to optimal values that minimize the error between the actual output and desired targets.

In forward-propagation, the neuron collects the weighted outputs of layer k−1,

sums them to a threshold θ l
k and then applies an activation function f (x) on the result

of the summation to compute the output of the neuron yl
k. This forward-propogation

process can be expressed by Equation 2.32 and Equation 2.33 and was described in

section 2.3

xl
k = θ

l
k +

Nk−1
Σ

i=1
wk−1

ik yk−l
i (2.32)

yl
k = f (xl

k) (2.33)

Note that the superscripts in the above equations denote the layer to which the

quantities belong. Accordingly, the input propagates throughout the entire network

(neuron by neuron) until an output vector Y =
[
yL

1 ,y
L
1 ,y

L
1 , · · · ,yL

NL

]T emerges from the

last layer L. Now suppose that the input-output example used in this training iteration

consists of an input P =
[

p1
1, p1

2, p1
3, · · · , p1

N1

]T
associated with a desired target vector

T = [t1, t2, t3, · · · , tNL ]
T . The error E between the actual and desired outputs can be then

computed according to the following cost function:

E =
1
2

NL
Σ

i=1
(yL

i − ti)
2

(2.34)

You will note that this is equivalent to the square loss of Equation 2.7 with the

addition of the factor 1
2 introduced here for convenience to cancel out the exponent

when the cost function is differentiated with respect to Y as will be shown. As noted
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previously, the objective of back-propagation algorithm is to optimize the network’s

weights and biases in order to minimize the cost function. To do so, the first step is

to obtain the sensitivity factors. For the kth neuron of layer l, the sensitivity factors

to be computed are the partial derivatives of the error E with respect to the weights

w1k,w2k,w3k, · · · ,wNl−1k along with the bias θ l
k, which can be defined according to the

chain rule as follows:

∂E
∂wl−1

ik

=
∂E
∂xl

k

∂xl
k

∂wl−1
ik

=
∂E
∂xl

k
yl−1

i

(2.35)

∂E
∂θ l

k
=

∂E
∂xl

k

∂xl
k

∂θ l
k

=
∂E
∂xl

k

(2.36)

From Equation 2.35 and Equation 2.36 we can infer that the sensitivity factors

are dependent on the partial derivative of the error with respect to xl
k. This derivative is

often referred to as the delta error of the neuron ∆l
k

∆
l
k =

∂E
∂xl

k
(2.37)

According to the chain rule, the delta error of any neuron can be expressed as:

∆
l
k =

∂E
∂yl

k

∂yl
k

∂xl
k

=
∂E
∂yl

k
f
′
(xl

k)

(2.38)
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For a neuron k in the output layer L, Equation 2.38 be simplified to Equation 2.39

∆
L
k = (yl

k− tk). f
′
(xl

k) (2.39)

However, for the neurons in layers 1 to L−1 it is necessary to derive a formula

for computing the derivative ∂E
∂yl

k
. As shown in Figure 2.7 the output of the kth neuron of

layer l (i.e. yl
k) contributes to the input of neurons of the next layer l +1. Accordingly,

it can be proved that the derivative of the error with respect to yl
k is:

∂E
∂yl

k
=

Nl+1
Σ

i=1

∂E
∂xl+1

i

∂xl+1
i

∂yl
k

=
Nl+1
Σ

i=1
∆

l+1
i wl

ki

(2.40)

Substituting Equation 2.40 in Equation 2.38 gives the delta error corresponding to any

neuron k in layers 1 to L−1:

∆
l
k = f

′
(xl

k)
Nl+1
Σ

i=1
∆

l+1
i wl

ki (2.41)

Equation 2.41 suggests that the delta errors, and hence the sensitivity factors,

of a certain layer l depend on the delta errors of the next layer l + 1. Therefore, in

back-propagation algorithm, we start by calculating the delta errors of the output layer

L, then we move in the backward direction and calculate the delta errors starting from

the last hidden layer L− 1 until arriving at the input layer. Once the delta errors and

sensitivity factors are computed for all neurons, the weights and thresholds can be up-

dated according to the gradient decent method as expressed by the methods described

in section 2.4.

The standard backpropagation algorithm for training of NN networks can be
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summarized in the following steps [59]:

1. Select the hyperparameters that determine the architecture of the ANN (number

of hidden layers and number of neurons in each hidden layer).

2. Initialize the weights and biases by uniformly distributed random numbers

3. Pick an input-output sample (or a batch of input-output samples) and forward-

propagate its input through the network according to Equation 2.32 and Equa-

tion 2.33.

4. Compute the error between the actual output and the desired target associated

with the forward-propagated input-output sample(s) as expressed by equation

Equation 2.34.

5. Calculate the delta errors of the output layer according to equation Equation 2.39.

6. Calculate the delta errors of the other layers starting from the hidden layer L−1

until the input layer according to equation Equation 2.41.

7. Obtain the sensitivity factors as explained by... Equation 2.35 to Equation 2.37.

8. Apply the gradient decent method to update the weights and thresholds according

to a chosen technique in section 2.4.

9. Repeat steps 3 to 8 for each sample (or batch of samples) in the training dataset.

10. Repeat steps 3 to 9 for a sufficient number of epochs4 until a certain stopping

criterion is satisfied.

4An epoch is defined as one complete pass of the entire training dataset.
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2.6 Convolutional Neural Networks

A specific class of Neural Networks well suited to data distributed across areas

or volumes is the Convolutional Neural Network (CNN). CNNs are primarily used to

solve difficult image-based tasks such as pattern recognition, classification and machine

vision problems such as those in medical imaging [62; 63] or traffic prediction and au-

tonomous vehicles [64; 65]. A primary identifying characteristic of the CNN is that its

input is designed to accept input structured into 3 dimensions; height, width and depth,

with depth referring to the 3rd dimesion of the input and not depth of layers of the CNN.

Architecturally CNNs are composed of convolutional layers, fully-connected layers and

pooling layers. Successive stacking of the layers with additional activation functions at

key points between results in the formation of a complete CNN (see Figure 2.8).

Functionally the CNN can be broken down into four primary operations [66]:

1. An input layer stores the values for the input images’ constituent pixels.

2. The convolutional layer with rectified linear unit (ReLu) activation function de-

termines the output to the next (and often dimensionally smaller) layer of neurons

through the calculation of the scalar product between their weights and the region

of input layer each neuron is connected to.

3. The pooling layers are tasked with downsampling along a chosen spatial dimen-

sion of the input fed to it and in doing so further reduce the number of parameters.

4. Fully-connected layers in conjunction with activation functions attempt to pro-

duce scores to be used for classification.
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Figure 2.8: Example of a simple CNN architecture used in the classification of handwritten

digits [66]

2.6.1 Convolutional Layers

The primary layer, and basis from which the CNN derives its namesake, is

the convolutional layer. The principle operation of the convolutional layer is focused

around the use of learnable kernels. These kernels are, in general, spatially much

smaller than the input to their layer but extend along the full depth of the input. Oper-

ationally, the kernel, which is an N×N array, has an input feature map in which each

element has a value. This map operates as the values of the linear transformation for

each input value it encounters as the kernel moves across the totality of the input:-i.e. At

each location as the kernel moves across the input, the product between each element of

the kernel feature map and the input it overlaps is computed. These values are summed

to obtain the value for each location. The final output of the procedure is the output

feature map. Factors which affect the output feature map of the convolutional layer are:

• Kernel size
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• Stride

• Padding

The kernel size dictates the N ×N region which is summed at each pass, the

stride relates to the step size (in number of elements) of the kernel across adjacent

elements after each operation, whilst padding refers to the use (or lack thereof) of addi-

tional elements along the periphery of the data to be read by the convolutional layer.

Furthermore the alteration of these convolutional layer parameters defines the

spatial dimensionality of the convolutional layers output. The resultant output size can

be calculated using Equation 2.42:

(V −R)+2Z
S+1

(2.42)

where V represents the input volume, R represents the kernel volume, Z is the amount

of padding and S is stride.

Several examples which vary these paramaters are given in Figure 2.9. For a

more in-depth and comprehensive discussion on convolutional layers the reader is di-

rected to [53].

2.7 Generative Adversarial Networks

The generative Adversarial Network (GAN) is a specialised form of the CNN

which is primarily utilized in the creation of images. It was first proposed and demon-

strated by Ian Goodfellow et al as recently as 2015 [67] and since then it has grown in

popularity with numerous derivative variations being constantly developed [68].

The core principle relies on the competition between two rival Neural Networks;
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Figure 2.9: Examples of the working process of a 2-D Convolutional layer with variations to

Input size i, Kernel size k, Stride s and Padding p [53]
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a Generator, G and a Discriminator, D; hence their "adversarial" nature. The Gener-

ator is tasked with producing an image which it aims to pass off as genuine to the

Discriminator. The Discriminator in turn is tasked with identifying whether the images

it receives from the Generator are in fact “real”, or “fake”. For the Discriminator to

have a reference it is supplied two images during the training phase – one sample from

the dataset of genuine ‘ground truth’ images as well as the image from the Generator.

After assessing the level to which it believes the generator is real (or fake) via loss

functions, the results are back propagated for each network (G and D) and the cycle is

repeated. The Generator’s aims to minimize the likelihood of creating a fake (or maxi-

mizing the likelihood of passing off its images as real) whilst the Discriminator aims to

minimize the opposite i.e. minimize the likelihood of accepting a fake (or maximizing

the likelihood of identifying a forgery). This competitive loop results in a simultaneous

improvement of both networks which ultimately results in the Generator being capable

of producing near-ground-truth images.

