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ABSTRACT 

 
UMER, SALMAN, Masters: January : 2021, Applied Statistics 

Title: Exponential model for breast cancer partly interval censored data via multiple 

imputation 

Supervisor of Thesis: Dr Faiz Ahmed Mohamed Elfaki. 

The estimation problem for interval-censored data has been investigated by several 

authors. The application of conventional methods to interval censored data that has been 

considered by Lindsey and Ryan (1998) showed misleading results when they tended to 

underestimate the standard errors of the estimated parameters. 

In this thesis, we apply the likelihoods in the exponential model in order to estimate 

the parameters and function of survival when multiple imputation and left imputation 

methods are used for partly interval censored data. We pay particular attention to the 

performance of our model. In particular, we present the Likelihood Ratio Test (LRT) with 

their p-value.  

We undertake a simulation study with different percentage of exact observations (0%, 25%, 

50%, and 75%) in order to quantify and analyze the relative performances of maximum 

likelihood estimation for exponential model. The numerical evidence suggests that the 

estimates from multiple imputation are more accurate. We apply the proposed method to a 

real breast cancer data.  
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CHAPTER 1: INTRODUCTION 

CHAPTER OVERVIEW 

In this chapter we introduce, the survival analysis, censored data and exponential 

distribution model. The chapter also, discusses the background of the research, the problem 

statement, the objective and the scope of the research. 

1.1  Background  

In this modern era, data analysis is gaining high importance due to its application 

capabilities in all areas where data is involved. Analyzing data can provide different 

alternative results, useful information and precise conclusion which helps in making 

decisions. Researchers use statistical methods to deal with data. Survival analysis is one 

such method which is in high demand in the global market. 

Analyzing time-to-event type of data is called survival analysis.  The time to event 

type data, shows the span of the variable of interest from the origin time until the end point 

time. Due to its high focus on death and failures of components, survival analysis has huge 

importance (Singh and Totawattage, 2013). 

Survival analysis has many applications, mainly including but not limited to; 

engineering, medical and education. Analyzing the application of survival analysis in 

education field, Singer and Willett (1993) released the paper on duration and the timing of 

events based on discrete-time survival analysis. The paper finds that the discrete-time 

survival analysis provides a framework which helps in analyzing a type of event occurring 

data that is used in educational field. Furthermore, the discrete-time approach helps in 

examining the hazard function shape, where in the shape is ignored due to the shift in 

parameters associated with the covariates. 
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Researchers use survival analysis on the school data for retrieving valuable 

information regarding the student characteristics. Plank et al. (2008) studies on the 

surviving of students in high school. The objective of the paper was to combine core 

academic courses and Career & Technical Education (CTE) that influence the likelihood 

of leaving school. The study uses the method of cox regression model to use the hazard 

model for student dropouts. The hazard model indicates the significant curvilinear 

association between the CTE and the risk of reducing the youths in the school when they 

were 14. 

Currently, survival study is a wide branch which includes studies of retrospective 

correlative, prospective cohort, and retrospective cohort along with clinical trials. The 

analysis is connected with censoring on time to event modeling data. In the study of 

survival analysis, there are subjects in the study who cannot complete the survival time due 

to censoring. The below section provides detailed view on censoring. 

1.2  Censored data 

Taking into consideration the fact that the survival data are not normally distributed, 

they usually contain incomplete information, called censored subjects. Censoring of the 

subjects can be on left or right. It is necessary to include censored subjects in the statistical 

analysis.  

Censoring occurs when there is prevalence of incomplete information about the 

survival time of some individuals in the study. It is an important factor in the study of 

survival analysis. At the end of the observation period, we know that not all patients for 

example experience the event (death) in this case the actual survival times are unknown for 

some patients. General reasons for censoring include: the subject was lost in the middle of 
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the study period or the subject dies or the subject didn’t experience the event before the 

end of the study. Furthermore, patients discontinue from the clinical trial because of the 

side effects the treatment causes on them or a patient is removed from the study if there is 

evidence of the treatment having no effect on them (Williams & Lagakos, 1977). 

The most common type of data censoring is the right-censoring. Here, the event 

time is not observed when it is larger than the right-censoring time. In clinical trials, almost 

always, an analysis needs to be done before everyone is dead, otherwise some people might 

be lost to follow-up. Also, the subject is right censored when the subject leaves the study 

before the event occurs (Kleinbaum and Klein, 2005). Right censoring is commonly used 

in many of the studies. The study has a left censored subject when the subject has failed 

before the study. The subject is interval censored when the event of interest occurs within 

an interval of time. It is common in clinical trials, where the event of interest occurs in 

between visits. Interval-censored data results from incomplete observations of random 

variable, when the values cannot be observed exactly but instead lie in between intervals. 

When a study consists of exact data and interval censored data, then we have Partly Interval 

Censored (PIC) (Kim, 2003). 

In this study, exponential distribution model will be used based on the partly 

interval censored data. In the next section, exponential distribution model will be 

introduced. 

1.3  Exponential distribution 

In survival analysis, exponential distribution is one of the most simple, convenient 

and useful distribution for analyzing and modeling. P.V. Sukhatme in his paper in 1937 

mentioned exponential distribution can be used as an alternative for normal distribution 
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where the form of variation is removed. Furthermore, he established that the exponential 

spacings are exponentially distributed. Davis (1952) used exponential distribution to 

discuss the analysis of failure data and compared the analysis with the normal distribution. 

 Teisser (1934), Weibull (1939) and Steffensen (1930) demonstrated applications 

of the exponential distribution on biological, engineering and actuarial problems. D.J. 

Davis (1952) used exponential distribution to discuss the analysis of failure data and 

compared the analysis with the normal distribution. 

The probability density function (pdf) of the exponential distribution is given as:   

                                  ( ) tf t e    

where 0t  , 0  ,    is the parameter that is widely used in applied statistics, and the pdf 

of the exponential distribution is shown in Figure 1.1.  

The exponential distribution in survival analysis can be characterized by its survival 

function survival ( )S t  and the hazard function ( )t . The function of survival is the 

probability that an individual survives at least time t so that;  

0

( ) 1 ( ) 1 ( )

t

tS t F t f u du e       

where ( )F t  is cumulative distribution function, and the hazard function is given as; 
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
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In the next chapters, we will derive the model under survivorship and the curve of the 

survival probability function will be estimated using censoring data based on exponential 

distribution model. 

 

Figure 1.1: Pdf function of exponential distribution 

 

1.4  Problem statement 

When it comes to statistical field, in contrast to other topics, there are limited 

number of researchers who have worked on PIC. For example, Huang (1999) discussed 

asymptotic properties of the nonparametric MLE of a distribution function based on PIC 

data. Peto and Peto, (1972) published his work on PIC data, where an exact observation 

was seen as an interval-censored observation with a short interval. Zhao. et al., (2008) 
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discussed PIC failure time data based on log-rank test. Kim (2003) explained the Cox 

model for PIC data. 

However, there are very few studies that focus on the partly interval censored data 

using exponential distribution and even fewer being applied to breast cancer related 

application. Alharpy and Ibrahim (2014) discusses the comparison problem in the presence 

of partly interval-censored (PIC) failure time data for two reliability functions. The study 

furthermore aims to use the parametric test under non-proportional hazard in the presence 

of PIC data using multiple imputation technique. 

In this research, the focus will be given on partly interval censored data for survival 

analysis and a model will be applied which will be used for the breast cancer data. 

Moreover, the procedure will be simplified by using exponential distribution based on 

multiple imputation techniques. 

1.5  Objective 

The study focuses to predict the survival ability of the breast cancer patients in the 

hospital for partly interval censored data based on exponential model with different 

imputation techniques. Furthermore, MLE method will be used to estimate the parameters 

in the study. The main objectives in the study are:  

 To modify breast cancer PIC data based on multiple imputation techniques via 

exponential model.  

