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Abstract Detection and removal of fences from digital
images become essential when an important part of the scene
turns to be occluded by such unwanted structures. Image
de-fencing is challenging because manually marking fence
boundaries is tedious and time-consuming. In this paper, a
novel image de-fencing algorithm that effectively detects and
removes fences with minimal user input is presented. The
user is only requested to mark few fence pixels; then, color
models are estimated and used to train Bayes classifier to
segment the fence and the background. Finally, the fence
mask is refined exploiting connected component analysis
andmorphological operators. To restore the occluded region,
a hybrid inpainting algorithm is proposed that integrates
exemplar-based technique with a pyramid-based interpola-
tion approach. In contrast to previous solutions which work
only for regular pattern fences, the proposed technique is able
to remove both regular and irregular fences. A large number
of experiments are carried out on a wide variety of images
containing different types of fences demonstrating the effec-
tiveness of the proposed approach. The proposed approach
is also compared with state-of-the-art image de-fencing and
inpainting techniques and showed convincing results.
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1 Introduction

Image de-fencing is an important problem in recreational
photographywhere seamless removal of fences from the pho-
tographs is required due to esthetic reasons. The removal
should be undetectable to the general viewers. Many times,
a photographer captures scenes that are behind fences such
as wild animals in cages and natural scenes behind barbed
fences. These fences may spread over the entire image, and
their manual removal can be very tedious, time-consuming
and generally requires special artistic skills. Therefore, the
semiautomatic and user-friendly image de-fencing proposed
in this paper turns out to be an important tool in computa-
tional photography.

Image de-fencing is challenging because automatic fence
detection is a difficult task. Fences can be of different shapes,
texture and color. Some fences have regular repeating pat-
terns, while others are completely irregular. Moreover, the
same fence may also have variations in color, texture and
shape. To the best of our knowledge, currently no automatic
fencedetection technique exits thatmaywork for both regular
and irregular fences. Secondly, a good restoration algorithm
is required that seamlessly replaces the fence pixels with an
estimate of the occluded background pixels. Image inpaint-
ing techniques may serve the purpose if the fence region is
small and coherent. In the presence of large fences, the exist-
ing image inpainting techniques may not get a good estimate
of the occluded pixels.

The term ‘image de-fencing’ is due to Liu et al. [17]. Their
fence detection approach is based on the observation that
fences often have a regular or near-regular repeating patterns
(lattice) such as diamonds, rectangles or squares. The algo-
rithm proposed in [14] is used to detect the lattice. The fence
region is extracted and inpainted using texture-based inpaint-
ing proposed by Criminisi et al. [9]. The technique proposed
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in [17] exhibits good results when the fence is quasi-regular,
while it exhibits severe detection errors on irregular fences.
The authors show that their detection algorithmmay fail [17]
even on some near-regular pattern fence.Moreover, the fence
removal procedure does not produce plausible results, espe-
ciallywhen the region covered by the fence is relatively large.
The image de-fencing technique proposed in [24] improved
the automatic fence detection and also proposed to usemulti-
ple views of the scene to inpaint occluded regions. However,
the single-view images are inpainted using [9]. Similar algo-
rithms have been proposed to detect the near-regular patterns
with user intervention [15,16,18,19,29].

The current image de-fencing algorithms rely on the
already existing image inpainting techniques [3,25,27] to
restore the fence region. The inpainting technique proposed
in [8,9] is considered to be a seminal work that introduced
the so-called exemplar-based or patch-based inpainting. It
used exemplar-based texture synthesis to replicate the texture
and structure in the occluded region. The algorithm proposed
in [20] improves the exemplar inpainting by exploiting the
depthmap of the color image. Image inpainting [21] used sin-
gle Gaussian diffusion kernel to restore the damaged region.
It is observed that a damaged regionmay not have samewidth
across the region. In such cases, using a single diffusion
kernel may not produce good results. The inpainting tech-
nique proposed in [10] automatically uses weighted kernels
of variable size to restore the damaged regions with chang-
ing width. However, this technique is also limited to recover
small regions. An algorithm for removing stains from images
is proposed in [32], which restores the structure and texture in
the image. Several other techniques [2,4–6,22,30,31] have
also been proposed, and most existing techniques produce
good results for small occluded regions, while few improved
inpainting algorithms such as [1,7] showbetter results in case
of large coherent regions.