2.7.1 Image-to-Image Translation using conditional GANs

A subset of GANs that are not only interested in generating images but tailoring

the images generated to meet certain imposed criteria are deemed "conditional GANs"

(cGANs). Amongst the first to explore and develop such a cGAN was that of Phillip

Isola et al [69] with their seminal "Pix2Pix" model.

Foundationally, its working principle is almost identical to most GANs that op-

erate on the competitive Generator vs Disciminator game-theory approach as discussed,

however instead of simply generating an image from random input noise and discern-

ing whether or not it is passable as genuine, it learns the mapping from an input image
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Figure 2.10: Examples of outputs from the GAN developed by Goodfellow et al. [67] at work:

Generating (a) "handwritten" numbers, (b) faces, (c) and (d) animals
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to an output image. Furthermore, additional novelty is achieved through a self-taught

loss function: unlike conventional CNNs which aim to minimize a loss function which

it explicitly needs to be instructed to be minimized, Pix2Pix learns the mapping via a

loss function that is itself taught from the dataset with little to no user input- essentially

a "universal" loss function. What this allows is for the same approach to be applied

to various problems which would traditionally require unique loss functions for each

category of input.

Isola demonstrates that the Pix2Pix method can be utilised on a broad range of

datasets for a variety of tasks such as

• Architectural labels transformed into building images

• Maps transformed to aerial photos

• Colorization of black and white images

• Transforming user drawn sketches into photos etc

Whilst these examples may find real-word usage as suitable solutions to their

given problems, their artistic and highly subjective nature has led to further develope-

ments focussing predominantly on non-technical investigation cases such as landscape

[70] or face generation[71].

2.8 Summary

The highly diverse, almost categorically agnostic, range of image-to-image trans-

lation tasks that cGANS are capable of accepting and generating results for leads one

68



Figure 2.11: Example output of the diverse class of problems Pix2Pix image-to-image

translation is able to attempt. In each Image Pair the left images represents the input to

Generator whilst the right represent the generated results [69]

to speculate that they may be a promising approach for application to FEA tasks, es-

pecially since those tasks typically involve structured inputs and outputs. Furthermore,

the autonomous nature by which the network learns both a loss function and subse-

quent mapping adapted to the task and data at hand, potentially makes them applicable

to a wide variety of FEA problems and settings without the need to redesign the neural

network for each problem. cGANs could hypothetically be tasked to emulate the input-

output processes of FEAs if simply presented with data which has been engineered to

meet with the structural (image-based) requirements of the network architecture and

assessed on metrics which promote technical accuracy.
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3 Methodology

The approach taken in attempt to train a ML model on the behavioural characteristics

of platework relies on the creation of a well structured input dataset, the necessary

neural architecture to train the models as well as the means to transform the data into

valid inputs for the network itself. In order to achieve this the methodology of

execution is broken down into six primary stages:

1. The FEA datasets on which the cGAN will be trained are generated.

2. The “Raw” datasets are pre-processed into a structure which can be read and

interpreted by the cGAN.

3. The cGAN is formally defined and implemented in Matlab.

4. Generative models are trained in the cGAN.

5. The trained models are validated against ‘ground truth’.

6. A user interface allowing real-time predictions is implemented.

This sequence of stages is outlined in Figure 3.1

3.1 Generate FEA Dataset

The hypothesis that a GAN can be trained to represent the workings of the physi-

cal world relies strongly on the data presented to it. As mentioned, the thesis objective is

to train a ML model to implicitly "understand" the physical properties and subsequently

produce the displacement and stress responses of a common subset of FEA problems.
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Figure 3.1: Primary steps carried out in the Thesis methodology
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Figure 3.2: Illustrative experimental setup. A thin plate model with variable thickness T ,

modulus of elasticity E, three (of a maximum of five) representative variable perpindicular

forces, F1, F2 and F3 with their locations [x1,y1], [x2,y2] and [x3,y3] respectively.

To this end it is essential that the generated dataset itself contains the relevant informa-

tion capable of inferring the relationships we seek to simulate.

For the purposes of the investigation we will be attempting to model the re-

sponse of thin platework1 subjected to varying loads (in number of loads, positions, and

range of magnitudes) for a range of moduli of elasticity and thicknesses. All edges are

clamped fixing them in all 6 DOF. The choice of simplistic two-dimensional geometry

is deliberate - A large area with numerous input-output coordinates can be rapidly pro-

duced. Furthermore should the outcomes of the thesis be successful the technique can

potentially be built upon for more elaborate geometries and structures2. A representa-

tive illustration of the experimental setup is given in Figure 3.2.

3.1.1 APDL Pseudocode

To generate the dataset an ANSYS Mechanical APDL© batch script was written

wherein nested loops sequentially increment the variables of:

1In plate theory plates with a thickness to length ratio of 1
25 or less are considered thin [72]

2As an additional note, whilst the study of thin plates is a field of research all its own, to the best
of the authors knowledge there currently exist no known exact solutions for clamped rectangular plates
under multiple varying loads [72; 73]
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• Modulus of Elasticity

• Material thickness

• Aspect ratio,

• 5 sequential force additions applied to the platework mesh.

3.1.1.1 SHELL181

The plate is subdivided into a uniformly spaced grid mesh of 256x256 (65 536

total) nodes assigned element type Shell181. Shell elements such as SHELL181, are

used as they provide both accuracy and efficiency while being suitable for the robust au-

tomatic meshing algorithms ANSYS provides. SHELL181 is suitable for the analysis of

shell structures of thin to moderate thickness. Each element has four nodes with six de-

grees of freedom at each node (see Figure 3.3. SHELL181 is suitable for applications

having both linear, large rotation, or large strain, nonlinear behaviour. Furthermore,

SHELL181 allows for layered applications when modeling sandwich constructions or

composite shells which allows further scope for potential future studies. The formula-

tion of the elements is based on true stress and logarithmic strain measures. SHELL181

kinematics permits finite membrane stretching. Changes to the curvature within a time

increment are however assumed to be minor. Further element properties are provided

with the ANSYS release notes [74]

During each loop, the modulus of elasticity, thickness and aspect ratio for the

plate is defined. The boundary conditions are set as fully fixed in all 6 DOFs for the

perimeter nodes. Thereafter a perpindicular force is randomly applied (in both magni-

tude and planar location) within the inner domain of nodes which make up the mesh.
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Figure 3.3: ANSYS SHELL181 Element geometry. Four-node element with six degrees of

freedom at each node [74].

The simulation is then run and solves for the plate deflection as well as the 1st princi-

pal stress of all the platework’s nodes. The subsequent locations, deflections and stress

values of each node are then written out to text file. Additionally, nodal locations and

magnitudes of the force(s) are also written out to a secondary text file. Thereafter an ad-

ditional load is applied to the mesh and the solution step rerun and recorded. Figure 3.4

presents a single example output of the APDL script.

This process is repeated for up to 5 loads in total per simulation as well as

25 repeated "trial cycles" to generate randomness and a wider statistical spread in the

dataset. Thereafter, the parent loops of aspect ratio, thickness and modulus of elasticity

are sequentially incremented as the process repeats. Using this methodology, a large

dataset can be generated in a relatively short period of time: 6 modulus of elasticity,

8 plate thicknesses, 1 aspect ratio, 25 repeat trials with 5 consecutive force additions

amount to a dataset of 6000 samples. Generation of this data set took a little over a

week, 8.5 days in fact, running continuously on a modest workstation. The flowchart of
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Figure 3.4: Output of the APDL batch script. Top: Meshgrid with boundary conditions and 5

loads randomly applied. Bottom: Solution stress results in false-color postprocess view
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the script is outlined in figure 3.5 with full script code provided in Appendix A.

3.2 Pre-process FEA Dataset into Paired Image Dataset

The cGAN architecture is capable of processing input data in the form of struc-

tured pairs of images. One image as the Input and another as the Target we wish to

replicate.

3.2.1 Images as a Data Structure

To utilize the FEA dataset it is necessary to convert each of the simulation results

into structured image pairs. To achieve this, it is important to consider the implications

and constraints of image data itself:

A rasterized image file whether it be a Bitmap [.bmp], Portable Network Graph-

ics [.png], Joint Photographic Experts Group [.jpeg] or otherwise is composed of a

matrix of pixels each with a minimum of 3 channels; traditionally red, green and blue;

with an assigned bit depth of either 8bits, 16bits, or more, per channel. The bit depth

corresponds to the magnitude of the color applied within each channel at each pixel and

hence corresponds to 256 [0-255] or 65536 [0-65536] shades of color per channel for

8bit or 16 bit respectively [75].

What this infers is that the level of granularity for the data range which each

pixel’s channel can contain is limited by its bit depth. Additionally, the file and subse-

quent dataset size is also a function of the bit depth chosen. Furthermore, depending on

the format, compression artefacts may occur which could result in data corruption. A

comparison of high quality image formats is provided in Table 3.1. For the purposes of

this initial investigation an 8bit depth is utilised with .png file format as it is a lossless
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data compression format [76].

Table 3.1: Comparison of common image file formats. Recreated from [76].

Comparison of Image File Formats
Parameter GIF89a JPEG TIFF PNG
Max. Color Depth 8-bit 24-bit 48-bit 48-bit
Number of Colors 256 colors 16 million 281 trillion 281 trillion
Compression Technique Lossless Lossy Lossy Lossless
Gamma correction No No Yes Yes
Patent Issues Yes No Yes No

The variables which need to be transferred to image are:

• The modulus of elasticity

• The material thicknesses

• The locations and magnitudes of the forces

• The nodal deflections

• The nodal stresses.