 To compare the parameter estimate obtained from our model with existing model. 

 Evaluate the performance and operating characteristics of the parameter estimating 

methods through conducting extensive simulation studies. 
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1.6  Scope of the research 

The research study is focused on breast cancer partly interval censored data based 

on the exponential model to predict the survival-ability of the breast cancer patients in the 

Amal Hospital. This model is described in chapter 3 and the MLE is going to be used to 

estimate the parameters in the model. Multiple imputation techniques will be used to 

modify the real data set into PIC data. 

Chapter 2 includes literature review of survival analysis, partly interval censoring 

and exponential distribution model. Chapter 3 includes exponential distribution model 

based on survival analysis and derivation of maximum likelihood estimator for parameters. 

Chapter 3 includes likelihood ratio test as well. Towards the end of chapter 3, breast cancer 

data will be explained along with the use of multiple imputation techniques to modify the 

data. 

Chapter 4 shows exponential model that is suitable for the modified data sets after 

implementing the process of multiple imputation techniques. Later, the chapter shows the 

breast cancer data, real data set and simulated data. To conclude, chapter 5 provides an 

overall idea of the entire study and provides few suggestions for future works on this topic 

for the researchers.  
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CHAPTER 2: LITERATURE REVIEW 

CHAPTER OVERVIEW 

In this chapter, we discuss and review some of the existing literature related with 

survival analysis which has major applications in areas like medicine, education and 

engineering. Furthermore, focus will be given on partly interval censoring in this paper. 

Finally, some additional existing literature related to exponential distribution model will 

be provided. 

2.1  Survival analysis 

Kartsonaki, (2016) describes survival analysis as the time-to-event analysis of data, 

which describes the length of time between the origin and endpoint of the event. The 

general term used is survival time, even though it will be applied to the time ‘survived’ 

from complete remission to relapse or from diagnosis to death (Clark et. al., 2003). It is 

described as a significant advancement in the field of mathematical statistics towards the 

end period of 20th century (Ma and Krings, 2008). 

Survival analysis is used in many areas: education, engineering, medical and other 

sectors. This method has huge importance in medical studies.  It has such a huge 

importance in the statistical study because it is connected with failure and death of objects 

Singh and Totawattage (2013). Brenner and Hakulinen  (2002) mentions using the Finnish 

Cancer Registry for providing an empirical assessment of survival analysis. They use the 

technique to compare the 10-year actual relative survival curves of patients diagnosed with 

one of the 15 most common forms of cancer in 1983 to 1987 against the most up-to-date 

relative survival curves that might have been obtained using traditional or period analysis. 

Likewise, Weissberg et al. (1984) in his study mentions an example of medical application 
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that deals with the survival analysis theory in determining life expectancy of 379 patients 

with chronic hepatitis B from the time of first contact. The estimated 5-year survival study 

showed that the usual cause of death was liver failure and its sequel. 

There has been studies that have made use of the survival analysis techniques from 

the education sector.  Kaminski & Geisler (2012) used survival analysis to track a total of 

2966 individual assistant professors hired in science and engineering from 1990 at 14 

United States universities from time of hire to time of their departure using publicly 

available bulletins and catalogs. Similarly, the study by Willet and Singer (1991), 

investigates student retention in undergraduate engineering program using large 

longitudinal database of 100,179 engineering students from nine universities which spans 

for around 19 years. 

Giolo (2004) used interval censored data for discussing the nonparametric method 

for estimation of the survival function. He used Turnbull’s algorithm to estimate the 

survival function. He observed that analysis based on this type of censored data which 

applies this method to standard time. Due to this, Giolo asks analysts to be careful when 

they use new methods for analyzing interval censored data. 

Plank et al. (2008) studies on the surviving of students in high school. The study 

was focused to combine Career and Technical Education (CTE) along with core academic 

courses that plays a role in the likelihood of leaving school. In the study, they used cox 

regression model, which is the most common method of estimation for using hazard model 

for dropout of youths. The study observed that the hazard model indicates significant 

curvilinear association between the CTE to academic courses. 

Bhandari  & Boutros (2016) in their paper discusses that treatment of cancer is 

https://pubmed.ncbi.nlm.nih.gov/?term=Bhandari+V&cauthor_id=27311755
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converging more towards personalized and that biomarkers are used to refine treatment 

decisions. Tumor mRNA data abundance data for example is commonly used as a 

biomarker to predict survival of a patient. Survival analysis presents the challenge of not 

knowing whether mRNA abundance information gives different results if it is analyzed in 

a continuous or discrete manner. Thus, they analysed 1988 primary breast tumor 

transcriptome. The result showed an average of 60% of all genes were showing difference 

between the discrete and continuous cox proportional hazards model. Furthermore, hybrid 

models outperformed models using a single type of information. 

In public health research or biomedical, it is common to collect both longitudinal 

and survival time for a subject, along with the subject's risk factors and characteristics. 

Investigators are interested in finding variables that are important for predicting survival 

time which correlates with the same subject. Choi et al. (2015) simultaneously model the 

survival time with a stratified cox proportional hazards model and the longitudinal 

categorical outcomes with a generalized linear mixed model. The study uses data from the 

Carolina Head and Neck Cancer Study (CHANCE) to compare the results based on the 

simultaneous analysis and the analysis conducted using the generalized linear mixed model 

with cox proportional hazards model.  

Chen et al. (2019) discusses the exposure of statin on improving the survival rate 

in several cancers. The study focuses on evaluating the association between statins and 

patients with lung cancer patients. The study collected thirteen studies with data from a 

sample of 99,297 meeting the inclusion criteria. The study showed that statin exposure was 

associated with improved overall survival, cancer-specific survival and recurrence-free 

survival. Meanwhile, subgroup analysis shows that users of statin after being diagnosed 



  
   

11 
 

with lung cancer had more survival benefit for overall survival than those before diagnosis. 

Hence the study finds strong association between statin exposure and improved survival of 

patients with lung cancer. 

Most of the work done in survival analysis are based on Cox model (Cox, 1972) which is 

commonly used in medical research for investigating the association between predictor 

variables and survival time of the patients. Cox (1972) proposed a proportional hazard 

model for the analysis of censored survival data that allows the inclusion of covariates. The 

hazard rate is; 

0( , ) ( )exp( )h t z h t z    (1) 

where )(0 th  is the underlying hazard function, z  represent covariates and   is the 

unknown regression coefficient. Cox (1972, 1975) obtained estimates of   and asymptotic 

covariance matrix using a partial likelihood argument. Breslow (1974) proposed an 

estimate for the underlying hazards rate assuming that the hazard rate was constant between 

death times.  

The Cox model focuses on simultaneously exploring the effects of different 

variables on the survival. Additionally, it is based on modelling approach to the analysis 

of survival data. The Cox model is a famous statistical technique used in the studies and 

process of analyzing survival data. The model allows its users to isolate the treatment 

effects from the other variable’s effect. The model could improve the effect of treatment 

estimate by narrowing the confidence interval. 

 Even though, the above reviewed studies have topics similar to my research study 

due to its focus on survival analysis. There are huge differences mainly on the methods and 
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type of censoring used. In this research, we will focus on Exponential model based on 

partly interval censoring. 

2.2  Partly interval censoring 

When a study consists of exact data and interval censored data, then we have Partly 

Interval Censored (PIC) (Kim, 2003). PIC data can be found in different fields such as 

medical studies and reliability studies (Odell et al., (1992); and Lu and Meeker, (1993); 

Elfaki et al. (2012); Alharpy and Ibrahim (2014); Zyoud et al. (2016); Yousif et al. (2016); 

Saeed (2018) and Saeed and Elfaki (2020). 