We propose a semiautomatic fence detection algorithm
that can detect regular and irregular pattern fences of vary-
ing shapes, textures and colors with significantly higher
accuracy than the existing algorithms. The proposed fence
detection technique computes the statistical characteristics
of the fence pixels marked by a user and use them to
extract the fence. To improve fence segmentation accuracy,
we use context aware morphological techniques. To restore
the fence region, we propose a hybrid inpainting technique
by blending patch-based inpainting [9] with image pyramid-
based inpainting [11] to produce improved visual results. The
results of the proposed image de-fencing technique are com-
pared with the existing state-of-the-art techniques on a wide
variety of images containing various types of fences. Objec-
tive metrics are also provided to measure the quality of the
restored images. Our conclusion is that the proposed tech-
nique significantly outperforms the existing fence detection
and restoration techniques.

The rest of the paper is organized as follows: the pro-
posed fence detection technique is described in Sect. 2. The
fence refinement procedure is presented in Sect. 3 and fence
restoration in Sect. 4. The experimental results and objective
quality assessment are provided in Sect. 5, and the conclu-
sions are drawn in Sect. 6.

2 The proposed fence detection algorithm

The proposed de-fencing algorithmworks in four steps, start-
ing with the estimation of the fence color model, which is
used in the second step to segment the fence. In the third step,
the fence mask is refined by eliminating the false positives
and false negatives, and finally the fence region is recovered
by a novel hybrid inpainting algorithm.

2.1 Fence pixels classification

It can be noted that most fences share certain statistical char-
acteristics, which can be used to identify the fence pixels
in the image. One of such characteristics is the fence color.
Indeed, the range of the fence color may be very limited;
therefore, the user can select a small number of fence pix-
els (10 ≈ 15), which are then used for fence modeling (other
methods of selection can be used to specify fence pixels sam-
ple like drawing a line on the fence or coloring the fence
with paint brush). To minimize the selection error and for
increasing the data sample for better modeling accuracy, the
k-neighbors of any manually selected pixel are considered as
fence samples. The fence samples are then used to estimate
the mean and the covariance matrix, and hence, a Gaussian
distribution model of the fence is constructed. We chose
Gaussian distribution as it is simple to handle analytically
and easy to estimate. Moreover, it is observed that the fence
color dispersion is usually very limited making the usage of
Gaussian distribution for its modeling both simple and very
effective. Using such distribution model, fence pixels in the
image are identified.

Let I be an image of size M ×N and I (x1, y1), I (x2, y2),
. . . , I (xn, yn) be the n fence pixels selected by the user. The
color components of these n pixels and their k neighbors are
represented as a n(k + 1)× 3 matrixP . Where the columns
of P contain red, green and blue components, respectively,
of the (k + 1)n fence sample pixels. Given the sample pixels
inP , the meanμ and covariance� of each color component
can be computed as:

⎡
⎢⎢⎣

μr = 1
n(k+1)

∑n(k+1)
i=1 P(i, 1)

μg = 1
n(k+1)

∑n(k+1)
i=1 P(i, 2)

μb= 1
n(k+1)

∑n(k+1)
i=1 P(i, 3)

⎤
⎥⎥⎦ ;

∑
=

⎡
⎣

σ(r,r) σ(r,g) σ(r,b)
σ(g,r) σ(g,g) σ(g,b)
σ(b,r) σ(b,g) σ(b,b)

⎤
⎦

123



SIViP (2016) 10:1193–1201 1195

where σ(α,β) is given by:

