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Abstract Automatic speaker identification has become a
challenging research problem due to its wide variety of appli-
cations. Neural networks and audio-visual identification sys-
tems can be very powerful, but they have limitations related to
the number of speakers. The performance drops gradually as
more and more users are registered with the system. This
paper proposes a scalable algorithm for real-time text-inde-
pendent speaker identification based on vowel recognition.
Vowel formants are unique across different speakers and re-
flect the vocal tract information of a particular speaker. The
contribution of this paper is the design of a scalable system
based on vowel formant filters and a scoring scheme for clas-
sification of an unseen instance. Mel-Frequency Cepstral
Coefficients (MFCC) and Linear Predictive Coding (LPC)
have both been analysed for comparison to extract vowel for-
mants by windowing the given signal. All formants are fil-
tered by known formant frequencies to separate the vowel
formants for further processing. The formant frequencies of
each speaker are collected during the training phase. A test
signal is also processed in the same way to find vowel for-
mants and compare them with the saved vowel formants to
identify the speaker for the current signal. A score-based
scheme allows the speaker with the highest matching formants
to own the current signal. This model requires less than

100 bytes of data to be saved for each speaker to be identified,
and can identify the speaker within a second. Tests conducted
on multiple databases show that this score-based scheme out-
performs the back propagation neural network and Gaussian
mixture models. Usually, the longer the speech files, the more
significant were the improvements in accuracy.
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1 Introduction

The term Speaker Recognition [1] consists of Speaker
Identification – the identification of the speaker speaking the
current utterance – and Speaker Verification – the verification
from the utterance of whether the speaker is who he claims to
be. There are two types of speaker recognition, Text-depen-
dent – in which the speaker is given a specific set of words to
be uttered – and Text-independent – in which the speaker is
recognised irrespective of what one is saying [2]. The current
approach is aimed at Text-independent Speaker Identification.

A digital speech signal is a discrete-time signal sampled
from a continuous-time signal that has been quantised upon
analog-to-digital conversion. Each sample is represented by
one or more bytes (e.g. one byte for a 256-level quantisation).
This digitised discrete-time signal consists of different fre-
quency values which represent the audio signal. It must be
pre-processed to extract feature vectors that represent individ-
ual information for a particular speaker regardless of the con-
tent of the speech itself. A learning algorithm generalises these
feature vectors for various speakers during training and ver-
ifies the speaker identity for a test signal during the test phase.
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No two digital signals are the same, even with the same
speaker and the same set of words, due to the variation in
amplitude and pitch in a speaker’s voice over different record-
ings. The environmental noise, the recording equipment, the
speed at which the speaker speaks, and the varying psycho-
logical and physical states of the speaker, increase the com-
plexity of this task. Text-independent identification further
requires that the speaker is free to speak any set of words
during testing. Therefore, the need arises for a generalised
feature extraction strategy to extract text-independent features
from a speech signal.

An audio formant refers to the frequency peaks in a speech
signal. These peaks appear with different frequencies in a
speech signal and are also called resonant frequencies. These
frequencies resonate according to the vocal tract of the speak-
er. Vowel formants refer to the frequencies associated with
vowel sounds in a language. It is well known that the two or
three of the lowest vowel formants are sufficient to distinguish
between vowels in most cases [3]. Fundamental frequency
estimation is an essential requirement in systems for pitch-
synchronous analysis, speech analysis/synthesis and speech
coding. It has been reported that fundamental frequency can