Kim (2003) in his study researched on partly interval censored data for Cox model 

using the method MLE. The study uses generalized profile information procedure and 

missing information principle to estimate variance-covariance matrix. The simulation 

studies states variance for bias and samples of size, both the methods work. He illustrated 

his method using an application in Denmark on a diabetes data. Zhao et al. (2008) used 

generalized log-rank test to study partly interval censored data as discussed by Peto and 

Peto (1972). The researchers used a set of real diabetes and simulation study data to 

evaluate their method. 

Gao et al. (2017) explains efficient semi parametric estimation using partly interval 

censored data on the Accelerated Failure time model. The study generalizes the Buckley-

James estimator for right-censored data to partly interval censored data. Then, a score for 

regression parameters was estimated using a one- step estimator. Furthermore, extensive 

simulation studies are conducted to analyze the performance of the estimators and to apply 

the methods to an AIDS study data. 

https://pubmed.ncbi.nlm.nih.gov/?term=Gao+F&cauthor_id=28444688
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Zyoud et al. (2016) discusses the partly interval-censored data to estimate the 

survival function using nonparametric analysis. Methods like right-point, left- point and 

mid-point are included under simple imputation. While, mean imputation, conditional, 

median, random and multiple imputation are included under probability-based imputation 

methods. R program was used for estimating the survival function. They concluded that 

mean, random and median imputation techniques were better than other imputation 

methods available. 

Elfaki et al. (2013) discusses estimation of parameters using semi parametric Cox's 

proportional hazards regression for partly interval censored based on EM algorithm. 

Weighting Technique (WT) model and Censoring Complete (CC) model were two 

competing risks models used in the study. They studied the effect of covariates on the 

development of complications to investigate the association between the anti D in Rhesus 

time and treatment which is being applied to a time data set which arises from anti D in 

Rhesus D negative women in Sudan who are pregnant. The study concluded that there are 

no significant differences for the covariates since the negative group was showing a higher 

risk with the onset of anti D rhesus. 

Wu et al. (2019) analyzes partly interval censored data using cox regression using 

semi parametric sieve MLE method. To analyze the data, they use the semi parametric 

spline-based sieve MLE approach and included the non-mixture cox regression. 

Furthermore, for both nonparametric and parametric parts of the sieve estimator they have 

used the theory of modern empirical process. Confirming that the sieve estimator is 

consistent they simulated the data and concluded that the sieve MLE is acceptable. At the 

end, the proposed method is applied on spontaneous abortion study. 
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Yousif et al. (2016) uses Bayesian method for partly interval-censored data to 

estimate the regression coefficients using Cox model. The study verified the model using 

the simulated data. Finally, they showed that the developed model is well applicable and 

performs well with the use of simulated data. 

2.3  Exponential distribution model 

Exponential distribution is seen as a life-time distribution with constant hazard rate. 

In general, exponential distributions are commonly used in stochastic processes and 

formation of models of lifetime distributions. Sukhatme (1937) indicated that the 

exponential distribution could be used in cases where form of variation is removed from 

the normal, which will be a suitable alternative to the normal distribution. 

Davis (1952) used the exponential distribution to discuss the analysis of failure data 

and compared the analysis with the normal distribution analysis. 

Friedman (1982) mentioned that there is a similarity between the likelihood function for 

the piecewise exponential model and the likelihood function for a log-linear model for 

frequency data. Prentice (1973) used exponential model for survival data. While, Holford 

(1980) along with Laird and Oliver (1981), used Iterative Proportional Fitting to obtain the 

MLE of the piecewise exponential model, so that the techniques used to analyze the 

frequency data can be used for survival analysis. 

Staplin et al. (2015) discusses sensitivity analysis method on piecewise exponential 

survival model. This method helps in analyzing the sensitivity of the results of standard 

survival models to minute amounts of dependence between time to censoring and time to 

failure variables. The paper uses more flexible models for the marginal distributions by 

having simple computation methods. The study finds that the sensitivity analysis acts good 

https://pubmed.ncbi.nlm.nih.gov/?term=Staplin+ND&cauthor_id=25038073
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in all the situations, apart from the condition when the data have a large proportion of 

censoring.  

Jung et al. (2018) states that a cancer clinical trial is designed usually to assume an 

exponential distribution for a time-to-event outcome such as overall survival. The study 

assumes overall survival and survival post-progression to be exponentially distributed. The 

study focuses on deriving a sample size calculation formula for comparing overall survival 

between two treatment arms using log-rank test following a gamma or hypo-exponential 

distribution.  

Mazucheli et al. (2013) discusses estimates for the parameters which are seen in 

non-mixture lifetime and long-term mixture models which are applied to analyze the 

survival data. The study considers the case in which the lifetime data have a two-parameter 

exponential distribution. Bayesian and classical procedures are used to avail confidence 

intervals of the parameters. Furthermore, the general survival model where  

Lee et al. (2007) states to use a bivariate exponential model with Bayesian analysis 

of paired survival data. But, the bivariate exponential model has limitation of having lack 

of a closed form likelihood function. They introduced a latent variable that removes the 

difficulty in the Bayesian computation. Furthermore, predictive Bayesian p-value is used 

for model checking procedure. 

Chakhoyan et al. (2018) discusses on quantifying prognostic values and changes of 

MRI measurements obtained using stretched exponential models, mono-exponential and 

diffusion kurtosis imaging models before and after chemo radiation. The study concludes 

that advanced diffusion models take more acquisition time even though there is increased 

tissue complexity after chemo radiation. 
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Jeong et al. (2017) discusses on differentiating and diagnosing the pathological 

grades and  subtypes of uterine cervical carcinoma using the metrics derived from stretched 

exponential model (SEM), bi-exponential model (BEM) and mono-exponential model 

(MEM). The study concluded that diffusion parameters from stretched exponential model 

and bi-exponential model offers better information in cervical carcinoma diagnosis along 

with predicting subtypes of tumor and grades. 
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CHAPTER 3: METHODOLOGY 

CHAPTER OVERVIEW 

This chapter presents the estimation of the parameters of the exponential 

distribution with the help of maximum likelihood estimator under general and censored 

data. The chapter also discusses the likelihood ratio test and the real data set is described 

which is used in this study and the process to treat the data with survival time. At the end 

of the chapter, multiple imputation technique will be presented. 

The models in survival analysis are extended to include regression variables, called 

factors or exploratory variables (covariates), measured on the individuals in the study. 

These types of models are used to investigate the rule of these exploratory variables in 

modifying the response and to take into account the confounding factors in the estimate or 

exposure effect or treatment. One of these models are exponential distribution in survival 

analysis. 

3.1  Exponential model 

Exponential distribution is often used to model survival data because of its potential 

to be a simple distribution to characterize the data. Even though, as mentioned previously, 

exponential distribution is a simple method used in analysis of survival data, it has the 

capacity to be used as the underlying process that leads to censored values. Moreover, the 

hazard function is constant with respect to the time. The distribution has importance in 

reliability and survival analysis applications. The distribution is utilized for modeling the 

behavior of units with failure rate that is constant. With the recent developments in 

scientific world, exponential distribution has a huge important role in the survival analysis 

study. 
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Suppose that failure times as defined early as T  from exponential distribution and 

the failure rate depend on the k  exploratory variables 1 2( , ,..., )i i i kiz z z z on the ith 

individual which is characterized by the set of data ( , , )i i it z  as in (1).  For given  T  and 

model ( )E T  in terms of iz , it implies modeling   given that  ( ) 1/E T  , where  is 

the hazard rate for 0  . Marubini and Valsecchi (1995) suggested the exponential model 

as; 

     
1

0i i iz          (2) 

where 0 indicates the intercept and also represents the regression coefficient of 0iz  taken 

to be identically 1 for all individual. Then the linear predictor which includes 1k 

regression is given as; 

    0 0 1 1 ...i i i k kiz z z          (3) 

In the next section, the exponential distribution will be estimated by using 

maximum likelihood estimator which is a common method used for estimation.  

