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ABSTRACT 

AMER, AYA A., Masters : June : 2021, Masters of Science in Electrical Engineering  

Title: Home Energy Management System Embedded with a Multi-objective Demand 

Response Optimization Model to Benefit Customers and Operators   

Supervisor of Thesis: Ahmed M. Massoud. 

This thesis aims to develop a Home Energy Management System (HEMS) that 

optimizes the load demand and distributed energy resources considering utility price 

signal, customer satisfaction, and distribution transformer condition. The electricity 

home demand considers Electric Vehicles (EVs), PV-based renewable energy 

resources, Energy Storage Systems (ESSs), and all types of fixed, shiftable, and 

controllable appliances. A multi-objective demand/generation response is presented to 

optimize the scheduling of various loads/supplies based on the pricing schemes. The 

customers’ behavior comfort-level and a degradation cost that reflects the distribution 

transformer Loss-of-Life (LoL) are integrated into the multi-objective optimization 

problem. First, conventional optimization approaches are utilized to solve the multi-

objective optimization problem. To overcome the conventional optimization 

limitations, a data-driven analysis, which utilizes deep reinforcement learning (DRL), 

is used. The results show that the DRL-based HEMS is more efficient in minimizing 

the energy cost while adapting to the user comfort within the desired level. 
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NOMENCLATURE 

ℎ(𝐻) Index (set) of time slots. 

𝑛(𝑁) Index (set) of demand response appliances. 

𝜌 Balance parameter for customer/utility benefits. 

𝐹1 Transformer LoL mitigation objective function. 

𝐹2 Electricity cost objective function. 

𝐹3 Customer dissatisfaction cost objective function. 

𝜆ℎ  Hourly electricity cost (¢/kWh). 

𝑃𝑛,ℎ
𝑠𝑜𝑙𝑑 Power sold to the grid (kW). 

𝐶ℎ
𝑇𝑥 Transformer LoL cost at time ℎ. 

𝑐𝑑𝑐𝑛,ℎ Dissatisfaction cost for appliance 𝑛 at time ℎ. 

𝐶𝑛,h Electricity cost for appliance 𝑛 at time ℎ. 

𝐸𝑛,h Consumption for appliance 𝑛 at period ℎ (kWh). 

𝑒𝑛,𝑚𝑎𝑥 Maximum consumption for appliance 𝑛 (kWh). 

𝑒𝑛,𝑚𝑖𝑛 Minimum consumption for appliance 𝑛 (kWh). 

𝑢𝑛,ℎ  Appliance status in household ∈ {0,1}. 

𝜁𝑛 Appliances dissatisfaction coefficient. 

𝑇𝑛,start Operation starting time. 

𝑇𝑛,𝑖𝑛𝑡 Initial time of working period. 
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CHAPTER 1 : INTRODUCTION 

In this chapter, a background pertinent to smart grid and demand-side 

management applications is introduced. Also, the thesis motivation, objectives, and 

contribution are discussed. 

1.1 Background  

The electric grid consists of three main phases: generation, transmission, and 

distribution phase, as demonstrated in Figure 1-1. The electricity is transmitted from 

the main substations and distributed to different customers [1]. The first power grid 

with the alternating current was constructed in 1886 [2]. Since then, with the advances 

in technology, the electric grid has a significant expansion and changes. The current US 

electric grid has more than 9,200 generation units, 300,000 miles of transmission lines, 

and its generation capacity is estimated to be more than 1 million megawatts [1]. 

 

 

 

Figure 1-1 Simpled diagram of a conventional power grid 

 

 

Since its invention, the electric power grid has been considered an engineering 

marvel. The electrical grid was implemented using centralized architecture, which 

consists of high voltage power plants. The power is transported to customers using high 
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voltage transmission lines. At that time, this centralized architecture was meeting the 

demand requirements. Also, it provided a rapid network expansion and good quality of 

electrical supply to the end-user. In recent years, the electric grid has been subjected to 

a set of emerging challenges and problems that it is not designed and engineered to 

overcome. Some of these challenges are the aging of network infrastructures, growing 

energy demand, optimal deployment of expensive assets, new electrical uses (i.e., 

electric vehicles), energy management systems, pollution, and the greenhouse effect.  

Two-thirds of the used fossil fuel is wasted in the existing grid and cannot be 

transferred into electric energy [4]. About 8% of the generation is wasted during the 

transmission from the power plant to the customers. Besides, 20% of the existing grid 

capability is only available to cover the demand-side requirements at peak time, which 

occurs only 5% of the time. Additionally, the existing power grid experiences failures 

due to the hierarchical topology of its assets [4]. Moreover, the existing grid only 

provides one-way communication. It does not allow communication between utilities 

and customers, which leads to a lot of inconveniences and economic losses. 

The above-mentioned challenges cannot be tackled within the existing electric 

grid. Therefore, the next generation of the electric power grid, also called smart grid, is 

introduced to the electrical market to overcome the existing challenges and enhance 

electric system performance. The smart grid is an information-producing and intelligent 

entity rather than only an operation-based system. A smart grid utilizes new 

technologies and strategies to effectively integrate the grid with distributed energy 

generation and energy storage to balance the load (Figure 1-2) [2]. The conventional 

power grid only has one way of communication, while the smart grid has enhanced 

sensing and computing abilities to enable a two-way communication network. Different 

elements and components are connected via the communication network and smart 
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sensors to enable advanced control.  

 The smart grid's main features are providing utilities with advanced control and 

complete visibility over its assets and resources. Advanced metering infrastructure 

(AMI) has become a popular research topic [4],[5]. AMI has a significant impact on the 

system performance and asset management. AMI utilizes a two-way communication, 

which can monitor and record system parameters (i.e., voltage and current), remotely 

connect and disconnect services, send alarm information from end-user to 

operator/operator to end-user within a near real-time operation. Additionally, unlike the 

conventional power grid, the smart grid is designed to be self-healing and robust to any 

inconsistencies. Therefore, utilities should invest in smart grid technologies to make 

electric grids efficient, reliable, sustainable, and resilient. 

Along with these smart grid features, other new and highly penetrating 

components need to be considered. For example, the development in Renewable Energy 

Sources (RESs) such as Photovoltaics (PVs), Energy Storage Systems (ESSs), and 

energy harvesting technologies have led to a rapid increase in the integration of PV 

systems into residential and commercial premises. Moreover, Electric Vehicles (EVs) 

are becoming widely used. EVs differ from traditional loads, as they may consume and 

provide electricity.  
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Figure 1-2 Smart grid diagram 

 

 

A key challenge for smart grids is consumer participation in the system as an 

active element affecting the system performance. Therefore, some crucial concepts 

should be considered, such as Demand-Side Management (DSM), prosumers, and 

energy citizenship, which require the customers to adopt energy as a fundamental part 

of their life. The load which customers require from the electric grid always varies. 

Therefore, the utility should manage both generation resources and consumer 

consumption. The utility has managed this issue by using Demand Response (DR) 

strategies to compensate for short-time supply-side gaps. Although DR is effective, if 

done traditionally, it can affect customers’ satisfaction or comfort. In the 30-plus years, 

utilities have performed peak reduction by controlling particular devices and systems 

[6]. A smart grid combines appliances and systems to develop integrated solutions, 

which enable utilities to look for more value suggestions across more advanced 

technology. This is known as DR optimization, a strategy to create technical and 

economic benefits by leveraging the demand in many ways. 
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Primarily and due to their massive impact, DR programs often target industrial 

and commercial customers. This is because a high cost and energy reduction can be 

made when DR is implemented with industrial customers. However, for residential 

customers, who typically have distinct needs and requirements, utilities have to 

consider different customer consumption profiles. One of the main challenges to 

implement DR in the residential sector is consumers' involvement. However, a class of 

end-users, who are not technology supporters, are not usually willing to effectively 

participate in DR programs. Therefore, to implement a DR program in a residential 

sector, an additional incentive with a high comfort level is required to support 

customers' engagement besides the electricity cost reduction achievement. 

Effective demand optimization is meant to integrate the power systems with 

several advanced resources to demonstrate the grid's operations capabilities. Some of 

the required demand optimization abilities are [7]: 

• Network awareness: The ability to coordinate assets on an electrical network is 

necessary. Also, utilities need to utilize distributed generation in the grid at 

different locations to expand the power system operations. 

• Customer awareness: Different contractual agreements should be developed for 

the residential, industrial, and commercial sectors to represent and meet their 

needs. 

• Forecasting: The meter data and the behavior-based analytics should be utilized 

to forecast customers' participation rates in the DR programs. This method is a 

strong indicator to help the utility to improve the market and the DR contractual 

agreements. 

Integrating the above capabilities into a DR program will demonstrate more 

benefits beyond what traditional DR programs could anticipate, such as balancing 
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electricity supply and demand, optimizing utility assets, minimizing energy generation 

cost, reducing reliance on fossil-fuel, and increasing the accommodation of RESs [8]. 

However, the significance of this type of DR program needs to be investigated both for 

the customers and the operators. Finally, educating the customers about the savings that 

can be achieved by their participation in DR programs is an important key to have the 

DR optimization working effectively. Also, operators should avoid DR’s conventional 

model and consider demand optimization more inclusively and comprehensively. 

Power system operators, government, customer, service and technology companies, 

and other stakeholders should work together to improve the electrical grid capabilities 

and make it more efficient and reliable by utilizing DR strategies.   

1.2 Problem Statement  

DR schemes' primary aim is to match the electrical power supply with the 

consumption. Traditionally, utilities adjust generation rates according to changes in 

demand. This practice is costly as it leads to turning generation units on and off, 

importing power from other utilities, or applying load-shedding. With the advent of the 

smart grid, it is technologically enabled for operators to adjust demands. For instance, 

non-essential loads can be reduced, and the energy consumption is shifted from peak 

hours to lower-demand times. This is principally done with customers’ approvals and 

based on time-based dynamic pricing schemes. 

DR schemes also aim to maximize the utility profit by the optimal deployment 

of expensive and critical assets, such as transformers, as they impact the power system 

adequacy and reliability. They should be deployed efficiently to receive a reasonable 

return on investments. Any failure in the distribution transformer can results in power 

outages, in addition to expensive and time-consuming repairs and replacements. DR 

programs are vital to effectively increase the smart grid performance while considering 
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all these components and utilizing the enabling technologies.  

The residential sector's energy consumption accounts for 16–50% of the 

consumed power by all sectors in the US and presents about 30% worldwide [9]. Due 

to this reason, this thesis targets optimizing energy consumption for residential users. 