improve performance of a speech recognition system for a
tonal language [4] and of a speaker identification system [5].
These formants correspond closely to the acoustic resonance
frequencies created by a speaker’s vocal tract and carry unique
information specific to the speaker [6]. The relevance of the
individual formants and resonances have been widely studied
[7–10]. Vocal resonances are altered by the articulators to form
distinguishable vowel sounds, and the peaks in the vowel
spectra are the vocal formants. The term formant refers to
peaks in the harmonic spectrum of a complex sound. They
are usually associated with the formations of the speaker’s
vocal tract and they are essential components in the intelligi-
bility of speech. The distinguishability of the vowel sounds
across vowels as well as across users can be attributed to the
differences mainly in their first three formant frequencies [11].
An illustration is shown in Fig. 1 for two different speakers
(left and right). The tracheal air pressure from the lungs passes
through the glottis to create sound with the source spectrum as
shown in the topmost plot. The vocal tract response specific to
the speaker (the middle plot) attenuates this spectrum and
results in the output sound (bottom plot) from which the for-
mants can be extracted.
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Figure 1 Resonating frequencies
for different speakers.
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The use of the classical Mel-frequency Cepstral
Coefficients (MFCC) [12, 13] is likely the most popular fea-
ture extraction strategy extensively used thus far for speaker
identification systems. However, MFCC does not contain
much pitch information. Speech or speaker recognition sys-
tems transmit MFCC feature vectors directly to the speech
recogniser. Fundamental frequency and spectral envelope de-
rived from MFCC vectors are two necessary components for
speech reconstruction [14]. Because feature vectors are a com-
pact representation, optimised for discriminating between dif-
ferent speech sounds, they contain insufficient information to
enable reconstruction of the original speech signal [15]. In
particular, valuable speaker information, such as pitch, is lost
in the transformation. It is therefore not possible to simply
invert the stages involved in MFCC extraction to re-create
the acoustic speech signal [12].

Therefore, in order to extract the vowel formants, the stan-
dard Linear Predictive Coding (LPC) scheme is used [16].
With LPC, all of the formants are extracted, with each formant
portrayed in terms of three or more degree formants. These
formants are filtered with a vowel formant filter that separates
the vowel formants from the consonant formants.

During the training phase of the system, after processing
the training signals, a vowel formant database is created that
stores unique vowel formants for each speaker. To distinguish
one speaker from another, vowel formants are tracked in the
test file and are compared with the vowel formants database.
A score-based scheme is employed that assigns the current
signal to the speaker with the highest number of matching
formants for the current test signal. This scoring scheme also
follows a penalty rule, according to which, if a formant does
not match the current vowel in hand from the test file, the
speaker of that vowel formant is penalised with a negative
score.

MFCC and LPC have both been analysed for comparison
in the extraction of vowel formants. It is observed that LPC is
more efficient in this task. This method is the most powerful
way of estimating formants and is computationally the most
efficient [17]. The reasons lie in the close resemblance of this
strategy to the human vocal tract. LPC gives a recognition rate
higher than MFCC and needs much less computational time.
The algorithm to perform LPC on a speech signal is much
simpler than that for MFCC, which has many parameters to
be adjusted to smooth the spectrum, performing a processing
that is similar to that executed by the human ear. But LPC is
easily performed by the least squares method using a set of
recursive formula [18].

For identification, the proposed score-based strategy has
been compared with the Back Propagation Neural Network
(BPNN) [19] and the Gaussian Mixture Model (GMM) [20].
GMM is a robust model for text-independent speaker identi-
fication as reported in [20]. A GMM is a parametric learning
model and it assumes the process being modeled has the

characteristics of a Gaussian process whose parameters do
not change over time. When employing GMM over a seg-
mented stream of speech signal, it is important that we assume
that the frames are independent. This is a reasonable assump-
tion since, generally, the text-independent systems are
modeled as statistical speech parameter distribution models,
which use GMM as the model of each speaker model as well
as the universal background model (UBM) [20–22].

Although speech is non-stationary, it can be assumed
quasi-stationary and be processed through the short-time
Fourier analysis. In speech processing the short-time magni-
tude spectrum is believed to contain most of the information
about speech intelligibility. The duration of the Hamming
window function is an important choice. When making the
quasi-stationarity assumption, we want the speech analysis
segment to be stationary. We cannot make the speech analysis
window too large, because the signal within the window will
become non-stationary. On the other hand, making the win-
dow duration too small also has its disadvantages. If it is too
small, then the frame shift decreases and thus the frame rate
increases. This means we will be processing a lot more infor-
mation than necessary, thus increasing the computational
complexity. Also, making the window duration small will
cause the spectral estimates to become less reliable due to
the stochastic nature of the speech signal. Finally, a pitch pulse
(typically with a frequency between 80 and 500 Hz) usually
occurs every 2 to 12ms. If the duration of the analysis window
is smaller than the pitch period, then the pitch pulse may or
may not be present. Hence, the shape and duration of the
Hamming window is an important design criterion.