In order to convey the maximum amount of information to each image file gen-

erated whilst also establishing a relationship between all the other images in the domain

of the entire dataset, each of the 3 "Red”, “Green" and "Blue" channels is assigned a

corresponding input variable or response.

For the input image we assign the 1st "red" channel to force magnitude, 2nd "green"

channel to the modulus of elasticity and the 3rd "blue" channel to material thickness.

Similarly, for the output "Target" image, deflection is assigned to the 1st "red" channel

whilst modulus of elasticity and material thickness are once again assigned to the 2nd

and 3rd channels respectively.
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3.2.2 Normalization of data across entire dataset

In order to facilitate that information in each dataset input and output image pair

is correctly scaled with respect to one another and the dataset as a whole, each of the

input variables and responses are required to be normalised. Hence the maximum and

minimum values for each input and response is recorded over the entire domain of data

derived from the APDL simulations. Thereafter we normalise each trial’s variables and

responses by dividing them by their respective maximums. This results in each value

obtaining a value between [0,1]. To translate these normalised values to the domain

of the images we then multiply each entry by the bit depth of each channel i.e. 255

(channel color range is 0-255). The resultant 3-dimensional colorspace of potential

input values mapped to pixel colour is illustrated by Figure 3.6. Furthermore, the Paired

Image creation process is schematically illustrated in Figure 3.8 with an example of the

2-dimensional image files demonstrated in Figure 3.7:

3.3 Define and Implement GAN in MATLAB

The cGAN which is implemented in the Thesis follows the working principles and

network architecture of "Pix2Pix" by Phillip Isola et al. [69].

3.3.1 Network Architectures

3.3.1.1 Generator

A GAN generator, G, conventionally takes the form of an autoencoder-decoder,

whereby the encoder portion is tasked with mapping the input space to another interme-

diate space (sometimes called a ’latent space’). Thereafter, the decoder by contrast has
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the complementary function of mapping from the latent space to another target space.

The generator is segmented into sequential repeating sets of grouped "modules". Within

each module of the encoder portion are 2D Convolution Function-Batch Normalisa-

tion function and Rectified Linear Unit (ReLU) activation functions whilst the decoder

portions modules consist of Depth Concatenation, Transposed 2D Convolution func-

tion, Batch Normalization function and ReLU activation function. Unlike conventional

GAN generator however, the Pix2Pix implementation has additional bridging connec-

tions between layers in the encoder and layers in the decoder to form a "U-Net". This

’crosslinking’ provides the ability to pass information across the network whilst avoid-

ing the central bottleneck region inherent in the conventional encoder-decoder networks

(Figure 3.9, left) and functionally imposes structural conditions between layers.
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Figure 3.5: Flowchart of FEA Dataset generation process using ANSYS APDL. Created for

this publication
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Figure 3.6: Experimental input colorspace. The colorspace which maps input values to RGB

pixel channel intensities. For clartiy only the granularity is shown ie 10 force, 8 thickness and 6

modulus of elasticity values

Figure 3.7: Example entry of the processed Paired Image Dataset. Left: Deflection as Input.

Right: Corresponding Stresses
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Figure 3.8: Flowchart of Paired Image Dataset creation process in MATLAB.

Figure 3.9: conventional GAN vs cGAN architectures. left: conventional encoder-decoder

architecture and right: cGAN "U-Net" encoder-decoder with connections between mirrored

layers in the encoder and decoder stacks [69]
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Table 3.2: cGAN generator layer properties as defined in MATLAB. 
’Learnables’ refer to parameters which are updated during training.

Layer Name Layer Type Activations Leamables
1 inputlmage Image Input 256*256*3

258x256x3 images
2 Conv2d_1 Convolution 128*128*64 Weights 4*4*3*64

64 4x4x3, stride[2 2], padding ’same’ Bias 1*1*64
3 leaky_re_lu_1 Leaky ReLU 128*128*64

Leaky ReLU with scale 0.3
4 conv2d_2 Convolution 64*64*128 Weights 4*4*64*128

123 4x4x64, stride[2 2], padding ’same’ Bias 1*1*128
5 batch_normalization_2 Batch Normalization 64*64*128 Offset 1*1*128

Batch normalization with 128 channels Scale 1*1*128
6 leaky_re_lu_2 Leaky ReLU 64*64*128

Leaky ReLU with scale 0.3
7 conv2d_3 Convolution 32*32*256 Weights 4*4*128*256

258 4x4x128, stride[2 2], padding ’same’ Bias 1*1*256
8 batch_normalization_3 Batch Normalization 32*32*256 Offset 1*1*256

Batch normalization with 256 channels Scale 1*1*256
9 leaky_re_lu_3 Leaky ReLU 32*32*256

Leaky ReLU with scale 0.3
10 conv2d_4 Convolution 16*16*512 Weights 4*4*256*512

512 4x4x256, stride[2 2], padding ’same’ Bias 1*1*512
11 batch_normalization_4 Batch Normalization 16*16*512 Offset 1*1*512

Batch normalization with 512 channels Scale 1*1*512
12 leaky_re_lu_4 Leaky ReLU 16*16*512

Leaky ReLU with scale 0.3
13 conv2d_5 Convolution 8*8*512 Weights 4*4*512*512
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Table 3.2 continued from previous page
Layer Name Layer Type Activations Leamables
512 4x4x512, stride[2 2], padding ’same’ Bias 1*1*512

14 batch_normalization_5 Batch Normalization 8*8*512 Offset 1*1*512
Batch normalization with 512 channels Scale 1*1*512

15 leaky_re_lu_5 Leaky ReLU 8*8*512
Leaky ReLU with scale 0.3

16 conv2d_6 Convolution 4*4*512 Weights 4*4*512*512
512 4x4x512, stride[2 2], padding ’same’ Bias 1*1*512

17 batch_normalization_6 Batch Normalization 4*4*512 Offset 1*1*512
Batch normalization with 512 channels Scale 1*1*512

18 leaky_re_lu_6 Leaky ReLU 4*4*512
Leaky ReLU with scale 0.3

19 conv2d_7 Convolution 2*2*512 Weights 4*4*512*512
512 4x4x512, stride[2 2], padding ’same’ Bias 1*1*512

20 batch_normalization_7 Batch Normalization 2*2*512 Offset 1*1*512
Batch normalization with 512 channels Scale 1*1*512

21 leaky_re_lu_7 Leaky ReLU 2*2*512
Leaky ReLU with scale 0.3

22 conv2d_8 Convolution 1*1*512 Weights 4*4*512*512
512 4x4x512, stride[2 2], padding ’same’ Bias 1*1*512

23 batch_normalization_8 Batch Normalization 1*1*512 Offset 1*1*512
Batch normalization with 512 channels Scale 1*1*512

24 leaky_re_lu_8 Leaky ReLU 1*1*512
Leaky ReLU with scale 0.3

25 conv2d_transpose_1 Transposed Convolution 2*2*512 Weights 4*4*512*512
512 4x4x512, stride[2 2], cropping ’same’ Bias 1*1*512

26 batch_normalization_9 Batch Normalization 2*2*512 Offset 1*1*512
Batch normalization with 512 channels Scale 1*1*512
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Table 3.2 continued from previous page
Layer Name Layer Type Activations Leamables

27 dropout Dropout 2*2*512
50% dropout

28 re_lu_1 ReLU 2*2*512
ReLU

29 concatenate Depth concatenation 2*2*1024
Depth concatenation of 2 inputs

30 conv2d_transpose_2 Transposed Convolution 4*4*512 Weights 4*4*512*1024
512 4x4x1024, stride[2 2], cropping ’same’ Bias 1*1*512

31 batch_normalization_10 Batch Normalization 4*4*512 Offset 1*1*512
Batch normalization with 512 channels Scale 1*1*512

32 dropout_1 Dropout 4*4*512
50% dropout

33 re_lu_2 ReLU 4*4*512
ReLU

34 concatenate_1 Depth concatenation 4*4*1024
Depth concatenation of 2 inputs

35 conv2d_transpose_3 Transposed Convolution 8*8*512 Weighs 4*4*512*1024
512 4x4x1024, stride[2 2], cropping ’same’ Bias 1*1*512

36 batch_normalization_11 Batch Normalization 8*8*512 Offset 1*1*512
Batch normalization with 512 channels Scale 1*1*512

37 dropout_2 Dropout 8*8*512
50% dropout

38 re_lu_3 ReLU 8*8*512
ReLU

39 concatenate_2 Depth concatenation 8*8*1024
Depth concatenation of 2 inputs

40 conv2d_transpose_4 Transposed Convolution 16*16*512 Weights 4*4*512*1024
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Table 3.2 continued from previous page
Layer Name Layer Type Activations Leamables
512 4x4x1024, stride[2 2], cropping ’same’ Bias 1*1*512

41 batch_normalization_12 Batch Normalization 16*16*512 Offset 1*1*512
Batch normalization with 512 channels Scale 1*1*512

42 re_lu_4 ReLU 16*16*512
ReLU

43 concatenate_3 Depth concatenation 16*16*1024
Depth concatenation of 2 inputs

44 conv2d_transpose_5 Transposed Convolution 32*32*256 Weights 4*4*256*1024
258 4x4x1024, stride[2 2], cropping ’same’ Bias 1*1*256

45 batch_normalization_13 Batch Normalization 32*32*256 Offset 1*1*256
Batch normalization with 256 channels Scale 1*1*256

46 re_lu_5 ReLU 32*32*256
ReLU

47 concatenate_4 Depth concatenation 32*32*512
Depth concatenation of 2 inputs

48 conv2d_transpose_6 Transposed Convolution 64*64*128 Weights 4*4*128*512
128 4x4x512, stride[2 2], cropping ’same’ Bias 1*1*128

