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ABSTRACT 
 
KOHIL, AMIRA, Masters of Science : June: 2021, Biomedical Sciences 
Title: The Role of  Nutritional Status as an Epigenetics Modulator  in Type 1 Diabetes  
in  Pediatric Population of Qatar  
Supervisor of Thesis: Mashael, Al-Shafai. 
 

Type 1 Diabetes Mellites (T1DM), is an autoimmune disorder caused by the 

destruction of pancreatic b-cells and is considered to be among the most prevalent 

chronic conditions in Qatar. This study aimed to identify the differential methylation 

status in pediatric T1DM subjects from the population of Qatar. Also, to explore the 

correlation between nutritional factors and gut microbial composition and its 

metabolites with DNA methylation. In this study, we recruited a total of 72 subjects 

that were divided into four groups (T1DM = 35, T1DM-OB = 9, obese = 16, and healthy 

= 12). Different measurements were collected from the study subjects, which are 24-

hour dietary recall, physical and biochemical data along with blood samples. 

Nutritionist Pro software (Axxya Inc) was used for the determination of the micro-and 

macro-nutrients intake for each study subject. CpG DNA methylation level was 

measured by Illumina Infinium EPIC Array and analysis of the generated data was 

conducted through the use of  GenomeStudio. Differential methylated genes were 

identified using ParteK Genomic Suite software and then analyzed using Ingenuity 

Pathway Analysis (IPA) for functional pathway analysis. Network analysis was 

performed to identify the potential correlation of  DNA methylation with dietary 

factors, gut microbiome, and SCFAs was explored in pediatric T1DM subjects. Based 

on the dietary analysis, the T1DM group was found to have a lower intake of SFA and 

vitamin K compared to healthy and obese groups. DNA methylation analysis showed 

the up-regulation of the SAPCD1 gene in T1DM patients and the down-regulation of 

the DNAJC7 gene in T1DM-OB subjects, in comparison to healthy and obese subjects. 



  

iv 
 

The significant canonical pathways identified to be downregulated in T1DM-OB are 

aldosterone signaling in epithelial cells, xenobiotic metabolism CAR/PXR pathways 

and NRF2 mediated oxidative stress response. Furthermore, T1DM patients were found 

to have low gut microbial abundance compared to healthy controls . Our network 

analysis, showed a positive correlation of DNA methylation level with folate and 

thiamin intake in healthy controls. We have also identified a positive correlation 

between the microbial genus Lachnospira with DNA methylation in obese subjects.     

In this study, we were able to shed the light on the possible interaction between dietary 

components, DNA methylation and gut microbiome in T1DM development in children. 

However, more studies are needed for further exploration of such association.   
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Chapter 1: Introduction 
 

Type 1 diabetes mellitus (T1DM) is an auto-immune inflammatory disorder that 

destroys pancreatic b-cells and  leads to insulin deficiency. T1DM patients are at a high 

risk of developing chronic and acute complications due to impaired glucose metabolism 

(hyperglycemia or hypoglycemia) [1]. The pathophysiology behind T1DM 

development is complex and involves the interaction between genetics, environment, 

and the immune system [2, 3]. Various genetic loci are associated with the disease 

susceptibility, mainly the human leucocyte antigens-DR/DQ (HLA-DR/DQ) locus [4]. 

Moreover, different environmental factors, such as infection, diet, early nutrition, mode 

of delivery, antibiotic use, and psychological stress are implicated in the onset and 

progression of T1DM [5]. Obesity has been long known as a concurrent phenotype 

observed with T2DM, but its association and development in T1DM cases are still 

under investigation. A study conducted between 2010 - 2012 found that overweight and 

obesity account for 22.9% and 13.1%, respectively in T1DM adolescents [6]. Several 

epigenetic modifications, mainly DNA methylation, histone modification, and micro-

RNA (miRNA) are found to have an essential role in the development of several 

autoimmune disorders including T1DM [7]. DNA methylation is found to be involved 

in the pathophysiology behind T1DM development as it alters the expression of certain 

genes involved in insulin secretion, b-cell survival and autoimmunity [7]. A genome-

wide DNA methylation study generated from T1DM discordant monozygotic twins 

identified 132 T1DM–associated methylation variable positions mostly in genes 

involved in apoptosis, inflammation, and the immune system [8]. Although T1DM 

patients are found to have unique DNA methylation patterns compared to healthy 

controls [9], the mechanism behind the influence of such patterns on T1DM is not 
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clearly understood. Several studies conducted in other metabolic disorders, such as 

obesity and Type 2 Diabetes mullites (T2DM) have found that the interaction between 

gut microbiome and immunity acts through epigenetic mechanisms [10]. However, it 

is not clear yet whether such mechanism is relevant for T1DM development as well. 

The development of obesity seen in T1DM patients may be attributed to different 

factors, including epigenetics, nutrition and gut microbiome [11]. However, such 

association is yet to be confirmed.  

Hypothesis  

We hypothesize that T1DM patients have a unique methylation status, and it 

plays an important role in the onset and progression of the disease. External factors, 

such as different dietary habits, BMI, and gut microbiome composition, can affect the 

DNA methylation contributing to explain the pathogenesis of T1DM and its high 

incidence seen in the young Qatari population.  

Aim and Objectives  

The  study aimed  to identify any differential methylation status in T1DM patients 

compared to T1DM obese, not diabetic obese, and lean healthy subjects. The study 

objectives were  the following: 

•   To measure the levels of DNA methylation on blood samples from T1DM patients, 

T1DM obese, obese, and lean healthy controls, using the Illumina Infinium EPIC 

Array 

•   To identify differentially methylated signatures in T1DM patients compared to 

T1DM obese, obese, and lean healthy controls. 

•   To correlate DNA-methylation patterns with clinical and dietary parameters. 
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•   To correlate the DNA methylation levels with the gut microbiome (data previously 

measured). 

Study Design  

 This study aimed  to determine the influence of DNA methylation on T1DM 

development and to link its effect with nutrient intake and gut microbiome composition. 

The target subjects were T1DM children compared to T1DM obese (T1DM-OB), obese 

and healthy lean participants. Different physical and biochemical tests were performed 

along with the 24-hours dietary recall. Blood samples were obtained from each subject 

for the DNA methylation analysis using the Illumina Epic Array. Differentially 

methylated genes were identified using Partek software and canonical and disease 

pathway analysis was conducted using Ingenuity pathway analysis (IPA) to define the 

affected pathways. Gut microbiome and microbial metabolite analysis were available 

from previous analyses and correlated with the methylation data. Finally, an integration 

analysis was applied to show the effect of diet and gut microbiome on DNA methylation 

in the development of T1DM disease.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Summary of the study design. 
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Chapter 2: Literature Review 

2.1 Background   

Diabetes mellitus (DM) is a group of metabolic disorders characterized by 

impaired glucose control and the development of hyperglycemia. The classic symptoms 

associated with DM are polyuria, polydipsia, susceptibility to infection, and fatigue 

[12]. Based on the American Diabetes Association (ADA), diabetes is classified into 

four main types, which are T1DM, T2DM, gestational diabetes mellitus (GDM), and 

diabetes due to other causes [13]. T1DM is a chronic disease caused by the autoimmune 

destruction of pancreatic b-cells and insulin deficiency. The presence of T1DM 

associated auto-antibodies and HLA susceptibility variants are considered important 

risk factors in T1DM development and progression [4]. T1DM patients have a higher 

risk of developing co-morbidities, such as cardiovascular disorders (myocardial 

infarction and stroke), retinopathy, neuropathy, and nephropathy [14]. 

According to the International Diabetes Federation (IDF), T1DM incidence is 

increasing, with approximately one million cases present annually [17]. In the US, the 

prevalence of T1DM disease among adolescence (< 20 years old) increased by 21% 

from 2001 to 2009 [18]. Also, in Korea, the annual incidence rate of T1DM from 2007 

and 2013 was reported to increase from 2.73 to 5.02 per 100,000 [19]. However, in 

Japan, a lower incidence rate is reported between 1.5 – 2.5 per 100,000 among children 

(< 15 years old) [20]. The prevalence rate of T1DM in India is 31.9 per 100,000, where 

higher rates are seen in urban areas [21]. Moreover, in the Middle East Region, a high 

prevalence of T1DM is detected in young adults ( < 19 years old), in which 12.2% of 

T1DM cases are detected in Qatar, 33.5% in Saudi Arabia and 44.5 % in Kuwait. The 

reason behind the increased incidence over the years could be attributed to the recent 
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improvement seen in regards to early diagnosis, disease monitoring, and treatment [14]. 

Another factor that could contribute to the increased rate of T1DM worldwide is the 

predominance of a sedentary lifestyle (mainly in westernized countries), which has 

been found to have a strong influence on autoimmune disease development, including 

T1DM [23]. A western lifestyle characterized by high fat/low fiber dietary intake and  

absence of physical activity, is considered to be a strong promoter of T1DM 

development by modulating the function of the immune system, mainly T-cells [24, 

25]. T1DM prevalence and incidence continue to increase worldwide and particularly 

in countries that have started to be exposed to a western-like lifestyle, such as Qatar 

and other countries in the Middle East.  

Diagnosis of diabetes is usually based on the concentrations of random blood 

glucose ( > 11.1 mmol/L), fasting blood glucose ( > 7.0 mmol/L), and abnormal oral 

glucose tolerance test. Measurement of HbA1c is considered a less sensitive tool for 

T1DM diagnosis and is usually used to monitor glycemic control [13]. Clinical features 

by themselves cannot differentiate between T1DM and other types of diabetes; 

therefore other factors, such as the age of diagnosis, genetic susceptible variants, and 

pancreatic autoantibodies should be considered [26]. Patients with T1DM, usually have 

autoantibodies against insulin, islet antigen 2, glutamate decarboxylase, and zinc 

transporter 8 [26]. A systematic review and meta-analysis study showed that the 

presence of islet autoantibodies increases the risk of developing T1DM both in the 

presence or absence of susceptible genetic variants [27].  

Regarding the health care management of T1DM patients, different types of 

treatments were developed,  to preserve insulin secretion [28]. One of the most 

recommended therapeutic approaches for T1DM patients is insulin therapy (basal-bolus 
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regimen), which is known as multiple daily injection therapy. In this treatment, patients 

are given a basal insulin dose (long-acting) and prandial insulin dose (rapid-acting) in 

the form of multiple injections at various time intervals [28]. In addition, the doses are 

calculated according to the patient’s body weight, insulin sensitivity, and carbohydrate 

intake [29, 30]. A study showed that patients with T1DM treated with basal-bolus 

therapy have improved glycemic control and an HbA1c level of < 7 % [31]. Another 

common treatment used by T1DM patients is the insulin pump (known as subcutaneous 

insulin infusion, SCII), which provides a steady level of insulin through the use of an 

insulin pump device [28]. It has been shown that T1DM patients treated with insulin 

pump have a lower risk of having severe hypoglycemia or hyperglycemia episodes [32]. 

Also, the use of insulin pump therapy in children and adolescence with T1DM showed 

safety and effectiveness, where significant decrease in HbA1c level was detected and 

improved glycemic control was achieved [33].  

2.2 Pathogenesis of T1DM  

T1DM disease is a complex disorder as it involves the interaction of both genetic 

and environmental factors. T1DM pathophysiology involves also environmental 

factors, such as diet and microbiota. We hypothesize that the triple interaction between 

epigenetics, dietary factors, and gut microbiota can explain the disease development 

and the response to the treatment.  Several dietary factors are found to potentially 

influence T1DM by affecting gut microbiota and their metabolites [34, 35]. Also, 

different epigenetic modifications are found to have a significant role in T1DM 

development [7, 36]. 

2.2.1 Genetic Factors  
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Based on the genome-wide association studies (GWAS), different genes have been 

detected to be associated with increased risk for the development of T1DM, such as 

insulin gene (INS), non-receptor type 22 gene (PTPN22), and cytotoxic T-lymphocyte 

associated protein gene (CTLA-4) [37, 38]. However, the strongest association was 

detected with specific haplotypes of human leukocyte antigens DR/DQ (HLA-DR/DQ) 

[4].  