One of the most common classes of neural networks is the
feed-forward network [19]. Back propagation refers to a com-
monmethod by which these networks can be trained. Training
is the process by which the weight matrix of a neural network
is adjusted automatically to produce desirable results. Though
back propagation is commonly used with feed-forward neural
networks, it is by no means the only training method available
for the feed-forward neural network. Back propagation works
by calculating the overall error rate of a neural network. The
output layer is then analyzed to see the contribution of each of
the neurons to that error. The neurons’ weights and threshold
values are then adjusted, according to how much each neuron
contributed to the error, to minimise the error next time. There
are mainly two training parameters, the learning rate and the
momentum, that can be passed to the back propagation algo-
rithm to customise its output. The weights in a feed-forward
neural network are adjusted according to the square errors
between the actual outputs and the desired outputs. For a
BPNN, these errors are propagated layer-by-layer into the
input layer in the backward direction. The training input is
passed through the network a number of times to adjust the
weights accordingly. The iterative process of training the net-
work requires multiple passes through the network to train it
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correctly. A BPNN lets us recognise complex patterns and
supports any number of training epochs to produce a learnt
classifier for the unseen data. But this procedure has a cost
associated with how much learning is required to perform
classification within a predictable accuracy on the unseen da-
ta. Learning, although can be a great way of improving per-
formance, requires computer resources for computation.
BPNN not only requires long training time but also a huge
number of instances/patterns to become fully trained for clas-
sification of the unseen data. It is observed that our score-
based strategy outperforms both BPNN and GMM.

This paper is organised into six sections. Section 2 de-
scribes the scheme of feature extraction through vowel for-
mants and the steps to create the formants database.
Section 3 highlights the steps involved in the score-based
scheme for speaker identification. Section 4 compares the per-
formance results of these approaches on different speech da-
tabases, and finally, Section 6 concludes with a discussion of
the effectiveness of the proposed scheme.

2 Feature Extraction

2.1 Formant Extraction Through LPC

The fundamental idea behind speech formants is the assump-
tion that an audio signal is produced by a buzzer at the end of a
tube that closely resembles the actual means of sound produc-
tion in humans. The glottal portion produces the sound with
the help of our breath pressure and acts as the buzzer, whereas
the human vocal tract combined with the mouth constitutes
the tube.

Audio speech can be fully described by the combination of
its frequency graph and its loudness [1]. With this assumption,
together with the vocal tract and mouth comprising the tube,
the human voice is considered to consist of resonating fre-
quencies called formants [23, 24]. LPC processes a signal in
chunks or frames (20–30 ms) to extract these resonating fre-
quencies or formants from the remainder of the noisy signal
through inverse filtering [2, 25]. LPC analyses the speech
signal by estimating the formants, removing their effects from
the speech signal, and estimating their intensity and frequency.
The process of removing the formants is called inverse filter-
ing, and the remaining signal after the subtraction of the fil-
tered modeled signal is called the residue.

For a given input sample x[n] and an output sample y[n],
the next output sample y′[n] can be predicted with the follow-
ing equation,

y
0
n½ � ¼

X q

k¼0
akxn−kð Þ þ

X q

k¼1
bky n−k½ �ð Þ ð1Þ

The coefficients ak and bk above correspond to the linear
predictive coefficients. The difference between the predicted

sample and the actual sample is called the prediction error
given as,

e n½ � ¼ y n½ �−y0
n½ � ð2Þ

and hence, y[n] can be written as,

y n½ � ¼ e n½ �−
X q

k¼1
bk y n−k½ � ð3Þ

The linear predictive coefficients bk are estimated using an
autocorrelation method that minimises the error using least-
square error reduction [26, 27].

2.2 Vowel Formant Filtering

In human speech, there are consonant formants and vowel
formants, and there are noise reverberations. Of all of these
sound types, we are only interested in the vowel formants.
There are twelve vowel formant sounds in the English lan-
guage, as concluded by a study at the Dept. of Phonetics and
Linguistics, University College London [28]. These vowel
formants, together with their first, second, and third formant
frequency ranges, are listed in Table 1. The vowel formants
are filtered using these ranges.