σ(α,β) = 1

n(k + 1)

n(k+1)∑
i=1

(P(i, α) − μα)(P(i, β) − μβ))

where α, β ∈ {1, 2, 3} andμ1 = μr ,μ2 = μg andμ3 = μb.
Based on μ and �, we build two classification stages. A first
rough classification is based on the well-knownMahalanobis
distance. This classification may lack in accuracy if the user
input is not precise. Then, the classification is refined using
Bayes detection of fence pixels. Mahalanobis distance dt, f
of each test pixel xt = [rt , gt , bt ]� is defined as:

dt, f = (x − μ)�(�)−1(x − μ) (1)

Each pixel is then classified as fence if its distance is less
than a predefined threshold τ , non-fence pixel otherwise.
Then, the classification is refined applying Bayes’ theorem
to compute posterior probability for the fence and the non-
fence classes, and pixels are assigned to the class with higher
probability. Posterior probability is defined as the Bayesian
distance from the class mean and covariance matrix.

Let p f and pn f be the prior probabilities that a pixel is
and is not part of the fence. For a given pixel x, the posterior
probability of fence class is given as:

P(μ f , � f |x) = P(x|μ f , � f )P(μ f , � f )

P(x)
(2)

where μ f , � f are mean and covariance for fence class and
P(x|μ f , � f ) is the likelihood that x belongs to fence class
represented by a Gaussian distribution model (μ f , � f ) and
is calculated as:

P(x|μ f , � f ) = 1

(2π)
3
2
√|� f |

e− 1
2 (x−μ)�(�)−1(x−μ) (3)

where P(μ f , � f ) is the fence distribution model given by:
P(μ f , � f ) = p f . The P(x) is the normalizing factor and
may be computed as:

P(x) = P(x|μ f , � f )p f + P(x|μn f , �n f )pn f (4)

where (μn f , �n f ) is non-fence class distribution model.
Equation (2) can now be written as:

P(μ f , � f |x) = e− 1
2 (x−μ)�(� f )

−1(x−μ) p f

(2π)
3
2
√|� f |P(x)

(5)

Analogously, the posterior of a pixel for non-fence class may
be computed by:

P(μn f , �n f |x) = e− 1
2 (x−μ)�(�n f )

−1(x−μ) pn f

(2π)
3
2
√|�n f |P(x)

(6)

For a particular pixel x, P(x) is same for P(μ f , � f |x)) and
P(μn f , �n f |x), and (2π)

3
2 is a constant, so these two terms

can be ignored to reduce the computational cost. Hence,
Eqs. (5) and (6) can be rewritten as:

P ′(μ f , � f |x) = 1√|� f |
e− 1

2 (x−μ)��−1
f (x−μ) p f (7)

P ′(μn f , �n f |x) = 1√|�n f |
e− 1

2 (x−μ)��−1
n f (x−μ) pn f (8)

For each pixel x in the image, posterior probabilities of fence
and non-fence classes are computed for each x using Eqs. (7)
and (8), respectively; finally, x is assigned to the class with
the highest posterior probability:

x ∈ FC if P ′(μ f , � f |x) ≥ P ′(μn f , �n f |x),
x ∈ NFC otherwise

where FC is fence class andNFC is non-fence class. The clas-
sified pixels are used to create the fence mask Ω ∈ RM×N :

Ω(i, j) =
{
1 if I (i, j) is fence pixel
0 otherwise

During classification, some fence pixels are misclassified
and some non-fence pixels are marked as fence pixels due to
color similarity. Such errors can be eliminated or at least mit-
igated as discussed in the following section. Figure 1 shows
a fence image and its respective fence mask.

3 Fence mask refinement

The fence detection mechanism described above may yield
both false positives, i.e., non-fence pixels marked as fence
pixels, and false negatives, i.e., fence pixels marked as non-
fence pixels. Such misclassification generally occurs due to
color variations in the fence or color similarity of non-fence
pixels with the fence pixels. For accurate fence detection,

Fig. 1 Classification error. a An image with fence, b fence detected
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(a) (b) (c)

Fig. 2 a Size of components found in mask Fig. 1b, b fence mask after
elimination of FP, c fence mask after dilation

false positives and false negatives can be reduced using mor-
phological tools as described in the following.