In addition, based on a twin study, identical twins have a higher risk of developing 

T1DM (69%) in comparison to siblings (47%) in the presence of autoantibodies [39] 

highlighting that genetics have an important role in T1DM pathogenesis. 

2.2.2 Environmental Factors 

Despite the inheritance of T1DM susceptible variants, genetic predisposition alone 

cannot explain the pathophysiology and sub-phenotypes of T1DM [5, 40-42].  

Environmental factors, such as infections, nutrition, mode of delivery, maternal 

age, and medication play a major role in the T1DM development [5]. This is supported 

by the phenomena of  high T1DM incidence in  genetically stable populations with a 

low genetic risk of developing T1DM [40-42]. Environmental factors trigger the 

development of T1DM either by its effect on intestinal function and the gut microbiota 

[43, 44] or on epigenetic mechanisms [45]. Since T1DM is a multifactorial metabolic 

disorder, its pathogenesis involves both genetic and environmental factors; however, 

recently the environmental determinants are getting more relevant in the development 

of T1DM. 

2.2.2.1 The role of nutrition in T1DM development and treatment 

 An important environmental trigger associated with T1DM development and 

other metabolic diseases is diet [46-48]. Although different nutritional factors, such as 
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fiber, fat and protein are known to be involved in the pathophysiology  and management 

of T1DM, the exact molecular mechanism is not clearly understood (Table 1). Since 

T1DM and its pre-clinical autoimmunity appear at an early age (3-9 months), the 

implication of early nutrition has been suggested to have a role in T1DM pathogenesis 

[49-52]. Breastfeeding was found to be an essential determinant of T1DM risk, where 

breastfed children showed a lower risk of developing the disease [49, 53]. This could 

be due to the presence of certain components in breast milk, such as lactoferrin, 

secretory immunoglobin A, lysosomes, and macrophages [50]. These components are 

known to have antimicrobial properties and are involved in the protection against 

different microbial antigens along with regulating the function of immune T-cells and 

B-cells [50]. On the other hand, cow's milk or formula milk intake at an early age (6-9 

months) increases the risk of T1DM development [50, 51], which could be as a result 

of specific fatty acids present in the cow's/formula milk (myristic, monounsaturated 

palmitoleic acid and  penta-decanoic) that induce pancreatic islet autoimmunity [54]. 

A similar finding was observed in an animal-based study, in which the A1 beta-casein 

present in cow’s milk altered glucose handling capacity by activating islet inflammation 

[55]. Furthermore, early introduction of cereals (age < 3 months) with or without gluten 

was found to promote T1DM development, while late introduction has no effect [52]. 

The effect of early cereal intake could be attributed to the immature immunity and 

undeveloped gut microbiota in children less than 6 months [52]. However, another 

study found that late introduction of gluten (age > 9 months) containing cereals is also 

associated with a high risk of autoimmunity and T1DM development [56]. Moreover, 

early probiotic supplementation within the first year of life is found to be associated 

with a reduced risk of developing T1DM in high-risk patients [57]. The intake of 
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linoleic acid (vegetable oil) is also found to be associated with reduced risk of β-cell 

autoimmunity in children (1-6 years old), while increased intake of myristic acid, 

monounsaturated palmitoleic acid, conjugated linoleic acid and pentadecanoic present 

in milk and ruminant meat is associated with a higher risk [46].   

 Diet in adult age can contribute as well to the pathogenesis and the progression 

of T1D. Vitamin D has an important role in the regulation of immune and metabolic 

related pathways, along with its  association with a lower risk of T1DM development 

[58, 59]. Vitamin D is known to down-regulate the response of T helper-1 lymphocytes 

[60], which could explain the possible association between vitamin D intake and the 

reduced risk of T1DM development. On the other hand, several other studies did not 

observe this effect of vitamin D supplementation [61, 62]. These discrepancies between 

studies could be attributed to a number of variables, which are type of supplement (i.e., 

calcitriol, alpha-calcidiol, or cholecalciferol), vitamin dosage, study participants age 

group, and diabetes duration. Furthermore, it is suggested that glycemic control and 

HbA1c could be modulated in T1DM patients based on their nutritional intake. An 

improvement in glycemic control was observed with the intake of a low 

carbohydrate/high-fat diet in T1DM patients [63]. However, increased risk of 

hypoglycemia and dyslipidemia development was associated with this type of diet  [63]. 

Furthermore, a  poor glycemic control characterized by elevated levels of HbA1c was 

found to be associated with the intake of low dietary fibers in T1DM patients [64]. 

Understanding the role and effect of different dietary components on T1DM 

development may aid in improving T1DM management and the development of a 

personalized therapeutic nutritional approach. One example is medical nutrition 

therapy (MNT), which is a therapeutic approach developed to be used in the 
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management of T1DM patients. The goal of MNT is to improve glycemic control, 

address individuals' needs, provide the needed calories, and create a plan for follow-up 

care for patients [28]. It is recommended that patients with T1DM use a carbohydrate 

diabetes meal planning system, which provides consistency in the carbohydrate 

content, thus reducing the fluctuation of blood glucose [65].  

 

Table 1. The effect of different dietary components on the risk of developing 

T1DM. 

Dietary 
component 

Study subjects Age Major finding Ref. 

Breastfeeding Children with 
increased risk of 
T1DM based on 
HLA typing 

< 5 years old Breastfeeding during the introduction 
of new solid food, such as 
wheat/barley protected against 
development of T1DM in genetically 
susceptible children. 

[49] 

 Children with risk of 
developing T1DM 
 
 

7 months – 16 
years old 

Breastfeeding reduces the risk of 
developing T1DM.  
Children who were not breastfed have 
a twofold increase risk of developing 
T1DM. 

[53] 
 

Cow’s milk Children with 
increased genetic risk 
of developing islet 
autoimmunity or 
T1DM 

- High intake of cow's milk protein is 
associated with an increased risk of 
developing islet autoantibodies in 
patients with a low and moderate risk 
of developing T1DM. 
No association was found between 
children with high risk and cow's milk 
intake. 

[54] 
 

 NOD mice fed with 
milk containing A1 
or A2 beta-casein 
component 
 

- Subclinical insulitis and signs of 
T1DM were seen in mice fed with A1 
beta-casein diet. 
A1 beta-casein diet altered glucose 
handling capacity by activating islet 
inflammation. 
 

[55] 

Gluten-
containing food 

Children with 
increased risk of 
T1DM 

9 months – 17 
years  

Early introduction of gluten-containing 
food (age < 3 months) increases the 
risk of developing autoimmunity and 
T1DM. However, the introduction of 
gluten after 6 months of age  does not 
affect the incidence of autoimmunity 
or T1DM development. 

[52] 

Probiotics 
 

Children with 
increased risk of 
T1DM based on 
HLA typing 

4- 10 years 
old 

Early supplementation of probiotics is 
associated with a reduced risk of 
developing T1DM in high-risk 
patients.  

[57] 
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2.2.2.2 Immune dysregulation and microbiota dysbiosis  

Under normal conditions, gut microbiota influences the immune system through 

activating adaptive immunity, compartmentalizing pathogens, and enhancing lymphoid 

tissue development [66]. As seen in many other pathological conditions, gut microbial 

dysbiosis associated with T1DM enhances gut permeability [67], resulting in the 

leakage of antigens and microbes into the systematic circulation and leading to b-cell 

damage and autoimmunity [68-70]. Different human and animal studies have been 

conducted to determine the microbial composition associated with T1DM. It has been 

found that T1DM patients have low gut microbiota diversity, low ratio of Firmicutes to 

Bacteroidetes, increased abundance of Bacteroides, and decreased Faecalibacterium 

prausnitzii and Lactobacillus [71]. A study done by Leiva and colleagues found that 

children with T1DM have an increased level of Bacteroides, Veillonella, Streptococcus, 

Ruminococcus, and Blautia compared to healthy controls. However, Bifidobacterium, 

Milk and 
ruminant meat fat 

Children positive for 
HLA-DQb1 

1 -6 years old increased levels of myristic acid, 
conjugated linoleic acid, 
monounsaturated palmitoleic acid, and 
pentadecanoic are positively associated 
with the risk of advanced b-cells 
autoimmunity. 

[46] 

Vegetable oil Children positive for 
HLA-DQb1 

1 -6 years old Increased level of linoleic acid reduces 
the risk of advanced β-cell 
autoimmunity. 

[46] 

Vitamin D T1DM patients  > 5 years old Sufficient levels of vitamin D 
preserves b-cells function and insulin 
secretion indicating that it provides a 
protective effect against T1DM 
development. 

(59) 

low 
carbohydrate/high 
fat diet 

T1DM patients - Improvement in glycemic control 
observed by low levels of HbA1c and 
less glycemic variability 
Increased risk of hypoglycemia and 
dyslipidemia 

[63] 

Low fiber intake  T1DM patients  15-60 years 
old 

Elevated levels of HbA1c were 
observed in T1DM patients, thus 
leading to a poor glycemic control  
 

[64] 
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Faecalibacterium, Roseburia, and Lachnospira were reduced [72]. The 

immunopathogenesis of T1DM due to microbial dysbiosis is not well understood, 

where both the innate and adaptive immune systems have been found to contribute to 

the development of T1DM [73, 74]. A study conducted using non-obese diabetic mice 

(NOD) found that TIR-domain containing adaptor inducing interferon-ß (TRIF) (a key 

adaptor molecule in the innate immune system) deficiency protected  against T1DM 

development possibly through altering the gut microbiota composition, as a significant 

reduction and increase in Proteobacteria and Firmicutes, respectively, was detected in 

TRIF deficient mice [74]. In MyD88-deficient NOD mice under normal conditions, no 

signs of diabetes were detected. However, under germ-free conditions, an advanced 

stage of diabetes was developed [73, 75]. This effect was also seen in other 

autoimmunity disorders, such as Celiac Disease, T2DM, obesity, and autoimmune 

uveitis [75]. In a study using the RIP-B7.1 C57BL/6 mouse model, diabetes was 

induced mainly due to microbial modulation through TLR3 and MyD88 pathways [76]. 

In general, there are two possible proposals on how microbiota could contribute to 

T1DM development: first, the enhanced intestinal permeability results in microbial 

leakage, thereby activating antigen-presenting cells and T-cells [67]. Secondly, the 

molecular homology of certain microbial products to Langerhans islets autoantigens 

could lead to the destruction of pancreatic b-cells and T1DM development [77]. 

Various research studies have proven the significant role of gut microbiota in the 

pathophysiology of T1DM  [78, 79].  

The relationship between dietary influence and gut microbiome composition in the 

development of T1DM in infants and children is not clearly understood and few studies 

have been published addressing this concept. A study conducted by Endesfeler and 
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colleagues to study the association between diet and microbiome in high-risk children 

found that Bacteroides abundance was found in children characterized by early 

introduction of non-milk diet and complex diet intake [80]. They also found that the 

level of  Bacteroides positively correlated with a high risk of early autoantibody 

development and low abundances of genes involved in butyrate production [80]. 

Another study found that early introduction of probiotics dietary supplement (0-27 

days) in high-risk children is associated with decreased risk of autoimmunity [81].  

2.3 The Role of Epigenetics in T1DM Development  

Epigenetics is the mechanism of activating and inhibiting the expression of genes 

by external factors, without affecting the DNA sequence [82]. Therefore, epigenetic 

changes are seen as non-genetic factors that interact with genes and are affected by 

genetic variations. In addition, epigenetic modifications are considered as 

consequences of the interaction between genetics and environment that results in 

making the DNA accessible for transcription factors and thus regulating gene 

expression [9, 83].  Several features could support the influence of epigenetics in T1DM 

development, which are high rates of discordance in monozygotic twins, increased risk 

of T1DM development in offspring of the affected father rather than the affected 

mother, and the increased T1DM incidence in a genetically stable population [7, 36]. It 

has been shown that epigenetic modifications, mainly DNA methylation, play an 

important role in the development of different autoimmune disorders, including T1DM 

[7, 36].  