Vowel formants and frequencies were first exhaustively
studied and formulated by J.C. Wells in the early sixties
[23]. This was one of the few approaches researchers in the
speaker identification field started investigating. In speech
synthesis [24, 29], digital filters are often used to simulate
formant filtering by the vocal tract. It is well known [30] that
the different vowel sounds of speech can be simulated by
passing a Bbuzz source^ through only two or three formant
filters. In principle, the formant filter sections are in series, as
found by deriving the transfer function of an acoustic tube
[31].

The basic process of vowel formant extraction is shown in
Fig. 2. The speech signal, s(n) is first modulated by a
windowing function, w(n). The modulation is typically ampli-
tude modulation (i.e. multiplication) and the most commonly
used windowing function is the Hamming window. The resul-
tant signal x(n) is fed to the LPC [32]. After performing linear
predictive coding, the LP coefficients α ¼ α1 α2 α3… αp

� �

are computed such that the error e(n)=s(n)−∑k=1
p αks(n−k) is

minimised. The vector α is appended with zeros and the spec-
tral envelope is extracted using discrete Fourier transform
(DFT), from which the peak signal is detected. The formants
can then be acquired upon analyzing the peak signal ampli-
tude and frequency. As described in Section 2.1, LPC per-
forms an inverse filtering to remove the formants and extract
the residue signal. It effectively synthesises the speech signal
by reversing its process of formation as depicted in Fig. 1. The
synthesised speech signal can then be examined to find the
resonance peaks from the filter coefficients as well as the
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prediction polynomial. This is a robust method since it allows
the extraction of formant parameters through simple peak de-
tection as shown in Fig. 2.

There are several methods of filtering vowel formants. It
can be done by passing it through a series of bandpass filters in

the audio frequency domain and systematically varying the
filter width and slope [33, 34], by low-pass or high-pass fil-
tering in the temporal modulation domain [35, 36], or by
varying the number of audio-frequency channels in the con-
text of cochlear implant simulations [37, 38]. In [36], it has
been demonstrated that both low-pass and high-pass filtering
in the temporal modulation domain were analogous to a uni-
form reduction in the spectral modulation domain.

Figure 3 shows a high-level flow chart for vowel extraction
from speech signal. Vowels are highly periodic and have dis-
tinctive Fourier representations. We passed the test samples
through an auto-regressive filter, and then calculated the for-
mant frequencies from the spectral envelope of the LPC fil-
tered vowel. The purpose of the auto-regressive model on
each window is to get the transfer function of the vocal tract
and output the spectral envelope of each voice sample. The
next step is to filter out the consonants by checking the fre-
quency response of the LP filter representing the consonant
sounds. Consonants usually have significantly lower magni-
tudes than vowel sounds. A smoother is then used to eliminate
anomalies and then output each vowel, from which the for-
mants are extracted.

2.3 Vowel Database Construction

Vowel formants individually lie in specific frequency ranges,
but every speaker has a unique vocal tract and produces vowel
formants that are unique. During the training phase, the sys-
tem is presented with speech files produced by different
speakers. The speech files for each speaker are preprocessed
with LPC, and subsequently, these formants are filtered to
extract only the vowel formants. These vowel formants are
saved for each speaker name in a database. This database is
a Matlab [39] file to be used during the testing phase of the
system.

Table 1 Vowel formant frequencies in English language [28].

Vowel Formant Mean frequency (Hz) Std. dev.

/i/ 1 285 46

2 2373 166

3 3088 217

/I/ 1 356 54

2 2098 111

3 2696 132

/E/ 1 569 48

2 1965 124

3 2636 139

/æ/ 1 748 101

2 1746 103

3 2460 123

/A/ 1 677 95

2 1083 118

3 2340 187

/Q/ 1 599 67

2 891 159

3 2605 219

/O/ 1 449 66

2 737 85

3 2635 183

/U/ 1 376 62

2 950 109

3 2440 144

/u/ 1 309 37

2 939 142

3 2320 141

/V/ 1 722 105

2 1236 70

3 2537 176

/3/ 1 581 46

2 1381 76

3 2436 231

Figure 2 Process of formant extraction. Figure 3 High-level flow chart for vowel extraction from speech signal.
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3 Score-Based Scheme for Speaker Identification

The testing phase of the system requires the test signal to be
preprocessed with LPC and vowel formants filtering to extract
the unique vowel formants along with their first, second and
third formant frequencies to be compared with the vowel for-
mant database constructed in the training phase of the system.