It is complex to deal with residential loads as they usually have different needs and 

relatively fine-grained requirements to ensure comfort. Home energy management 

systems (HEMSs) manages the residential loads and oversee the entire facility's energy 

and data flow [10]. These systems facilitate communications with customers through 

various channels to confirm their participation in a DR and inform them about an event, 

energy usage, pricing, etc.  

This thesis proposes HEMS embedded with a multi-objective DR algorithm to 

achieve the appropriate balance between customers and operator benefits. The DR 

objective function's optimal weight can provide a realistic trade-off solution without 

violating the distribution network regulation rather than a cost-effective oriented 

solution. Therefore, this research deals with the DR problem in a large-scale context to 

solve residential buildings' demand optimization problems from end-user and utility 

perspectives. The primary objective is to use different strategies to reduce customers’ 

electricity bills and power peaks, considering their techno-economic, environmental, 

and social effects. These objectives should be fulfilled without comfort losses for the 

customers or power grid regulations.  

1.3 Thesis Motivation 

The actual energy situation and future previsions are alarming because the 

increase in energy demand does not satisfy the sustainability objectives. Indeed, based 

on the International Energy Agency (IEA) report, the world demand for energy was 

estimated to be 12 Giga-ton equivalents of petroleum (GTEP) in 2010 with a 13% use 
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of renewable energies. In 2035, the world energy demand is estimated to increase to 17 

GTEP, with an 18% use of renewable energy [11]. Although most of the electricity 

generation depends on fossil fuels, the share of RESs has increased recently. In 2019 

investments in RESs, mainly investments in solar PV, hydro, and wind power, were 

more than fossil fuel investments. Also, for the first time, renewable energy generation 

has increased to 10.4% [12]. The total renewable energy sources' consumption is 

growing strongly. In 2018, renewable energy share was increased from 4.5% to reach 

5%. The European Union's total share in renewable energy is about a third of the total 

generation capacity [11],[12]. Figure 1-3 illustrates the primary RES share in 2018 and 

2019 for the main countries.  

 

 

 

Figure 1-3 RES share in the key countries and regions [12] 

 

 

Integrating RES into the power grid may disturb the system operation balance 

since the electricity, in this case, is produced under specific conditions, for example, 
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increase more as more new models are entering the market. Figure 1-4 demonstrates 

the growth in the EVs market in the period of 2012 to 2013 in key countries. The growth 

is shown as the year-on-year percent change in EVs market shares. Netherlands’ 

relative market share has reached more than 400%, making it one of the leading 

countries in 2013. The EVs market share is increased from 1 % to around 6%. Germany 

comes in second place with a 105% market share increase [13]. It is estimated that EVs' 

consumption rate in Europe would increase to 4% in 2030 and 8% in 2050 from the 

total generated power [14].  

Like RESs, EVs charging/discharging would affect the power system stability. 

If charging/discharging of the EVs is not coordinated, this could lead to additional 

demand on the power system. This increase in demand will require grid expansion, for 

instance, increases transformer capacity [14]. These issues can be tackled at the micro-

grid level by looking at individual residential households to minimize their 

consumption and make it more sustainable. 

 

 

 

Figure 1-4  Growth rate of EV market share (2012-2013) of electric vehicles [13] 
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enhance the power system's reliability and security in recent years. It is reported that a 

5% decrease in the peak demand by participating in DR programs could lead to $35 

billion savings in the US over 20 years [16]. Furthermore, penetration of EV in the 

residential sector and the increase in residential appliances could result in load 

shortages if operated simultaneously. Thus, the residential customer should be 

considered when investigating system-level demand reduction, and HEMS is a crucial 

topic in the research area to ensure a well-functioning power system.  

The available information about the variation of the energy consumption in 

households is relatively limited. The new advances in Machine Learning (ML) 

technologies and AMI increase electricity usage visibility and provide more valuable 

information for both supply and demand sides. Finally, there is a lack of negotiation 

and dialogue between end-user and power system operators (PSO). The DR 

implementation is necessary to obtain this dialogue. 

1.4 Thesis Objectives 

This thesis aims to design an incentive-based residential DR algorithm that can 

benefit both the utility operators and the end-users. To accomplish the thesis objective, 

the following objectives are followed: 

1. Perform literature review on the existing demand response optimization 

algorithms focusing on HEMS and different utilized resources.  

2. Study the models of different smart household appliances, controlled and 

managed by the demand response algorithm. 

3. Design a flexible HEMS framework to smooth the power consumption profile 

and optimize energy consumption without compromising user comfort. 

4. Develop a transformer thermal model to calculate the LoL cost and integrate it 

into the DR program. 
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5. Evaluate the performance of the HEMS model through different simulation 

cases using conventional optimization. 

6. Investigate the conventional optimization limitations and propose a second 

solution based on a model-free machine learning technique. 

7. Presents the HEMS problem formulation based on the DRL algorithm and the 

home energy management framework. 

8. Present simulation results and performance analysis of the proposed 

conventional and machine learning-based HEMS in achieving the objectives. 

1.5 Thesis Contributions  

This thesis deals with the DR problem in a large-scale context to solve 

residential buildings' demand optimization problems from end-user and utility 

perspectives. The main contributions of this study are presented in the following points: 

1. Development of HEMS that schedules the household load by optimizing the 

trade-off between the energy consumption cost and the Customer 

Dissatisfaction Cost (CDC), considering the distribution transformers’ asset 

condition.  

2. The HEMS considers different types of loads (fixed, time shiftable, 

controllable, and EV) and facilitating RES and ESS integration with an efficient 

energy management system. Also, a bi-directional power flow among after-the-

meter RESs and the residential appliances is considered. 

3. The conventional HEMS methods are based on a system model. These methods 

can show good performance because of the assumption of accurate prediction 

and accurate input data. However, these assumptions are impracticable and 

unreasonable. Therefore, a Deep Reinforcement Learning (DRL) data-driven 

method is utilized to maximize energy efficiency in a residential household 
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where the variation of the real-time electricity prices and residents' activities is 

considered.  

4. Most RL-based HEMS in literature deals with multiple agents where each 

household appliance represents an agent acting in the same environment, which 

has proven to be a challenging task to solve. The proposed scheme works with 

a single agent and uses a reduced number of state-action pairs, making it more 

effective in HEMS applications since the decentralized control is not crucial at 

a single household level. 

1.6 Thesis Structure 

The outlines of this thesis are as follows: 

Chapter 1 Provides the general introduction, problem statement, motivation, 

objectives, and contributions of the thesis and thesis structure. 

Chapter 2 Presents a literature review and explains the concept of smart homes, smart 

appliances, smart meters, and energy management systems and demand response in 

smart homes. Also, explains the different pricing schemes and their ability to reduce 

peak demands. The effect of demand response on customer comfort is presented.  

Chapter 3 Presents the study of different residential appliances models and their 

implementation in a multi-objective demand response framework.  Residential load 

models are used in the HEMS optimization, where each appliance's optimal operation 

schedule is determined.  

Chapter 4 Presents the mathematical programming and implementation process of the 

HEMS algorithm. Presents the models' parameter and the input data for the model, 

along with the transformer parameter. Also, the considered cases in the simulation are 

introduced, along with calculating energy and cost.  

Chapter 5 Presents the simulation results, discussion, and evaluation of the proposed 
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algorithm using a conventional optimization technique. Different cases are examined to 

validate the efficiency of the proposed HEMS model. First, a single objective 

optimization where the effect of allowing flexibility to the household appliances on the 

cost is examined considering customer comfort. Then, the transformer LoL cost is 

incorporated into the algorithm. Also, the effect of DERs on the HEMS is present in 

one of the cases. 

Chapter 6 Investigates reinforcement learning (RL) rules and application in the power 

system and provides a background and related work for the RL algorithm. The main 

elements that jointly drive the performance of an RL algorithm are introduced. 

Moreover, the details of the Markov decision process as a decision-making model for 

RL are discussed. The RL categories are presented along with the application of deep 

neural networks in RL algorithms. 

Chapter 7 Addresses home energy management using deep reinforcement learning 

(DRL).  Also, Presents the HEMS problem formulation based on the DRL algorithm 

and the home energy management framework. Elucidates how a DRL agent can be 

utilized to produce optimal solutions in a home energy management system. Finally, 

the implementation of the algorithm in MATLAB is presented.  

Chapter 8 Provides simulation results and performance analysis of the DRL algorithm 

to optimize power consumption in smart households. Two scenarios are considered. 

First, minimizing the electricity cost and customer comfort is considered. Then, the 

transformer LoL cost is incorporated into the algorithm. Also, a comparison with 

conventional approaches is presented. 

Chapter 9 Presents the conclusions based on the simulations done in chapter 5. The 

last section of chapter 6 finishes with some final remarks and future work of the 

research.  Figure 1-5 shows a sequence diagram to highlight the outline with the thesis's 
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objectives and contributions.  

  

 

 

Figure 1-5 Thesis outline sequence diagram. 
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CHAPTER 2 : LITERATURE REVIEW 

This chapter gives a detailed examination of different demand response and 

HEMS models and addresses developing DR and HEMS. Also, the effect of the 

proposed HEMS on the distribution transformer is discussed.  

2.1 Smart Home 

A smart home is a household equipped with different home automation systems 

controlled by the main controller [17]. Customer interaction with the grid is the most 

critical attribute of smart homes. Customer involvement is facilitated by a smart meter, 

which is considered a connection point between the smart home and the smart grid. 

Smart meters collect the consumption data for utility and end customers. With the 

upcoming technologies of home automation, all home appliances will have the ability 

to send and receive information. A smart home can provide the owner with more 

opportunities, such as expense-saving, comfort, and reduced carbon emission. For 

example, smart home appliances can be programmed to respond to specific commands 

or signals from utility to cut power consumption during high peak load or shift 

appliances operation to low-cost times. The smart home will have different levels of 

complexity based on the number and type of appliances, a home communication 

platform, and the desired automation level. A home energy management in the smart 

home may include a simple notification from the home user's DR program. The HEMS 

or a smart meter directly communicates with a specific appliance to turn it on or off 

[18]. As a more complex example, a smart meter communicates with HEMS to perform 

specific parallel actions. The HEMS can communicate with smart appliances in 

different ways, e.g., wired or wireless, to perform DR over the Internet using an existing 

broadband connection. 