49 batch_normalization_14 Batch Normalization 64*64*128 Offset 1*1*128
Batch normalization with 128 channels Scale 1*1*128

50 re_lu_6 ReLU 64*64*128
ReLU

51 concatenate_5 Depth concatenation 64*64*256
Depth concatenation of 2 inputs

52 conv2d_transpose_7 Transposed Convolution 128*128*64 Weights 4*4*64*256
64 4x4x256, stride [2 2], cropping ’same’ Bias 1*1*64

53 batch_normalization_15 Batch Normalization 128*128*64 Offset 1*1*64
Batch normalization with 64 channels Scale 1*1*64
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Table 3.2 continued from previous page
Layer Name Layer Type Activations Leamables

54 re_lu_7 ReLU 128*128*64
ReLU

55 concatenate_6 Depth concatenation 128*128*128
Depth concatenation of 2 inputs

56 conv2d_transpose_8 Transposed Convolution 256*256*3 Weights 4*4*3*128
3 4x4x128, stride[2 2], cropping ’same’ Bias 1*1*3
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3.3.1.2 Discriminator

The discriminator, D, is a CNN which Isola et al. refer to as a ’patchGAN’

classifier. The difference between the patchGAN and a conventional CNN is that it

produces an N×N array as opposed to a single scalar vector of classifications. This

N ×N array maps to patches from the input images. The discriminator sequentially

assesses the ’real’ or ’fake’ state of the generated candidate images across these patches

whilst also doing so convolutionally across the entire image. The responses are av-

eraged as the ultimate output of network D. Isola et al also demonstrate that N can

be significantly smaller than the full image dimension and still generate high quality re-

sults, consequently the discriminator layers implemented here are defined to achieve the

recommended "patchsize" of 70× 70 pixels. Architecturally the discriminator is com-

prised of an input layer which accepts the paired-image files overlayed on one another

followed by sequential "modules" of 2D convolution, leaky ReLu and batch normalisa-

tion layers. The layer properties are provided in Table 3.3 and the network architectures

as they are structured within Matlab are provided in Figure 3.10.
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Figure 3.10: Layer structures of the cGANs generator and discriminator network architectures:

Left: Generator network with bypass "U-net" bridge connections. Right: Discriminator

network
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Table 3.3: cGAN discriminator layer properties as defined in MATLAB. 
’Learnables’ refer to parameters which are updated during training.

Name Type Activations Leamables

1 inputlmage Image Input 256*256*6

258x256x63 images

2 conv2d_9 Convolution 128*128*64 Weights 4*4*6*64

64 4x4x6, stride [2 2], padding ’same’ Bias 1*1*64

3 leaky_re_lu_9 Leaky ReLU 128*128*64

Leaky ReLU with scale 0.3

4 conv2d_10 Convolution 64*64*128 Weights 4*4*64*128

123 4x4x64, stride [2 2], padding ’same’ Bias 1*1*128

5 batch_normalization_16 Batch Normalization 64*64*128 Offset 1*1*128

Batch normalization with 128 channels Scale 1*1*128

6 leaky_re_lu_10 Leaky ReLU 64*64*128

Leaky ReLU with scale 0.3

7 conv2d_11 Convolution 32*32*256 Weights 4*4*128*256

3The input is the combined "generated" and "target" images overlayed hence their common 256x256 dimension and combined 6 color channel depth
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Table 3.3 continued from previous page

Name Type Activations Leamables

258 4x4x128, stride [2 2], padding ’same’ Bias 1*1*256

8 batch_normalization_17 Batch Normalization 32*32*256 Offset 1*1*256

Batch normalization with 256 channels Scale 1*1*256

9 leaky_re_lu_11 Leaky ReLU 32*32*256

Leaky ReLU with scale 0.3

10 conv_zero_pad1 Convolution 34*34*512 Weights 1*1*256*512

512 1x1x256, stride [1 1], padding [1111] Bias 1*1*512

11 conv2d_12 Convolution 31*31*512 Weights 4*4*512*512

512 4x4x512, stride [1 1], padding [0000] Bias 1*1*512

12 batch_normalization_18 Batch Normalization 31*31*512 Offset 1*1*512

Batch normalization with 512 channels Scale 1*1*512

13 leaky_re_lu_12 Leaky ReLU 31*31*512

Leaky ReLU with scale 0.3

14 conv_zero_pad2 Convolution 33*33*31 Weights 1*1*512*31

31 1x1x512, stride [1 1], padding [1111] Bias 1*1*31
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Table 3.3 continued from previous page

Name Type Activations Leamables

15 OutputLayer Convolution 30*30*1 Weights 4*4*31

1 4x4x31, stride [1 1], padding [0000] Bias 1*1
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3.3.2 Loss Functions and Gradients

The objective of the cGAN can be expressed as

LcGAN(G,D) =Ex,y[logD(x,y)]+

Ex,z[log(1−D(x,G(x,z))]

(3.1)

where G tries to minimize this objective against an adversarial D that tries to maximize

it, i.e.

G∗ = argmin
G

max
D

LcGAN(G,D) (3.2)

Additionally, the Pix2Pix cGAN makes inclusion of the Mean Absolute Error loss, L1,

imposed on the generator so as to be near the ground truth output (in an L1 sense) in

addition to the conventional requirement of convincing the discriminator the output is

real. This L1 requirement is reflected in Equation 3.3

LL1(G) = Ex,y,z [‖y−G(x,z)‖1] (3.3)

The final objective of the cGAN is summarised as:

G∗ = argmin
G

max
D

LcGAN(G,D)+λLL1(G) (3.4)

In practice, calculating the losses and utilizing them to change the network weighs and

biases is done sequentially:
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3.3.2.1 Generator Losses:

1. The generator loss, GANloss , is calculated as the sigmoid Cross-Entropy loss of

the generated images and an array of ones. With Cross-Entropy loss given by

Equation 3.5:

CE =−
C

∑
i

tilog(si) (3.5)

Where ti and si are the ground truth and the CNN scores for each class in C

classes. For the cGAN with Binary classificaton ("Real" and "Fake") Equation 3.5

becomes:

CE =−
C′=2

∑
i=1

tilog(si) (3.6)

For C = 2. t1 [0,1] and s1 are the groundtruth and the score for C1, and t2 = 1− t1

and s2 = 1− s1 are the groundtruth and the score for C2. Hence Equation 3.6

becomes

CE =−t1log(s1)− (1− t1)log(1− s1) (3.7)

Since the Sigmoid activation function is applied to the generator outputs Equa-

tion 3.7 becomes

GANloss =−t1log(s1)− (1− t1)log(1− s1) (3.8)

where f (si) is the Sigmoid function

f (si) =
1

1+ e−si
(3.9)
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2. The L1, Mean Absolute Error loss is calculated between the generated image and

the target image using Equation 3.10:

L1 =
1
n

n

∑
i=1

∣∣ytarget− ygenerated
∣∣ (3.10)

where n is the number of elements (pixels) per generated / target image and y the

channel metric of interest (here deflection or stress).

3. The total generator loss is calculated in Equation 3.11:

GenTot = GANloss +λ ×L1 (3.11)

where λ = 100 as specified in the Pix2Pix paper [69].

.

3.3.2.2 Discriminator losses:

1. Realloss is the sigmoid cross entropy loss of the real images and an array of ones

(since these are the real images)

2. Generatedloss is the sigmoid cross entropy loss of the generated images and an

array of zeros (since these are the fake images)

3. The Totalloss is the sum of Realloss and the Generatedloss.
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3.3.2.3 Gradients:

The gradients are applied through backpropogation using the minibatch SGD method

and the Adam Solver optimization [56] with the recommended parameters:

• minibatch size of 32 samples

• learning rate of 0.0002

• β1 = 0.5

• β2 = 0.999

3.4 Training the GAN models

The MATLAB© implementation of the cGAN is carried out for 3 separate

experiments:

1. Force→ Deflection mapping

2. Deflection→ Stress mapping

3. Force→ Stress mapping

3.4.1 Matlab Pseudo-code

For the sake of brevity the implemented model training process is described

via pseudo-code. The full MATLAB implementation and its component scripts can be

found in their entirety in the Appendix B.

1. Read paired-image datasets into MATLAB Image datastore (Imds) file structures:
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• 60% to Training Imds

• 30% to Testing Imds

• 10% to Validation Imds

2. Read minibatches of paired-images from the Training Imds

3. Process the paired-images:

• Split into seperate "input" and "target / response" images

• Apply random jitter - upscale and crop back down to required dimensions

• Randomly flip along vertical / horizontal axes4

• Normalise data values between [-1,1]5

4. Create prediction from "input" image parsed to generator network

5. Compare "real" vs "fake" images using the discriminator:

• Analyse input image against "ground truth" target image

• Analyse input image against "prediction" image

• Determine losses from the above using equations of section subsection 3.3.2

• Determine gradients from above losses

6. Apply gradients to Generator and Discriminator networks

• SGD performed by ADAM solver and backpropogated using MATLAB "dl-

gradient.m" function call.
4The random jitter and random flip functions serve to introduce additional randomness to the dataset

and in doing so discourage data overfitting [69]
5The normalization is required as the input channel ranges accept only [-1,1] within the architecture

of the cGAN
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7. Plot iterative results

8. Iterate loop

• Each run though a mini-batch is an Iteration

• Each run though all mini-batches from Training Imds is an Epoch

• Save trained model to File at set "SaveFrequency" intervals.