As a preliminary effort, different strategies for comparing
the test vowel formants with the known vowel formants in the
database were tested. These strategies included the following:

1. Both first and second formants,
2. All first, second and third formants,
3. Both first and third formants,
4. Both second and third formants, and
5. Averaging and comparison with least distance.

Extensive testing of these enumerated schemes
against known results revealed that these strategies are
not powerful enough to yield a good accuracy, as vowel
formants for the same vowel often overlap in different
speakers. Sometimes only one of the three formant
values overlaps, and sometimes two values overlap,
with the only difference being in the frequency of the
third formant. This challenging complexity is attributed
to the text-independent nature of the system, in which
we have a speaker speaking the same vowel but in a
different word with a slightly different formant track.

To handle this type of situation, a score-based scheme was
conceived that awards a positive score if all three formants are
matched and penalises a speaker with a negative score other-
wise. For a given speech signal, the three test formants are
compared against the vowel formant stored in the database
for each speaker. For example, if Dx,k,1 is the first formant
frequency of vowel formant k stored in the database for speak-
er x and Tk,1 is the first formant frequency of k in the test
speech, we conclude that they are Bmatched^ when the differ-
ence between the two, i.e. Tk,1−Dx,k,1 is below a certain thresh-
old εk,1. In this case, we say that the difference, diff(Tk,m−Dx,k,

m) is zero. It is almost impossible to get an absolute zero
difference. Therefore, this thresholding is an indirect form of
quantisation. The vowels had to be first recognised before
performing this comparison, the method of which is detailed
in Section 2.2.

This quantity is computed for all three frequencies Dx,k,1,
Dx,k,2, Dx,k,3 and the test score is,

X3

m¼1

diff Tk;m− Dx;k;m

� � ¼ 0→Score Sk;x
� � ¼ 1 ð4Þ

X3

m¼1

diff Tk;m− Dx;k;m

� �
> 0→Score Sk;x

� � ¼ −1 ð5Þ

The thresholds εk,m are selected experimentally. These two
scores aid in calculating the net score of each speaker x,
against the test vowel as,

Identification kð Þ ¼ arg: Max score Sk;x
� �� �

for k ¼ 1…::n

ð6Þ

The proposed system consists of a formant extraction com-
ponent coupled with a vowel formant filtering component and
the formant database, as shown in Fig. 4.

Our aim is to identify which acoustic parameters of the
vowels (formants) depend more on the individual characteris-
tics of the speaker and less on the linguistic variables.
According to literature, high formants (F3 and F4) usually
convey individual information, while F1 and F2 are dependent
on vowel quality [40–42]. Fundamental frequency (F0) is the
most complex acoustic cue, being related in many languages
to vowel quality. All these formants can play an important role
in speaker identification to different extents [43, 44].

A neural network consists of multiple perceptrons com-
bined in multiple layers beginning with the input layer,
followed by one or more hidden layers and ending at the
output layer. Each perceptron, which has multiple inputs, has
a weight vector associated with it. This weight vector pertains
to its set of inputs, and the weights across all perceptrons are
adjusted during training to map the training samples to the
known target concepts. During the training phase, feature vec-
tors extracted from the training data are fed into each of the
networks in parallel over multiple epochs. Once the training is
complete, they require only one pass of the input data to get
the output. The size (i.e. number of neurons) of the input layer
is equal to the number of LPC features. Each neuron takes in
streams of data as inputs that arise from the consecutive
frames. Some of the advanced neural networks have the size
of the input layer enlarged to two or three adjacent frames [45]
in order to get a better context dependency for the acoustic
feature vectors. The number of input layers can also be chosen
by multiplying the cepstral order with the total frame number
[46], leading to an extremely large input layer size. But in both
the above cases, the computational times are affected due to