 Moreover, the future smart homes will be equipped with renewable generation 
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and ESS, as shown in Figure 2-1, to make the smart home working as a small connected 

micro-grid. The higher share of renewable energy in the smart home will minimize the 

grid's purchased energy, which will result in more cost minimization and peak demand 

reduction. The excessive renewable energy generation can be injected into the smart 

grid or stored in ESS. Smart homes are usually managed by HEMS, optimizing energy 

consumption, and giving the users feedback about their electric consumption [18]. The 

HEMS incorporate and manage three main tasks:  

• Optimization: find the most suitable time to use electric appliances considering 

the electric pricing fluctuation and the peak loading. It aims at minimizing the 

wasted energy and electricity bills while maintaining users’ comfort. 

• Control and automation: a microcontroller-based system to control the HEMS 

interface and oversees the use of home appliances and their consumption.  

• Communication: manages the wireless network part by providing dynamic 

information about home energy consumption based on power line 

communication. A ZigBee interface is a perfect example of such a 

communication system. 
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Figure 2-1 Smart home structure  

 

 

2.1.1 Smart Appliances 

A smart appliance refers to a home appliance that monitors, protects, and 

automatically adjusts its operation according to the homeowner [19]. The main 

characteristics of smart appliances include the following: 

• Can be programmed to sets of instructions by the user. 

• Send and receive alerts from and to the user. 

• Provide an energy consumption based on the user guidelines. 

Customers can get economic advantages and environmental benefits by 

adapting smart appliances in their homes. However, a small percentage of customers 

are aware of the environment. Most consumers adopt smart appliances for economic 

benefits [20]. To trigger consumers to buy smart appliances, utilities should offer 

attractive tariffs to customers or other incentives. 

All residential smart appliances are considered receivers and controlled by a 
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transmitter, such as remote control, keypad, or smartphone application [21]. For 

instance, as shown in Figure 2-2, if the user needs to switch any appliance ON or OFF, 

the transmitter (smartphone) will transmit a signal to the appliance in the form of a 

code, including the required instruction be performed. Each appliance is identified by 

a unit number [21]. 

 

 

 

Figure 2-2 Smart home devices accessed through smart phone 

 

 

2.1.2 Smart Meter 

Smart meters are considered intelligent devices which used to monitor and 

control energy usage in homes. Its monitoring function is based on collecting measured 

energy data, performing energy analysis based on the algorithm uploaded, and 

preparing a real-time energy usage [5]. A smart meter performs more complicated 

monitoring functions compared to a normal automated metering reading (AMR). 

Moreover, the smart meter can be combined into an AMI to supply real-time 

information and services to utilities and customers [5]. Table 2-1 presents a comparison 

between AMR and AMI. 
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Table 2-1 Comparison between AMI and AMR. 

Automatic Meter Reading (AMR) Advanced Metering Infrastructure (AMI) 

Support one-way data flow. Support two-way data flow. 

Information flow from AMR to the 

utility. 

Information flow among home appliances, 

AMI, and utility. 

Interacts with Neighbourhood Area 

Network (NAN). 

Interacts with NAN and Home Area 

Network (HAN) and or Business Area 

Network (BAN). 

Consumers are unable to control 

their electricity usage through DR. 
Consumers can implement DR. 

Benefits majorly utility.  Benefits both utility and consumer. 

Simple architecture. Complex architecture. 

Negligible security risk. High-security risk. 

 

 

Smart meter devices' development employs advanced technologies that impact 

information transfer between consumers and utility. Communication technology has 

been considered mostly in smart meter advancement due to its significant impacts on 

the social, economic, and environmental points of use. In many articles regarding the 

smart meter, the major concerns are market as well as social benefits. Technological 

concerns of the smart meter are yet widespread. Moreover, most consumers have also 

focused on the economic benefits of smart meters rather than their performance. In [22], 

a study is developed to identify and measure the smart meter's social significance to the 

consumer. The factors considered to reflect social benefits were service reliability, 

existence, workability of feedback, the presence of DR, new products, and 

macroeconomic impacts. 

In smart meter’s technological advancements, an overview of a smart meter 

accompanied with the investigation on the implementation functionalities are proposed 

by [23]. An investigation is also made to observe satisfaction in the adapted services. 

The power is given to the “internet of things” on which goods are available in the same 
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marketplace. A smart meter is attached in the home gateway to merge the home 

appliances through a home automation network (a communication between appliances 

and smart meter) with the utility via data exchange. Therefore, a smart meter is taken 

as a home gateway to connect the domestic appliances and utility through the internet. 

Apart from using a smart meter for energy monitoring in houses, the work suggests that 

a smart meter should be a multi-utilities device, meaning that it should work in electric 

energy, thermal energy, and natural gas. A smart meter's main advantage to operate 

under multi-utilities is to assist customers in an uncontrolled energy market. 

Furthermore, the work proposed a model for combining the hardware provider, service 

providers, and smart meter for each end-user. 

Advanced measurement is advantageous in a smart grid. It takes place on 

monitoring transformer health in the grid. The monitoring process involves measuring 

the power lines' temperature, moisture content and computing electrical devices' 

thermo-images. Moreover, it should account for load capability and insulation aging 

factors. Based on these measurements, proper actions can minimize transformer failure 

risk by 2.5 times through a properly selected maintenance strategy [24]. Ref. [25] 

presents a technique to solve the power flow problems using smart meters. The 

observations were made on the utility's practicability to trim the end-users load with 

this work's remote signals. The mathematical approach was a modified one from the 

normal Optimal Power Flow (OPF) and could consider the practicability to purchase 

energy from different providers and convey it to the end-user. The main outcome of the 

optimization is to reduce the running cost of the distribution companies. 

2.2 Demand Response (DR) 

DR is about providing incentives to customers to schedule their loads to reduce 

costs and improve the electric power system [2]. The DR has been applied for decades, 
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but due to EV and RES, assets aging, and advances in smart grid technologies, DR has 

gained more attention in recent years. Traditionally, DR programs are intended to be 

used during emergencies. These approaches are mainly described as peak shaving or as 

valley filling. With RES, DR can shift loads to operate at hours with high energy 

production from RES.  

Figure 2-3 shows the different strategies of DR. The left graph shows the 

traditional way of DR, and the right presents DR in a system with distributed generation 

sources, e.g., ESS and RESs. Compared to the traditional case (left graph), in the 

distributed generation case (right graph), any shift in demand may increase the system 

total peak. In the distributed generation case, the increased peak demand does not 

always affect the whole grid since the electricity is produced locally. However, the grid 

could be affected when there is a large centralized renewable energy generation.  

 

 

 

Figure 2-3 Difference between DR in traditional power system (left) and power 

system with considerable renewable energy share (right) [26] 
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There are different approaches to incentivize consumers to participate in DR. 

The DR programs can be arranged in two main groups depending on how the load 

adjustments are made. The first group is the price-based DR programs, and the second 

group incentive-based DR programs, as demonstrated in Figure 2-4.  The incentive-

based DR takes place when the utility has immediate control over the customers' loads. 

In this case, customers are rewarded with points or with a reduction in their electricity 

bill. This type of DR works when undesirable conditions exist in the network or when 

an emergency occurs. 

On the other hand, price-based DR programs refer to user electricity usage 

changes to respond to electricity price change. Customers manage their consumption 

during electricity price periods to minimize the electricity bill [26]. Here, the customer 

response is entirely voluntary. More elaboration about both DR types is discussed next. 

 

 

 

Figure 2-4 Avilable DR programs 

 

  

2.2.1 Pricing Based Demand Response Programs  

Pricing-based DR programs work by altering the load from high peak to off-

peak times. Examples of pricing-based programs are discussed next. 
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Time of use Tariff (ToU) –  ToU is a mutual method of DR pricing schemes is 

the TOU, which is used by the utilities in several countries such as Sweden, UK, the 

USA, Spain, and Italy [27]. This method is based on offering different electricity prices 

to customers. Usually, the day is divided into three main periods, where each period 

has a different electricity price, as shown in Figure 2-5 [28]. PSO uses this method to 

boost customers to change their consumption in lower peak periods. This tariff could 

be effective in a conventional power system where the consumption and production 

patterns are predictable. With the existence of DERs, this tariff structure is too fixed to 

describe the changes in the modern power system with DERs' share.  

 

 

 

 

Figure 2-5 Time of Use (ToU) scheme 

 

 

Critical Peak Pricing (CPP) – In this program, customers are incentivized by 

PSO to change their electricity usage to avoid transmission/distribution system 
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overload. An example of a CPP situation is shown in Figure 2-6. CPP is applied during 

congested scenarios when the demand increases dramatically. PSO notify the users 

when this phenomenon occurs by sending electricity prices to them. One of the 

disadvantages of this approach that it is applied for a limited number during the year 

[29]. Therefore, it is not suitable to be used on regular operation times to enhance 

system performance. 

 

 

 

Figure 2-6 Crtical Peak Pricing (CPP) scheme 

 

 

Power tariffs – The method is also called demand charges, where customers 

are motivated to minimize power consumption by increasing the electricity price at the 

time of their peak demand. This charge in this type is calculated by determining the 

day/month's hour when the customer’s consumption is highest [30]. Generally, this 

scheme contributes to minimizing the overall peak system. However, it does not 
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motivate the user to change their consumption to meet the generation. Moreover, 

minimizing the peak for each customer does not mean, in particular, minimizing the 

overall system peak since the customer’s peak may arise at a different period compared 

to the power system's peak. 

Coincident Peak Charge (CPC) – This charging scheme is the same as the 

power tariff charge but manages the power system peak (the coincident peak) instead 

of the peak hour for a specific customer. This is done by determining the utility's peak 

hour at the end of each day/month. After that, all customers are charged for their 

electricity consumption during coincident peak time [31].  

Real-Time Pricing (RTP) – The RTP program provides the participants with 

an electricity tariff representing the electricity market's real situation (see Figure 2-7). 

One of the scheme's disadvantages is the time difference between announcing the prices 

and the real consumption time. A long-time lag would give a price that does not 

precisely reflect the electricity market situation  [30]. On the other hand, a shorter time 

lag will reflect the demand/supply condition but will make it more difficult for users to 

shift the energy usage. Users could overcome this difficulty by using HEMS.  

Since the electricity market depends on the demand and available products, the 

electricity price variation may increase when electricity production from DERs 

increases. For instance, been observed when the generation of wind power increased, 

the electricity prices went negative [36]. Therefore, RTP is considered the best pricing 

scheme that supports the integration of RES and DR operations in the smart grid. The 

work done based on different DR pricing schemes will be dissuaded in the below. 
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Figure 2-7 Real Time Pricing (RTP) scheam  

 

 

As discussed, the electricity price is a key element in any DR program. Most of 

the electricity market studies integrate the quadratic functions to describe the 

relationship between electricity price and electric consumption. Different pricing 

methods are introduced to alter the consumption from high to off-peak periods. In [37], 

the ToU rate is effectively studied for residential users in various U.S. cities. ToU rate 

was implemented for the first time in the residential sector in 1975 in Vermont. Ref. 