False positives (FPs) usually appear as small blobs in the
non-fence regions. To eliminate the FP pixels, we divide
the fence mask into the corresponding connected compo-
nents. The components of significant size represent the
fence, whereas the small ones are usually FP pixel caused
by noise or color similarity. Given the fence mask Ω , let
{C1,C2,C3, . . . ,Cn} be its n connected components. The
size of each component |Ci | is determined and those with
small size can be dropped. This goal is achieved automati-
cally, by sorting the connected component according to their
size in descending order; then, the largest ρ components are
selected as parts of the fence. The number of selected com-
ponents ρ is selected automatically such that:

ρ∑
i=1

|Ci | ≤ α

n∑
j=1

|C j | (9)

where α specify the expected fraction of correctly classified
pixels. In our experiments, it turned out that setting α =
0.95 yields good results. Figure 2a shows the sizes of the
447 connected components found in image Fig. 1b. It can
be observed that there are only few components with large
size, whereas most of them contains less than 15pixels and
represent FP pixels. Figure 2b shows the fence mask after
refinement.

False negatives (FNs) usually appear around the fence
boundaries. These FN pixels are those characterized by a
color more similar to image background than the fence
model. Such pixels may also cause discontinuities in the
fence mask. Such FN pixels and broken fence segments can
be included in the fence mask by using the dilation mor-
phological operator [26]. Dilation expands the fence regions
and hence reconnects its disconnected segments. Figure 2c
shows the fence mask after dilation with a typical structuring
element.

4 Restoration of fence-occluded regions

The restoration of the fence region is a challenging task
because the fencemay extend along the entire image andmay
occlude a significant portion of the image, e.g., up to 40 %

in some cases. In this paper, a hybrid inpainting algorithm
is proposed hybrid because it combines interpolation-based
and exemplar-based inpainting techniques. This algorithm is
an extended version of the pyramid interpolation [11] where
we added an additional exemplar-based inpainting function-
ality [9] to restore large regions.

The proposed inpainting algorithm works in two steps.
First, the image is successively downsampled so as to reduce
the area covered by the fence region; then, the fence holes
are inpainted at low resolution using patch-based inpaint-
ing. Second, the inpainted region is upsampled and copied in
the corresponding full-resolution image. The two steps are
described in detail in the following two subsections.

4.1 Image downsampling and texture recovery

Both the image I (m, n) and the fence mask Ω(m, n)

are successively downsampled yielding the set of images
{I0, I1, . . . , IS}, {Ω0, Ω1, . . . ,ΩS}, where Ik , Ωk are the
result of k downsampling by a factor 2 (on both rows and
columns). The maximum downsampling level S is selected
so as to reduce image sizes below a predefined threshold
φ. Simple downsampling without anti-aliasing filter can be
used. Indeed, in this case it is not critical to maintain high
visual quality of the downsampled image as whole. On the
contrary, we want to reduce the area covered by the fence
pixels while retaining the local information of the pixels in
the fence neighborhood. Thus, the width of the fence inΩS is
considerably reduced and can be recovered more easily. We
propose to recover the fence holes left in IS using the Crimin-
isi patch-based method. It is worth pointing out that working
with a downsampled version of the image also dramatically
reduces the computational cost required by inpainting.

4.2 Upsampling of the inpainted region

After inpainting, the downsampled image needs to be upsam-
pled back to the original resolution. Let Îk represent the
de-fenced image recovered at resolution level k, i.e., ÎS is
used to denote the inpainted image obtained at the lowest
resolution. Any image Îk recovered at level k can be upsam-
pled, e.g., using a Gaussian kernel define by:

Ĩk−1(x, y) =
i=2∑
i=−2

j=2∑
j=−2

w(i, j) Îk(2x + i, 2y + j) (10)

where w = hh� with h = 1
16 [1 4 6 4 1] is a Gaussian

weighting function and Ĩk−1 is an upsampled version of Îk .
Then, only the upsampled fence pixels are copied from Ĩk−1

to the corresponding recovered image at level k−1, whereas
the non-fence pixels are left untouched, as follows:
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Fig. 3 a An image with fence mask (in black color), b–d are its three
downsampled images

Fig. 4 Corresponding de-fenced version of images shown in Fig. 3

Îk−1(x, y) =
{
Ĩk−1(x, y) if Ωk−1(x, y) = 1;
Ik−1(x, y) if Ωk−1(x, y) = 0.