3.2  Maximum likelihood estimators 

Maximum likelihood estimation is a famous technique for deriving estimators with 

wide range of applications. Maximum likelihood, also known as the maximum likelihood 

method, is the method of finding the value of one parameter or more for a given statistic 

which makes the known likelihood distribution become maximum. The advantages for this 

method are plenty. One of the advantages is that it presents a consistent approach towards 

parameter estimation problems. This shows that the maximum likelihood estimates can be 

developed for a large variety of estimation situations. Other benefits include the maximum 

likelihood estimators having desirable mathematical and optimality properties, specifically 

in cases where the sample size increases and the minimum variance will be unbiased 

estimator. 
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In order to write the likelihood function in the presence of censoring it is convenient 

to use the set of data ( , , )i i it z  that is presented in (1) to identify the outcome of each 

individual. The likelihood of an individual who fail at ( 1)i it   is the probability without 

survival function. However, for an individual whose survival time is censored at ( 0)i it  

then the contribution to the likelihood is given by the probability of survival function ( )iS t

. The general likelihood function in the presence of censoring is;    

1

1

( ; ) [ ( )] [ ( )]i i

n

i i

i

L t f t S t
  



   (4) 

 

where ( ) exp( )i if t t    if 1i   is probability density function, ( ) exp( )i iS t t   if 

0i   is survival function and  is hazard rate.  

The likelihood function equation (4) became; 

1

1

( ; ) [ exp( )] [exp( )]i i

n

i i

i

L t t t
     



     (5) 

The log-likelihood is given as; 

1

log[ ( ; )] [ (log ) (1 )( )]
k

i i i i

i

L t t t     


       (6) 

The log-likelihood (6) is rewritten accounting for the fact that each individual i is related 

to a different i . By substituting (2) into (6) for  , we obtain the log-likelihood of the 

sample as; 

1 1 1

0

1

log[ ( , ; , )] [ (log ) (1 )( )]
n

i i i i i i i

i

L t z t t        



        (7) 

Maximizing equation (7) to estimate the k+1 parameters of 0  and  . However, Glasser 

(1967) defined i as;  

    0 exp( ) exp( )i i iz        (8) 
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To fit the model (8) to our data with one independent variable z having values 0 and 1; 

where 0 denotes the ‘with treatment’ and 1 represents ‘without treatment’. Using equation 

(5), the log-likelihood of the sample is; 

  0 0 0

1

log[ ( , )] [ ( ) exp( ) ]
n

i i i i

i

L z z t      


        (9) 

The first derivatives with respect to 0  and   is given as; 

 
0 0 0

1

log[ ( , )] [ exp( ) ]
n

i i i

i

L z t


    




    

1

1

0 0

1 1

[ exp( ) ] [ exp( ) ]
n n

i i i i i

i i n

t z t    
  

       

1

1

1 2 0 0

1 1

exp( ) [ exp( )
n n

i i

i i n

d d t t  
  

      ]       (10) 

1 0 0

1

log[ ( , )] [ exp( ) ]
n

i i i i i

i

L z z t z


    




    

1 1

0 1 2 0

1 1

[ exp( ) ] exp( )
n n

i i i

i n i n

t d t    
   

               (11) 

where 1d  and 2d  are observed deaths due to breast cancer, additionally 1n and 1n n

indicate the number of patients under treatment and without treatment respectively. 

Newton Rapson will be used to solve the above system of equations (10) and (11) when it 

is equal to zero for 0  and   respectively. 

For the case of Partly Interval Censored (PIC), we assume that the exact failure 

time for 1n  participants that will be observed, and the failure time for interval censored will 

be the remaining subject that is; 1 2n n n  . As mentioned earlier in this thesis by exact 

failure times we mean any patient that has the event of interest during the inspection times 

or the hospital examination of the patient’s condition. In this case the likelihood is given 

as; 
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1

1 1

1

1

( ; ) { ( )} { ( )}
i

i

n n

i i n

L t f t S t
 





 

   

            
1

1

1

1 1

[ exp( )] [exp( )]i i

n n

i i

i i n

t t
    

  

          (12) 

The log-likelihood is given as; 

  
1

11 1

log[ ( ; )] [ (log ) (1 ) [( )]
n n

i i i i

i i n

L t t t     
  

               (13) 

Following equations (7) and (8), equation (13) becomes; 

1

1

0 0 0 0

1 1

log[ ( , )] [ ( ) exp( ) ) (1 ) [ ( ) ]
n n

i i i i i i i

i i n

L z z t z t         
  

                  (14) 

The normal equations for deriving the MLEs of equation (14) become; 

1

0

1

0 0

1 1

log[ ( , )] [ exp( ) ] (1 ) [ ]
n n

i i i i i

i i n

L z t t


     


  

         

  
1

1 1

3 4 0 0

1 1 1

exp( ) [ ] exp( ) [ ] exp( ) [ ]
n n n

i i i i

i i n i n

d d t t z t  
    

        (15) 

 

1

1

1

0 0

1 1

log[ ( , )] [ exp( ) ] (1 ) [ ]
n n

i i i i i i i i

i i n

L z z t z z t


     


  

        

1

1

1 2 0

1 1

exp( )
n n

i i

i i n

d d t t 
  

              (16) 

where 1d  and 2d are described in equation (11).  

After setting the above equations equal to zero to maximize the function 0  and  , later 

we can solve the system by Newton Rapson method. 

The Likelihood Ratio Test (LRT) will be presented in the next section to investigate 

the performance of exponential model. 
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3.3  Likelihood ratio test 

Likelihood Ratio Test (LRT) is a hypothesis test that helps to choose the best model 

from two nested models. In this research project, the likelihood ratio test will be used to 

perform tests of hypotheses about parameters that have been estimated by MLE in two 

situations. One of the test statistics is for testing whether all parameters in the distribution 

are equal to certain values and the other test statistics is for testing whether some of the 

parameters in the distribution are equal to certain values. To test a subset of parameter in a 

distribution, let *

1 2( , ,..., )k    denote all the parameters in a parametric distribution. 

Then the hypothesis will be  

*

0 : 0H                 (17) 

Let 𝛽̂ be MLE of *

1 2( , ,..., )k    the MLE of 𝛽1 given 𝛽1 = 𝛽0. Under 𝐻0 the statistic 

test has chi-square distribution with degrees of freedom equal to the dimension of  𝛽2 or 

the number of parameters in 𝛽2. Then the likelihood ratio test statistic is given as; 

𝑋𝐿 = 2[𝑙(𝛽̂) − 𝑙(𝛽̂1(𝛽0), 𝛽0)]                              (18) 

If the number of parameters in  𝛽1 is equal to q, for a given significant level α. Then  𝐻0 is 

rejected if 𝑋𝐿 > 𝑋𝑞,𝛼
2  (Lee and Wang, 2003). 

3.4  Multiple Imputation  

Imputation techniques are often used to transform the problem of analyzing the 

data. In this study, the data will be modified based on the imputation technique to right 

censored, interval censored and partly interval censored data. The imputation process is 

simple with different methods to be used on the data. Two different types of imputation 

techniques are simple imputation and multiple imputation. In this study, multiple 
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imputation technique will be used. 

Multiple imputation technique was being used from the early 1970s, and since then 

gained popularity through the decades. The technique is simulation-based for managing 

missing data. It is important that there is enough compatibility between the imputation 

model and the analysis model or the imputation model has more generality than the analysis 

model. Analyzing a multi-imputed data set is seen as simulating under imputation models, 

the predictive distributions of desired summary statistics. There are three tasks that are 

needed to create the imputations: imputation task, estimation task and the modeling task. 

The estimation task and imputation task are technical in nature. The modeling task would 

require an additional development of tools that are suitable for relating respondents and 

non-respondents. 

Jakobsen et al. (2017) mentions the different types of multiple imputation methods. 