[38],[39], [40], and[41] include other studies that focused on the effects of ToU rates. 

The studies conclude that the most critical issue to having a successful ToU rate is to 

have an efficient pricing method to alter consumers' consumption behavior. 

To alleviate the peaks caused by EVs charging, work in [38] utilizes the ToU 

rate to schedule EV charging in low electricity price time. On large-scale applications, 

this leads to maximizing the generated load utilization and minimizing the cost of 

electricity generation. To better understand the effect of ToU rates on EV charging, 
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[39] represents the total fueling costs for EV under various ToU rates. The simulation 

results demonstrate that ToU pricing schemas are not effective in changing off-peak 

PHEV charging behavior. ToU rate models' effectiveness depends on the vehicle type, 

ToU scheme, and the peak period duration. 

Work in [40] estimates the effect of ToU on residential customers. It is found 

that the load profile patterns of the participant and non-participant customers were 

almost the same under the ToU rates. Work in [41] presents a ToU DR program. The 

results show the ToU rate is profiting to the utility. These results contradict the common 

belief that ToU is unprofitable to utilities.  

Besides ToU rates, the RTP rate is another pricing scheme, which has been 

intensively investigated by researchers (e.g.,[42],[43], [44], and [45]). Work in [45] 

points out the major barriers to fully implement RTP and utilize its benefits. First, the 

lack of experience between customers about how to respond to the RTP scheme. Also, 

the lack of building automation technologies could limit RTP potentials. Thus, they 

propose a residential energy management framework to overcome these problems. The 

trade-off between reducing electricity bills and reducing the appliance’s operation 

waiting time is achieved using the RTP scheme. The coefficients' optimal choices for 

each day of the week are obtained by implementing a price prediction model to the 

actual RTP. The results indicate that combining the proposed DR and the price predictor 

model contributes to a considerable reduction in user's electricity bills. 

2.2.2 Incentive Based Demand Response Programs 

Besides varying the electricity tariff, incentive-based DR programs are also 

successful in the load schedule. Examples of incentive-based DR programs include: 

Direct Load Control (DLC) – In DLC, customers get rewards when they give 

the PSO the control on their electrical loads during emergencies in the power system 
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[32]. This pricing model is simple to be implemented because the AMI is not required. 

One of the drawbacks of this approach is that all DLC participants are always rewarded 

even if they did not contribute during the contingency. Moreover, if loads are connected 

again, a controlled reconnection is required [33]. DLC has advantages on the power 

system by minimizing the cost due to smaller capacity provisioning, but overall, they 

do not contribute to the system performance during normal operation. Therefore, it is 

not commonly used nowadays. 

Interruptible/Curtailable Service (ICS) – ICS method is also based on 

decreasing the power consumption during contingency [34][20]. ICS is usually only 

utilized for large customers such as industrial and commercial customers. PSO 

incentivizes the participants by offering a discount tariff. The participants are penalized 

when the required load reduction is not attained [35]. Similar to DLC, this pricing 

method cannot contribute to enhancing system operation during normal conditions. 

Capacity Market Program – In this DR program, customers submit bids 

depending on the potential load reductions as an alternative for expensive generators. 

At the peak time, the utility selects the users based on their bids and sends a prior notice 

for load shifting. After that, users shit their loads in order to match the utility’s prior 

notice. Users are penalized if they fail to minimize and change their energy usage during 

the given time. 

 Ref [46] proposes an incentive-based DR to generate flexibility in retail 

customers voluntarily. Their scheme's main advantages are improving the social 

benefits where the customers are not subjected to the price changes. However, the 

proposed scheme increases the communications burden. The Stackelberg game is used 

in [47] for determining proper incentives to increase the utility profits and minimize the 

customer electricity bills. The utility interactions with the end-user are modeled as a 1-
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leader, N-follower Stackelberg game. The genetic algorithm is adapted at the leader's 

side to increase the benefits. An analytical solution is developed to minimize customers’ 

bills at the followers' side. The results indicate that this method is useful for both the 

utility and end-user. 

2.3 Home Energy Management System (HEMS)  

Typically, HEMS serves several functions to end-users, such as monitoring 

energy consumption, managing the operation states of appliances, receiving 

information (such as tariff prices), and optimizing household appliances' power 

consumption based on the environment and time factors, and tariff prices. HEMS can 

also optimize the household appliances and manage the DERs and ESSs 

simultaneously. Figure 2-8 presents the basic architecture of HEMS. It consists of four 

main components: a monitor module, a prediction model, a demand response model, 

and the control unit. The monitor module monitors the household appliances' actual 

behavior, the storage system, and the PV installation. In practice, smart meters monitor 

the appliances that continuously measure power consumption over a certain period. The 

prediction module calculates the power production of the PV according to the 

monitored module's input data. These input data are solar radiation data and 

environmental variables, such as the PV panels' temperature, extracted through weather 

forecasting or sensors. The environmental variables are monitored because they affect 

the power output of the PV panels. The DR module contains the DSM software that 

computes the optimal schedule according to the specified optimization objectives, e.g., 
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electricity cost and homeowners comfor.  

 

 

 

Figure 2-8  The architecture of the HEMS 

 

 

 Although HEMS's industrial field is still in its early stages, the HEMS market 

is rapidly expanding in the past few years. With the DR service, advanced pricing 

schemes, and different effective energy optimization techniques, HEMS will have core 

supporting techniques for further development. Many studies have worked on 

designing HEMSs using a different algorithm. Among these algorithms are the 

optimization-based algorithms, which consist of the objective function and a set of 

different constraints. Any optimization algorithm always aims to allocate the best 

optimum solutions for the optimization objective function that meets problem 

constraints. The HEMS application aims to find an optimal load schedule while meeting 

the home appliances model constraints and user comfort.  

 Several researchers have proposed HEMS with price-based DR algorithms for 

cutting the consumption cost. This is done by shifting different loads from high price 
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periods to periods with low prices. MILP optimization is utilized to reduce electricity 

costs as in [36] and [48]. These studies considered only house appliances with 

thermostatically controlled loads and ignored others whose loads shifted. MILP 

optimization is also used in [49] to minimize energy cost by incentive-based optimal 

scheduling technique. Although several constraints are c, user comfort is neglected in 

this study. In [50], a DR model is presented to handle the energy consumption of 

shiftable and controllable appliances in a smart home. The customer discomfort is 

formulated by using the Taguchi loss function [51]. Moreover, another appliances 

scheduling problem is presented in [52]. The customer bill is minimized by shifting the 

appliances' operation at low price periods and avoiding the periods with high prices. 

However, this application could make new undesirable peaks in the minimum price 

slots, which will affect the utility side. 

DERs, also called “decentralized” or “embedded generation,” refer to any 

power resource installed in the power grid that generates or stores energy via grid-

connected devices. Example of DERs is EVs, ESSs, and RESs. The use of DERs 

another solution that contributes to a decrease in power system peaks. Recently, 

multiple works have been carried out to tackle RESs and ESSs integration in household 

operation with DR programs. A DR strategy for a nondeferrable load with PV and ESS 

capabilities has been presented in [53]. The study aims to reduce the expected energy 

cost by changing the discharging and charging time for ESS from renewable energy 

management unit considering ToU-based DR. Work in [54] proposes a DSM algorithm 

and for households with PV model. First, the expected daily consumption and PV 

generation are forecasted. Then, appliances' energy consumption is aggregated. After 

that, the load profile is optimized by minimizing the value of aggregated energy. The 

optimization attempts to use the PV output whenever possible. However, user comfort 
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is not considered. In [55], [56], DR strategies are proposed with a bi-directional power 

flow possibility in a single HEMS to decrease the total electricity cost and improve the 

load pattern, however neglecting customer comfort. In [57], a HEMS is developed to 

provide optimum scheduling of the household appliances and sell the excess local PV 

generation to the grid. 

Similarly, ref [58] presents HEMS architecture that allows consumers to interact 

with each other and suppliers. The architecture enables the integration of RERs with 

the electric grid. In [59] and [60], the effects of EVs charging on residential networks 

have been examined. A HEMS has been suggested in [59] to optimize the appliances’ 

operation considering plug-in EVs.  

2.4 Effect of Demand Response Programs on Distribution Transformer  

Transformers are considered as one of the most significant assets in the electric 

power system. They are categorized into types: power transformer and distribution 

transformer. The difference between the two types is that the distribution transformer is 

designed to operate at a maximum efficiency of 60% to 70%, as usual [61]. The 

distribution Transformer is utilized at a low voltage level of the power system 

(distribution level). Any Failure in the transformer results in an interruption of power 

supply to customers, which leads to substantial economic losses. Thus, distribution 

transformer efficiency is an essential concern for the PSO. 

Along with other causes, the main cause of failure of distribution transformers 

is prolonged overloading. The transformer's thermal management can utilize its 

operation by managing the transformer loss of life (LoL). The main two parameters 

used to approximate a transformer's lifetime are transformer winding top oil 

temperature (TOT) and transformer winding hot spot temperature (HST). A precise 

thermal model of distribution transformer can minimize LoL while utilizing the 
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maximal loading [62]. 

External and internal factors can affect the transformer's thermal behavior, such 

as ambient temperature and the transformer's loading level. Increasing ambient 

temperature results in an increase in the operating temperature of transformers. Ref. 

[63] states that for every 10℃ increase in ambient temperature, the lifetime of 

distribution transformers will be reduced two times faster than the normal operation. 

According to [64], when the HST reaches 140℃, the relative aging rate reaches 100. 

This means that operating the transformer for one hour at overloading conditions equals 

100 operating hours at normal operation. Any increase in the ambient temperature or 

transformer loading levels leads to an increase in the transformer HST. Thus, the 

transformer loading conditions depend on the HST and ambient temperature [64].  

There are several aging models to manage transformer thermal behavior. There 

are transformer aging models specified in the International Electrotechnical 

Commission (IEC) and the Institute of Electrical and Electronics Engineers (IEEE) 

standards. These models are based on transformer relative aging rate. This rate presents 

the transformer’s equivalent aging rate when operating at a temperature different from 

the rated temperature. The relative aging rates for each standard are presented and 

discussed below. 