2.3.1 The Role of DNA Methylation  

DNA methylation is the process of methyl group binding to the fifth carbon of 

cytosine preferable in the CpG dinucleotides, leading to the formation of 5-
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methylcytosine [84]. Epigenetic mechanisms are found to be implicated in the early 

development and maturation of  β-cells [85]. In non-endocrine tissues, promoters of 

Glucagon and Insulin 2 [INS2] genes were found to be hypermethylated as compared 

to pancreatic β-cells [86]. Moreover, the different endocrine cell subtypes (α-cells, β-

cells, and δ-cells) were found to have different CpG methylation levels, indicating 

possible gene expression regulation in these cells [86]. DNA methylation is also found 

to be implicated in T1DM development as it alters the expression of genes responsible 

for insulin secretion, b-cell survival and autoimmunity [7]. The genome-wide DNA 

methylation profile generated from T1DM discordant monozygotic twins identified 132 

T1DM–associated methylation variable positions mostly in genes involved in 

apoptosis, inflammation, and the immune system [8]. Another study involving T1DM-

discordant monozygotic twins detected  88 CpG sites that are significantly methylated 

[87]. Therefore, genetics is not the only determinant of T1DM development, and DNA 

methylation plays an essential role in it, which is supported by twin studies (Table 2). 

Insulin (INS) gene and Interleukin 2 receptor a-chain gene (IL2RA) are important 

loci associated with the development of T1DM, and various methylation studies found 

that methylation of these genes are implicated in T1DM development. T1DM patients 

have an elevated level of methylation in CpG -180 and a decreased level of methylation 

in CpG -19, -135, and -234 in the INS gene, in comparison to healthy subjects [88]. 

Moreover, it has been found that the expression of the INS gene is regulated by the 

methylation of Ins1 exon 2 and Ins2 exon 1, which are induced by pro-inflammatory 

cytokines through activation of methyltransferases [89]. Regarding IL2RA, which 

encodes IL-2 receptors, T1DM patients are found to have elevated CpGs −456 and −373  

methylation level in comparison to healthy controls. In addition to that, the methylation 
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at CpGs −373 was found to be associated with sixteen SNPs known to be implicated in 

T1DM [90].   

There is evidence that shows the further implication of DNA methylation in T1DM 

associated complications, such as diabetic nephropathy [91]. One study showed that 19 

CpG sites were found differentially methylated in diabetic nephropathy and one of them 

located close to the transcription start site of UNC13B (rs13293564), which is 

implicated in  diabetes nephropathy development [91]. 

 

Table 2. Changes in DNA methylation associated with T1DM development in 

twins’ studies.  
Study 

subjects 
DNA methylation profile Cell type Affected 

genes/pathways  
Ref. 

Monozygotic 
twins 
discordant for 
T1DM 

132 T1DM associated methylation variable 
positions were identified and found to be 
significant before and during clinical 
diagnosis.  

CD 14 + 

Monocytes  
Apoptosis, 
inflammation, and the 
immune system 

[8] 

Two groups of 
monozygotic 
twins 
discordant and 
concordant  for 
T1DM   

88 CpG sites have been found to be 
significantly methylated in monozygotic 
T1DM discordant twins.  

B-cells  Immune system 
(APOA4, C4BPA, 
CLEC7A) 
 cell signaling 
(APITDI, CALCA, 
GATA4, SLC12A5)  

[87] 

Monozygotic 
twins 
discordant for 
T1DM 

DNA methylation did not differ between 
T1DM patients and their healthy co-twins, 
except for cg01674036 in CD 4 + T-cells.  
 

CD 4 + T-
cells  
CD 19 + B-
cells  
CD 14 
+CD16-

Monocytes  

Immune system  
Cell cycle (mTOR 
pathway) 

[92] 

Monozygotic 
quadruplet 
discordant for 
T1DM (case 
report) 

The prediabetic twin shows a differential 
methylation status between healthy and 
T1DM. 

CD 14 + 

Monocytes  
CD 4 + T-
cells  
 

- [93] 

 

2.3.2 The role of other post-transcriptional and epigenetic regulatory events in 

T1DM development 

A micro-RNA (miRNA) ranges from 18-22 nucleotides and is a non-coding RNA 

molecule that acts as a post-transcriptional silencer [94]. MiRNAs are involved in 
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different processes, such as proliferation, mitotic cell division, and programed cell 

death [95]. The miRNAs’ regulation of gene expression  is implicated in various 

autoimmune disorders [96, 97]. Regarding T1DM, it has been found that T1DM 

patients have up-regulation of miR-155-5p, miR-103a-3p, miR-210-3p and down-

regulation of miR-146a-5p [98]. The alterations in miRNAs could contribute to the 

pathophysiology of the disease through its influence on insulin secretion, the immune 

system, apoptosis, and the mitogen-activated protein kinase (MAPK) signaling 

pathway [98]. In children with T1DM, an up-regulation of a set of miRNA (miR-152, 

miR-30a-5p, miR-181a, miR-24, miR-148a, miR-210, miR-27a, miR-29a, miR-26a, 

miR-27b, miR-25, miR-200a) was observed and found to be involved in  ß-cell function 

and apoptosis [99]. The effect of miRNA in T1DM development through modulating 

the immune system is observed by the upregulation of miR-155-5p, which targets the 

mRNA of the transcriptional and immune response regulator gene (TCIM) [100]. The 

upregulation of miR-155-5p is also associated with inflammation through targeting the 

mRNA of toll-like receptors leading to the NF-kB pathway activation [101]. The 

downregulation of miR-146a-5p usually detected in patients with T1DM is found to be 

involved in the overproduction of IL-6 (a pro-inflammatory cytokine), thereby, 

suggesting the possible involvement of miR-146a-5p as a negative regulator of the NF-

kB pathway in T1DM [101, 102].  

Different modifications, such as acetylation, methylation and other mechanisms 

(ubiquitination and sumoylation), occur in the N-terminal region of histones [103]. 

Histone methylation defined as the attachment of methyl groups to arginine or lysine 

residues, it results in transcription regulation (activation /inhibition) based on the 

affected region and modification level [104]. In regards to histone acetylation, it 
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involves the function of histone-acetyltransferases (HATs) and histone-deacetylases 

(HDACs) enzymes responsible of the addition and removal of the acetyl group on 

lysine residues respectively [83]. Histone ubiquitination involves the function of 

ubiquitin ligases responsible for the addition of ubiquitin molecules to the conserved 

lysine residues [105]. For sumoylation, it involves the covalent binding of ubiquitin-

like modifier proteins to histones through ubiquitin analog enzymes [106]. 

Different studies have  shown the association between histone modification and 

T1DM development, in which H3 lysine 9 di-methylation (H3K9me2) was 

significantly increased in lymphocytes of T1DM patients [107]. There is also a strong 

association between increased H3K9me2 promoter activity with autoimmune genes, 

inflammatory pathway genes (TLR,p38-MAPK, and NF- κB), and T1DM susceptibility 

gene (CLTA4) [107]. Significant variations in H3K9 acetylation (H3K9Ac) levels at the 

upstream regions of HLA-DRB1 and HLA-DQB1 were also detected in T1DM patients 

[108]. Furthermore, THP-1 monocytes under the treatment of TNF-α and interferon-γ 

showed an enhanced expression of HLA-DQB1 and HLA-DRB1 with changes in 

H3K9Ac as seen in T1DM patients [108]. 

 

Table 3. a summary of research studies showing the association between other 

post-transcriptional and epigenetic modifications (miRNA and histone 

modification) with T1DM  

Type of 
modification  

Study 
subjects 

The epigenetic 
marker  

Major findings Ref. 

miRNA Children 
newly 
diagnosed 
with T1DM 

Up-regulation of miR-
152, miR-30a-5p, 
miR-181a, miR-24, 
miR-148a, miR-210, 
miR-27a, miR-29a, 
miR-26a, miR-27b, 
miR-25, miR-200a 

The up-regulated miRNA detected  
is involved in the regulation of β-
cell functions and apoptosis.  
miR-25 has been found to be 
associated with glycemic control 
and β-cell function improvement.  
 

[99] 

 Two groups of 
T1DM 
patients: 

Up-regulation of miR-
103a-3p, miR-155-5p, 
miR-200a-3p, and 

These miRNAs could be considered 
as TIDM biomarkers since they 
target genes from the immune 

[98] 
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Diagnosed < 5 
years  
Diagnosed >5 
years  

miR-210-3p and 
down-regulation of 
miR-146a-5p in newly 
diagnosed T1DM 
patients (< 5 years) 
 

system, apoptosis, and insulin-
related pathways.  

Histone 
Modification 

Patients with 
the diagnosis 
of T1DM > 10 
years  

 H3K9me2 Elevation of H3K9me2 in 
lymphocytes of T1DM patients 
a strong positive association 
between H3K9me2 promoter 
activity and genes involved in 
autoimmunity and inflammatory 
pathways  
 

[107] 

 Patients with 
the diagnosis 
of T1DM > 10 
years 
THP-1 cells  

H3K9Ac Variations in H3K9Ac levels at the 
upstream regions of HLA-DQB1 
and HLA-DRB1 was observed in 
T1DM patients  
Enhanced expression of  HLA-
DQB1 and HLA-DRB1 with 
changes in H3K9Ac after treatment 
with TNF-α and interferon-γ in 
THP-1 monocytes (in vitro) as 
observed in T1DM patients 

[108] 

 

 

2.4 The Interplay between Diet, Epigenetics and Gut Microbiome in T1DM  

 The link between diet and the epigenome and its contribution to T1DM development 

is not clearly understood. However, several studies suggested the possibility of specific 

nutrients to act as epigenetic effectors in T1DM development. Different studies showed 

the association between high fat intake and the risk of poor glycemic control, islet 

autoimmunity, and development of T1DM-related complications during both childhood 

and adulthood in T1DM patients [109, 110]. It was also found to act as an epigenetic 

modulator, where it impacts a transcription factor essential for β-cell survival known 

as TCF7L2 [111].  Aberrant TCF7L2 promoter methylation in β-cells was observed in 

mice treated with a high-fat diet (HFD - 45kcal% fat) in comparison to mice given a 

normal diet [111]. Even though  the implication of  TCF7L2 was commonly detected 

in T2DM patients, it was also observed in a subset of non-obese T1DM patients [112]. 

Furthermore, the maternal high fat diet was found to negatively impact pancreatic b-
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cells of male mice offspring leading to proliferation defects and insulin degranulation 

[113]. However, early transition from a high-fat diet to a normal diet protected pups 

from developing insulin resistance [113]. It has been found that maternal high fat diet 

causes insulin receptor substrate-2 gene (IRS-2) hypermethylation and mitogen-

activated protein kinase kinase-4 gene (MAP2K4) hypomethylation in mice offspring. 

This results in a decreased expression of IRS-2 and increased expression of MAP2K4, 

thus elevating the pup’s risk of developing diabetes [114].  

 The interplay between diet and epigenetics was also found to be related to insulin 

signaling pathways and glucose metabolism. Through the use of the grass carp, 

Ctenopharyngodon idellus, whole-genome DNA methylation analysis revealed no 

significant difference in methylation levels under different dietary conditions (high 

carbohydrate diet/ normal diet) [115]. In the case of high carbohydrate intake, the 

differentially methylated genes in Ctenopharyngodon idellus were enriched in 

pathways related to insulin signaling, glucose and lipid metabolism. Moreover, the 

differentially methylated genes involved in obesity and T2DM detected in 

Ctenopharyngodon idellus, were similar to those found in mammals [115].  

 Although, the effects of diet on the microbial composition of the gut have been 

demonstrated in many animal models of T1DM, little is known regarding such effects 

in humans, due to the lack of long-term and placebo-controlled trials [68-70]. Specific 

dietary factors identified as potentially influencing T1DM, such as breastfeeding, and 

low-fat/high-fiber diet, are known to influence the gut microbiota composition and its 

products [34, 35]. As dietary fibers are digested only by gut microbiota present 

primarily in the lower gastrointestinal tract, fermentation of these fibers produces short-

chain fatty acids (SCFAs) that contribute to the gut microbial diversity [117, 118]. The 
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proposal that SCFAs play an important protective role against T1DM is supported by 

the greater capacity for synthesis of SCFAs in healthy subjects compared to T1DM 

patients [79]. These SCFAs are found to activate specific free fatty acid receptors 2/3 

(FFAR2 and FFAR3) leading to the inhibition of the histone deacetylase, and thus 

resulting in the activation of T-regulatory cells and inhibition of the inflammatory 

cascade [119].  