This process is iterated up to computation of Î0 in which
the fence region is completely recovered. Figure 3 shows an
example of downsampling process with S = 3 (φ = 200),
whereas Fig. 4 shows the images obtained by inpainting and
iterative upsampling. To improve the visual quality of the de-
fenced image, super resolution methods, e.g., [12,13,28,33],
can be used to upsample the inpainted image; however, such
methods usually take considerable amount of execution time.

5 Experiments and results

In this section, the proposed image de-fencing technique is
tested on several images. Performance is analyzed in terms
of both fence detection accuracy and visual quality of the
recovered image. We also note that the proposed algorithm
can be used in a more general setting where one wishes to
remove objects other than fences or even textures. Objective
evaluation is carried out on the proposed hybrid inpainting
algorithm using different size and types of fences. Moreover,
the performance of the proposed algorithm is also compared
with state-of-the-art image de-fencing and inpainting tech-
niques. Results on 18 experiments are reported in this section,
which are summarized in Table 1. The execution time has
been obtained on an Intel Core i7 2.5GHz with 8GB RAM

Table 1 Experimental details

Category Exp. Description Image size WS SE FOC Time

Regular 1 Chimpanzee 509 × 332 3 7 25.73 37.08

2 Dog 338 × 352 5 5 28.85 37.83

3 House 800 × 600 3 7 23.90 24.91

4 Lion 480 × 360 5 7 9.47 10.72

5 Out door 450 × 320 3 5 32.27 52.66

6 Road 2431 × 1996 5 9 10.92 34.18

Irregular 7 Thistle 648 × 486 5 7 7.91 11.23

8 Sparrow 800 × 576 5 5 5.58 8.52

Occluded 9 Larkspur 340 × 269 3 7 38.55 23.9

10 Purple 450 × 600 5 7 13.93 11.30

11 Bear 588 × 354 3 5 20.87 60.42

12 Snapdragon 800 × 919 5 5 12.41 9.79

General 13 Eagle 556 × 450 5 7 11.03 5.36

14 Loggerhead 600 × 400 7 5 2.58 7.33

15 Fence 1440 × 900 7 11 12.15 12.62

16 Red Robin 331 × 331 5 5 24.26 16.72

17 Garden 672 × 545 7 15 34.84 13.85

18 Wall 972 × 648 7 5 34.34 75.79

WS iswindow size used in fence detection, SEmeans size of structuring
element for dilation, FOC is percentage (%) of fence-occluded region
in image. Execution time is in seconds

and includes IO time, fence detection, refinement and image
recovery. The test database and the source code of the pro-
posed technique will be released soon at the paper Web site
http://www.di.unito.it/~farid/Research/defencing.html.

The values of the parameters involved in the proposed de-
fencing algorithm are found empirically. The first parameter,
the number of points the usermustmarkon the fence, depends
on the variation of fence color. In case of one solid color, few
points, e.g., 5, are sufficient but in case the fence color has
large variation 15 to 20pointsmust be enough.Basedon these
markedpoints, its k neighbors are selected to increase the data
samples. For thin fences, k is set to 3 and for thick fences its
value may be set to 9. The size of structuring element used in
Sect. 3 depends on the width of the fence; in our experiments,
size ranging from 3×3 to 9×9 has been used in most cases.
Thevalue of the parameterφ in the the downsamplingprocess
is set to 200, which yields the best trade-off on all the images
used in this work.