The following are presented according to their increasing degrees of complexity: 

1. Single value regression analysis 

2.  Monotonic imputation 

3. Chained equations or the Markov chain Monte Carlo (MCMC) method 

The datasets can be analysed by possibly any type of method that would be 

appropriate once the MI is created and if the data were complete. A possible example would 

be performing logistic or linear regression procedures using any possible standard 

statistical package available. From the result, for each imputed dataset any model will have 

to fit m times, and the results will vary across these available datasets based on the missing-

data uncertainty. 

To obtain a set of estimated standard errors and coefficients, the estimates and 
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standard errors has to be stored from each of the m imputed datasets, and using the rules 

provided by Rubin (1987) to combine the results. 

Rubin’s rule is stated as follows. Let Q̂  be denoted as an estimate of a population 

quantity of interest and U is its estimated variance. For an example, Q̂  can be denoted as 

an estimated regression coefficient and U represented as its squared standard error. We 

have m equally plausible estimates 1 2
ˆ ˆ ˆ, ,..., mQ Q Q . 

After performing the analysis on each imputed dataset and their respective corresponding 

variances U1, U2, . . . , Um. The MI estimate or overall estimate is provided by the following   

𝑄̄ =
1

𝑚
∑ 𝑄̂𝑖

𝑚

𝑖=1

 

There are two components for the total variance estimation that takes in to account the 

variability across datasets and within each dataset. The within-imputation variance is as 

below 

𝑈̄ =
1

𝑚
∑ 𝑈𝑖

𝑚

𝑖=1

 

An approximate 95% confidence interval can be obtained using 2Q T . Generally, it is 

wise to calculate the intervals using approximation as below  

    
dfQ t T  

where tdf  denotes the quantile of student’s t-distribution with degrees of freedom  

2

( 1) 1
( 1)

mU
df m

m B

 
   

 
 

p-values for testing the null hypothesis Q = 0 can be derived by comparing the ratio Q/√𝑇 
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to the same t-distribution  

 The total variance reduces to the sum of the two-variance components with an 

infinite number of imputations ( m  ). Furthermore, the confidence interval is based on 

a normal distribution ( df  ). The degrees of freedom are affected by the relative sizes 

of B  and U . When Ū dominates B , the degrees of freedom tends to approach infinity. On 

the other hand, when B  dominates 𝑈̄, the degrees of freedom are close to the minimum 

value of 1m .  If the computed value of df is large, it suggests that little will be gained 

from a larger m . On the other hand, a smaller computed value of df , which approximates 

to less than 10 suggests greater efficiency which means narrower intervals and more 

accurate estimates. 

Rubin (1987) also presents an estimate of the fraction of missing information about the 

population quantity Q: 

2 / ( 3)

1

r df

r


 



 

where 

     
1(1 )m B

r
U


  

shows the relative increase in the variance based on the nonresponse. Both of the quantities 

are useful diagnostics to reveal how strongly the estimation of Q may influence the missing 

data. The below procedures are followed for the above method: 

1. To impute the exact observations by taking a suitable model to use that incorporates 

random variation. 

2. To repeat the first step 3-5 times. 
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3. To perform the desired analysis by using standard and complete data methods on 

each data set. 

4. To obtain a single point estimate, the average values of the estimates on parameter 

across the imputed value samples. 

5. To average the squared standard errors of the imputed value estimates to calculate 

the standard errors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
   

27 
 

CHAPTER 4: RESULTS AND DISCUSSION  

4.1  Breast cancer data 

One of the common cancer diseases in Qatar is Breast Cancer. According to Qatar 

Cancer Register, the risk of development of breast cancer among women is 56 per 100,000. 

It accounts to 31% of the entire women's cancer cases in Qatar. There have been rapid 

changes in providing multidisciplinary care for the cancer patients through treatment 

modalities like surgery, chemotherapy and radiation therapy. 

 National Center for Cancer Care & Research (Al Amal Hospital), part of Hamad 

Medical Corporation provided the breast cancer data. In the study all the patients were 

under observation in Al Amal Hospital. The data contain 24 variables collected from the 

period of 1/2/2016 to 19/01/2020. The data provides details on 1008 patients of which, 557 

patients are treated by chemotherapy, 770 treated by surgery, 555 treated by hormone and 

533 treated by radiotherapy. The study focuses on comparing cosmetic effects of each 

treatment separately on women with early breast cancer. The event of interest in the study 

was the time to the first occurrence of breast retraction. It is noted that the sample has 

interaction and some patients have undergone surgery treatment and additionally, later they 

undergo through other treatments. Therefore, we consider a dummy variable for our 

analysis. The upcoming section will discuss the simulation study used on the data.  R 

package software was used for analyzing the breast cancer data and conducting simulation. 

The coefficient, confidence interval (CI) and standard error (SE) obtained by the 

exponential model based on chemotherapy, hormone and radiotherapy are very similar to 

the respective values obtained by the Cox model, as shown in Table 4.1. Figure 4.1, 4.2, 

and 4.3 shows the survival function obtained by our exponential model is comparable to 
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the results obtained by the Cox model. This result indicates that the validity of our model 

is comparable with the Cox model. 

 

Table 4.1: Estimation obtained by Exponential model and Cox model based on breast 

cancer data. 

Treatment Method Coefficient CI of 95% SE 

Hormone Exponential  -0.279289 (-0.4132, -0.14542) 0.0641902 

Cox Model -0.410110    (-0.5602, -0.2065) 0.0683113 

RT Exponential  -0.160000 (-0.2763, -0.01252) 0.0710976 

Cox Model -0.270290  (-0.28435, -0.0056) 0.0645300 

Chemotherapy Exponential   -0.390898 (-0.2248,0.02742) 0.0671416 

Cox Model -0.356040  (-0.4845, -0.03471) 0.0659520 

 
 

 

Figure 4.1: Function of survival obtained by exponential model and Cox model for  

chemotherapy treatment 

 



  
   

29 
 

 

Figure 4.2: Function of survival obtained by exponential model and Cox model for                                                                  

hormone treatment. 

 

 

 

Figure 4.3: Function of survival obtained by exponential model and Cox model for RT 

treatment 
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Figure 4.1, show that the survival chance of a breast cancer patient obtained by 

exponential model which is comparable to the one obtained by cox model. Furthermore, 

the patient who undergoes the chemotherapy treatment has greater chance of survival by 

having an increased likelihood of living greater number of days. Therefore, the probability 

of living increases with the patient undergoing chemotherapy treatment and the LRT -

7654.09 (5.16e-07) along with p-value shows that the treatment is not significant. 

The breast cancer patient's chance of survival increases based on hormone 

treatment as provided in figure 4.2. Likewise, the patient receiving hormone treatment has 

greater survival chance since they have an increased likelihood of living greater number of 

days compared to the patient not receiving treatments as shown shows that for the hormone 

treatment there is significant effect.  

The breast cancer patient's chance of survival increases based on surgery treatment 

as provided in figure 4.3. Likewise, the patient receiving RT treatment has greater survival 

chance since they have an increased likelihood of living greater number of days compared 

to the patient not receiving treatments.  

Figure 4.4 compares the three treatment methods of chemotherapy, radiotherapy 

and hormone testing using exponential model. The graph shows that there is no significant 

difference between the three treatments. However, the graph shows slightly different 

results in the treatments for example the hormone and radiotherapy has longer survival rate 

compared to the other treatment. 

From the above, on the basis of the survival rates, we recommend radiotherapy 

followed by hormone and chemotherapy treatment.  
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Figure 4.4: Comparing the three treatments obtained by exponential model  

 
 

4.2 Simulated Data  

Simulation is a method to model random events, in a way that simulated outcomes 

are closely related to real-world outcomes. Using the simulated outcomes, researchers 

understand and gain more insight on the real world. The process allows to consider the 

properties of methods as bias. The simulation technique is an extremely valuable tool for 

statistical research, to compare alternative methods and to evaluate new methods. 