 The link between the three factors, which are diet, epigenetics, and microbiome, and 

their mechanistic contribution to T1DM development is yet to be identified (Figure 2). 

However, as observed in T2DM, it can be proposed that SCFAs (butyrate, acetate, and 

propionate) cause-specific activation of FFAR2 and FFAR3, which inhibit histone 

deacetylase. This results in the inhibition of NF-kB [120] and the activation of ERK 

and MAPK pathways [121] in intestinal regulatory T-cells, therefore down-regulating 

the inflammatory cascade [122]. Moreover, binding of SCFA to the promoter region of 

FFAR3 was found to reduce methylation of the CpG islands in T2DM patients [123]. 

Since T1DM and T2DM share similar genetic and environmental factors, further 

studies are needed to identify potential common underlying epigenetic mechanism 
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Figure 2. Schematic representation of the interplay between diet-epigenetic-
microbiome in T1DM development [124].   
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Chapter 3: Materials and Methods 
 

3.1 Study subjects’ recruitment and sample collection 

This study was conducted at Sidra Medicine. The study has been approved by the 

institutional review board at Sidra Medicine (IRB number: #1708012734) and Qatar 

University (IRB number: QU-IRB1411-E/20).  

T1DM patients were approached and introduced to the study after their medical 

appointment in Sidra’s endocrinology clinic. T1DM patients were selected according 

to the following criteria: age ranges from  6 – 12 years, had no chronic condition other 

than T1DM, no history of cancer or any familiar genetic disease, no history of antibiotic 

treatment in the last three months and the onset of T1DM diagnosis is more than one 

year. For the T1DM-obese subjects, the same criteria were followed along with a BMI 

percentile value higher than 95th percentile. In regards to the obese group, the same 

inclusion criteria were applied, along with a BMI value higher than 95th percentile and 

no history of diabetes diagnosis or glucose intolerance. Healthy lean controls were 

recruited from children of Sidra’s staff who volunteered to participate in the study. 

Healthy lean controls should have no history of any chronic condition including 

diabetes diagnosis or glucose intolerance. Consent/assents forms were provided by the 

subjects and their parents who agreed to participate in this study.  

The recruited subjects were divided into four groups: 35 T1DM patients, 16 obese 

subjects, 9 T1DM-obese patients, and 12 as lean healthy subjects. The subject’s clinical 

information, such as family history of diabetes, medication, diabetes duration, and 

insulin treatment were provided by the physician during the visit.  Also, 24-hrs dietary 

recall  was collected during the interview to determine the dietary intake of the study 

subjects. Physical measurements were also collected, including body weight, height, 
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and waist circumference.  Several biomedical tests were performed, including a lipid 

profile, liver function tests, thyroid tests (TSH, T4), and HbA1c.  

From each study subject, blood samples were collected by the phlebotomist (3 ml 

of blood in a 6 ml Tempus Thermo Fisher Scientific tube containing RNA preservative 

solution) for DNA and RNA extraction. Samples were transported to the lab within 24 

hours upon collection, in which aliquots of each sample were transferred into 1.5 micro-

centrifuge tubes and stored at -80ºC immediately. A total of 72 participants were 

recruited in the study and their blood samples were processed and analyzed.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

Study subjects were recruited at Sidra’s endocrinology 
clinics 

From period of Feb 2018 to Dec 2019.  
 
 
  

The following was collected  
•   Biochemical tests and physical measurements  
•   24-hours dietary recall 
•   HbA1c level, diabetes duration and type of treatment  
•   Blood samples for DNA extraction  

  

DNA methylation analysis 
 

Dietary Analysis 
 

T1DM Patients:  
T1DM = 35  

T1DM-Obese = 9 
 

Controls: 
Healthy = 12 
Obese = 16 
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Figure 3. Schematic flow chart of the research plan. 

 

 

3.2 Clinical data analysis  

The clinical data obtained from study subjects include anthropometric 

measurements (height, weight, waist circumference), liver function tests, lipid profile, 

thyroid and pituitary gland hormones, micro-albumin/creatinine ratio, and blood 

pressure. Tests related to diabetes include glucose level, HbA1c, insulin/carbohydrates 

ratio, insulin dose (Kg/unit), and treatment type.  

3.3 Dietary analysis   

The dietary data obtained from the subjects' 24-hrs recalls were uploaded on 

Nutritionist Pro software (Axxya Inc). Dietary meals that were not found in Nutritionist 

Pro software, such as Arabian meals, were added as a new recipe by adding the 

ingredients and the serving amounts in the software. After uploading the dietary data, 

the average daily intake of macronutrients and micronutrients was calculated per 

subject and per group.  

3.4 DNA extraction from a blood sample  

DNA extraction was conducted using QIAamp® DNA kit (catalog no #51106, 

Qiagen, Germany) according to the manufacturer’s instructions. However, a different 

concentration was used for proteinase K (20mg/ml) and the sample (40µl and 400µl 

respectively) in order to obtain a higher DNA concentration. Measurements of the other 

reagents were adjusted accordingly, except for the washing buffer reagent. In the 

elution step, 100 to 200 µl of the buffer AE was added in the QIAamp Spin Column 

and centrifuged for 1 minute. NanoDrop One (catalogue no #ND-ONE-W, Thermo 
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Scientific, USA) was used to measure DNA quantity and quality. The eluted DNA was 

then transferred into a new Eppendorf tube and stored at -80ºC for further analysis.  

3.5 DNA methylation analysis 

The extracted DNA samples (200-500 ng) were distributed in a 96-well plate and 

processed using the Zymo EZ DNA Methylation Kit for bisulfite conversion as per the 

manufacturer’s instructions. This kit converts unmethylated cytosines (C) in genomic 

DNA to uracil (U), though leaving methylated cytosines unchanged for methylation 

analysis. First, the bisulfite converted DNA was denatured and neutralized before 

amplification. The samples were denatured for 10 minutes at room temperature using 

0.1 N NaOH. The denatured DNA was then  amplified in an overnight step at 37°C for 

20-24 hours. Afterwards, a controlled enzymatic fragmentation was performed, which 

uses an endpoint fragmentation process  to prevent over fragmentation. DNA 

fragmentation was accomplished by centrifuging the plate at 280 xg, and addition of 

50µl FMS followed by incubating the plate into a preheated heat block for 1 hour at 

37°C. The fragmented DNA then underwent isopropanol precipitation with 

centrifugation at 4°C before being resuspended in a hybridization buffer. The 

resuspended DNA was loaded onto one of 8 positions on a barcoded BeadChip slide 

and incubated overnight in the hybridization oven at 48°C. A washing step was 

performed to remove unhybridized DNA from the BeadChip slide using PB1 at room 

temperature. Finally, BeadChips was coated with XStain BeadChip Solution 4 (XC4)  

and dried prior to scanning using the iScan system.  

Then, genome-wide DNA methylation profiling from the study subjects was 

performed in the Genomic Core at Sidra Medicine using the Illumina Infinium EPIC 

Array according to the manufacturer’s protocol. The array profiles methylation levels 
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of over 850,000 methylation sites across the genome at single-nucleotide resolution, 

imaged with the Illumina iScan platform. A number of quality control steps were 

performed on the raw methylation data. First, probes with a mean detection level P-

value <0.05 were used for subsequent analysis. Second, the data were normalized and 

the background was corrected using the methylation module (1.9.0) available on 

GenomeStudio (v2011.1) software. The DNA methylation level at each CpG site was 

given for each sample by the following formula: β = 	
   $
$%&

	
  . 100%, where M represents 

signal strength of methylated CpG and U is the signal strength of unmethylated CpG.  

The generated β-value was exported to Partek Genomics Suite version 7.0 in the 

form of .idat files for differential methylation analysis and data quality/quality control 

analysis (Appendix B, figure S2). The data was normalized within and between the 

groups using Illumina normalization. Probes located on X and Y Chromosomes were 

excluded from the analysis.  A two-way ANOVA test was conducted to detect 

differential methylation analysis, in which M-values were generated from the β-values 

using the following formula M = 	
  Log2	
  ( 1
231

	
  ). The gene marker list, with the 

significant methylated genes, was generated using ANOVA with a P-value <0.05 and 

FDR >2 and by measuring the fold change. 

3.6 Functional classification and gene network analysis 

 To cluster differentially regulated genes based on their common 

functionality, a set of genes was analyzed for gene ontology and pathway analysis 

using  Ingenuity Pathway Analysis (IPA). The differentially methylated genes that 

are FDR adjusted were added to the software to investigate canonical pathways, 

disease and bio-functions, and network analysis.  
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3.7 Gut microbiome and Short Chain Fatty Acid (SCFA) analysis  

 The metagenomic analysis data (16S rDNA sequencing) of the gut microbiome 

for the study subjects were already available from previous data analysis. Alpha 

diversity and beta diversity analyses were performed using the R package. To identify 

microbial biomarkers among the different groups, Linear discriminant analysis effect 

size (LEfSe) analysis was performed with the cut-off value of LDA >2.0.   

SCFA analysis was performed in Deep Phenotyping Core. Internal standard 

solutions containing deuterated fatty acids were mixed with the aliquots of the study 

subjects' stool samples to undergo derivatization with ethyl chloroformate producing 

ethyl esters. Analysis of ethyl esters was performed by Agilent 7890B Gas 

Chromatograph with 5977 Single Quadrupole Mass Spectrometer. Data analysis was 

conducted using a MassHunter WorkStation and SCFAs concentration was expressed 

in µmol/g of stool. 

3.8 Integration analysis   

The back-end of the network analysis was primarily based on Python and C++. 

Through the use of PHP, server connections were  established, and front-end design 

was based on HTML, CSS, and Javascript. In this analysis, both prevalence and 

occurrence-based filtration criteria were used. Prevalence indicates the minimum 

abundance at which a given feature must be present in a sample. Whereas occurrence 

indicates the minimum number of samples in which the given feature must prevail at 

the prevalence threshold.  To normalize and filter the data, total sum scaling method 

was performed. Microbial OTU abundance with the metadata was correlated using 

NAMAP correlation matric [125]. Finally, data were visualized based on Cytoscape.js, 

jVenn, D3.js and in-house customizations for a better user experience. 
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3.9 Statistical analysis  

Generated results were evaluated using logistic regression with covariates such 

as age, and sex to derive adjusted odds ratios and 95% confidence intervals. For the 

differential CpG data analysis, a statistical one way ANOVA was performed to 

compare the average of DNA methylation level between the four groups: T1DM, 

T1DM-OB, obese and healthy controls. Clinical and dietary data were further analyzed 

by ANOVA- Turkey multi-comparison analysis for normally distributed data and 

Kruskal-Wallis test for not-normally distributed data.  A two-sided P-value of < 0.05 

was considered statistically significant. Categorical data were reported as the number 

or proportion of subjects within a category, while continuous data were reported as 

mean (standard deviation). All statistical analyses were performed using GraphPad 

Prism.  
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Chapter 4: Results and Discussion  
4.1 Results 

4.1.1 General characteristics of the study subjects  

We recruited a total of 72 subjects divided into four groups: 35 T1DM patients, 

9 T1DM-obese patients, 16 obese subjects, and 12 as lean healthy subjects. In the 

T1DM group, the mean age was 11.5 years old with a mean BMI value of 18.8±3.7 

kg/m2 in the average of normal weight and half of the study subjects being males (50%). 

Qatari nationals accounted for 54.3% of the study subjects and expatriates living in 

Qatar accounted for 45.7%. The HbA1c average and diabetes duration of the T1DM 

study subjects were 7.811% , 9 years, respectively. Out of the 36 participants, only 9 

subjects are given the Continuous Subcutaneous Insulin Infusion (CSII) treatment. On 

the other hand, nine participants were in the T1DM-obese group, with a mean age of 

10.5 years and a mean BMI value of 28.95±2.0 kg/m2. The HbA1c average and diabetes 

duration of the T1DM-obese study subjects were 8.42% and5 years, respectively.  Also, 

only 5 subjects (55.5%) are using CSII. For the obese group (n= 16), the mean age was 

11 years with a mean of 33.9±7.4 kg/m2 for the BMI. Most of the study subjects in this 

group were males (62.5%) and Qatari nationals (75%). Regarding the healthy group, 

the mean age was 11 years with an HbA1c mean value of 4.86%. In this group, males 

account for 41.6% and most of the participants were expatriates living in Qatar (83.3%). 