IEC Standards 60076- This standard provides a guide for distribution 

transformer loading based on operating temperatures and thermal aging. This algorithm 

takes the transformer load, tap position, TOT, ambient temperature, and cooling 

operations as an input, and it gives the HST and LoL as an output [65]. The aging rates 

in this model can be calculated at two conditions: 

a) IEC non-thermally upgraded insulation – The relative aging is attained at 98°C 

reference temperature. 
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𝐹𝐴𝐴 = 2
(𝜃𝐻−98)/6 (2.1) 

Where 𝐹𝐴𝐴 is the relative equivalent rate and 𝜃𝐻 is transformer’s winding hot-spot 

temperature. 

b) IEC thermally upgraded insulation – The relative aging is attained at 110°C 

reference temperature. 

𝐹𝐴𝐴 = 2
(
15000
110+273

−
15000
𝜃𝐻+273

)
 (2.2) 

Where 𝐹𝐴𝐴 is the relative equivalent rate and 𝜃𝐻 is transformer’s winding hot-spot 

temperature.  

Utilities can utilize this model to calculate the insulation paper losses and 

several pre-loading and overloading scenarios. One of this model's technical challenges 

is not easily applied to all network distribution transformers [66]. However, many tests 

have been applied to the above model, and the output showed precise results for HST 

values.  

IEEE standards C57.91 – This model is commonly used to calculate the 

thermal behavior of transformers. Based on the IEEE standard, the transformer's 

ambient temperature value is recommended to be less than 30℃ and limited to 40 ℃. 

Also, it recommends 110 ℃ as a maximum HST, with a maximum value of 65 ℃ for 

the winding temperature over the value of ambient temperature. The main principle of 

this model depends on the relationship between the transformer load and its operating 

temperature. According to IEEE C57.91-2011 standards, for 65 ℃ average winding 

rises, the reference HST is 110 ℃. The transformer LoL percent is defined as the 

equivalent aging at the reference HST. The transformer cooling type can affect 

transformer loading conditions. Based on the cooling type, the IEEE C57.91-2011 

standard suggests different exponents to use in HST temperature calculations, as 

indicated in Table 2-2 [67]. 
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Table 2-2 Transfomer’s HST Exponents [67] 

Types of transformer cooling m n 

Oil Natural Air Natural (ONAN) 0.8 0.8 

Oil Forced Air Forced (OFAF) 0.8 0.9 

Oil Forced Water Forced (OFWF) 0.8 0.9 

Oil Directed Wate Force (ODWF) 1.0 1.0 

Oil Directed Air Force (OAF) 1.0 1.0 

 

 

Where m and n are exponents used in calculating the change in hot spot rise over top 

oil temperature and top oil rise over ambient temperature with changes in load, 

respectively.  The aging rates in this model can be analyzed at two conditions: 

a) IEEE non-thermally upgraded insulation – The relative aging rate is attained at 

95°C reference temperature. 

𝐹𝐴𝐴 = exp (
15000

368
−

15000

𝜃𝐻 + 273
) 

(2.3) 

Where 𝐹𝐴𝐴 is the relative equivalent rate and 𝜃𝐻 is transformer’s winding hot-spot 

temperature. 

b) IEEE thermally upgraded insulation – Unity relative aging rate is attained at 

110°C reference temperature. 

𝐹𝐴𝐴 = exp (
15000

383
−

15000

𝜃𝐻 + 273
) 

(2.4) 

Where 𝐹𝐴𝐴 is the relative equivalent rate and 𝜃𝐻 is transformer’s winding hot-spot 

temperature. 

As can be seen, the IEC and IEEE relative aging rates for the thermally upgraded 

insulation are identical, and non-thermally upgraded insulation rates are different. This 

is due to the different reference temperatures used in non-thermally rates in the two 

standards. 

DR can be used to mitigate the aging effect by managing the transformer's 
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thermal behavior. In relation to previous literature, there has been work in DR literature 

aiming to increase transformer utilization. According to [68], utilizing DR programs 

could decrease the utility investment for installing new transformers by 75%. Work in 

[69] aims to minimize peak load by considering scheduling the appliances under RTP. 

In [70]-[72], DR's impact on distribution transformers aging has been examined. 

Different types of loads were controlled and shifted to reduce the LoL of transformers. 

However, in these studies decreasing the electricity price was not considered as an 

objective nor customer satisfaction. Ref [73] proposed a DR optimization model based 

on transformer hottest-spot temperature to improve transformers' utilization. In [74], 

the authors proposed a primary substation model to increase transformers utilization 

and life extension. However, EV loads were not incorporated into these studies, and 

again customer comfort was neglected. In [75], a price-responsive DR scheme has been 

used to investigate EV's impact on transformer aging. The results showed that the 

increase in EVs capacity might significantly increase the transformer aging. 

2.5 Customer Preferences 

The thesis assumes that customers take into account their energy costs and their 

convenience in the energy schedule. A class of customers prefers to pay more for their 

convenience. Authors in [76] claim that none of the presented DR methods considers 

the customers' point of view in literature. They develop an intelligent system for the 

residential level to manage energy consumption efficiently. They believe that their 

system will learn the consumers' behavior. Their method aims to encourage customers 

to expand renewable energy share and decrease the dependency on nonrenewable 

sources.  

The authors in [77]  propose a model to optimize the residential loads' 

consumption based on the end user's preferences. Their method makes the homeowner 
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execute DR actions automatically. The DR is based on the customer's preferences and 

utility programs. They claim that their work achieves a reduction in electricity payments 

and a reduction in PAR. The study in [78] presents the effect of minimizing power 

consumption on the customer satisfaction level. In the future, this model expects to 

improve the effect of minimizing the power consumption on customer satisfaction 

further if the utility provides the customers with more consumption information for the 

appliances. 

2.6 Barriers and Limitations 

Despite their beneficial opportunities, DR strategies should meet various 

constraints to penetrate the market. These constraints are mainly presented in 

understanding the customers' energy use, economical and technical valuation, and 

policymaking. The authors in [79] noted some main challenges to implementing the 

advanced DR programs, namely: the need to understand the terminology from different 

perspectives, transparent pricing, marketing, awareness by policymakers, and 

development of the enabling technologies. Ref [80] underlines the solution for such 

constraints, and the unreliability of customer behavior lies in improving the program 

design and policies instead of developing new technology. 

The unexpected behavior and awareness of the customers are some of the main 

challenges. The customers have used to the primarily flat, fixed rates. Participating in 

the DR program and all the groups of customers do not accept other energy market 

opportunities. Another class of customers still presents a challenge and needs additional 

incentives for engagement, even with the electricity cost reduction achievement. Hence, 

full engagement in this program is limited to the technology-supporter class of 

customers. 

One of the main concerns of utilities that the DR program is not a reliable source 
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and can affect the network negatively in some cases. This leads utilities to create DR 

programs in their isolation, e.g., conventional DR programs and did not seek to 

understand customers' needs. To get an influential DSM, PSO should start to move 

away from DR’s conventional models and consider more holistic and effective DR 

optimization techniques. Moreover, for DR to be effective, it should reflect the market 

situation. For instance, emergencies or crises, e.g., California in the 2000 – 2001 crisis 

[81], encouraged people to participate in a DR program.  

DR has the potential to provide significant benefits for utility and customers, 

but it has to meet several constraints. Research on this area raises different questions, 

and despite the work done, there is still missing work and significant limitations that 

consolidate the advantages and challenges for integrating a DR platform into an existing 

electricity market. The efficient deployment of a DR optimization algorithm for utilities 

and customers' benefit is challenging. This is due to the increased complexity and 

uncertainty in supply and power demand and intermittency of RESs, changes in users’ 

behavior, and the dynamic nature of electricity prices. Most of the work presented in 

the literature concentrated on optimizing the load and reducing consumers' bills 

considering their comforts. A few of these publications considered utility asset 

conditions in the presence of RESs, EVs, and ESSs.  

This emphasizes the need for developing a HEMS with a DR algorithm that 

improves the economic performance locally at the end-use level considering utility 

assets. Thus, this research investigates the combined impact of optimizing energy 

consumption considering DERs, EVs, and ESSs integration, while satisfying end-users 

comfort/engagement and backup electric utility assets. The next chapter of this thesis 

presents the problem formulation and methodology of the performed research.  
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CHAPTER 3 : MULTI-OBJECTIVE RESIDENTIAL DEMAND RESPONSE 

FRAMEWORK DESCRIPTION  

In this chapter, an overview of the residential DR problem is presented. The 

model of different residential loads is explained. These models are a fundamental 

description of the respective appliances, where the dynamics are neglected for 

simplicity. The overall system description is also provided, and the formulation of a 

multi-objective DR algorithm is presented along with mathematical programming and 

code implementation details. 

3.1 Defining the Problem of Appliances’ Scheduling 

The cumulative load for residential appliances depends on how the appliances 

are operated over time. For instance, if all appliances start simultaneously, the 

coincident demand could be increased to exceed the PSO's power limits and sometimes 

adversely affect the home electrical system and utility assets. Therefore, the appliance 

consumption should be appropriately controlled to keep the peak demand and electricity 

cost to a minimum without sacrificing user comfort. HEMS is implemented to minimize 

the electricity price and utilize the usage of the grid's energy. A scheduled plan for the 

power usages of the different appliances, EV, ESS, and PV, is achieved considering the 

RTP-price and transformer load.   

The utility sends a price signal and power limit to several HEMSs to perform 

demand response optimization in this context. Involved customers get financial 

benefits, along with minimized discomfort concerns in the proposed framework. To 

define the scheduling of home appliance load as to when appliances start and end 

(called appliance window) in a 24-hour time scale in a day, the following terms are 

defined: 

Set of Appliances - A represents the set of electrical appliances used in the 
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smart home. Then, A = {Lights (L), Dish Washer (DW), Clothes Dryer (DRY), 

Refrigerator (REFR), Cooker, Washing Machine (WM), Water Heater (WH), Air 

Conditioning (AC), EV, PV panel}. In this case, n denotes the index of the appliance 

shown in set A. 

Duration of Operation - The day is divided into 24-time slots. Thus, each time 

slot represents 60 minutes. The appliances can be set to start at any time within this 

time frame and end their operation cycle before or on the 24th time slot. 

Execution Window of each Operation - Appliances should start in a user-

specified window (operating time). Therefore, users specify the desired execution 

window for each appliance, i.e., the interval when the appliance can run. Specifically, 

for each appliance, there is a minimal starting time (before that time, the operation 

cannot start) and a maximal ending time (by that time, the operation should be finished). 