Test Signal
LPC Based 
Formant 

Extrac�on

Vowel 
Formant 
Filtering

Score Based  
Comparison 
with Vowel 

Formant 
Database

Iden�fica�on 
Result

Figure 4 Process flow diagram for the proposed system for speaker
identification.
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the increased number of hidden layers and states. If an inade-
quate number of neurons are used, the network will be unable
to model complex data, and the resulting fit will be poor. If too
many neurons are used, the training time may become exces-
sively long [45]. In addition, the network may over fit the data
due to the large number of hidden nodes. If overfitting occurs,
the network simply starts memorising the training data, there-
by causing poor generalisation.We have performed some sim-
ulations to test the effect of changing the size of the neural
network input size. A higher number of input layer neurons
causes the number of hidden layer neurons to go up (and
therefore, the number of states), which eventually increase
the identification and training times. As for performance ac-
curacy, there was no significant change observed since the
NNs are designed to utilise the closed set of data in the most
optimal manner. Hence, we concluded that the size of the
input layer is best set equal to the number of LPC features.

4 Results and Analysis

In this section, we compare the score-based scheme proposed
in this paper against BPNN and GMMusing several databases
such as YOHO, NIST, TI_digits1 and TI_digits2.

The YOHO database [47] contains a large scale, high-
quality speech corpus to support text-dependent speaker au-
thentication research, such as is used in secure access technol-
ogy. The data was collected in 1989 by ITT under a US
Government contract. The number of trials is sufficient to
permit evaluation testing at high confidence levels. In each
session, a speaker was prompted with a series of phrases to
be read aloud. Each phrase was a sequence of three two-digit
numbers. NIST speech databases are part of an ongoing series
of evaluations conducted by NIST [48]. The telephone speech
in this corpus is predominantly English, but also includes oth-
er languages. All interview segments are in English.
Telephone speech represents approximately 368 h of the data,
whereas microphone speech represents the other 574 h.
TI_digits1 and TI_digits2 [49] contain speechwhich was orig-
inally designed and collected at Texas Instruments, Inc. for the
purpose of designing and evaluating algorithms for speaker-
independent recognition of connected digit sequences. There
are 326 speakers each pronouncing 77 digit sequences. Each
speaker group is partitioned into test and training subsets. For
the training set, we picked a total of 25–30 s of speech per
speaker. For some longer speech files, just one file was
enough for the training required for one speaker, whereas,
for shorter file sizes, multiple files were used (e.g. 20 speech
files each 3 s long). We used as many users’ data as the data-
base would have, so that we have a good estimate over a large
population. Similarly, after separating the training files, we
used all the remaining files for testing purposes. The speech
segments that we selected for the training phase did not seem

to have any noticeable effect on the performance. We tested
this by choosing different sets of training samples randomly
and obtained somewhat similar results at the end. We also
varied the total size of the training samples. Below 25 s, the
training was not sufficient but increasing above this point
barely made any difference.

We first present some results comparing GMM and GMM-
UBM to support the choice of GMM-UBM in the subsequent
experiments. The number of mixtures in the Gaussian mixture
is an important parameter when employing GMM or GMM-
UBM. Gaussian mixtures are combinations of a finite number
of Gaussian distributions. They are used to model complex
multi-dimensional distributions upon learning the parameters
of the mixture through various methods. A mixture of
Gaussians can be written as a weighted sum of Gaussian den-
sities, which increases the number of distributions incorporat-
ed [50, 51]. The use of Gaussian mixture models for modeling
speaker identity is motivated by the interpretation that the
Gaussian components represent some general speaker-
dependent spectral shapes and the capability of Gaussian mix-
tures to model arbitrary densities [22]. The number of mix-
tures can dictate the modeling capability of a GMM.
Therefore, in Fig. 5, we show how this number affects the
accuracy of the speaker identification system. GMM-UBM
clearly outperforms GMM when used for analysing vowel
formants. However, Table 2 shows that the training and iden-
tification times are somewhat higher in the case for GMM-
UBM due to the added complexity. Nevertheless, because of
its superior performance, we choose GMM-UBM as one of
the baseline schemes which we will compare our proposed
scheme against. We use a single input implementation for
GMM. The above results were obtained using the YOHO
database.
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Figure 5 Accuracy of GMM and GMM UBM with varying number of
Gaussian mixtures.
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In the above experiments, we also conclude that increasing
the number of Gaussian mixtures indefinitely does not neces-
sarily increase the system accuracy. Upon further investigation,
we found that many of the mixtures could be reduced to single
points, as they did not have enough values to carry on further
computation. The above experiment shows that 12 Gaussian
mixtures provide the optimum accuracy for the vowel formant.