The baseline characteristics of the study subjects are shown in table 4.  
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Table 4. General characteristics of the study subjects.  

 
Note: Values are reported as mean±std dev and in percentage, wherever applicable. CSII: Continuous 
Subcutaneous Insulin Infusion; HbA1c: Hemoglobin A1c; SCFAs: Short Chain Fatty Acids; NA: not 
applicable.  
 

 
4.1.2 Clinical Characteristics analysis of the study subjects  

Different physical and chemical measurements were obtained from the study 

subjects, which are blood pressure measurements, triglycerides, HDL, LDL, liver 

function tests, vitamin D, and thyroid-related hormones (Table 5). Significance was 

observed in the measurements of systolic and diastolic blood pressure (SBP/DBP) (One 

Way ANOVA SBP p-value = 0.0048 / DBP p-value = 0.0060 ). T1DM-OB and obese 

subjects had a significantly higher SBP (p-value= 0.0386) and DBP (p-value= 0.0032)  

respectively in comparison to the T1DM group based on multi-comparison Tukey's test 

Parameters T1DM (n=35) TIDM-OB (n=9) Obese (n=16) Healthy (n=12) 

Age in years (mean±std 

dev) 

11.5±2.12 10.5±3.53 11±4.24 11±1.4 

Male gender; n (%) 18 (50%) 3 (33.3%) 10 (62.5%) 5 (41.6%) 

Nationality; n (%) Qatari n= 19 (54.3%) 

Expats n= 16 (45.7%) 

Qatari n=  6 (66.6%) 

Expats n=   3 (33.4%) 

Qatari n=  12 (75%) 

Expats n=   4 (25%) 

Qatari n=  2 (16.6%) 

Expats n=  10 (83.3%) 

BMI  kg/m2 (mean±std 

dev) 

18.8±3.7 28.95±2.0 33.9±7.4 17.1±2.7 

HbA1c (mean±std dev) 7.811±1.27 8.42±2.44 5.49±0.27 4.86±0.37 

CSII n (%) 9 (25.7%) 5 (55.5%) NA NA 

Diabetes Duration (years; 

mean±std dev) 

9±4.24 5±2.82 NA NA 

Dietary data; n (%) 33 (94.2%) 9 (100%) 16 (100%) 12 (100%) 

Clinical data; n (%) 35 (100%) 9 (100%) 14 (87.5%) 9 (75%) 

DNA methylation ; n (%) 30 (85.7%) 9 (100%) 16 (100%) 12 (100%) 

Gut microbiome data; n 

(%) 

24 (68.5%) 4 (44.4%) 10 (62.5%) 11 (91.6%) 

SCFAs data; n (%) 21 (60%) 5 (55.5%) 10 (62.5%) 11 (91.6%) 
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(Figure 4). For the biochemical analysis, significance was observed in the 

measurements of LDL, AST, ALT, and TSH (Table 5). T1DM-OB showed a 

significantly higher level of LDL in comparison to T1DM and obese subjects with a 

multi-comparison Tukey's p-value of 0.0227 and 0.0116, respectively (Figure 5A). 

Measurements of TSH level was also observed to be significantly different between the 

four groups (One way ANOVA p-value = 0.023), but non-parametric Kruskal-Wallis 

test showed non-significance (Figure 5B). For the liver function tests, significance was 

only observed in the measurements of AST and ALT (One way ANOVA p-value = 

0.012 and 0.0092, respectively). T1DM subjects have significantly lower AST levels 

in comparison to obese (Kruskal-Wallis test p-value = 0.0287) and higher ALT levels 

compared to healthy subjects (Tukey's p-value = 0.017), respectively (Figure 5C and 

D).  

 

Table 5. Physical and clinical characteristics of study subjects  
Parameter 

(mean±std dev) 

T1DM T1DM-OB Obese Healthy One Way ANOVA P-
value 

Systolic blood 
pressure (mmHg) 

104.0±7.31 112.5±5.31 111.3±9.0 103.3±10.02 0.0048 

Diastolic blood 
pressure(mmHg) 

66.39±5.18 69.75±4.92 72.25±5.66 68.67±5.41 0.0060 

Triglycerides 
(mmol/l) 

1.04±0.49 1.68±1.3 1.09±0.47 1.31±0.97 ns 

HDL (mmol/l) 1.71±0.43 1.35±0.21 1.52±0.62 1.40±0.23 ns 

LDL (mmol/l) 2.31±0.68 3.11±0.81 2.12±0.84 2.33±0.60 0.0152 

AST (IU/L) 17.91±5.70 22.4±5.83 26.79±10.97 17.22±4.79 0.012 

ALT (IU/L) 21.49±5.40 22.2±8.09 26.79±10.97 29.67±4.38 0.0092 

TSH (mIU/L) 2.28±1.13 4.58±4.64 3.47±1.87 1.77±1.01 0.023 

T4 (pmol/L) 12.12±1.52 11.38±2.60 11.47±1.85 12.44±1.48 0.04 
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Vitamin D (nmol/L) 51.06±16.81 37.56±8.56 45.11±19.81 39.89±12.63 ns 

Note: Values are reported as mean±std dev. P-value was calculated using One Way ANOVA. HDL: 
High-Density Lipoprotein; LDL: Low-Density Lipoprotein; AST: Aspartate Transaminase; ALT: 
Alanine Transaminase; TSH: Thyroid Stimulating Hormone; T4: Thyroxine; ns: non-significant. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Significant systolic and diastolic blood pressure measurements SBP/DBP  
between the different study groups.: T1DM, T1DM-OB, obese and healthy 
controls. T1DM subjects have significantly lower systolic and diastolic blood pressure. 
P-value was calculated using one-way ANOVA and multi-comparison Tukey's test. 
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33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Significant clinical data analysis between the different study groups: 
T1DM, T1DM-OB, obese and healthy controls. A: LDL levels significantly 
increased in T1DM-OB compared to T1DM and obese groups. B: difference in the TSH 
level between the different four groups. C: decreased levels of AST in T1DM subjects 
compared to obese subjects. D: decreased levels of ALT in T1DM subjects compared 
to healthy controls. P-value was calculated using Tukey's p-value and the Kruskal-
Wallis test was used for non-parametric data (AST and TSH). LDL: Low-Density 
Lipoprotein; AST: Aspartate Transaminase; ALT: Alanine Transaminase; TSH: 
Thyroid Stimulating Hormone.  
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4.1.3 Macronutrient and micronutrient dietary analysis of the study subjects  

 A 24-hour dietary recall was obtained from each subject and then uploaded on 

Nutritionist Pro software (Axxya Inc) to determine the significant dietary factors and 

dietary patterns present in the four groups. Macro- and micro-nutrients were measured, 

including Kcal, carbohydrates, proteins, fats (SFA, MUFA), sugars (glucose, lactose, 

etc.), vitamins (vitamin A, C, D, etc.), and minerals (iron, calcium, etc.). The ANOVA 

analysis showed a significant difference in the intake of saturated fatty acids (SFA), 

vitamin-K, and pantothenic acid with a p-value of 0.018, 0.0312, and 0.0273, 

respectively (Table 6). Multigroup comparison test confirmed that T1DM subjects were 

found to have a significant decrease in the intake of SFA compared to healthy controls 

(Tukey's p-value= 0.0170) (Figure 6). Whereas vitamin K was significantly lower in 

the T1DM group compared to the obese (Kruskal-Wallis's p-value = 0.0214) (Figure 

6). The intake of SFA in the T1DM group is 9.7% (14.89 g), which is considered close 

to the recommended intake of SFA (10% of the total Kcal intake) [126]. However, 

T1DM subjects have a mean value of 12.3 g fiber of the total dietary intake, which is 

lower than the recommended value (25 g per day) [126]. 

 

Table 6. The difference in nutrients intake between study groups. 

 T1DM T1DM-OB Obese Healthy p-value 
Kcal  1369±431.4 1331±556.6 1506±686.2 1509±515.7 ns 
Protein (g) 60.6±25.23 70.24±39.0 59.1±16.46 49.7±16.9 ns 
Carbohydrate (g)  171.2±71.6 147.4±68.3 167.9±102.2 176.8±62.6 ns 
Total Fats (g) 47.24±19.5 52.17±23.6 62.17±27.5 63.3±28.65 ns 
Cholesterol (g) 229.8±161.8 263.1±195.4 194.8±84.2 130.9±105.3 ns 
MUFA (g) 16.8±8.27 18.55±10.83 22.1±11.69 17.9±9.7 ns 
PUFA (g) 10.59±6.22 10.1±5.53 10.68±7.3 11.01±7.1 ns 
TSFA (g) 0.30±0.33 0.46±0.53 0.76±0.85 0.17±0.2 ns 
SFA (g) 14.89±6.298 17.90±9.734 21.01±9.427 24.43±15.67 0.018 
Dietary Fiber (g) 12.38±8.8 12.36±6.3 12.64±7.75 13.04±6.03 ns 
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Total Sugars (g) 53.5±37.2 54.9±45.6 55.6±42.5 71.7±32.5 ns 
Calcium (mg) 558±345.2 719.6±496 716.7±385.2 461.2±226.6 ns 
Iron (mg) 11.75±8.7 12.9±10.9 16.48±13.9 10.79±5.14 ns 
Vitamin A (IU) 3047±4363 5057±7212 2447±1436 2008±3392 ns 
Vitamin A (RAE) 400.3±357.9 468.7±423.3 318.2±209.8 312.9±256.9 ns 
Beta-Carotene 
(mcg)  

1076±2052 2342±3791 993.1±736.8 1626±2625 ns 

Vitamin C (mg) 41.2±32.9 57.2±51.4 69.3±60.8 90.8±107.9 ns 
Vitamin D (mcg) 3.76±3.25 3.67±3.4 3.5±3.9 2.87±2.4 ns 
Vitamin-K (mcg) 56.37±121.5 91.65±159.6 138.5±177.2 57.20±42.46 0.0312 
Vitamin E (mg) 0.81±1.5 0.25±0.28 0.55±0.90 0.74±1.4 ns 
Vitamin E (Alpha – 
Tocopherol) (mg) 

4.37±2.3 3.95±2.2 6.3±4.3 4.56±2.9 ns 

Thiamin (mg) 1.14±0.7 1.05±0.74 1.09±0.47 1.03±0.39 ns 
Folate (mcg) 98.08±50.9 121.6±47.8 125.1±57.5 141.6±88.7 ns 
Pantothenic acid 
(mg) 

3.649±1.931 3.669±1.899 2.498±1.319 2.166±0.7914 0.0273 

Note: Values are reported as mean±std dev. P-value was calculated using One Way ANOVA. SFA: 
Saturated Fatty Acid; ns: non significance >0.05 
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Figure 6. Significant nutrients intake between the different study groups: T1DM, 
T1DM-OB, obese and healthy controls. A: SFA intake was significantly lower in 
T1DM subjects compared to healthy. B: vitamin K intake was significantly lower in 
T1DM subjects compared to obese. C: the difference in the pantothenic acid between 
the different four groups: T1DM T1DM-OB, obese and healthy. P-value was calculated 
using Tukey's p-value for SFA and Kruskal-Wallis test for non-parametric data 
(vitamin K and pantothenic acid). SFA: Saturated Fatty Acid.  
 

 

4.1.4 Differentially methylated genes detected between the different groups  

In order to detect the DNA methylation level at each CpG site from each study 

subject, raw methylation data generated from the Illumina Infinium array were 

imported to the Genome Studio software, in which global methylation level was 

measured from the Beta values. We did not observe any significant variation in the 

DNA methylation level detected in the four groups. Most of the patients have a 

methylation level of over 800,000 probes (Appendix B, figure S2). In addition, the 

comparison between the four groups (T1DM, T1DM-OB, healthy and obese) showed 

no significance in the CpG methylation levels (Figure 7).   
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Figure 7. CpG DNA methylation levels between study groups: T1DM, T1DM-
OB, Healthy, and Obese with probes with a mean detection level P-value <0.01. 
One way ANOVA was used to compare between groups. ns: non-significant.  
 