Figure 5 shows a series of images covered by regular
fences. In these experiments, images with thin fences, thick
fences and fences with different orientations are selected,
and all these fences are successfully removed. The proposed
fence detection algorithmcanbe applied to detect not only the
regular but also irregular fences. Figure 6 shows two exam-
ples where irregular fences have been successfully removed.
Figure 7 shows some examples where fence is occluded with
foreground objects like flowers and has been detected and
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Fig. 5 Regular fence removal (Exp 1–6): original (top) and de-fenced (bottom) image

Fig. 6 Irregular fence removal (Exp. 7–8): original (left) and de-fenced
(right) image

Fig. 7 Occluded fence removal (Exp. 9–12): original (top) and de-
fenced (bottom) image

Fig. 8 Rod, bars and multiple fence removal (Exp: 13–18): original
(top) and de-fenced (bottom) image

removed. The quality of de-fenced images demonstrates the
efficiency of the proposed technique in this case as well.

The proposed algorithm can also be used for other types of
occluding pattern. Figure 8 shows some exampleswhere gen-
eral objects like rods, bars and multiple fences are removed.
In the last example, we applied the proposed algorithm to the
case of a multicolor object, which is a fence with multiple
colors. In this case, the detection algorithm can be applied
iteratively, by removing fence of one color at a time. Figure 9
shows the fence coloredwith red, green, blue and yellow. The
left image in Fig. 9 is the input image; the middle image is
the result of removing the green fence. The intermediate de-
fenced image is then used to train a model for blue fence
removal and so on.
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Fig. 9 Removing multiple colors: original image (left), green bar
removal (middle), blue bar removal (right) (color figure online)

5.1 Comparison with state-of-the-art techniques

The performance of proposed algorithm is compared with
three state-of-the-art image de-fencing and inpainting tech-
niques. We compare the proposed technique with Liu et
al. [17] and Park et al. [24] image de-fencing approaches to
evaluate its performance in terms of fence detection and fence
removal.Moreover, the proposed hybrid inpaintingmethod is
also compared with Criminisi et al. [9] inpainting algorithm
in terms of image quality and execution time.

5.1.1 Comparison with image de-fencing techniques

Both Liu et al. [17] and Park et al. [24] image de-fencing
approaches use lattice detection algorithm to detect the fence.
After fence detection, the Liu algorithm used Criminisi et
al. [9] inpainting to recover the occluded regions, whereas
the Park algorithm proposed multiview inpainting when two
images of the scene, captured from two very close view-
points, are available. In case of single view, Park algorithm
also relies on Criminisi et al. [9] inpainting to recover the
occlusions.

As described in Sect. 1, the Liu and Park algorithms work
for regular and near-regular pattern fences. Both approaches
fail to detect irregular pattern fences, and in some cases
they may fail to obtain a complete lattice in regular pat-
tern fence too. On the contrary, the proposed algorithm is
able to detect regular as well as irregular pattern fences
(see Sect. 5). Figure 10 compares the results in terms of
fence detection obtained by the proposed approach and
the Liu algorithm on symmetrical fences. The symmetrical
fences/objects detected by Liu algorithm are shown superim-
posed on the test image in yellowand red colors. These results
show that Liu algorithm may fail to detect approximatively
regular pattern fences, whereas the proposed algorithm suc-
cessfully detects the fences in all the tested cases. Figure 11
compares the performance of the proposed algorithm and
Liu approach in terms of fence removal. The figure shows
two examples where the Liu algorithm successfully detects
the fences but fails to recover the occluded region. The pro-
posed approach successfully detects and removes the fences
in these images. The results of Park algorithm on the previ-
ous images (Figs. 10, 11) are not available, and therefore, we
could not include them in the comparison.