Generally, it may be difficult to obtain analytic results. As opposed to more general analytic 

results which covers many scenarios; simulation studies obtain empirical results on the 

performance of statistical methods. Furthermore, in many situations mathematical 

treatment does not work as other techniques might be expensive, time-consuming or 

difficult to analyze. In these cases, simulation could approximate real-world results, but 

requires lesser time, effort and money than other approaches.      

A simulation study is carried out to examine the influence of the exponential model 

and furthermore to compare the covariates in the data set of breast cancer data. 
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Normal distribution is used to generate the simulation data since we find that the 

normal is  more reasonable based on real data compared to some other distributions such 

as Weibull and log-logistic as the Akaike’s information criterion (AIC) was found to 

14610.14 a normal distribution, 15059.36 for log-logistic and 14672.15for Weibull. 

Furthermore, the sample used in the study is 20000 times for each treatment.  

To generate the data for treatment, a mean and standard deviation of -0.27926 and 

0.06419 for hormone (for example) are used on the basis of percentage of exact 

observation- 0%, 25%, 50% and 75% for the partly interval censored (PIC) data. Moreover, 

we obtained the function of survival for each simulation data for the two groups of each 

treatment that are based on the exact observation compared to the estimation by imputation 

methods which are mean, left point and midpoint.  

It is to be noted that 0% exact observation is defined by 100% interval censored. 

Similarly, 25%, 50% and 75% exact observation indicate that it has 75%, 50% and 25% 

interval censored respectively. 

 

Table 4.2: Results from surgery obtained by exponential model with MI imputation based   

on simulation data 

% Exact  Parameter Estimate CI of 95% SE LRT* (P-value 

0% Coefficient -0.21757 (-0.245682,-0.18946) 1.434e-02 -151186.6(2e-16) 

rate  0.001274 (0.0012487, 0.00130) 1.292e-05  

25% 

 

Coefficient -0.21765 (-0.245758,-0.18954) 1.434e-02 -151186.3(2e-16) 

rate 0.001274 (0.001248,  0.00130) 1.292e-05  

50% 

 

Coefficient -0.21729 (-0.24539, -0.18918) 1.434e-02 -151190.5(2e-16) 

rate 0.001273 (0.001248,  0.00130) 1.292e-05  

75% 

 
Coefficient -0.21718 (-0.245286,-0.18907) 1.434e-02 -151191.5(2e-16) 

Scale  0.001273 (0.001248,  0.00130) 1.292e-05  

100% 

 

Coefficient -0.28938 (-0.317523,-0.26124) 1.436e-02 -151718.9(2e-16) 

rate 0.001264 (0.001239,  0.00129) 1.283e-05 
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Table 4.2 shows the results obtained by exponential model based on multiple 

imputation with different percentages of exact for the PIC data on the basis of with and 

without surgery treatment. The results show that surgery is significant with respect to their 

p-value and LRT (based on α=0.05).   

 Figures 4.5, 4.6, 4.7 and 4.8 shows the results obtained on the estimation function 

of the survival obtained by the exponential model via the multiple imputation technique 

with different exact observations as 0%, 25%, 50% and 75% as mentioned before in this 

chapter. The estimated survival function obtained from exact observation with 0%, 25%, 

50% and 75% are similar to the one obtained by multiple imputation technique. 

Furthermore, Table 4.2 shows significant results by using the multiple imputation with 

respect to the values of LRT and their subsequent p-value. 

 Table 4.2 shows the results obtained through our exponential model using multiple 

imputation for surgery treatment via different percentages of interval censored data and 

exact data. It shows significant results with respect to LRT and their p-value. The results 

depict that the more the exact observations in the data, the better the results. Furthermore, 

the breast cancer patient using surgery treatment has a greater chance of survival compared 

to the patient who have not received surgery treatment. Additionally, the null hypothesis 

test (Ho: there is no difference between the patient who underwent surgery treatment and 

the patient without surgery treatment) is rejected.  
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Figure 4.5: Function of survival obtained by multiple imputation for 0% exact data based 

on surgery treatment 

 

 

 

 

Figure 4.6: Function of survival obtained by multiple imputation for 25% exact data 

based on surgery treatment. 
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Figure 4.7: Function of survival obtained by multiple imputation for 50% exact data 

based on surgery treatment. 

 

 

 

 

 

Figure 4.8: Function of survival obtained by multiple imputation for 75% exact data 

based on surgery treatment. 
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Table 4.3: Results from RT obtained by exponential model with MI imputation based on 

simulation data 

% 

Exact  

Parameter Estimate CI of 95% SE LRT* (P-value 

0% Coefficient -0.23562 (-0.26377, -0.20748) 1.436e-02 -151863.6(2e-16) 

rate  0.001214 (0.001190,  0.00124) 1.232e-05  

25% 

 

Coefficient -0.23577 (-0.26392, -0.20762) 1.436e-02 -151864.5(2e-16) 

rate 0.001214 (0.001190, 0.001239) 1.232e-05  

50% 

 

Coefficient -0.23577 (-0.26392, -0.20762) 1.436e-02 -151865.3(2e-16) 

rate 0.001214 (0.001190,   0.00124) 1.232e-05  

75% 

 
Coefficient -0.23587 (-0.264018, -0.2077) 1.436e-02 -151863.7(2e-16) 

Scale  0.001214 (0.001190,  0.00124) 1.232e-05  

100% 

 

Coefficient -0.28938 (-0.317523,-0.26124) 1.436e-02 -151718.2(2e-16) 

 rate 0.001264   (0.001239, 0.001289) 1.283e-05 

 LRT*: Likelihood Ratio Test 

 

 

Table 4.3 explains the results obtained using our exponential model via multiple 

imputation by utilizing four different percentage values of exact for the PIC data based on 

the RT treatment and without RT treatment. It is depicted that RT treatment is significant 

on the basis of its LRT and p-value. 

The results obtained using the estimation of survival function on the figures 4.9, 

4.10, 4.11 and 4.12 are obtained using exponential model via the multiple imputation 

technique with alternative exact observations of 0%, 25%, 50% and 75% which were 

discussed previously in this chapter. The estimated function of survival acquired with the 

exact observations of 0%, 25%, 50% and 75% and the curve obtained by multiple 

imputation technique are alike. Additionally, with respect to the values of LRT and their 

respective p-values the above table 4.3 shows significant results by using multiple 

imputation. 

For the RT treatment significant results are attained as denoted by the LRT and its 
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p-value. It shows that with the presence of more exact data, the results are better. Moreover, 

the patient receiving RT treatment has a greater likelihood of survival chance in 

comparison to the patient who have not received RT treatment. In conclusion, the null 

hypothesis of no difference between the patient who completed RT treatment and the 

patient who did not receive RT treatment is rejected. 

 

 
 

Figure 4.9: Function of survival obtained by multiple imputation for 0% exact data based 

on RT treatment. 
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Figure 4.10: Function of survival obtained by multiple imputation for 25% exact data 

based on RT treatment. 

 

 

 

 
Figure 4.11: Function of survival obtained by multiple imputation for 50% exact data 

based on RT treatment. 
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Figure 4.12: Function of survival obtained by multiple imputation for 75% exact data 

based on RT treatment. 