 

Our next analysis was to determine the differentially methylated genes between 

the different groups focusing on three main comparisons, which are T1DM vs Healthy, 

T1DM-OB vs T1DM, and T1DM-OB vs Obese. A total of 1153, 955, and 946 genes 

with a p-value<0.05 were differentially methylated between T1DM vs Healthy, T1DM-

OB vs T1DM, and T1DM-OB vs Obese respectively (Appendix B, Table S1). 

However, using a  more statistically stringent conditions of a  P-value <0.05 and  a FDR 

>2 only two differentially methylated genes were detected (Table 7). In our analysis, 

we have identified the differential methylation of the suppressor APC domain 

containing 1 (SAPCD1) in T1DM patients compared to healthy controls a fold change 

of 4.9 (P-value= 0.00349). Moreover,  we have also observed the differential 

methylation of DnaJ heat shock protein family (HSP40) member C7 (DNAJC7) in 

T1DM-OB subjects compared to obese with a fold change of -9.1 (P-value = 

0.0000000262). In addition, the mean difference (mean±SD) was calculated from Beta 

values of each gene. For the SAPCD1 gene a mean difference of 2.29±71.9 was 

observed between T1DM and healthy control. Whereas, the DNAJC7 showed a mean 

difference of 0.22±111.9 between T1DM-OB and obese subjects. No FDR-adjusted 

genes were identified between T1DM-OB and T1DM.    

 

Table 7. Differentially methylated genes detected between T1DM vs Healthy and 

T1DM-OB vs Obese. 

Gene 
Symbol 

Gene name Fold change 
value 

Fold change 
description 

Adjusted P-
value 
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SAPCD1 suppressor APC 
domain containing 1  

4.9  T1DM compared to 
healthy controls 

0.00349 

DNAJC7 DnaJ heat shock 
protein family 
(HSP40) member C7  

-9.1 T1DM-OB compared to 
obese  

0.0000000262 

 

Our functional pathway analysis of the FDR-adjusted gene between T1DM and 

healthy controls conducted by IPA showed no significant canonical pathways. 

However, three disease pathways were found significant between the two groups, 

which are cardiovascular diseases, organismal injury and abnormalities, and 

reproductive system diseases (Figure 8). In the case of T1DM-OB, we have identified 

some significant canonical pathways in comparison to the obese group, which are 

aldosterone signaling in epithelial cells, xenobiotic metabolism CAR/PXR pathways, 

NRF2 mediated oxidative stress response, and protein ubiquitination pathway (Figure 

9). Moreover, a number of significant diseases were identified between the T1DM-OB 

and the obese group, which are gastrointestinal disease, hepatic system, metabolic 

disease, organismal injury and abnormalities, cancer, and reproductive system diseases 

(Figure 10A). Molecular and cellular function analysis showed  several functions to be 

significantly different between the two groups, which are post-translational 

modifications, protein folding, lipid metabolism, molecular transport, and small 

molecule biosynthesis (Figure 10B). 
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Figure 8. Significant disease pathways detected between T1DM and healthy 
controls generated by IPA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Significant canonical pathways detected between T1DM-OB and obese 
subjects generated by IPA. 
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p=0.0004 p=0.0003 p=0.1567 p=0.1955 p=0.002 p=0.002 p=0.045 p=0.020

Figure 10. Significant disease pathways (A) and molecular and cellular functions 
(B) detected between T1DM-OB and obese subjects generated by IPA. 
 

4.1.5 Gut microbial composition and SCFA analysis of the study subjects  

The gut microbial composition and abundance were previously analyzed in our 

study groups. Gut microbial relative abundance in the phylum and genus level is 

presented in Appendix C, figure S3. Gut microbial diversity analysis, measured by the 

alpha-diversity, showed significance in the genus richness (Observed and Chao1 

indexes) among the four different groups (Observed p-value = 0.0004; Chao1 p-value 

= 0.0003) (Figure 11). We have also observed a significant lower microbial abundance 

and genus richness in T1DM subjects in comparison to healthy controls (Observed p-

value = 0.002; Chao1 p-value = 0.002; Shannon p-value = 0.045; Simpson p-value= 

0.020) (Figure 10). No difference was observed in the beta-diversity analysis among 

the four different groups (Figure 12).  
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[ANOSIM]  r:  0.047716;;  P<0.134

Figure 11. Alpha-diversity (gut microbiome) analysis of the study subjects. A: 
significance in the genus richness (Observed and Chao1 indexes) among the four 
different groups. B: T1DM subjects showed lower microbial abundance and genus 
richness compared to the healthy group.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Beta-diversity (gut microbiome) analysis of the study subjects. No 
difference was observed in the beta diversity among the four groups. Beta-diversity was 
visualized using Principle co-ordinations generated with the Bray–Curtis distance 
metric by QIIME. Analysis of group similarity (ANOSIM) was measured between 
categories included in this study using 1000 permutations.  
 
 
 

Furthermore, in this study, LEfSe analysis was used for the identification of the 

significant gut microbial markers between the different study groups with the cutoff 

value of LDA >2.0. Rikenellaceae, Christensenellaceae, Weissella, Lactobacillales, 

Anaerofustis, Leuconostocaceae, and Brachyspira were found to be significantly 

enriched in the healthy controls compared to the T1DM patients (Figure 13). No 

specific gut microbial marker was identified for the T1DM group. In regard to the 

T1DM-OB group, Roseburia, Bifidobacterium, Neisseria, Blautia, Lachnospiraceae, 

among others, were found to be significantly enriched in comparison to obese subjects 

that is characterized only by Odoribacter. (Figure 14A). Whether Roseburia, 
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Bifidobacterium, Blautia, Lachnospiraceae, among others, were found to be 

significantly enriched in T1DM-OB compared to T1DM patients (Figure 14B).  

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 13. Significant gut microbial markers between T1DM and healthy controls. 
Significant enrichment of Rikenellaceae, Christensenellaceae, Weissella, 
Lactobacillales, Anaerofustis, Leuconostocaceae, and Brachyspira in the healthy 
controls. A cutoff value of LDA >2.0.  
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Figure 14. Significant gut microbial markers between T1DM-OB  with obese and 
T1DM subjects. A: significant enrichment of Roseburia, Bifidobacterium, Neisseria, 
Blautia, Lachnospiraceae, etc. in T1DM-OB compared to obese subjects. B: significant 
enrichment of Roseburia, Bifidobacterium, Blautia, Lachnospiraceae, etc. in T1DM-
OB compared to T1DM subjects. A cutoff value of LDA >2.0.   
 
 
 

The metabolic analysis was also conducted to measure the concentration of 

SCFAs in the study subjects and determine the significant microbial metabolites among 

the four groups. The SCFAs measured in this study were ethanoic acid, propionic acid, 

isobutanoic acid, butanoic acid, 2-methylbutanoic acid, isopentanoic acid, pentanoic 

acid, 3-methylpentanoic acid, 4-methylpentanoic acid, and hexanoic acid. Based on 

ANOVA analysis only butanoic acid showed significance that was significantly 

increased in T1DM-OB compared to the healthy control (One Way ANOVA p-value = 

0.0253; Kruskal-Wallis p-value = 0.016 ) (Figure 15).  
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Figure 15. The difference in the butanoic acid between the different four groups: 
T1DM T1DM-OB, obese and healthy controls. Butanoic acid was significantly 
increased in the T1DM-OB group compared to healthy controls. P-value was calculated 
using the Kruskal-Wallis test.  
 
 
4.1.6 Correlation between DNA methylation with dietary factors, gut 

microbiome, and SCFAs using network analysis  
 

To identify the potential link of DNA methylation with diet and gut microbial 

composition in the development of T1DM disease, we have conducted network analysis 

between CpG methylation levels from the study subjects of the four groups with dietary 

factors and the gut microbiome. No network association was found between diet and 

DNA methylation in T1DM, T1DM-OB, and obese groups. However, in the healthy 

controls, a positive correlation was detected between CpG methylation level and folate 

and thiamin intake (Figure 16).  

Regarding the association between DNA methylation level and gut microbiome, 

no network association was found in the T1DM-OB group. In contrast, T1DM patients 

showed a negative correlation between detected CpG methylation level and 

Faecalibacterium (Figure 17 A). In the healthy controls, a negative correlation was 

detected between methylation level with Butyricimonas, Lachnospira, and Clostridium 

ANOVA P-value=  0.025 
Butanoic acid  
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DetectedCpG

Folate_Total

Thiamin

(Figure 17 B). However, Lachnospira was found to be positively correlated with 

methylation level in the obese group. Network analysis also showed a negative 

correlation between methylation and Odoribacter in Obese subjects (Figure 17 C). 

Furthermore, network analysis showed no association between CpG methylation levels 

and SCFAs.  

We have also conducted network analysis of CpG methylation levels with HbA1c 

and diabetes duration, however no significant correlation was observed. CpG 

methylation level was found to be positively correlated with HbA1c and negatively 

correlated with diabetes duration in T1DM-OB subjects (P-value = < 0.1) (Appendix 

B, figure S3).   

 

 

 
 
 
 

 

 

Figure 16. Network analysis between CpG methylation level and dietary factors 
in healthy controls. Note: blue line indicates a positive correlation, the red line 
indicates negative correlation.  
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Figure 17. Network analysis between CpG methylation level and the gut 
microbiome. A: correlation observed between methylation level and microbial genus 
in T1DM subjects. B: correlation observed between methylation level and microbial 
genus in healthy controls. C: correlation observed between methylation level and 
microbial genus in obese subjects. Note: blue line indicates a positive correlation, the 
red line indicates a negative correlation.  
 

4.1.7 Correlation between dietary factors and gut microbiome using network 
analysis  

 
Network analysis was conducted to identify the potential correlation of gut 

microbiome with different nutritional factors in all the study groups. In the T1DM 

group, a positive correlation was found with few dietary factors, which are folic acid, 

biotin, vitamin E, iodine, lactose, vitamin D, phosphorus, and trans-fatty acids (Figure 

18A). Folic acid was found to be positively correlated with Dorea, and Veillonella in 

the T1DM subjects. However, a negative correlation was observed between total folate 

intake with Suttterella, Odoribacter, Rikenellaceae, and Clostridiales. Also, both 

iodine and vitamin E were positively correlated with Faecalibacterium. In regard to 

vitamin D and phosphorus, both were positively correlated with Haemophilus. A 

A B C 
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positive correlation was also observed between biotin and Peptostreptococcaceae; 

lactose and Peptostreptococcaceaeo; and trans fatty acids with Bacteroides. On the 

other hand, SFA was found to be negatively correlated with Sutterella and 

Phascolarctobacterium in the T1DM subjects. Dietary fiber was found to be negatively 

correlated with Alistipes and Ruminococcus.  

Similar to the T1DM group, healthy controls showed a positive correlation with 

vitamin D, but with a different microbial genus, which is Dorea. Unlike the T1DM 

group, healthy controls showed a negative correlation between folic acid and 

Prevotella. Total folate was observed to be negatively correlated with 

Peptostreptococcaceaeo and Clostridiaceae. In addition, in healthy controls, both 

vitamin K and pantothenic acid were found to be negatively correlated with 

Turicibacter and Suttterella, respectively (Figure 18B).  

In regard to the obese group, no network association was observed between 

dietary intake and microbial composition. In the case of T1DM-OB subjects, SFA was 

found to be positively correlated with Coprococcus and Dialister and negatively 

correlated with Bacteroides. Unlike T1DM patients, a positive correlation was 

observed between total folate level and Lachnospira. Also, pantothenic acid showed a 

positive correlation with Lanchnospiraceae and a negative correlation with 

Parabacteroids. In T1DM-OB, Suttterella was only observed to be negatively 

correlated with riboflavin (Figure 18C). 
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Figure 18. Network analysis between gut microbiome and dietary factors. A: 
correlation observed between microbial genus and diet in T1DM subjects. B: 
correlation observed between microbial genus and diet in healthy controls. C: 
correlation observed between microbial genus and diet in T1DM-OB subjects. Note: 
blue line indicates positive correlation, red line indicates negative correlation.  