The HEMS can switch the appliances on or off at any time as long as it is in the user's 

pre-determined starting and ending times. Similarly, the user has to specify the arrival 

and departure time for the EV.  

Defining Problem - The appliance execution period of 24 hours is considered 

here, divided into h = 1, 2, 3, …, H. N denotes the number of appliances for scheduling, 

n = 1, 2, 3, …, N. If we want to define appliance use by name, that is, some load in use 

of appliance n during the time slot h. Therefore, 𝐸𝑛,ℎ represents power consumption 

assigned to an appliance n during the time slot h. The unit for the power consumption 

𝐸𝑛,ℎ  is kW. The unit changes to kWh (energy) by multiplying it with a factor of time 

(60/60=1). In addition to 𝐸𝑛,ℎ, 𝑢𝑛,ℎ is a binary decision variable to indicate if a 

particular appliance is being processed or not. 𝑢𝑛,ℎ = 1, if an appliance n and at time 

slot h is operating, otherwise. 𝑢𝑛,ℎ= 0. It can be, alternatively, stated that in the time 

interval of operation of appliances in their respective execution windows, the binary 
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variable 𝑢𝑛,ℎ= 1 and beyond the window, it is 𝑢𝑛,ℎ=0. 

𝑢𝑛,ℎ = {
1 𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 𝑂𝑁 
0 𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 𝑂𝐹𝐹

 (3.1) 

The optimal load management of the optimization problem is linear. It consists 

of an objective function defined by different linear and nonlinear constraints. The 

optimization problem requires the solution of linear equations, describing the optimal 

and secure operation of the home network. The general load management problem can 

be presented as follows: 

𝑚𝑖𝑛 =  {𝑓(𝑥)|𝑥 ∈ 𝑋} 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 

𝑔(𝑥) ≥ 0 

ℎ(𝑥) = 0 

(3.2) 

Where; 

f(x) presents the optimization objective function. 

g(x) presents the inequality constraint for the objective function. 

h(x) presents the equality constraint for the objective function. 

3.2 Residential Demand Response Framework Description 

A smart community has M residential buildings served by a transformer, as 

shown in Figure 3-1. According to practical needs, the future residential building will 

be equipped with smart meters, RESs ESSs, HEMSs, and several electrical appliances. 

A smart meter is used to measure and transfer electricity consumption from utility to 

household and vice versa. The HEMS acts as the brain of the whole system where the 

proposed DR scheme is embedded in. It oversees the entire facility's energy and data 

flow and manages home appliances' power consumption considering a pre-specified set 

of constraints and requirements. Moreover, the existing EV and ESS provide two-way 

energy trading, enhancing flexibility and economic benefits. 
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Figure 3-1 The proposed HEMS DR model and its considerations 

 

 

In this context, the PSO presents different incentives to the users to optimize 

their consumption to alleviate the transformer LoL cost. The user cannot perform DR 

actions without a utility operator contract. According to the DR contract, the electricity 

bill is made from the following pricing charge:  

1. Off-peak/usage charge: In this case, the utility announces the electricity tariff 

(𝜆ℎ) for the next 24 hours. This price can be fixed or time-varying, depending 

on the electricity market. Usually, the value of  𝜆ℎ equals to several cents per 

kWh. This thesis assumes the RTP charge at off-peak times.   

2. Peak demand charge: This charge is applied throughout the customer’s peak 

hour. This price is used to encourage the residential user to change their power 

uniformly. The utility can profit from this since it reduces the capacity provision 

investments. Here, 𝜆ℎ is much higher than in the off-peak charge. It can reach 

several dollars per kWh. 

3. Coincident peak demand charge: This charging scheme is the same as the peak 
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charge scheme but manages the peak hour for the utility instead of the peak for 

each consumer. This is done by determining the utility's peak hour at the end of 

each day/month. After that, all users pay for their electricity consumption at this 

time. The rate of these charges can reach a price that is more than the peak 

demand charge rate.  

This research considers a net-metering technique where the price of 

purchasing/selling energy from/to the grid is the same. However, the energy sold to 

the grid can be charged with any other pricing scheme. The customers can achieve 

significant cost reduction by knowing the market peak hours minimize their 

electricity consumption at that hour. The proposed DR program's schematic 

diagram is presented in Figure 3-2. Firstly, the forecasted hourly PV output and 

electricity price are received. The optimization problem is then formulated based 

on PV generation, asset degradation costs, electricity price, the initial state of energy 

(SoE) of EVs, and ESSs’ batteries, together with the user preferences data. Each of 

these elements is explained in detail in the below subsections. 
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Figure 3-2 The multiobjective HEMS Demand Response structure  

 

 

3.3 Thermal Model of a Distribution Transformer 

Transformer thermal modeling is crucial for PSO to examine the operating 

condition for distribution transformers. This subsection presents the details for 

modeling the distribution transformer’s thermal characteristics according to the IEEE 

standard C57.91-2011. As mentioned in the previous chapter, the main factor for 

transformer aging is insulation degradation. Degradation of the insulation is sensitive 

to the transformer's thermal condition. The transformer thermal condition is one of the 

main parameters used to calculate a distribution transformer's LoL. Heat affects the 

thermal degradation of the power transformers. Therefore, controlling a transformer's 
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operating temperature is one of the fundamental techniques of extending its life. The 

transformer thermal model can provide utilities with an overview of the transformer 

operating condition to overcome potential problems and extend transformer life. 

Therefore, it is essential to have an accurate model to present the thermal behavior of 

the transformer. 

There are different models utilized to determine the thermal behavior of the 

transformers. As found in the literature, IEEE standard C57.91 is considered one of the 

popular models used to describe the transformer's thermal behavior. This model 

considers the transformer's load as the transformer's overall temperature increases as 

the transformer's loading current increases [67]. Also, it considers different thermal 

parameters such as average winding temperature, top oil rise, and bottom oil rise for 

evaluating the loss of life.  

3.3.1 Hot Spot Temperature (HST) Calculation 

The transformer winding HST model is used to calculate the %LoL of the 

distribution transformer, and it consists of three variables: ambient temperature (𝜃𝐴), 

winding hottest-spot  temperature (∆𝜃𝐻), and top oil temperature (𝜃𝑇𝑂), as given by 

(3.3).  

𝜃𝐻 = 𝜃𝐴 + ∆𝜃𝐻 + 𝜃𝑇𝑂 (3.3) 

Where ∆𝜃𝐻 calculates the increase of the winding temperature and oil temperature 

caused by the increase of transformer current as given by (3.4). The initial value of top 

oil temperature rises over ambient is given by (3.5), and the ultimate top oil temperature 

rise is given by (3.6).  

∆𝜃𝐻 = ( ∆𝜃𝐻,𝑢 − ∆𝜃𝐻,𝑖) (1 − 𝑒𝑥𝑝
−
𝑡
𝜏𝐻) + ∆𝜃𝐻,𝑖 (3.4) 

∆𝜃𝐻,𝑢 = ∆𝜃𝐻,𝑅[𝑘𝑢]
2𝑚 (3.5) 
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∆𝜃𝐻,𝑖 = ∆𝜃𝐻,𝑅[𝑘𝑖]
2𝑚 (3.6) 

Equation (3.7) presents the top oil rise over ambient temperature. It can be seen 

from (3.7) that any increase in the transformer current will increase the overall 

transformer temperature. The ultimate and initial top oil rise temperatures are given by 

(3.8) and (3.9), respectively, where 𝑛 is a factor that depends on the type of cooling of 

the transformer. 

∆𝜃𝑇𝑂 = ( ∆𝜃𝑇𝑂,𝑢 − ∆𝜃𝑇𝑂,𝑖) (1 − 𝑒𝑥𝑝
−

𝑡
𝜏𝑇𝑂) + ∆𝜃𝑇𝑂,𝑖 (3.7) 

∆𝜃𝑇𝑂,𝑢 = ∆𝜃𝑇𝑂,𝑅[
𝑘𝑢

2 ∙ 𝑅 + 1

𝑅 + 1
]𝑛 (3.8) 

∆𝜃𝑇𝑂,𝑖 = ∆𝜃𝑇𝑂,𝑅[
𝑘𝑖
2 ∙ 𝑅 +  1

𝑅 + 1
]𝑛 (3.9) 

3.3.2 Transformer Aging Calculation 

This model is based on the effect of the HST on the transformer aging. The 

relative relation of the aging acceleration factor and transformer’s HST (reference 

temperature 110○ C) is expressed in (3.10). 

𝐹𝐴𝐴 = exp (
1500

383
−

1500

𝜃𝐻 + 273
) (3.10) 

Equation 3.11 calculates the equivalent aging factor at the reference temperature used 

in the transformer’s LoL calculations.  

𝐹𝐸𝑄𝐴 =
∑ 𝐹𝐴𝐴,𝑟∆𝑡𝑟
𝑁
𝑟=1

∆𝑡𝑟
 (3.11) 

Where ∆𝑡𝑟 is the given time interval, N is the number of the time slots in the time 

interval, and r is the index of the time interval. Equation (3.12) is used to calculate the 

percent LoL. The normal insulation life is considered 180000 hours (20.55 years) [42].  

%𝐿𝑂𝐿 =
𝐹𝐸𝑄𝐴 × 𝑡 × 100

𝑁𝑜𝑟𝑎𝑙 𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑓𝑒
 (3.12) 

3.4 Home Appliance Model 
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The appliances’ operation and user preferences limit their scheduling. The 

mathematical model for each category of appliances and their constraints is explained 

in the following subsections. 

3.4.1 Fixed Appliances (Passive Loads) 

Fixed loads have critical operating status, which is always “on” and cannot be 

scheduled or controlled, such as refrigerators and alarm systems. The cost of such loads 

is presented by (3.13).  

𝐶𝑛,ℎ = 𝜆ℎ ∙ 𝐸𝑛,ℎ  (3.13) 

3.4.2 Shiftable Appliances (Active Loads) 

Shiftable loads, i.e., washing machine, dryer, and dishwasher, can be scheduled 

for off-peak periods where the electricity tariff is lower. The consumption cost for these 

appliances is represented by (3.14). Also, the limits for the shiftable appliance 𝑛 during 

the scheduling window should meet the constraints in (3.15) and (3.16).  For example, 

assuming [𝑇𝑛,𝑖𝑛𝑡, 𝑇𝑛,𝑒𝑛𝑑] ∈ 𝐻 is the desired operating interval in which the shiftable 

appliance  𝑛 is expected to start the operation. It implies that this appliance should start 

any time after 𝑇𝑛,𝑖𝑛𝑡And should complete its operation before 𝑇𝑛,𝑒𝑛𝑑.  