 

 

Table 4.4: Results from Hormone obtained by exponential model with MI imputation 

based on simulation data 

% 

Exact  

Parameter Estimate CI of 95% SE LRT* (P-value 

0% Coefficient -0.289336 (-0.317476, -0.2612) 1.436e-02 -151719.2 (2e-16) 

rate  0.0012637 (0.001239,   0.00129) 1.283e-05  

25% 

 

Coefficient -0.289523 (-0.317662,-0.26138) 1.436e-02 -151719.2(2e-16) 

rate 0.0012640 (0.001239, 0.00129) 1.283e-05  

50% 

 

Coefficient -0.289259 (-0.317398, -0.2611) 1.436e-02 -151720.8(2e-16) 

rate 0.001264 (0.001238,  0.00129) 1.283e-05  

75% 

 
Coefficient -0.289423 (-0.317563,-0.26129) 1.436e-02 -151720(2e-16) 

Scale  0.0012639 (0.001239,  0.00129) 1.283e-05  

100% 

 

Coefficient -0.289383 (-0.317523, -0.2612) 1.436e-02 -151722 (2e-16) 

Rate 0.0012640 (0.001239,  0.00129) 1.283e-05 

LRT*: Likelihood Ratio Test 
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Table 4.4 shows the results obtained by exponential model based on multiple 

imputation with four different exact percentages for the PIC data on the basis of the 

following type of failures that is with and without hormone treatment. It is concluded that 

the results show that the hormone is significant with respect to the p-value and LRT.  

Figures 4.13, 4.14, 4.15 and 4.16 displays the results obtained on the estimation 

function of the survival attained with the exponential model via the multiple imputation 

technique with the previously discussed exact observations of 0%, 25%, 50% and 75%. 

The curves obtained by multiple imputation technique and the estimated survival function 

using exact observations of 0%, 25%, 50% and 75% are closely alike. Furthermore, with 

the use of multiple imputation, table 4.4 demonstrates significant result on basis of the LRT 

and its p-value. 

 The results prescribe significant results on the basis of LRT and its p-value. As 

mentioned before, this means the results are better as more exact observations in the data 

is translated to better results. In addition, the results show that the breast cancer patient 

using hormone treatment has a greater survival likelihood in comparison to the patient who 

did not receive the treatment. Finally, the null hypothesis test of no difference between the 

patient who received and did not receive the hormone treatment is rejected.  
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Figure 4.13: Function of survival obtained by multiple imputation for 0% exact data 

based on Hormone treatment. 

 

 

 

 
Figure 4.14: Function of survival obtained by multiple imputation for 25% exact data 

based on Hormone treatment. 
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Figure 4.15: Function of survival obtained by multiple imputation for 50% exact data 

based on Hormone treatment. 

 

 

 

 
Figure 4.16: Function of survival obtained by multiple imputation for 75% exact data 

based on Hormone treatment. 

 



  
   

43 
 

Table 4.5: Results from Chemotherapy obtained by exponential model with MI 

imputation based on simulation data 

% 

Exact  

Parameter Estimate CI of 95% SE LRT* (P-value 

0% Coefficient -0.11309 (-0.14121, -0.08496) 1.435e-02 -152199.5(3.2e-15) 

rate  0.001139 (0.001116,  0.00116) 1.154e-05  

25% 

 

Coefficient -0.11319 (-0.141312,-0.08507) 1.435e-02 -152198.1(3.1e-15) 

rate 0.001139 (0.00112,  0.00116) 1.154e-05  

50% 

 

Coefficient -0.11322 (-0.141345,-0.08510) 1.435e-02 -152198.2(3.1e-15) 

rate 0.001139 (0.001116,  0.00116) 1.154e-05  

75% 

 
Coefficient -0.11336 (-0.141485, -0.0852) 1.435e-02 -152197.7(2.8e-15) 

Scale  0.001139 (0.001116,  0.00116) 1.155e-05  

100% 

 

Coefficient -0.11342 (-0.141539,-0.0853) 1.435e-02 -152197.9(2.8e-15) 

rate 0.001139 (0.001116, 0.00116) 1.154e-05 

 LRT*: Likelihood Ratio Test 

 

Table 4.5 shows the results obtained by exponential model based on multiple 

imputation on the two failure times, with and without chemotherapy treatment via different 

percentages of exact for the PIC data. With respect to the LRT and its p-value, it is 

concluded that chemotherapy is significant.  

Figures 4.17, 4.18, 4.19 and 4.20 with the exact observations of 0%, 25%, 50% and 

75% shows the results obtained on the estimation function of the survival are attained by 

the exponential model and the multiple imputation technique. The curves using exact 

observation of 0%, 25%, 50% and 75% obtained by both the multiple imputation technique 

and the estimated survival function are alike. Furthermore, LRT and p-value in table 4.5 

demonstrates that the results are significant.  

LRT and its p-value in Table 4.5 demonstrate that it shows significant results. 

Furthermore, the results suggest that the patient undergoing chemotherapy has a higher 

survival chance when compared to the patient receiving no chemotherapy treatment. As 
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discussed before, the above table also shows that the exact observations being higher is 

translated to better results. Moreover, the null hypothesis test of our study showing no 

difference between patient undergoing chemotherapy and no chemotherapy treatment is 

rejected. 

 

 

 
Figure 4.17: Function of survival obtained by multiple imputation for 0% exact data 

based on Chemotherapy treatment. 

 



  
   

45 
 

 
Figure 4.18: Function of survival obtained by multiple imputation for 25% exact data 

based on Chemotherapy treatment. 

 

 

 

 
Figure 4.19: Function of survival obtained by multiple imputation for 50% exact data 

based on Chemotherapy treatment. 
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Figure 4.20: Function of survival obtained by multiple imputation for 75% exact data 

based on Chemotherapy treatment 

 

A simple approach to dealing with missing data is simple imputation. The process 

involves obtaining a single estimated value for the missing observation, thereby applying 

augmented data set by enabling standard statistical methods.  

The simple imputation includes left imputation, right imputation and mid-point 

imputation. For a better clarity on our results obtained using multiple imputation, we will 

compare the results found using the multiple imputation method against the results 

achieved from left imputation via the following analysis.   

The left imputation technique is used in this thesis for the purpose of comparison. 

The tables (table 4.5 as example) define λ as the rate which is defined as the likelihood that 

an item will survive to a certain point in time on the basis of its survival to an earlier. Also, 

we defined a 95% confident that rate will fail between the two endpoints of the interval. 

However, when the confidence interval is shorter, it indicates the estimation is better. 
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Tables 4.6, 4.7, 4.8 and 4.9 along with figures 4.21 to 4.28 are obtained by our 

model via left imputation from the simulation data set with 0% and 25% exact observation. 

Furthermore, the mentioned Tables and Figures  demonstrate how the different treatments 

of chemotherapy, surgery, RT and hormone treatment are different compared to the one 

obtained by multiple and left imputation using 0% and 25% exact data respectively. It 

shows that the multiple imputation is better than the left imputation since there is a slight 

difference between the results obtained via exact observation.  

 

Table 4.6: Results from Chemotherapy obtained by exponential model with Left 

imputation based on simulation data 

% 

Exact  
Parameter Estimate CI of 95% SE LRT* (P-value 

0% Coefficient -0.11682 (-0.144940,-0.08869) 1.435e-02 -151552.7(3.9e-16) 

rate  0.00118 (0.001156,  0.00120) 1.196e-05  

25% 

 

Coefficient -0.1159 (-0.144008,-0.0878) 1.434e-02 -151715.3(6.8e-16) 

rate 0.00117 (0.001146,  0.0012) 1.185e-05  

50% 

 

Coefficient -0.11504 (-0.14316, -0.08692) 1.435e-02 -151877.9(1.1e-15) 

rate 0.00116 (0.001136, 0.00118) 1.435e-02  

75% 

 
Coefficient -0.11426 (-0.14238, -0.08613) 1.435e-02 -152037.7(1.7e-15) 

Scale  0.00115 (0.001126,  0.00117) 1.165e-05  

100% 

 

Coefficient -0.11342 (-0.141539, -0.0853) 1.435e-02 -152197.9 (2e-15) 

rate 0.001139 (0.001239,  0.0013) 1.155e-05 

LRT*: Likelihood Ratio Test 
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Figure 4.21: Function of survival obtained by left imputation for 0% exact data based on  

Chemotherapy treatment 

 