3.5 Validate Trained Model

Typically GAN outputs are notoriesly difficult to validate due to the abstract or

subjective nature of the subject matter they are called upon to generate, moreso when

plausibilty to the observer is frequently the end goal [69]. For our objective purposes

here however accuracy of prediction is paramount if we are to consider potential for

deployment and useablility in a real-world setting. In a manner not too dissimilar to the

"real"-"fake" judgement process of the disciminator during training we validate each

generated result against ground truth by several metrics:

Direct Absolute Error, DAE - The Absolute value of the Difference between Target

and Generated results.

DAE =
∣∣ytarget− ygenerated

∣∣ (3.12)

Relative error, Erel - Ratio of the DAE magnitude to target value magnitude.

Erel =
DAE

Target
(3.13)

Relative Percent Difference, RPD - As there are regions wherein the target and

generated results have zero values, instances of the previous metrics are indeterminate
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Figure 3.11: MATLAB cGAN implementation’s training process flowchart. Chart created for

this publication 99



or undefined, hence we also look at the percent variation between the target and

generated results.

RPD =

∣∣ytarget− ygenerated
∣∣

(ytarget + ygenerated)÷2
=

DAE
(ytarget + ygenerated)÷2

(3.14)

These are calculated for the overall images (which results in 2-Dimensional

plots), the averages over the entire result, and at the locations of the maximum input

values. Furthermore to assess the changes the errors are calculated and tracked across

every saved Epoch of the models in order to gauge improvement (if any).

3.6 Implement Real-time User interface

An GUI application was designed and implemented in MATLAB in order to

allow for predictions to be generated for user inputs from trained models. Recall that

the cGAN models are trained on discrete values of force, F , thickness, t and modulus

of elasticity, E, with pixel values that can be represented by a colorspace as is reflected

in Figure 3.6. The applications GUI however allows for input image pixel values to

be created using any rational values within the upper and lower bounds of the training

variables domains, namely:

• Forces, F ∈ [0,50000N]

• Plate thickness, t ∈ [2,30mm]

• Modulus of Elasticity, E ∈ [235,960GPa]

This allows for far more granularity in input colourspace as shown by Fig-

ure 3.12. Ideally should the model have adequately "learnt" the workings of the training
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data domain we hope to be able to return reliable results for any input within this do-

main.

Figure 3.12: GUI application input colorspace. Any rational value within the bounds of each

variables axis can be utilized allowing for finer input granularity.

Furthermore trained models can be selectively loaded from training checkpoints.

The app parses the user input to the selected cGAN models and outputs the predictions.

The input, predicted deflections and stresses as well as a three dimensional plot visual-

izes the true-scale deflections with the overlayed stress values (if desired).

Additionally, it is also possible to write the input trials parameters to file for later eval-

uation against traditional FEM.
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Figure 3.13: Breakdown of the primary functions and usage of the GUI developed for end user input Predictions
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4 Experimental Results

This chapter presents and discusses the results of the three primary experiments

carried out with the cGAN architecture implemented as outlined in chapter 3.

4.1 Progressive Training Progress

With reference to Figure 4.1, we note that after a slow start roughly around the

45th epoch or 600th iteration, the discriminator score rises whilst conversely, the gen-

erator score decreases. This appears as an indication that the discriminator has more

confidently been able to asses the generated result as ’fake’ up to this point. At approx-

imately the 1440th iteration the cGAN has reached the point at which the overall losses

are at their maximum. Both the generator and discriminator losses increase in step

with one another which indicates that the discriminator is having increased difficulty

in distinguishing ’fake’ from ’real’ in as much as the generator is producing mostly

believable results. From here onward both networks advance in step with one another

with learning changes reflected in finer details. These progressive improvements are

reflected further in Figure 4.3,Figure 4.12 and Figure 4.19.

4.2 Experiment 1 - Force to Deflection mapping

The inputs to the Force→Deflection mapping experiment are the 6000 paired

images of input forces and target deflections. The input mappings are reflected in Fig-

ure 4.2. The training was undertaken for 200 epochs with the model being saved to

checkpoint every 4 epochs.
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4.2.1 Validation Results

Randomly selected inputs from the validation dataset are run through each of

the saved checkpoints’ trained models. As a preliminary visual inspection, an array of

predictions is produced for each of these models. From the images (see Figure 4.3)

it is possible to subjectively note the gradual improvement of the predictions as the

model trains. Objectively, the generated results are measured against ground truth using

the equations specified in Equation 3.12 through Equation 3.14. Figure 4.4 illustrates

Figure 4.1: Model training progress showing Generator and Discriminator losses. Top: Scores,

losses and random validation output for the first 650 iterations. Middle: snippet of training

between 1340 and 1450 iterations. Bottom: Training progress between 1750 and 2200

iterations. The eventual alignment of Generator losses with that of the Discriminator indicates

the improvement in fooling of the discriminator and corresponds with improved predictive

accuracy.
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Figure 4.2: Color channel decomposition for Experiment 1. Single sample of 256×512 .png

paired image dataset reflecting the color channel mapping: Red channel for input force(s) and

response deflection magnitudes. Green and blue for thickness and modulus of elasticity

respectively.

these outputs across the entirety of the prediction imagespace for a single example input

whilst Figure 4.5 presents numerical plots for the error metrics for three random sam-

ples. As is evident from these plots the errors gradually converge towards the ground

truth values - The results after 200 Epochs fall between a 10-20% error in terms of RPD

and below 5% for DAE.

By gathering the error metrics across the entire validation dataset we plot the

distribution of errors as they progress across all model epochs. This is reflected by

Figure 4.10. Evidently, the the mean error for the maximum values (whichs strongly

correlate to the location of force application) rapidly fall between 0 and 5% by the final
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Figure 4.3: Generated predictions for sequential saved models for Experiment 1. 50 saved

models which run from left to right and top to bottom. Note how the finer details emerge with

continued training resulting in a smoother gradient.
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Figure 4.4: Experiment 1 validation results for fourth (top) vs final model Epoch (bottom).

Outputs of the validation error metrics across a sample generated prediction. Note the

transition of Absolute Error from essentially representing the Target to almost no error.

saved model (200th epoch).

4.3 Experiment 2 - Deflection to Stress mapping

The inputs to the Deflection→Stress mapping experiment are the 6000 paired

images of input deflections and target stresses. The input mappings are reflected in

Figure 4.11. The training was conducted for 200 epochs with the model being saved to

checkpoint every 4 epochs.

4.3.1 Validation Results

The preliminary visual inspection of experiment 2 (see Figure 4.12) again illus-

trates the gradual improvement of the predictions as the model trains. Objectively,Figure 4.13

presents numerical plots for the Validation error metrics for three random samples. As

is evident from these plots the errors gradually converge towards the ground truth values

- The results once again fall between a 10-20% error in terms of RPD and below 5% for
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Figure 4.5: Force to Deflection model validation results of random samples across 200 Epochs

for Experiement 1
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Figure 4.6: Experiment 1: DAE(Target) errors across Epochs. Left:Waterfall of errors for each

sample across epochs. Right: Kernel Density plot of all samples per epoch.

Figure 4.7: Experiment 1: DAE(Mean) errors across Epochs. Left:Waterfall of errors for each

sample across epochs. Right: Kernel Density plot of all samples per epoch.

DAE after 200 Epochs.

An examination of the errors over the entirety of the validation set produces

Figure 4.14 through Figure 4.17. We can quite reasonably note the diminishing of

errors with the increase in training. Furthermore, noting the included waterfall plots of

density per epoch we see that the mean errors decrease with further training.
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Figure 4.8: Experiment 1: RPD(Target) errors across Epochs. Left:Waterfall of errors for each

sample across epochs. Right: Kernel Density plot of all samples per epoch.

Figure 4.9: Experiment 1: RPD(Mean) errors across Epochs. Left:Waterfall of errors for each

sample across epochs. Right: Kernel Density plot of all samples per epoch.

4.4 Experiment 3 - Force to Stress mapping

The inputs to the Force→Stress mapping experiment are the 6000 paired images

of input forces and target stresses. The input mapping is reflected in Figure 4.18. For

consistency the training was undertaken for 200 epochs with the model being saved to

checkpoint every 4 epochs.
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Figure 4.10: Cascade plot of DAE distribution for Experiment 1 across 200 Epochs. Note the

rapid drop off of error distribution to between zero and 5%.

4.4.1 Validation Results

In agreement with the prior 2 experiments, experiment 3’s preliminary visual

inspection (see Figure 4.19) and sample validations Figure 4.20 both subjectively and

objectively illustrate the downward progression of prediction error as the generator ap-

proaches ground truth accuracy with error values once again falling into the < 5% range

for the 3 random random samples. The more conclusive results reflected in figures Fig-

ure 4.22 through Figure 4.25 further illustrate the overall mean error values fall well

below 5% when averaged across the entire dataset.

Final mean error values are presented in ??.

As is evident from the resulting plots in Figure 4.21 the errors gradually con-

verge towards the ground truth values - The results after 200 Epochs fall between a

10-20% error in terms of RPD and below 10% for DAE.
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Figure 4.11: Color channel decomposition for Experiment 1. Single sample of 256×512 .png

paired image dataset reflecting the color channel mapping: Red channel for input deflection

and response stress magnitudes. Green and blue for thickness and modulus of elasticity

respectively.

By gathering the error metrics across all the validation datasets predictions we

plot the distribution of errors across all model epochs. Evidently, the the mean error for

the maximum values (generally the location of force application) rapidly falls between

0 and 5% by the 54th saved model (200th epoch).