 
 
 
4.1.8 Correlation between SCFAs and gut microbiome using network analysis  
 

Network analysis was also conducted to determine the possible  correlation of gut 

microbiome with SCFAs for the four study groups. The butanoic acid was found to be 

positively correlated with the genus Lachnospira and Sutterella in the T1DM subjects 

(Figure 19A). In addition, positive correlation was found between pentanoic acid with  

Sutterella and Bamesiellaceae. However, in the healthy controls, butanoic acid and 

pentanoic acid were found to be negatively correlated with Christensenellaceae and 

C 
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Odoribacter (Figure 19B). Similar to the T1DM group, T1DM-OB subjects showed a 

positive correlation with pentanoic acid, but with different microbial genus, which are 

Blautia and Erysipelotrichaceae (Figure 19C). Unlike T1DM,  Sutterella showed a 

negative correlation with propionic acid in the T1DM-OB group. In addition, 2-

methylbutanoic acid was found to be positively and negatively correlated with 

Ruminococcaceae and Bacteroides respectively. However, in the obese group, 2-

methylbutanoic acid was found to be negatively correlated with SMB53 (Figure 19D). 
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Figure 19. Network analysis between gut microbiome and SCFAs. A: correlation 
observed between microbial genus and SCFAs in T1DM subjects. B: correlation 
observed between microbial genus and SCFAs in healthy controls. C: correlation 
observed between microbial genus and SCFAs in T1DM-OB subjects. D: correlation 
observed between microbial genus and SCFAs in obese. Note: blue line indicates 
positive correlation, red line indicates negative correlation 

 

4.2  Discussion  

T1DM is a disease of childhood, affecting mainly children and adolescence [14] 

with an increasing incident rate worldwide [17]. The exact pathophysiology of the 

disease is complex and has been associated with the interaction of multiple factors, 

mainly genetics. However environmental factors, such as diet and infections can 

contribute to affecting the epigenetic modifications and the gut microbiome 

composition [5]. In this study, we aimed to identify the different diet intake and 

differentially methylated genes present in T1DM patients compared to healthy children. 

Secondly, we aimed to investigate the possible interaction between diet, DNA 
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methylation, and gut microbiome in the development of pediatric T1DM. Up to our 

knowledge, this study is considered the first study to identify differentially methylated 

genes in T1DM children in Qatar and to show a possible correlation with dietary habits 

and gut microbial profiles in the development of the disease.  

Based on the clinical data analysis, a significant increase in blood pressure was 

observed in obese and T1DM-OB subjects compared to the T1DM group (Figure 3). 

Similarly, a study conducted by Parker and colleagues found that obese children and 

adolescents have high blood pressure and an increased risk of developing hypertension 

later in life compared with children with a low BMI [127]. Moreover, a systematic 

review analysis showed that the presence of overweight or obese phenotype during 

childhood is positively correlated with an increased risk of developing hypertension in 

adulthood [128]. Adipose tissue dysfunction and the imbalance between pro/anti-

inflammatory activities of adipocytes observed in obesity are what contribute to high 

blood pressure and elevated risk of hypertension [129]. In addition, from the lipid panel 

tests, only LDL levels were significant between the four study groups, in which it was 

significantly elevated in T1DM-OB compared to obese and T1DM subjects (Figure 4). 

Various studies have shown that obese T1DM children have elevated levels of LDL 

along with high blood pressure, increasing their risk of developing hypertension and 

cardiovascular diseases [130, 131]. Therefore, indicating the possible involvement of 

obesity in modulating the risk of obese children with or without T1DM to develop 

hypertension and other cardiovascular morbidities. 

In this study, we have also observed a significant elevation in the levels of  TSH 

in T1DM-OB and obese subjects when using the Kruskal-Wallis test (Figure 4). 

However, the multi-comparison analysis showed no significance, which could be due 
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to the differences in the variability and sample size among the groups. Based on the 

literature, elevated levels of TSH is common among obese children and could result as 

a consequence of obesity since those patients have a low incidence of developing 

thyroid autoantibodies [132]. Regarding the liver function test panel, both AST and 

ALT levels were found to be significantly decreased in our T1DM children in 

comparison to obese and healthy subjects (Figure 4). A possible explanation for the 

increased ALT levels in our healthy controls could be due to their high dietary intake 

of SFA as 75% of them consume a western-like diet with a total SFA % intake being 

14.6 % ( >10% of the recommended). Various published data have shown that high 

intake of SFA induces liver fat content and liver enzymes [133, 134]. In regard to the 

elevated AST levels observed in our obese children, it aligns with the data from the 

literature. A recent study conducted by Pirimoglu and colleagues showed that obese 

and overweight children have elevated levels of both ALT and AST and it is positively 

correlated with liver fat fraction [135]. Another study showed that measurements of 

ALT/AST ratio along with family history could be characteristic biomarkers for the 

development of diabetes in obese Japanese children [136].  

Furthermore, another possible explanation for the significant elevation observed 

in the clinical findings of our patients is due to the fact that they are in the growth and 

developmental stage of becoming young adolescence, which is associated with elevated 

levels of thyroid related hormones and liver related parameters. For example, several 

studies have showed that puberty could induce changes in thyroid hormone levels, and 

be  markedly different between children and  young adults [137, 138]. Similar to thyroid 

levels, liver function tests (AST and  ALT) were also found to be affected by growth 

and development of children [139].    
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In the dietary analysis, we have observed a significant decrease in the intake of 

SFA and vitamin-K in the T1DM subjects compared to the control groups (Table 6; 

Figure 5). Based on different studies, the high intake of SFA is found to be positively 

correlated with advanced ß-cell autoimmunity, insulin resistance, and obesity in 

children [46, 140]. In this study, the % intake of SFA in the T1DM group is 9.7%, 

which is considered close to the recommended intake of SFA (10% of the total Kcal 

intake) [126]. Unlike our T1DM subjects, different studies have shown that T1DM 

patients don’t follow the recommended SFA dietary guidelines. For example, studies 

conducted in Australia, Norway, and US showed that the majority of T1DM children 

have significant overconsumption of SFA [141-143]. However, the significant decrease 

seen in the intake of SFA in our T1DM group could be possibly due to the fact that the 

T1DM patients follow medical recommendations and the healthy controls don’t have a 

healthy lifestyle as 75% of them consume a western-like diet with a high SFA intake 

being 14.6 % , thus explaining their elevated ALT levels (Table 7).  

Various studies have shown the important role of vitamin-K in glycemic 

regulation and insulin sensitivity. It is suggested that vitamin-K intake is associated 

with improved glucose levels as higher intake was correlated with higher insulin 

sensitivity and better glycemic control [144]. In a T1DM rat model, administration of 

vitamin-K prevented the development of hyperglycemia and cancellous osteopenia 

[145]. Another study showed the same conclusion, where T1DM rats treated with 

vitamin-K have improved insulin secretion and normal levels of glucose and HbA1c 

[146]. Therefore, it is recommended that T1DM patients have a diet rich in vitamin-K.  

Moreover, a significant higher intake of pantothenic acid was observed in 

T1DM and T1DM-obese patients when using the Kruskal-Wallis test. However, the 
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multi-comparison analysis showed no significance among the single groups, which 

could be due to the differences in sample size and the variability between the groups. 

Pantothenic acid (vitamin B5) is known to be involved in fatty acid metabolism, 

especially in the citric acid cycle [147]. In a diabetic rat model, pantothenic acid ( 

Dexpanthenol ) was found to restore endothelial function and reduce glucose levels 

[148]. The role and involvement of pantothenic acid in T1DM is not clearly understood, 

thus further studies are needed to understand its beneficial effect.  

Various studies have been published that show the involvement and association 

of DNA methylation in the development of T1DM [7, 8, 87, 149]. In regard to our DNA 

methylation analysis, we have identified Suppressor APC domain containing 1   

SAPCD1 to be hypermethylated inT1DM children when compared to healthy controls 

(Table 7). We have also identified DnaJ heat shock protein family (HSP40) member 

C7 (DNAJC7) to be differentially methylated and hypomethylated in T1DM-OB 

patients compared to the obese group (Table 7). SAPCD1 gene is known to be involved 

in the establishment of mitotic spindle orientation and the negative regulation of protein 

localization to the cell cortex. Based on the literature, there is no published data that 

correlate this gene with T1DM disease. However, there are studies that showed its 

correlation with different types of cancer, such as breast, lung, and familial papillary 

thyroid cancer [150-152]. The link between cancer and diabetes has long been 

investigated as diabetic patients have an increased risk of developing specific types of 

cancer, such as liver, kidney, and pancreatic cancer [153]. The link between T1DM and 

cancer is not well understood as most studies presented in the literature discuss the link 

between T2DM with cancer due to its increased prevalence compared to T1DM [154]. 

Hyperglycemia detected in diabetic patients could be the linking factor between T1DM 
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and cancer as it contributes to oncogenesis, tumor cell resistance, and cell death 

inhibition [155, 156]. A recent genome-wide association study done by Hebbar et al. 

(2020) found a significant association between high fasting plasma glucose levels and 

the Valyl-TRNA Synthetase gene (VRAS )[157]. In addition, when they performed 

genotype tissue expression analysis, they found that this gene was involved in the 

regulation of SAPCD1 among other genes [157]. Further studies are needed to 

investigate and understand the involvement and role of the SAPCD1 gene in T1DM 

pathogenesis.  

Although the role of the DNAJC7 gene is not well identified in T1DM 

pathogeneses, various studies investigated its involvement in T2DM and insulin 

resistance. DNAJC7, also known as cytoplasmic constitutive active/androstane receptor 

retention protein (CCRP), belongs to the heat shock protein 40 (HSP40) family [158]. 

Various studies have shown the effect of impaired heat shock response on insulin 

production and ß-cell function, due to dysregulated DNAJC that results in the 

progression of T2DM [159-161]. A study conducted using CCRO knockout mice found 

that the absence of DNAJC7 expression resulted in liver steatosis and abnormal serum 

lipid values, including elevated LDL levels [158]. Based on our analysis, T1DM-OB 

patients were found to have an elevated LDL level, correlating with the data presented 

in the literature.  In addition, pathway analysis revealed a number of pathways and 

molecular functions associated with liver function and lipid metabolism in T1DM-OB 

subjects. Furthermore, IPA analysis showed that gastrointestinal, hepatic and metabolic 

disorders were affected in T1DM-OB patients (Figure 10A), which were all seen in 

diabetes and obese related conditions based on the literature [162-165].  



  

58 
 

Furthermore, disease pathway analysis generated by IPA showed significance 

in reproductive system diseases in both T1DM and T1DM-OB subjects compared to 

controls (Figure 8, 10A). Based on the literature, different studies have shown that 

women with T1DM have menstrual disturbances and lower fertility rates compared to 

healthy controls [166, 167]. Also, hyperglycemia and hyperinsulinemia due to insulin 

deficiency and exogenous insulin injection are found to induce the risk of developing 

hypogonadism, hyperandrogenism, and polycystic ovarian morphology in T1DM 

patients [168].  

Disease pathway analysis also revealed cardiovascular diseases in the 

comparison between T1DM patients and healthy controls (Figure 8). Various studies 

have shown that young T1DM patients have an increased risk of developing 

cardiovascular diseases later in life as the increased risk is associated with the diabetes 

duration [169-171]. Therefore, the diseases identified in this study are considered long-

term morbidities commonly observed at the adult stage of T1DM patients.  