𝐶𝑛,ℎ = 𝜆ℎ ∙ 𝑢𝑛,ℎ ∙ 𝐸𝑛,ℎ  (3.14) 

𝑢𝑛,ℎ = 0    ∀ℎ ∈ [1, 𝑇𝑛,𝑖𝑛𝑡)  ∪ (𝑇𝑛,𝑒𝑛𝑑, 𝐻] (3.15) 

𝑢𝑛,ℎ ≤ 1    ∀ℎ ∈ [𝑇𝑛,𝑖𝑛𝑡, 𝑇𝑛,𝑒𝑛𝑑] (3.16) 

To reflect the customer dissatisfaction cost in the scheduling program, equation (3.17) 

is presented, reflecting the customer's dissatisfaction with waiting for the appliance to 

start the operation. Minimizing (3.17) leads to minimizing the waiting time as possible, 

which supports customer comfort. For example, if the DW usually pm-operate during 

the period [5 pm-10 pm], operation time is shifted to other time slots (i.e., 7 pm). 

According to this, the waiting time equals to 𝑇𝑛,𝑠𝑡𝑎𝑟𝑡 − 𝑇𝑛,𝑖𝑛𝑡 (i.e., 2 h). Note that 
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(𝑇𝑛,𝑠𝑡𝑎𝑟𝑡  − 𝑇𝑛,𝑒𝑛𝑑) should not less than the operating duration time, 𝑇𝑛,𝑒𝑛𝑑, as presented 

in (3.18). 

𝑐𝑑𝑐𝑛,ℎ = 𝜁𝑛(𝑇𝑛,𝑠𝑡𝑎𝑟𝑡 − 𝑇𝑛,𝑖𝑛𝑡) (3.17) 

𝑇𝑛,𝑖𝑛𝑡 ≤ 𝑇𝑛,start  ≤ (𝑇𝑛,𝑒𝑛𝑑 − 𝑇𝑛,𝑡𝑜𝑡𝑎𝑙) (3.18) 

3.4.3 Controlled Appliances (Active Loads) 

This category includes Water Heater (WH), heating, ventilation, air 

conditioning (HVAC), and Light (L). This appliance has flexible power consumption, 

such as lights and air conditioners. Their power consumption can be regulated between 

the maximum and minimum in response to price changes, as presented in (3.19). 

Controlling these loads support minimizing the customer electricity bill. Hence, the 

electricity operation cost of a controllable appliance n is given by (3.20). Nonetheless, 

power reduction can cause dissatisfaction for the customer, as presented by (3.21). 

𝑒𝑛,𝑚𝑖𝑛 ≤ 𝐸𝑛,ℎ ≤ 𝑒𝑛,𝑚𝑎𝑥 (3.19) 

 𝐶𝑛,ℎ = 𝜆ℎ ∙ 𝐸𝑛,ℎ  (3.20) 

𝑐𝑑𝑐𝑛,ℎ = 𝜁𝑛(𝐸𝑛,ℎ − 𝑒𝑛,𝑚𝑎𝑥)
2 (3.21) 

3.5 Electrical Vehicle Constraints  

The EV model supports the engagement of customers in the energy market. 

Charging and discharging of the EV battery is controlled based on the electricity price 

and the asset condition. The EV charging/discharging cost is presented by (3.22). 

Equation (3.23) presents the difference between the EV's maximum energy and the 

actual charged energy, multiplied by a dissatisfaction factor that penalizes not having a 

fully charged EV at departure time. Constraint (3.24) characterizes the power used from 

discharging the EV battery (V2H mood or V2G mood). The amount of energy available 

in the EV battery at time ℎ is presented by (3.25) and (3.26). The EV battery's stored 

energy is limited between the minimum and maximum values to prevent deep 
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discharging or full charging, as presented by (3.27).  

𝐶𝑛,ℎ = {
𝜆ℎ ∙ 𝐸𝑛,ℎ

𝐸𝑉/𝑐
  

−𝜆ℎ ∙ 𝐸𝑛,ℎ
𝐸𝑉/𝑑

 (3.22) 

𝑐𝑑𝑐𝑛,ℎ = 𝜁𝑛(𝑆𝑂𝐸𝑛,ℎ
𝐸𝑉 − 𝑆𝑂𝐸𝑛

𝐸𝑉/𝑚𝑎𝑥
)2 𝑖𝑓 ℎ = ℎ𝑛

𝑑𝑒𝑝
 (3.23) 

𝐸𝑛,ℎ
𝐸𝑉/𝑢𝑠𝑒𝑑

+ 𝐸𝑛,ℎ
𝐸𝑉/𝑠𝑜𝑙𝑑

= 𝜂𝐸𝑉/𝑑 ∙ 𝐸𝑛,ℎ
𝐸𝑉/𝑑

 ∀ℎ ∈ [ℎ𝑛
𝑎𝑟𝑟 , ℎ𝑛

𝑑𝑒𝑝] (3.24) 

𝑆𝑂𝐸𝑛,ℎ
𝐸𝑉 = 𝑆𝑂𝐸𝑛

𝐸𝑉/𝑖𝑛𝑡
+ 𝜂𝐸𝑉/𝑐 ∙ 𝐸𝑛,ℎ

𝐸𝑉/𝑐
− 𝐸𝑛,ℎ

𝐸𝑉/𝑑
 , 𝑖𝑓 ℎ = ℎ𝑛

𝑎𝑟𝑟 (3.25) 

𝑆𝑂𝐸𝑛,ℎ
𝐸𝑉 =  𝑆𝑂𝐸𝑡−1

𝐸𝑉 + 𝜂𝐸𝑉/𝑐 ∙ 𝐸𝑛,ℎ
𝐸𝑉/𝑐

− 𝐸𝑛,ℎ
𝐸𝑉/𝑑

 ∀ℎ ∈ (ℎ𝑛
𝑎𝑟𝑟, ℎ𝑛

𝑑𝑒𝑝] (3.26) 

𝑆𝑂𝐸𝑛
𝐸𝑉/𝑚𝑖𝑛

≤ 𝑆𝑂𝐸𝑛,ℎ
𝐸𝑉 ≤ 𝑆𝑂𝐸𝑛

𝐸𝑉/𝑚𝑎𝑥
 (3.27) 

3.6 Energy Storage System Constraints 

ESS is modeled similarly to the EV, as presented by (3.28) -(3.33). However, 

according to the DR program, the ESS is available all day at the house to be utilized 

(charging/discharging). 

𝐶𝑛,ℎ =  {
𝜆ℎ ∙ 𝐸𝑛,ℎ

𝐸𝑆𝑆/𝑐

−𝜆ℎ ∙ 𝐸𝑛,ℎ
𝐸𝑆𝑆/𝑑

 (3.28) 

𝑐𝑑𝑐𝑛,ℎ =  {

𝜁𝑛(𝑆𝑂𝐸𝑛,ℎ
𝐸𝑆𝑆 − 𝑆𝑂𝐸𝑛

𝐸𝑆𝑆/𝑚𝑎𝑥
) 2 𝑖𝑓  𝑆𝑂𝐸𝑛,ℎ > 𝑆𝑂𝐸𝐸𝑆𝑆/𝑚𝑎𝑥  ,

𝜁𝑛(𝑆𝑂𝐸𝑛,ℎ
𝐸𝑆𝑆 − 𝑆𝑂𝐸𝑛

𝐸𝑆𝑆/𝑚𝑖𝑛
)
2
  𝑖𝑓  𝑆𝑂𝐸𝑛ℎ < 𝑆𝑂𝐸𝐸𝑆𝑆/𝑚𝑖𝑛,

0                 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒,

 (3.29) 

𝑃𝑛,ℎ
𝐸𝑆𝑆/𝑢𝑠𝑒𝑑

+ 𝐸𝑛,ℎ
𝐸𝑆𝑆/𝑠𝑜𝑙𝑑

= 𝜂𝐸𝑆𝑆/𝑑𝐸𝑛,ℎ
𝐸𝑉/𝑑

 (3.30) 

𝑆𝑂𝐸𝑛,ℎ
𝐸𝑆𝑆 = 𝑆𝑂𝐸𝑡−1

𝐸𝑆𝑆 + 𝜂𝐸𝑆𝑆/𝑐 ∙ 𝐸𝑛,ℎ
𝐸𝑆𝑆/𝑐

− 𝐸𝑛,ℎ
𝐸𝑆/𝑑

 ∀ℎ > 1 (3.31) 

𝑆𝑂𝐸𝑛,ℎ
𝐸𝑆𝑆 = 𝑆𝑂𝐸𝑛

𝐸𝑆𝑆/𝑖𝑛𝑡
, 𝑖𝑓 ℎ = 1 (3.32) 

𝑆𝑂𝐸𝑛
𝐸𝑆𝑆/𝑚𝑖𝑛

≤ 𝑆𝑂𝐸𝑛,ℎ
𝐸𝑆𝑆 ≤ 𝑆𝑂𝐸𝑛

𝐸𝑆𝑆/𝑚𝑎𝑥
 (3.33) 

3.7 PV Model Constraints  

PV energy resources further support customer engagement in the energy 

market. Equation (3.34) implies that the generated power from PV can be used by the 
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household appliances or injected back to the grid based on the DR contract, utility, and 

prosumer. 

𝑃ℎ
𝑃𝑉 = 𝑃ℎ

𝑃𝑉/𝑢𝑠𝑒𝑑
+ 𝑃ℎ

𝑃𝑉/𝑠𝑜𝑙𝑑
 (3.34) 

3.8 Power-Limiting Strategies 

The load profile's smoothness is one of the main criteria that should be 

considered in DR strategies. In addition to the transformer thermal model, utilities can 

provide several incentive power-limiting strategies to the households according to the 

DR program they participate in. This will contribute to the demand peak reduction, 

which brings benefits for the whole power system. The incentives for the end-users are 

direct since they pay less by following a particular strategy. For instance, during 

coincident peak periods, the utility can impose limits on the users' power to further 

reduce the power system's peak. A power-limit method may also control the customer's 

daily power consumption pattern, as presented in (3.35) and (3.36). However, If the 

user wants to consume power above the limit, the excess energy will be charged by a 

higher charge, e.g., coincident peak charge, so a significant cost reduction can be 

realized if the user reduces its demand peak hours.  