4.5 Real-time User Predictions

Utlilizing the purpose built MATLAB application the latest versions for the de-

flection and stress models are loaded. Utilizing the GUI the user is able to define the

plate properties as well as the loadings.
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Figure 4.12: Generated predictions for sequential saved models for Experiment 2. 50 saved

models which run from left to right and top to bottom. Note how the finer details emerge with

continued training resulting in smoother gradients.
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Figure 4.13: Deflection to Stress model validation results of random sample across 200 Epochs

Figure 4.14: Experiment 2: DAE(Target) errors across Epochs. Left:Waterfall of errors for

each sample across epochs. Right: Kernel Density plot of all samples per epoch.
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Figure 4.15: Experiment 2: DAE(Mean) errors across Epochs. Left:Waterfall of errors for each

sample across epochs. Right: Kernel Density plot of all samples per epoch.

Figure 4.16: Experiment 2: RPD(Target) errors across Epochs. Left:Waterfall of errors for

each sample across epochs. Right: Kernel Density plot of all samples per epoch.

Upon request the application is able to produce a result in mere fractions of

a second. Furthermore additional loads can be added to the imput an a new updated

prediction obtained in quick succession:
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Figure 4.17: Experiment 2: RPD(Mean) errors across Epochs. Left:Waterfall of errors for each

sample across epochs. Right: Kernel Density plot of all samples per epoch.

Figure 4.18: Color channel decomposition for Experiment 3. Single sample of 256×512 .png

paired image dataset reflecting the color channel mapping: Red channel for input force(s) and

response stress magnitudes. Green and blue for thickness and modulus of elasticity

respectively.
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Figure 4.19: Generated predictions for sequential saved models or Experiment 3. 50 saved

models which run from left to right and top to bottom. Note how the finer details appear to

emerge with continued training.
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Figure 4.20: Experiment 3 validation results for fourth (top) vs final model Epoch (bottom).

Outputs of the validation error metrics across a sample generated prediction. Note the

transition of Absolute Error from essentially representing the Target to almost no error.
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Figure 4.21: Experiment 3: Force to stress model validation results of random samples across

200 Epochs
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Figure 4.22: Experiment 3: DAE (Target) results plot for all validation samples across all

model Epochs. Left: Waterfall of progressive DAE target values. Right: Kernel Density of

error distribution.

Figure 4.23: Experiment 3: DAE (Mean values) results plot for all validation samples across

all model Epochs. Left: Waterfall of progressive DAE mean values. Right: Kernel Density of

error distribution.
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Figure 4.24: Experiment 3: RPD (Target) results plot for all validation samples across all

model Epochs. Left: Waterfall of progressive RPD target values. Right: Kernel Density of

error distribution.

Figure 4.25: Experiment 3: RPD (Mean values) results plot for all validation samples across

all model Epochs. Left: Waterfall of progressive RPD mean values. Right: Kernel Density of

error distribution.
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Figure 4.26: Example prediction using purpose built Graphical User Interface
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5 Conclusion

"All models are wrong but some are useful" - George Box

5.1 Summary

Recall that the primary aim of this thesis is the development of a purpose-built

ML model capable of learning the inherent physical domain of commonplace FEA

problems in order to produce user requested predictions in real-time. To this end a

literature study was conducted on the theoretical development, working methodologies

and optimization techniques employed in ML, with focus towards CNNs and ultimately

GANs. The general structure of the "Pix2Pix" cGAN network architecture was selected

for its potential, but as yet untested predictive abilities with respect to FEA problems.

A large FEM dataset was created using conventional FEA practices for isotropic thin-

plates subjected to varying static loads for a range of thicknesses and modulus of elas-

ticity. The FEA dataset was restructured into paired-image datasets to meet the usage

requirements of the cGAN. Three separate models were trained in order to map forces to

deflections, deflections to stresses and forces to stresses. These models were validated

and found to be consistently in the range of 90-95% accurate. Following validation, a

purpose-built GUI application was developed. The application allows for finer gran-

ularity of input than the dataset for which the models were trained, yet is capable of

repeatedly producing results (deflection and stress predictions) in a fraction of the time

of the conventional FEA method.

123



5.2 conclusions and future work

Given the positive results of the thesis, one might be drawn to conclude that

they point favourably towards the usage of ML, more specifically cGANs, as poten-

tial alternatives to conventional FEA methodologies especially when seeking a means

to produce results rapidly (read real-time). The inescapable requirement of training

datasets and training stages, both of which require time to obtain and execute, likely

negates the time benefits for all but the most specific usage cases, however that is not

to dismiss that they do exist. Hypothetically similar techniques and models could be

trained once and used repeatedly for VR training in the medical field, or on structural

components such as aircraft fuselages and control surfaces or the stress monitoring of

wind turbine blades. These trained models could speculatively be deployed across en-

tire fleets of the same aircraft model or wind turbine for the purposes of active condition

monitoring and feedback. Yet another caveat to consider is the limitation of accuracy

confidence to within the bounds of the initial training datasets’ domains - our results

show reasonable agreement to conventional FEA results within these bounds but with-

out a means to input data beyond them (at least as developed here) we are unable to

assess accuracy beyond them either. In conclusion, the cGAN model and methodology

as presented in this thesis does achieve the desired objectives as initially set out but is

limited to the domain of the problem dataset it was presented with. This initial success

as well as the relatively robust and adaptive nature of the cGAN architecture does how-

ever display promise and merits further study and development. Proposed future works

could thus look towards:

• analysis of non-linear response as forces are initially applied at large distances,
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followed by incremental convergence towards one another.

• the inclusion of additional input channels to convey various physical conditions

such as varying geometries, boundary conditions or discontinuities.

• varying the otherwise uniform thickness and modulus of elasticity channels to

simulate anisotropic and/or composite materials.

• using additional channel layers to create three-dimensional volumes for three-

dimensional geometries.

• utilizing a dataset of non-linear inputs and responses.

• optimization of the network architecture by elimination of neurons of low/no ac-

tivation

• obtaining the reaction forces for usage as inputs into subsequent connected models-

perhaps towards obtaining a "models-as-elements" approach.
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Appendix A: APDL Code

A.1 Dataset Generation script

File added to the portfolio electronically under the name “LPAV7.m”.

136



Appendix B: MATLAB Functions

B.1 PairedImageDataset

File added to the portfolio electronically under the name “PairedImageDataset.lxm”.

B.2 FileCount

File added to the portfolio electronically under the name “FileCount.m”.

B.3 ReadRaw

File added to the portfolio electronically under the name “ReadRaw.m”.

B.4 GenDataset

File added to the portfolio electronically under the name “GenDataset.m”.

B.5 ImgGen

File added to the portfolio electronically under the name “ImgGen.m”.
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function [count,maximums]=FileCount(filename,structure,columns)

%Enter: 

%'Filename*' to query                          eg. 'NodalDeflections*'

% with data structure                          eg. '%s%f32%f32%f32'

% Number of Columns in which to find maximum   eg. 4

%

%Returns:

%Number of files with 'Filename'

%the maximum value for the queried columns



s=dir([filename '*']);                         

count=length(s);



maximums=zeros(1,columns);

z=zeros(1,columns);

for I=1:count

    fid = fopen(s(I).name);

    rawdata=textscan(fid, string(structure));   

    fclose(fid);

    

    for J=1:columns

        z(1,J)=max(rawdata{:,J})

        if maximums(1,J)<z(1,J)

           maximums(1,J)=z(1,J)

        end

        maximums(1,4)

    end

end

end


function [data3d,SelTrials]= GenDataset(filename,format,structure,var1,var2,var3,var4,var5,maxrows,trials)

%reads Raw data textfiles into 3Dimentional array

%2D portion of array is each "Trials" data

%3rd Dimension is each sequential Trial

%Also outputs number of Trials captured



data3d = zeros(maxrows,4,trials);    

Trials = 1;

for I=1:var1                    % Modulus of Elasticity

    for J=1:var2                % Thickness

        for K=1:var3            % Aspect Ratios

            for L=1:var4        % Iterations

                for M=1:var5    % Sequential Forces

                    

                    file= [filename num2str(I) '_' num2str(J) '_' num2str(K) '_' num2str(L) '_' num2str(M)]

                    data=ReadRaw(file,format,structure);

                    [A,B]=size(data);

                    for N=1:A

                        for O=1:B

                        data3d(N,O,Trials)=data(N,O);

                        end

                    end

                   

                    Trials=Trials+1;

                end

            end

        end

    end

end

SelTrials=Trials-1;

end


function ImgGen(Idata3d,RData3d,zscale,sscale,cmap,name1,name2,var1,var2,var3,var4,var5)



% imagestack=zeros(256,3,var5*var4*var3*var2*var1);



%Read "inputVariables.csv" table

InVars=ReadRaw('InputVariables','.csv','%f%f%f%f%f');

%Normalise InputVariables [0:1] ie Divide by each Variables Range

ScaleFactor=(max(InVars,[],1));

NormInVars=InVars./ScaleFactor;%.*255

 

%Permute Z matrix into image layout

%==================================

Trial=1;

for I=1:var1                            %Material Ex

    for J=1:var2                        %Thickness

        for K=1:var3                    %Aspect Ratio 

            for L=1:var4                %Repeat runs

                for M=1:var5            %Forces

                

                   

                    Numcolor=256;

                    newmap=gray(256);

                    

                    newmap(:,2)=NormInVars(I,1);     %This will vary per Material

                    newmap(:,3)=NormInVars(J,2);     %This will vary per Thickness

                    colormap(newmap);

                    caxis([0,256]);

                    

                    data=RData3d(:,:,Trial);

                    [n, ~]=size(data);

                    dimy=256;

                    dimx=256;

                    

                    InImg=zeros(dimx,dimy);

                    OutImg=zeros(dimx,dimy);

                    StrImg=zeros(dimx,dimy);