 

 

 
Figure 4.22: Function of survival obtained by left imputation for 25% exact data based on 

Chemotherapy treatment 
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Table 4.7: Results from Hormone obtained by exponential model with Left imputation 

based on simulation data 

% 

Exact  

Parameter Estimate CI of 95% SE LRT* (P-value 

0% Coefficient -0.29925 (-0.32739, -0.27111) 1.435e-02 -151059.9 (2e-16) 

rate  0.00131 (0.001288,  0.00134) 1.334e-05  

25% 

 

Coefficient -0.29690 (-0.325035,-0.26876) 1.435e-02 -151224.6 (2e-16) 

rate 0.001302 (0.001276,  0.00133) 1.321e-05  

50% 

 

Coefficient -0.29412 (-0.32226, -0.26599) 1.436e-02 -151392.7(2e-16) 

rate 0.00129 (0.001263,   0.00131) 1.308e-05  

75% 

 
Coefficient -0.29183 (-0.319970,-0.26369) 1.435e-02 -151557.6 (2e-16) 

Scale  0.00128 (0.001251,  0.00130) 1.295e-05  

100% 

 

Coefficient -0.2894 (-0.317523, -0.2612) 1.435e-02 -151718.9 (2e-16) 

rate 0.00126 (0.001239,  0.00129) 1.283e-05 

 LRT*: Likelihood Ratio Test 

 

 

 

 
Figure 4.23: Function of survival obtained by left imputation for 0% exact data based on  

         Hormone treatment 
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Figure 4.24: Function of survival obtained by left imputation for 25% exact data based on 

Hormone treatment 

 

 

Table 4.8: Results from RT obtained by exponential model with Left imputation based on 

simulation data 

% 

Exact  

Parameter Estimate CI of 95% SE LRT* (P-value 

0% Coefficient -0.2434 (-0.27154, -0.21524) 1.436e-02 -151211.9 (2e-16) 

rate  0.00126 (0.001235,  0.00129) 1.279e-05  

25% 

 

Coefficient -0.2416 (-0.26970, -0.21340) 1.436e-02 -151377.7 (2e-16) 

rate 0.00125 (0.001224, 0.00127) 1.267e-05  

50% 

 

Coefficient -0.2396 (-0.26779, -0.21149) 0.0143621 -151542.1 (2e-16) 

rate 0.00124 (0.001213,  0.00126) 0.0000125  

75% 

 
Coefficient -0.2378 (-0.26594, -0.20964) 1.436e-02 -151702.7(2e-16) 

Scale  0.00123 (0.001201,   0.0013) 1.243e-05  

100% 

 

Coefficient -0.2360 (-0.26415,-0.20785) 1.436e-02  

-151862.2(2e-16) rate 0.00121    (0.00119, 0.00124) 1.232e-05 

LRT*: Likelihood Ratio Test 
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Figure 4.25: Function of survival obtained by left imputation for 0% exact data based on  

RT treatment 

 

 

 

 
Figure 4.26: Function of survival obtained by left imputation for 25% exact data based on 

RT treatment. 
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Table 4.9: Results from surgery obtained by exponential model with Left imputation based 

on simulation data 

%  

Exact  

Parameter Estimate CI of 95% SE LRT* (P-value 

0% Coefficient -0.2254 (-0.25354, -0.19732) 1.434e-02 -150495.6 (2e-16) 

rate  0.00133 (0.001299, 0.001351) 1.344e-05  

25% 

 

Coefficient -0.2235 (-0.251596,-0.19538) 1.434e-02 -150671.3 (2e-16) 

rate 0.00131 (0.001286,  0.00134) 1.331e-05  

50% 

 

Coefficient -0.2212 (-0.24929, -0.19307) 1.434e-02 -150848.1 (2e-16) 

rate 0.00130 (0.001273,  0.00132) 1.317e-05  

75% 

 
Coefficient -0.2191 (-0.247207,-0.19099) 1.434e-02 -150495.6 (2e-16) 

Scale  0.00129  (0.001260,  0.00131) 1.304e-05  

100% 

 

Coefficient -0.2176 (-0.245697,-0.18948) 1.434e-02 -151189.6 (2e-16) 

rate 0.00127 (0.001248,   0.00130) 1.292e-05 

 LRT*: Likelihood Ratio Test 

 

 

 

 
Figure 4.27: Function of survival obtained by left imputation for 0% exact data based on  

 Surgery treatment. 
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Figure 4.28: Function of survival obtained by left imputation for 25% exact data based on 

Surgery treatment. 
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CHAPTER 5: CONCLUSION AND SUGGESTION FOR FUTURE RESEARCH 

 

CHAPTER OVERVIEW 

The following chapter discusses two sections. Firstly, the conclusion summarizes 

the result obtained in the previous chapters. Additionally, the second section provides 

suggestions for future studies. 

5.1  Conclusion 

In the above study, we use exponential model based on multiple imputation 

technique which helps for simplifying the procedure of partly interval censored data. 

Exponential model has been applied in many different sectors and subjects. In this study, 

the model is used for medical data. The estimated survival function was derived using the 

maximum likelihood estimation. The medical data using exponential model was compared 

with Cox model.  

To setup our data as partly interval censored, we consider two months as the interval 

and we impute the exact observation based on multiple imputation technique that 

mentioned in earlier chapter. The result from the breast cancer data shows that the survival 

curves obtained using exponential model lies closer to the survival curves obtained through 

Cox model. The results are similar in all cases of treatments of chemotherapy, radiotherapy 

and hormone. Furthermore, the models fit well and was flexible to use for the real data as 

well for the simulation data with different percentages of exact observations. The 

coefficient and standard error of the two models were close to each other for the four 

treatments. The graphs show that there is no significant difference when comparing the 

four treatments. Furthermore, the graphs show that the surgery treatment has longer 
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survival rate compared to the other available treatments.  

Simple imputation is standardized and is an easy tool for interval data with a shorter 

period. For the medical data in our study we use multiple imputation which gives a more 

reliable and better result, since medical data has more missing observations.  

The simulation was conducted based on the breast cancer data. The sample was 

used 20,000 times for each treatment. In addition to that to setup the data as partly interval 

censored, the interval of two-month period is given and the exact value will be generated 

via multiple imputation technique and left imputation technique. The function of survival 

was obtained for each simulation data for each treatment of the two groups (with treatment 

and without treatment). It is noted that the simulation results obtained from medical data 

and the results from the simulation data are similar to each other. Furthermore, the medical 

breast cancer data is suitable for the partly interval censored.  

Overall, the result of this study using survival curves has shown that the four 

treatments provide the patients a longer survival rate than them not receiving any treatment. 

It is observed that the estimated parameters for our model are almost similar by using 

different types of exact observations for the PIC data. On the contrary, we note that there 

is a slight difference in the estimates of parameters between different exact observations 

for the PIC data.  

The model was implemented based on medical data as well as simulation data via 

LRT. We conclude that both results from the simulation and real data are suitable for partly 

interval censored via MI and left point imputations. 
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Finally, the result observed that when the observations in the data are more exact, 

the model is a better fit, which is a similar inference other researchers like Alharpy and 

Ibrahim (2013) and Zyoud et al. (2016) have reached in their respective published papers. 

The simulation study strongly supports the concept that if the data is partly interval 

censored then the exponential model is a suitable option and it has the potential for being 

applied to many areas such as medical, education, engineering, and others. 

5.2  Suggestions for future research 

This research focuses only on the treatments in the data sets; future research can be 

extended to study the properties of other parameters in the model as well as different factors 

in the data such as age, gender, level of education, etc. 

Moreover, in this study we use the MI and the results are compared to left imputation; 

future research in this topic can be conducted by comparing MI with EM algorithm which 

will provide more accurate results. Additionally, inclusion of more factors of the data sets 

in the analysis ensures more accurate outcomes. 
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