We next present the results for all four databases and com-
pare out proposed scheme to both BPNN and GMM-UBM.
The performance accuracy results have been averaged and are
summarised in Table 3.

The same vowel formants were analysed with BPNN [52]
for identification against the same training files and their ex-
tracted formants for comparison with the proposed score-based
scheme. The same training vowel formants were also supplied
as inputs to GMM-UBM, and the test sets were tested against
these mixtures. The experiments revealed that the vowel for-
mants with the score-based strategy are not only more accurate
in identification but also more scalable, as highlighted next.

An identification algorithm is critically evaluated for its
accuracy against the test data for a number of speakers. The
context of evaluation becomes more critical if the algorithm
aims to be applicable for industry devices for biometric secu-
rity and identity management [53]. However, as the number of
speakers increase, traditional algorithms start declining in ac-
curacy. This trend has been an important consideration during
the design and testing of the current system to ensure that it is a
scalable model. The performance graph in Fig. 6 shows the
performance statistics as the number of speakers is gradually
increased from 10 to 110 in increments of 10. It is to be noted
that both GMM and BPNN start decreasing in accuracy as the

number of speakers increases, whereas the proposed score-
based scheme shows a fairly stable accuracy that is barely
affected by increasing the number of speakers.

Next we present the receiver operating characteristic
(ROC) curve for the three algorithms using the YOHO data-
base in Fig. 7. It shows the distribution of the area under the
curve when plotted with the results of the tests. It clearly
shows the maximum area is covered with score-based scheme
as compared to the other schemes.

During these tests, the identification and training times for
the score-based strategy was also observed, as shown in
Tables 4 and 5. Although BPNN requires less identification
time compared with the proposed score-based scheme for most
databases, it has a much higher training time and poor accuracy.

It is to be observed that the score-based scheme does not
require any training other than saving the filtered vowel for-
mants in the database, which in this case is a Matlab file. Note
that the identification time does not include the preprocessing

Table 2 Training and identification times for GMM and GMM-UBM
with different number of speakers.

Number of speakers GMM GMM-UBM

20 100 20 100

Training time 68 251 110 430

Identification time 2.4 7.8 3.6 11.5

Table 3 Performance comparison (percentage accuracy) of the
proposed score-based strategy, BPNN and GMM-UBM algorithms for
different databases.

Database Score-based scheme
formants

Formants
with BPNN

Formants with
GMM-UBM

YOHO 94.23 % 62.14 % 75.84 %

NIST 92.15 % 54.51 % 72.73 %

TI_digits1 96.87 % 57.58 % 69.42 %

TI_digits2 97.34 % 59.12 % 73.59 %
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Figure 6 Performance statistics (percentage accuracy) of the three
algorithms with varying number of speakers.
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time with LPC and vowel formant filtering, as that time is
considered to be common for all of the algorithms tested. If
the number of speakers is increased, the identification time is
expected to increase for any algorithm. As shown in Fig. 8,
our proposed scheme has much less identification times com-
pared to the other schemes.

Next we present the effect of the length of speech files. The
databases we used have different lengths for speech files. By
trimming them down to 3, 2 and 1 s and testing our system
using these speech signals, we obtained the accuracy results
presented in Table 6. As expected, the longer speech segments
provide the best results. All other results presented in this
paper are based on 3 s long speech signals.

Finally, we present some results on using different number
of formants. Using more formants do not necessarily increase
the overall accuracy rates. Usually, additional formants pro-
vide a tighter threshold for comparison purposes and helps
reduce false accept rates (FAR). But they also cause false
reject rates (FRR) to increase, thereby reducing the overall
accuracy rate. This phenomenon is demonstrated in Fig. 9
where the FAR and FRR results are presented for 3, 4 and 5
formants. Moreover, using more formants drastically in-
creases the training and identification times of the algorithm,
thereby reducing the scope of the speaker identification sys-
tem for many time-stringent applications.