                    

                    z=data(:,4);    %Extract Deflections

                    S=data(:,5);    %Extract Stresses

                                        

                    %Create Response Image(s)

                    for O=1:dimx

                        for P=1:dimy

                            address=(O-1)*dimx+P;

                            OutImg(O,P)=z(address);

                            StrImg(O,P)=S(address);

                        end

                    end

                    ResImgNormalized=OutImg./zscale;     %Normalize Displacement between [0:1]

                    StrImgNormalized=StrImg./sscale;     %Normalize Stress between [0,1]

                    

                    data=Idata3d(:,:,Trial);             %Extract input data (forces & Locations)

                    [n , ~]=size(data);

                    nodes=data(:,1);

                    Force=data(:,2);

                    

                    

                    node=1;

                    for O=1:dimx

                        for P=1:dimy

                            for pos=1:n

                                if nodes(pos,1)==node

                                    InImg(O,P)=Force(pos,1);

                                    

                                end

                            end

                            node=node+1;

                        end

                    end

                    InImgNormalized=InImg./50000;

                    

                    mappedImage1 = uint8( (InImgNormalized).*(Numcolor-1) ) ;

                    mappedImage2 = uint8( (ResImgNormalized).*(Numcolor-1) ) ;

                    mappedImage3 = uint8( (StrImgNormalized).*(Numcolor-1) ) ;

                    

                   subplot(2,2,1)

%                    imagesc(mappedImage1,'CDataMapping','scaled')

                   imagesc(InImgNormalized,[0 1.2])

                   colormap(newmap)

                    

                   subplot(2,2,2)

%                    imagesc(mappedImage2,'CDataMapping','scaled')

                   imagesc(ResImgNormalized,[0 1.2])

                   colormap(newmap)



                   subplot(2,2,3)

%                    imagesc(mappedImage3,'CDataMapping','scaled')

                   imagesc(StrImgNormalized,[0 1.2])

                   colormap(newmap)

                                     

                   subplot(2,2,4)

                   s=surf(ResImgNormalized);

                   s.EdgeColor = 'none';

                   colormap(newmap)

                   caxis manual

                   caxis([0 1.2])

                   axis([0 inf 0 inf 0 1.2])

                    

                    pause(0.5)

                    

                    Numcolor = 256;

                    Imgmin = 0 ;

                    Imgmax = zscale ;

                    mappedImage1 = uint8( (InImgNormalized).*(Numcolor-1) ) ;%-Imgmin)./(Imgmax-Imgmin

%                     imwrite(mappedImage1,newmap,[name1 num2str(I) '_' num2str(J) '_' num2str(K) '_' num2str(L) '_' num2str(M) '.jpeg']);

                    mappedImage2 = uint8( (ResImgNormalized).*(Numcolor-1) ) ;%-Imgmin)./(Imgmax-Imgmin

%                     imwrite(mappedImage2,newmap,[name2 num2str(I) '_' num2str(J) '_' num2str(K) '_' num2str(L) '_' num2str(M) '.jpeg']);

                    

%                     combImg = imfuse(mappedImage1,mappedImage2, 'montage');

                    combImg = cat(2,mappedImage1,mappedImage2);

                    imwrite(combImg,newmap,['combined' num2str(I) '_' num2str(J) '_' num2str(K) '_' num2str(L) '_' num2str(M) '.bmp']); %,'mode','lossless');

                    combImg = cat(2,mappedImage2,mappedImage3);

                    imwrite(combImg,newmap,['Stress' num2str(I) '_' num2str(J) '_' num2str(K) '_' num2str(L) '_' num2str(M) '.bmp']); %,'mode','lossless');



                    %                   imagestack(:,:,Trial)=newmap;

                    

                    Trial=Trial+1;

                    

                end

            end

        end

    end

end



                

end


!Version 7 : TO DO



![x]- Loop to manually create meshgrid of Nodes.

![x]- Number of FORCES reduced to 5

![x]- Apply Forces at Random INTERIOR Nodes

![x]- Forces applied SEQUENTIALLY (not all simultaneously)

![x]- Aspect Ratio fixed at 1x1

![x]- Element changed to SHELL181 - SHELL281 requires intermediate element edge nodes

![ ]- All INPUTS AND OUTPUTS combined in single written file

![x]- Increase "Resolution" to 256x256 nodes

![x]- Include Equivalent (Von mises) Stress in results files [column 5]



/PREP7



!===================================

!==	Input file datastructures:  ==

!===================================



to_skip=1                               		!/ Skip 1 line for Column Headings

/INQUIRE,numlines,LINES,InputVariables,csv   !/INQUIRE, StrArray(to create), FUNC

to_read=numlines-to_skip                		! so that it ignores column heading top lines



*DEL,mytable,,NOPR                      		!*DEL, Val1, Val2

*DIM,mytable,TABLE,to_read-1,4          		!*DIM, Par, Type(TABLE), IMAX(rows), JMAX(Columns), KMAX(planes), Var1, Var2, Var3, CSYSID



*TREAD,mytable,InputVariables,csv,,to_skip   !*TREAD, Par, Fname, Ext, --, NSKIP



                                        		! Move data to numerical Array

*DEL,xyz,,NOPR                          		! Clears Array "xyz" with no printout

*DIM,xyz,ARRAY,to_read,5               		! create Array "xyz" with "to_read" rows x 5 columns



*DO,I,1,5,1                            		! For Loop for I=1 to 9, increment 1

*vfun,xyz(1,I),copy,mytable(0,I-1)    			! copies first row of "mytable" aka "ApdlExcel" into vfun

*ENDDO



!==================================

!==	Global Variables:				==

!==================================

Pois 	= 0.3												!Poissons Ratio

BDivs	= 255												!Base Number of axes divisions (will scale with aspect ratio)

x1 	= 0												!Anchor point of rectangle to mesh

y1 	= 0												!Anchor point of rectangle to mesh

NHpts	= 5												!Number of Locations for forces

MP,PRXY,1,Pois 										!Mat Properties, Poisson ratio



!============================

!= LOOPED ANALYSIS			==

!============================



*DO,I,1,1,1													!6 Ex Variations

	Elas = xyz(I,1)

	*DO,J,1,1,1												!8 thicknesses

		Pthick = xyz(J,2)

		*DO,K,1,1,1										   !Aspect Ratios - default 1

			x2 = xyz(K,3)

			*DO,L,1,1,1									   !Iterations per material and geometric property (50)

				y2 = xyz(1,4)



				!============================

				!== PREPROCESSING				==

				!============================

				/PREP7

				FDELE,ALL 												!Delete all Forces

				EDELE,ALL 												!Delete all Elements

				NDELE,ALL 												!Delete all Nodes

				ALLSEL,ALL,ALL



				ET,1,SHELL181   										!Element type, Structural(1), SHELL281

				MP,EX,1,Elas 											!Mat Properties, Mod of Elasticity Elas

				SECT,1,SHELL,,LAYER1									!Section Properties, shell type, assigned to 1st (only) layer

				SECDATA, Pthick,1,0.0,3

				SECOFFSET,MID 											!Section profile about MIDDLE of plane



				!============================

				! Create Geometry				==

				!============================

				xDivs = 	(NINT((BDivs*x2)/2)*2)

				Deltax = x2/xDivs

				yDivs = 	(NINT((BDivs*y2)/2)*2)

				Deltay = y2/yDivs



				!Reset Node and Element Numbering:

				NUMSTR,DEFA

				NUMSTR,NODE,1

				NUMSTR,ELEM,1

				NUMCMP,NODE

				NUMCMP,ElEM



				!Meshgrid of Nodes to force regular mesh:

				*DO,shiftx,0,xDivs,1

					*DO,shifty,0,yDivs,1

						Hx = x1+deltax*shiftx

						Hy = y1+deltay*shifty

						N,,Hx,Hy

					*ENDDO

				*ENDDO



				!Create Elements between moving window of 4 neighbouring Nodes

				*DO,xI,1,xDivs,1

					nI = (xI-1)*(yDivs+1)+1

					*DO,yI,1,yDivs,1

						E,nI,nI+yDivs+1,nI+yDivs+2,nI+1

						nI=nI+1

					*ENDDO

				*ENDDO



				*DO,M,1,NHpts,1							!Sequentially add forces to Nodes



					/PREP7



					FDELE,ALL

					!=========================

					!Create/Append Force Location(s)



						*if,M,GT,1,THEN

							!Create temp holding Table for Previous ForceLocs

							*DEL,mytable,,NOPR                      				!*DEL, Val1, Val2

							*DIM,mytable,TABLE,M-1,3          						!*DIM, Par, Type(TABLE), IMAX(rows), JMAX(Columns), KMAX(planes), Var1, Var2, Var3, CSYSID



							!Read previous (M-1) ForceLocs into variable

							*TREAD,mytable,STRCAT(STRCAT(STRCAT(STRCAT('ForceLocs',CHRVAL(I)),STRCAT('_',CHRVAL(J))),STRCAT(STRCAT('_',CHRVAL(K)),STRCAT('_',CHRVAL(L)))),...

								STRCAT('_',CHRVAL(M-1))),TXT,,   !*TREAD, Par, Fname, Ext, --, NSKIP

							*CFCLOS



	              		! Move Previous data to numerical Array "FTable"

							*DEL,FTable,,NOPR                          			! Clears Array with no printout

							*DIM,FTable,ARRAY,M,4               					! create Array with numForces rows x 4 columns



							*DO,N,1,4,1                            				! For Loop for N=1 to NumForces, increment 1

								*vfun,FTable(1,N),copy,mytable(0,N-1)    			! copies first row of "mytable" aka "ForceLocs#####" into Ftable

							*ENDDO



							*DO,N,1,M-1,1

								Selected=Ftable(N,1)

								Fc=FTable(N,2)

								Hx=FTable(N,3)

								Hy=FTable(N,4)



								!Write HPTs/Force locations to CURRENT file

							*CFOPEN,STRCAT(STRCAT(STRCAT(STRCAT('ForceLocs',CHRVAL(I)),STRCAT('_',CHRVAL(J))),STRCAT(STRCAT('_',CHRVAL(K)),STRCAT('_',CHRVAL(L)))),...