Fig. 10 Examples where Liu et al. [17] de-fencing approach fails
in fence detection. a test image, b fence detected by Liu algorithm
(shown in yellow and red colors), c fence detected by proposed algo-
rithm, d de-fenced image by proposed algorithm. (These test images
are are borrowed from Liu dataset: http://vision.cse.psu.edu/research/
imageDe-fencing/index.shtml) (color figure online)

Fig. 11 Examples where Liu et al. [17] de-fencing approach fails in
fence detection or in removal phase. (These test images are are borrowed
from Liu dataset: http://vision.cse.psu.edu/research/imageDe-fencing/
index.shtml)

Fig. 12 Comparison with Liu and Park image de-fencing approaches

Figure 12 compares the performance of proposed algo-
rithm with Liu and Park de-fencing approaches. Since both
the proposed and the Liu algorithms are single-view image
de-fencing approaches, we use single-view images in this
comparison. The images used in this comparison are cour-
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Fig. 13 Fence inpainting comparison of proposed algorithm with Cri-
minisi et al. [9]. The main inpainting artifacts are pointed out by red
circles (color figure online)

tesy of Park et al. [23] dataset available at1. On such test
images, it can be noted that our algorithm yields better results
than Liu, whereas the Park algorithm yields slightly bet-
ter image reconstruction than ours. This is mainly due to
the improved lattice detection in Park algorithm. Few fence
parts can still be noted in our reconstructed images since the
proposed fence detection algorithm is based solely on the
color model of the fence. On the contrary, the Park algo-
rithm, in addition to color, exploits the fence structure (in
the form of lattices). The results presented in Figs. 10, 11
and 12 show that the proposed algorithm performs better than
Liu de-fencing approach and its performance is comparable
with Park algorithm. However, in case of asymmetrical and
non-uniform fences, Liu and Park algorithms do not work,
whereas the proposed de-fencing algorithm is more general
and can effectively remove such objects (e.g., see Figs. 6, 8).

5.1.2 Comparison with image inpainting techniques

In this section, we compare the proposed hybrid inpainting
algorithm with Criminisi et al. [9] algorithm. In particular,
the proposed inpainting andmethod in [9] are used to recover
the same regions. The results show that the proposed inpaint-
ing method yields better quality, especially when the fence is
large. Figure 13 shows the visual quality obtained by [9] on
3 test images. Interpolation artifacts produced by [9] can be
spotted easily as compared to our results. Indeed, in the pres-
ence of large fences, the proposed technique performs better.
Thanks to the multiresolution approach which decreases the

1 http://vision.cse.psu.edu/data/data.shtml.
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Fig. 14 a Execution time comparison of the proposed algorithm
with [9] over 18 experiments, b quality comparison in terms of PSNR

Fig. 15 Comparison of proposed hybrid inpainting with Criminisi et
al. [9] on synthetic data. Red circle points some inpainting artifacts
(color figure online)

fence area and produces fast and better matches for occluded
regions. Moreover, the proposed hybrid inpainting technique
turns to be approximately 19 times faster than exemplar-
based inpainting (execution time comparison is given in
Fig. 14a). This gain in speed is again due to our multires-
olution approach.

Finally, we compare the obtained image quality versus [9]
also in terms of peak signal-to-noise ratio (PSNR). These
experiments are carried out with synthetic data where we
manually occlude some regions with a known fence mask,
thus allowing us to compute PSNR of the recovered image
with respect to the original one. Ten experiments are per-
formed on five test images (624× 480) with two fences with
different widths. The results are presented in Fig. 14b, which
shows that the proposed technique is consistently better in
restoring the fence region with an average gain of 0.5dB.
Figure 15 shows two examples of de-fencing on synthetic
data set. The results demonstrate that the proposed algorithm
is better than existing algorithms both in terms of PSNR and
visual quality.

6 Conclusion

A novel approach for removing fences from digital pho-
tographs is presented in this paper. The proposed technique
with little user assistance constructs a fence color model,
and a two-level classification algorithm segments the fence
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from the background. The detected fence is refined through
connected component analysis and by using morphological
operators. To recover the fence region, a hybrid inpaint-
ing technique is proposed that integrates the exemplar-based
inpaintingwith pixel interpolationmethod based on pyramid.
The proposed de-fencing algorithm is capable to detect sym-
metrical aswell as asymmetrical fences and restores the fence
regions efficiently. Moreover, the experiments point out that
the proposed technique can be generalized to the problem of
removing other kind of unwanted distributed patterns.
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