The results presented in this section clearly show that the
proposed scheme outperforms the BPNN and GMM classi-
fiers. Both these classifiers are widely used and regarded as
efficient schemes in many speaker identification
implementations. However, in a vowel formant based scheme,
they fail to perform at a desired level due to the following
reasons. BPNN has the problem of entrapment in local

minima, and the network should be trained with different ini-
tial values until the best result is achieved. The number of
hidden layers and neurons in each layer are required to be
determined. If the number of layers or neurons is inadequate,
the network may not converge during the training; if the num-
ber of the layers or neurons is chosen to be too high, this will
diminish the effectiveness of the network operation. This often
causes this algorithm to be biased by a specific resonant fre-
quency while completely disregarding the others. The pro-
posed score-based scheme tackles this problem better by
exploiting information received from all frequencies. A
score-based scheme allows the speaker with the highest
matching formants to own the current signal. Furthermore,
we choose LPC as the accompanying feature extraction strat-
egy of our novel scheme, which is the best strategy due to its
resemblance with the functioning of the human vocal tract.
Another difficulty of BPNN lies in its use of the back propa-
gation algorithm that is too slow for practical applications,
especially if many hidden layers are employed. The appropri-
ate selection of training parameters in the BP algorithm is
sometimes difficult. As for the GMM algorithm, its main lim-
itation is that, it can fail to work if the dimensionality of the
problem is too high. This causes the GMM to suffer badly
when the number of speakers increases. Another disadvantage
of the GMM algorithm is that the user must set the number of

Table 4 A comparison of the average training time (sec) for different
databases.

Score based
scheme

Formants with
BPNN

Formants with
GMM

YOHO 5.6 72.5 110

NIST 7.5 84.9 135.1

TI_digits1 4.5 68.4 85.6

TI_digits2 4.4 67.4 74.5

Table 5 A comparison of the average identification time (sec) for dif-
ferent databases.

Score based
scheme

Formants with
BPNN

Formants with
GMM

YOHO 0.15 0.08 3.6

NIST 0.21 0.25 4.3

TI_digits1 0.14 0.12 2.8

TI_digits2 0.14 0.11 2.9
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Figure 8 Identification times (sec) of the three algorithms with varying
number of speakers for YOHO.

Table 6 Accuracy vs speech file lengths (across databases and/or
trimmed speech versions).

Speech file length: 1 s 2 s 3 s

YOHO 83.78 89.46 94.23

NIST 72.54 85.28 92.15

TI_digits1 78.56 91.25 96.87

TI_digits2 80.12 91.89 97.34

J Sign Process Syst (2016) 82:345–356 353



mixture models that the algorithm will try and fit to the train-
ing dataset. In many instances the user will not know how
many mixture models should be used and may have to exper-
iment with a number of different mixture models in order to
find the most suitable number of models that works for their
classification problem.

5 Conclusions

Biometric authentication is a multi-disciplinary problem and
requires sound knowledge in machine learning, pattern recog-
nition, digital signal processing, image processing and several
other overlapping fields such as artificial intelligence and sta-
tistics. The objective of this research is to investigate the prob-
lem of identifying a speaker from its voice regardless of the
content (text-independent). This paper investigates the combi-
nation of LPC-based vowel formants with a score-based iden-
tification strategy. For comparison, two other combinations of
LPC-based vowel formants have been tested with BPNN and
GMM. Comprehensive testing on the YOHO, NIST,
TI_digits1 and TI_digits2 databases reveals that the proposed
scheme outperforms BPNN and GMM-based schemes. It has
been observed that the proposed scheme requires very little
training time other than creating a small database of vowel
formants. Therefore, the proposed scheme is time-wise more
efficient as well. The results also show that increasing the
number of speakers makes it difficult for BPNN and GMM
to sustain their accuracy. Both of these models start losing
accuracy, whereas the proposed score-based methodology re-
mains much more stable, making it scalable and suitable for
large-scale implementations. In the future, we want to contin-
ue further with the current approach to speaker identification
and combine it with real-time face recognition to make it more
robust and applicable for industry usage. We aim to combine

audio and visual features as a feature-level fusion in multi-
modal neural networks to further improve the accuracy
through use of two biometric features.

Open Access This article is distributed under the terms of the Creative
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
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