								STRCAT('_',CHRVAL(M))),TXT, ,APPEND



	 				   *VWRITE,Selected,Fc,Hx,Hy

(F10.0,F10.0,F10.6,F10.6)



				      *CFCLOS



							*ENDDO



							!Add New Hpt and Forces



							Selected = node(rand(Deltax,x2-Deltax),rand(Deltay,y2-Deltay),0)

							*Get,Hx,NODE,Selected,LOC,X 								!Hardpoints can be within the 98% of the domain not including the fixed edges

							*Get,Hy,NODE,Selected,LOC,Y

							Fc = xyz(NINT(Rand(0,9))+1,5)								!Randomly pick 1 of the 10 available force values for each Hardpoint



							*CFOPEN,STRCAT(STRCAT(STRCAT(STRCAT('ForceLocs',CHRVAL(I)),STRCAT('_',CHRVAL(J))),STRCAT(STRCAT('_',CHRVAL(K)),STRCAT('_',CHRVAL(L)))),...

								STRCAT('_',CHRVAL(M))),TXT, ,APPEND



	 				   *VWRITE,Selected,Fc,Hx,Hy

(F10.0,F10.0,F10.6,F10.6)



					   *CFCLOS



						*else 		!Create first force Hardpoint

							Selected = node(rand(Deltax,x2-Deltax),rand(Deltay,y2-Deltay),0)

							*Get,Hx,NODE,Selected,LOC,X 								!Hardpoints can be within the 98% of the domain not including the fixed edges

							*Get,Hy,NODE,Selected,LOC,Y

							Fc = xyz(NINT(Rand(0,9))+1,5)								!Randomly pick 1 of the 10 available force values for each Hardpoint



							!Write HPTs/Force locations to file

						*CFOPEN,STRCAT(STRCAT(STRCAT(STRCAT('ForceLocs',CHRVAL(I)),STRCAT('_',CHRVAL(J))),STRCAT(STRCAT('_',CHRVAL(K)),STRCAT('_',CHRVAL(L)))),...

							STRCAT('_',CHRVAL(M))),TXT, ,APPEND



 				      *VWRITE,Selected,Fc,Hx,Hy

(F10.0,F10.0,F10.6,F10.6)



				      *CFCLOS



						*endif



						!Read all existing Forces for Hardpoint Creation

						*DEL,mytable,,NOPR                      				!*DEL, Val1, Val2

						*DIM,mytable,TABLE,M-1,3          						!*DIM, Par, Type(TABLE), IMAX(rows), JMAX(Columns), KMAX(planes), Var1, Var2, Var3, CSYSID



						*TREAD,mytable,STRCAT(STRCAT(STRCAT(STRCAT('ForceLocs',CHRVAL(I)),STRCAT('_',CHRVAL(J))),STRCAT(STRCAT('_',CHRVAL(K)),STRCAT('_',...

							CHRVAL(L)))),STRCAT('_',CHRVAL(M))),TXT,,   !*TREAD, Par, Fname, Ext, --, NSKIP



              		! Move data to numerical Array

						*DEL,FTable,,NOPR                          			! Clears Array "xyz" with no printout

						*DIM,FTable,ARRAY,M,4               					! create Array "xyz" with "to_read" rows x 5 columns



						*DO,N,1,4,1                            				! For Loop for I=1 to 9, increment 1

							*vfun,FTable(1,N),copy,mytable(0,N-1)    			! copies first row of "mytable" aka "ForceLocs#####" into vfun

						*ENDDO



				      !Create Force at Node

						*DO,N,1,M,1

							Selected=FTable(N,1)

							Fc=FTable(N,2)

					      F,Selected,FZ,Fc 											!Apply force at "Selected" Node

						*ENDDO



					!=========================

					!Meshing

					!=========================

					AMESH,ALL 												!Mesh AREA, ALL areas



					!=========================

					!BOUNDARY CONDITIONS



					NSEL,S,LOC,X,0

					NSEL,A,LOC,X,x2

					NSEL,A,LOC,Y,0

					NSEL,A,LOC,Y,y2



					D,ALL, ,0, , , ,ALL, , , , ,



					ALLSEL,ALL,ALL



					!--------------------------



					/VIEW,1,,,1													!Orient view normal to plate

					/ANG,1

					/AUTO,1

					/REP,FAST



					/SOL

					/STATUS,SOLU

					SOLVE

					FINISH



					!===================================

					!===   File Handling:

					!===================================



					! Generate the nodal solutions file

					! ===================================================



					/PREP7



	        			NSEL,ALL

	        			NNUMMAX = 0

	        			! Get maximum node number (in effect, this is the total number of nodes)

	        			*GET,NNUMMAX,NODE,,NUM,MAX



	        			! Delete NMASK array (works after the first loop)

	        			*DEL,NMASK



	        			! Delete NARRAY array (also works after the first loop)

	       				*DEL,NARRAY



	        			! Define NMASK array: this will hold the node numbers

	        			*DIM,NMASK,ARRAY,NNUMMAX



	        			! Define NARRAY array to hold results

	        			! Result will have 5 columns (node number, three displacements, equivalent stress [von mises])

	        			*DIM,NARRAY,ARRAY,NNUMMAX,5



	        			! Get the number of nodes for the first column

	        			*VGET,NMASK(1),NODE,1,NSEL



				      	! Reactivate masking for next operation

				      	*VMASK,NMASK(1)



							! Fill vector from 1 to NNUMMAX (node no.)

				      	*VFIL,NARRAY(1,1),RAMP,1,1



							! GET X for nodes

				      	*VGET,NARRAY(1,2),NODE,1,LOC,X



				      	! GET Y for nodes

				      	*VGET,NARRAY(1,3),NODE,1,LOC,Y



				      	! GET UZ for nodes

				      	*VGET,NARRAY(1,4),NODE,1,U,Z



				      	!GET Equivalent (Von Mises) Stress for nodes

				      	*VGET,NARRAY(1,5),NODE,1,S,EQV





				      	! Open file that will be used to store the nodal solution

				      	*CFOPEN,STRCAT(STRCAT(STRCAT('NodalDeflections',CHRVAL(I)),STRCAT('_',CHRVAL(J))),STRCAT(STRCAT(STRCAT('_',CHRVAL(K)),...

				      		STRCAT('_',CHRVAL(L))),STRCAT('_',CHRVAL(M)))),TXT



				      ! Use mask, then write only selected nodes

				      *VMASK,NMASK(1)

				      *VWRITE,NARRAY(1,1),NARRAY(1,2),NARRAY(1,3),NARRAY(1,4),NARRAY(1,5)

(F10.0,F10.6,F10.6,F10.6,F10.6)



				      *CFCLOS

					FINISH



				*ENDDO

			*ENDDO

		*ENDDO

	*ENDDO

*ENDDO
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       function PairedImageDataset(Filename1,var1,var2,var3,var4,var5)

%Step 1

filename1='NodalDeflections';   %Textfile prefixname
format='.TXT';
structure='%f%f%f%f%f';
columns=5;      %Number of columns in textfiles to read

var1=6;        % Materials specs
var2=8;        % Thicknesses
var3=1;        % Aspect Ratios 
var4=25;       % Repeat Runs
var5=5;        % Forces

%
[~,maximums]=FileCount(filename1,structure,columns);
MaxNodes=65536;     %256x256 mesh/image dimensions
MaxZ=maximums(1,4);
MaxS=maximums(1,5);

filename2='ForceLocs';
[Trials,maximums]=FileCount(filename2,structure,columns);
MaxForce=maximums(1,2);
 
filename1='NodalDeflections';
[RData,~]= GenDataset(filename1,format,'%f%f%f%f%f',...
    var1,var2,var3,var4,var5,MaxNodes,Trials);

filename2='ForceLocs';
[IData,selTrials]= GenDataset(filename2,format,'%f%f%f%f',...
    var1,var2,var3,var4,var5,5,Trials);

cmap=gray(256); %Grayscale colormap [0-black:255-white]

ImgGen(IData,RData,MaxZ,MaxS,cmap,'InpImg','OutImg',...
    var1,var2,var3,var4,var5)


% Generate Image Data Stores
% InpDs = imageDatastore('InpImg*.bmp')
% OutDs = imageDatastore('OutImg*.bmp')
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   Update 1
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function [data]= ReadRaw(filename,format,structure)

%reads Raw data textfiles into matlab Matrices



file= [filename format]

if isfile(file)

    if format=='.TXT'

       fid = fopen(file);

        rawdata=textscan(fid, structure);

        columns=size(rawdata,2);

        rows=size(rawdata{1},1);

        fclose(fid);

        data=zeros(rows,columns);

        for i=1:columns

            data(:,i)=rawdata{i};

        end

    else format=='.csv'

        fid = fopen(file);

        rawdata=readtable(file,'Delimiter',',','HeaderLines',1);

        data=table2array(rawdata);

    end

elseif istable(file)

        fid = fopen(file);

        rawdata=readtable(fid, structure);

        fclose(fid);

        data=[rawdata{1} rawdata{2} rawdata{3} rawdata{4}];

else

    data=[0 0 0 0]

end

end            