In this study, we were able to identify canonical pathways between T1DM-OB 

and obese subjects, which are aldosterone signaling in epithelial cells, xenobiotic 

metabolism CAR/PXR pathways, and NRF2 mediated oxidative stress respond (Figure 

9). Aldosterone overproduction is usually observed in T1DM patients with diabetic 

nephropathy due to impaired regulation of the renin-angiotensin-aldosterone system 

(RAAS) [172]. In a T1DM rat model, blockage of Aldosterone signaling in epithelial 

cells was observed to increase the expression of tight junction proteins, thus regulating 

the permeability of solutes across the epithelial membrane [173]. In regard to 

xenobiotic metabolism CAR/PXR pathways, which mainly take place in the liver, it 

was suggested by the literature to be involved in drug metabolism in T1DM patients 
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[174, 175]. A study conducted by Dong and colleagues found that T1DM mice showed 

an increase in the expression of drug-metabolizing cytochrome P450, whereas this 

induction was absent in CAR knockout T1DM-induced mice [174]. Therefore, 

xenobiotic metabolism through CAR receptors has a potential impact on the efficiency 

and toxicity level of different drugs. Moreover, the NRF2 signaling pathway was 

reported to be impaired in T1DM conditions, leading to insufficient protection against 

hypoglycemia-induced oxidative damage in the hippocampus associated with long-

term cognitive abnormalities [176].  

Regarding the gut microbiome composition, previous data from our group 

showed that T1DM patients have a low microbial abundance and richness compared to 

healthy controls (unpublished; Figure 11, supplementary figure S2). In the literature, 

there are conflicting results regarding the diversity and richness of the microbial flora 

in the case of T1DM development. Various human and animal-based studies have 

reported decreased alpha diversity in association with T1DM development [177, 178]. 

However, it was also reported that gut microbial diversity and richness are increased in 

T1DM patients compared to healthy controls [78].  

 In addition to its influence on the immune system, the gut microbial 

composition may have also an influence on different epigenetic modifications, 

including DNA methylation in the development of T1DM. The gut microbiome can 

affect DNA methylation pattern through the production of the epigenetically active 

metabolite, such as certain vitamins, butyrate, folate, and acetate [179]. In metabolic 

conditions characterized by gut microbial dysbiosis, such as T1DM, altered 

concentrations of these vitamins and cofactors are observed leading to aberrant DNA 

methylation patterns and thus affecting the development of the disease [179-182]. 
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Besides, a study conducted by Ghadimi et al. found that probiotic bacteria, such as 

Bifidobacterium breve and Lactobacillus rhamnosus downregulate the expression of 

IL-17, IL-23, and CD40 enhancing the DNA methylation through its metabolites and 

inhibiting the NF-kB pathway [183]. Probiotic supplementation (containing 

Bifidobacterium breve Bb12 and L. rhamnosus GG) was also found to affect the DNA 

methylation pattern of obesity-related genes in pregnant women and their children. The 

authors of this study found that in response to probiotic intake a total of 38 and 68 genes 

were differentially methylated in women and their children, respectively [184]. The 

women supplemented with the probiotics showed a decreased methylation level in the 

promoter region of fat mass and obesity-associated (FTO) gene and methionine 

sulfoxide reductase A (MSRA) gene, which are important genes involved in obesity-

related pathways [184].  

Regarding the SCFA analysis in this study, butanoic acid concentration, also 

known as butyric acid, was found to be significantly elevated in T1DM-OB patients 

(Figure 15). However, based on the literature, different studies have shown that young 

children with T1DM have reduced levels of SCFAs, including butyrate [185, 186], 

which contrasts the results obtained in our analysis. A study conducted by Traisaeng 

and colleagues found that upon supplementation of Leuconostoc mesenteroids, 

increased levels of butyric acid were observed [187]. They also found that butyric acid 

was associated with elevated insulin levels and reduced glucose levels in vitro (Min 6 

cell culture) and in vivo (T1DM mice model) [187].  

The gut microbial composition is not the only factor affecting butyric acid 

levels, different dietary factors are found to influence its levels, such as fat and fiber 

intake [188]. A study conducted by Choi and colleagues found that specific free 
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pathogen (SFP) rats given a high-fat diet have significantly decreased levels of butyric 

acid when compared to rats given a normal chow diet [188]. A high-fat diet is known 

to be an important risk factor in various inflammatory and metabolic disorders, 

including obesity and diabetes [189]. In contrast, fiber intake was found to be associated 

with an increased level of butyric acid in obese children indicating its potential 

beneficial effect [190]. Besides, It has been found that dietary fiber-mediated 

modulation of the gut microbiome and SCFAs, including butyric acids, protect against 

the development of diabetic nephropathy through the action of GPR109A and GPR43 

[191]. In our study, the T1DM-OB group has 11.6 % intake of SFA, which is slightly 

higher than the recommended intake (10%) [126]. Therefore, the increased level of 

butyric acid observed in our T1DM-OB group could be explained by their nutritional 

intake as they consumed normal to slightly elevated fat intake. Understanding the link 

between different dietary components and butyric acid could provide a better 

understanding of the pathophysiology of T1DM.  

There is also evidence on the epigenetic effect of butyric acid and its possible 

influence on the development of T1DM [192, 193]. In a colitis model, butyrate was 

found to induce the differentiation of T-regulatory cells in colonic epithelium through 

enhancing Histone 3 acetylation in the promoter region of FOX-3 locus [194]. In a 

T1DM mice model, the salt form of butyrate (sodium butyrate) was found to reduce 

glucose levels and increase insulin levels through histone acetylation and inhibition of 

histone deacetylase (HADC) [195]. Further studies are needed to explore the effect of 

butyric acid on other epigenetic modifications, such as DNA methylation and its 

influence on T1DM development.  
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We have also performed network analysis to determine the potential link 

between DNA methylation, nutrition, and gut microbiome in the development of T1DM 

disease in children. In our analysis, an association between diet and detected CpG 

methylation level was only observed with folate and thiamin intake in the healthy 

controls (Figure 16). Folate is known to be involved in the process of DNA methylation 

as it acts as a methyl donor for the synthesis of  S-adenosylmethionine (co-substrate 

required in DNA methylation) [196]. Based on the literature, folate intake was 

associated with beneficial effects on glucose homeostasis by acting as an epigenetic 

modulator. Studies have shown that folate supplementation is associated with 

methylation levels of CAMKK2 and adipose-related genes, thus regulating pancreatic 

functions and insulin secretion [116, 197]. In addition, specific gut microbiome, such 

as Bifidobacterium, and Enterococcus, are known as a source of folate biosynthesis in 

the distal intestine [198]. In our analysis, healthy subjects had the highest intake of 

folate (an average of 141.6 mcg) compared to the other study groups, which could 

explain why an association with DNA methylation level was only observed in the 

healthy controls.  

In this study, we have also observed a negative correlation between DNA 

methylation level and Faecalibacterium in T1DM subjects (Figure 17 A). ). T1DM 

patients have the highest relative abundance of Faecalibacterium accounting for an 

average of 6.25% compared to the other study group.  Faecalibacterium is an anti-

inflammatory bacteria from the phylum Firmicutes involved in improving intestinal 

membrane integrity through the production of butyrate [199]. Different studies have 

reported the decrease in Faecalibacterium abundance in T1DM children associated 

with increased gut permeability [185, 199-201]. Based on the literature, no study 
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discuss the link between Faecalibacterium and DNA methylation in T1DM. However, 

since Faecalibacterium is a butyrate producer, it can act as an epigenetic modulator 

through the production of butyrate [194, 195]. In the obese group, a positive correlation 

was observed between DNA methylation and Lachnospira (Figure 17 C). According to 

the literature, Lachnospira is a gut microbial marker observed in obesity-related 

conditions [202]. Although no network association was identified between diet and gut 

microbiome in obese groups, in the T1DM-OB, Lachnospira showed a positive 

association with folate level, which is an epigenetic modulator (Figure 18C). This 

discrepancy in the network analysis could be attributed to the small sample size. More 

studies are needed to further understand the link between DNA methylation, folate 

intake, and Lachnospira as it could explain possible association between DNA 

methylation, nutrition and microbiome in the development of disease.  

In the network analysis between diet and microbiota, we identified a negative 

correlation of the SFA with Sutterella and Phascolarctobacterium in T1DM subjects 

(Figure 16). According to the literature, Phascolarctobacterium was previously 

reported to be positively correlated with SFA intake in obesity [203]. In the case of 

Sutterella, no study reported its possible correlation with SFA intake. However, high 

levels of Sutterella were found to be associated with extra virgin olive oil (EVOO), 

which is characterized by high levels of Monounsaturated Fatty Acids (MUFA) and 

low levels of SFA [203, 204]. In this study, T1DM patients report a low intake of SFA, 

and the Sutterella relative abundance was 1.03%, which is lower in comparison to 

healthy subjects (2.04%) even if it didn’t reach statistical significance (Appendix C, 

figure S4).  
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In regard to the SCFAs and microbiome network analysis, Sutterella was also 

observed to be positively correlated with butanoic acid and pentanoic acid in T1DM 

patients (Figure 16). Based on the literature, Sutterella was found to be significantly 

increased in T1DM patients compared to controls [72]. Another study reported the same 

finding with high levels of Sutterella being observed in T1DM along with the impaired 

activity of IL-17 secretion [205]. Sutterella from the phylum Proteobacteria is 

considered a pro-inflammatory agent and has been frequently involved in different 

inflammatory and metabolic disorders, such as inflammatory bowel disease (IBD), and 

autism [206]. No study reported the possible correlation between Sutterella and SCFA 

production in T1DM. However, it has been found that subjects with overconsumption 

of alcohol have elevated abundance of Sutterella compared to controls, but no 

significant correlation was observed with SCFAs level [207].  

There are several limitations associated with this study, mainly the small size of 

the study subjects, particularly for the healthy controls, the T1DM obese and the obese 

groups. Another limitation is in the use of 24-hour dietary recall, which records one day 

intake and it may not be a good representative of the patients’ dietary habits. To 

overcome the uncertainties of the dietary records, our recruiting criteria involved a 

narrow range of age (6-12 years) to exclude variability in social and dietary habits 

exhibited by teenagers. Also, correction of blood cell composition wasn’t performed, 

which affects the analysis conducted in this study. Another limitation of this study is 

the absence of gene expression validation to confirm the effect of DNA methylation. 

Larger studies are needed to confirm the findings of this study, involving 

different bioinformatic and epigenetic software to provide a better understanding of the 
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correlation between DNA methylation, diet, and gut microbiome in the pathogenesis of 

T1DM. 

4.3 Conclusion: 

The risk of developing T1DM is increasing worldwide, especially in 

westernized countries. The exact pathophysiology of the disease is complex and 

involves the interaction of different genetic, epigenetic, and environmental factors. The 

interplay between DNA-methylation, diet, and gut microbiome and how this link 

contributes to the pathogenesis of T1DM is yet to be identified. In this study, we were 

able to determine the differentially methylated genes seen in T1DM patients in 

comparison to the T1DM obese, pure obese, and lean controls along with the significant 

functional pathways involved. Both SAPCD1 and DNAJC7 genes were found to be 

possibly implicated in T1DM disease. A possible link was identified between folate 

intake and DNA methylation as well as with microbial genus Lachnospira. In addition 

to the negative association between  Faecalibacterium and DNA methylation in T1DM 

patients. Therefore, the conducted network analysis showed a possible interplay 

between diet, DNA-methylation and gut microbiome and its influence on the 

development of T1DM. More studies are needed to provide further information and 

better understanding of such association.  
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Chapter 6: Appendix  
 

6.1 Appendix A: Study approvals  
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6.2 Appendix B: DNA methylation in the four different study groups 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Data quality control analysis using Partek Genomics Suite version 7.0 
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Figure S2. CpG DNA methylation levels within study groups. Raw methylation 
data generated from the Illumina Infinium array were imported to the genome studio 
where probes with a mean detection level P-value <0.01.  
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DetectedCpG0.05HbA1c Duration_Diabetes DetectedCpG0.01DetectedCpG0.05

Table S1. Differentially methylated unadjusted genes 
 

Group  Mapped genes Up-regulated  
genes  

Down-regulated  
genes 

Comparison 
group  

T1DM 854 589 265 Healthy 

T1DM-OB 735 
 
 

735 

234 
 
 

256 

501 
 
 

479 

T1DM 
 
 

Obese 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Figure S3. Network analysis between CpG methylation level and HbA1c (A) and 
diabetes duration in T1DM-OB subjects. Note: blue line indicates a positive 
correlation, the red line indicates negative correlation. 
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6.3 Appendix C: Gut Microbial composition  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure S4. Relative abundance of gut microbial composition at both the phylum 
and genus level in the four groups. 
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