𝑚𝑎𝑥ℎ(𝑃ℎ
𝑔
− 𝑃ℎ

𝑠𝑜𝑙𝑑) ≤ 𝛤 (3.35) 

𝑃ℎ
𝑔
≤ 𝑙ℎ∙𝑢ℎ (3.36) 

3.9 Weighted Objective Function 

 The proposed DR framework described in previous subsections can be 

formulated as an optimization problem with three main objectives and constraints. The 

multi-objective function is presented as a cost model that consists of electricity charge 

cost considering transformer LoL (𝐹1) and customer dissatisfaction cost (𝐹2), weighted 

and combined into a single objective function, as shown in (3.37). 
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𝑚𝑖𝑛  𝜌 𝐹1 + (1 − 𝜌) 𝐹2   𝜌 ∈ [0, 1] (3.37) 

This integration allows the customers and operators to decide the combinations that 

better fit their economic interests and meet their technical requirements. This can be 

done by adjusting the customer/operator balance parameter 𝜌 to achieve the trade-off 

between 𝐹1 and 𝐹2. These sub-objective functions are presented as:  

𝐹1 = ∑∑
 

𝐶𝑛,ℎ + 𝐶ℎ
𝑇𝑥

𝐻

ℎ=1

𝑁

𝑛=1

 (3.38) 

𝐹2 =∑∑
 

𝑐𝑑𝑐𝑛,ℎ

𝐻

ℎ=1

𝑁

𝑛=1

 (3.39) 

Electricity charge Cost (𝑪𝒏,𝒉) - 𝐶𝑛,ℎ presents the electricity charge cost. If the 

value of 𝐹2 is positive, the consumed power is from the grid. Otherwise, If the value of 

𝐶𝑛,ℎ  is positive, the consumed power is from the grid. Otherwise, if the value of 𝐶𝑛,ℎ  

is negative, the consumed power is from after-the-meter-generated power based on 

DERs and BESSs. 𝐶𝑛,ℎ  is subjected to different appliance, EV, and ESS constraints 

(Eq.(3.22)-(3.34)). 

𝐶𝑛,ℎ = ∑ ∑
 

𝐶𝑛,ℎ
𝑛𝑜𝑛 +

 
𝐶𝑛,ℎ

𝑠ℎ𝑖𝑓𝑡 +𝐻
ℎ=1

𝑁
𝑛=1

 
𝐶𝑛,ℎ

𝐶𝑜𝑛 + 𝐶𝑛,ℎ
𝐸𝑉 + 𝐶𝑛,ℎ

𝐸𝑆𝑆 (3.40) 

Transformer LoL Mitigation Cost (𝑪𝒉
𝑻𝒙) - 𝐶ℎ

𝑇𝑥 presents the transformer LoL 

cost, which is directly related to the asset condition. Based on the utility's received 

electricity price, the DR program intends to allocate as much load as possible at the 

low-price periods. However, high penetration of scheduled household loads during 

these periods raises a concern of new high-power peaks that leads to distribution 

transformer overloading with high LoL. Hence 𝐶ℎ
𝑇𝑥 is used to reflect the transformer 

LoL degradation cost in the DR optimization program. This degradation cost at a 

particular time depends on the transformer load, ambient temperature, and the 

transformer load at that time. The transformer capacity total cost is utilized instead of a 
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fixed threshold constraint, and the LoL cost is estimated using (3.41) [53].  

𝐶ℎ
𝑇𝑥  =

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑖𝑛𝑣𝑒𝑠𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

𝑁𝑜𝑟𝑚𝑎𝑙 𝑙𝑖𝑓𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦
 × 𝐿𝑂𝐿ℎ% (3.41) 

Customer Dissatisfaction Cost (𝑭𝟐) - 𝐹2 is introduced to capture the degree of 

discomfort caused to the customer due to the DR schedules. For example, when a 

shiftable appliance is scheduled to operate at different times than the user's initially 

decided time, it inconveniences the customers. The same thing could happen when 

controllable appliances operate with less power. Asa result, the customers may stop 

participating in the DR programs. Moreover, to further enhance customer comfort, an 

appliance importance parameter is introduced to give the customer more control of the 

appliance operation.  

𝐹3 = ∑ ∑
 

𝑐𝑑𝑐𝑛,ℎ
𝑛𝑜𝑛 +𝐻

ℎ=1
𝑁
𝑛=1

 

𝑐𝑑𝑐𝑛,ℎ
𝑠ℎ𝑖𝑓𝑡 +

 
𝑐𝑑𝑐𝑛,ℎ

𝐶𝑜𝑛 + 𝑐𝑑𝑐𝑛,ℎ
𝐸𝑉 + 𝑐𝑑𝑐𝑛,ℎ

𝐸𝑆𝑆 

(3.42) 
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CHAPTER 4 : HOME ENERGY MANAGEMENT BASED ON CONVENTIONAL 

OPTIMIZATION  

This chapter explains the implementation of HEMS based on conventional 

optimization techniques. Section 1 explains the used optimization approaches along 

with their implementation on MATLAB. Section 2 demonstrates the implementation of 

the algorithm code in MATLAB. The Assumptions and considerations made during the 

simulation are provided in section 3. Section 4 demonstrates the household appliances 

and transformer input data along and the assumptions made.  Different studied scenarios 

and guides for energy cost calculation for the proposed DR algorithm are presented in 

5.  

4.1 Optimization Approach 

In this thesis, MILP and interior-point optimization (IPO) are used efficiently 

to solve the multi-objective function. First, the MILP is utilized to optimize load 

profiles for shiftable appliances. Then, the IPO is utilized to optimize the load profile 

of controllable appliances. To solve the energy management problem optimally, there 

is a need for a mathematical programming language and a solver. There are many 

mathematical programming languages such as AMPL, TOMLAB, and MATLAB (A 

Toolbox for optimization). MATLAB Optimization Toolbox solves linear 

programming (LP), quadratic programming (QP), nonlinear programming (NLP), 

MILP, and nonlinear equations [82]. 

The solvers such as GUROBI and IBM CPLEX are state-of-the-art solvers for 

LP, QP, MILP, and mixed-integer quadratic programming (MIQP). GUROBI/CPLEX 

can solve MILP problems with many binary variables of a reasonably large size. The 

main reason for using MATLAB Optimization Toolbox is its rapid algorithm 

development, which provides faster and accurate solutions for a wide range of objective 
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functions and constraints.  

4.1.1 MILP Optimization Algorithm 

MILP is used to generate the shiftable appliance operating schedules. In our 

case, the time scale is divided into 24 slots. Each time slot represents a 1-hour duration. 

The appliances can operate at any starting and ending time scale, starting from 1 to 24. 

Depending on the appliance operating time's length, the number of time slots available 

for starting the appliance is given by (3.18). For example, if we have a shiftable 

appliance with the following parameter: 

 

 

Table 4-1 Shiftable appliance parameters 

Parameter Value 

n 1 

𝐸𝑛,ℎ 1.5 kW 

𝑇𝑛,𝑖𝑛𝑡 1 h 

𝑇𝑛,𝑒𝑛𝑑 24 h 

𝑇𝑛,𝑡𝑜𝑡𝑎𝑙 2 h 

 

 

If the scheduling window starts at hour 1 and ends at hour 24, then by using equation 

(3.18), we have 22-time slots available for starting the appliance. Therefore, 22 binary 

variables are required for the appliance assignment at 22 different starting time slots. In 

this case, we consider that the electricity price fluctuates every hour (𝜆ℎ). Optimization 

scheduling requires the use of the MILP solver and the addition of shiftable scheduling 

constraints. The optimization function is given by a 24x1 matrix, as seen in equation 
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(4.1). 

𝐶𝑛,ℎ = [

𝜆1
𝜆2
⋮
𝜆24

] ∗ [𝐸1,1 𝐸1,2 … 𝐸1,24 ] =  

[
 
 
 
𝜆1 ∙ 𝐸1,1 
𝜆2 ∙ 𝐸1,24

⋮
𝜆24 ∙ 𝐸1,24 ]

 
 
 
 (4.1) 

This equation is subjected to two different constraints. These countries as 

classified as power and time constraints. First, the preferred operating time of the 

appliance is presented by (3.15-3.18). Second, if there is any power limit imposed by 

the utility, presented in (3.36), it needs to be considered. Other constraints linked to 

customer preferences, safety, and power requirements can also be considered. 

To implement the appliance model in MATLAB, the function “intlinprog” is 

used, a MILP solver. Figure 4-1 presents a schematic diagram for the MILP method, 

which uses the following basic strategy to solve the problem: 

1. The problem size is reduced using Linear Program Pre-processing. 

2. LP is utilized to solve the problem initial relaxed (non-integer). 

3. Pre-processing is performed for Mixed-Integer Program. 

4. Searching for integer-feasible solutions using Branch and Bound algorithm. 
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Figure 4-1 Schematic diagram of the  MILP method for shiftable appliances 

 

 

The syntax for “intlinprog” in MATLAB is given as in (4.2) and (4.3) [82]. 

min 𝑓(𝑥) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝑥(𝑖𝑛𝑡𝑐𝑜𝑛)
𝐴 ∙  𝑥 < 𝑏

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞
  𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 

(4.2) 

X=intlinprog (f,intcon, A,b, Aeq,beq,lb,ub) (4.3) 

Where 

• X represents the vector of variables (to be determined). 

• f represents the coefficient vector. 

• intcon refers to the vector of integer constraints. 

• A refers to the vector of linear inequality constraints. 

• b refers to the vector of linear inequality constraints. 

• Aeq refers to the vector of equality constraint. 

• beq refers to the vector of linear equality constraint. 

• lb refers to the lower bounds.  

• ub refers to the upper bounds.  



  

57 

 

In this case, f is equal to the electricity cost vector; A is equal to the appliance power 

profile, 𝑏 is equal to the required operating period. Since there are no equality 

constraints, Aeq and beq are set to [∅]. Table 4-2 shows the required arguments and 

their values of the “intlinprog” function in MATLAB. 

 

Table 4-2 Arguments of “intlinprog” in MATLAB 

Arguments value 

f [𝜆1 𝜆2 … 𝜆24]𝑇 

A [𝐸1,1 𝐸1,2 … 𝐸1,24 ] 

b 𝑇𝑛,𝑡𝑜𝑡𝑎𝑙 

Aeq ∅ 

beq ∅ 

lb 0 

𝑢𝑏 ∞ 

 

 

The above constraints instruct the optimization solver to select an operating 

time slot out of available time slots to obtain the optimum appliance schedule. As 

explained above, the same methodology is applied to determine the operating time for 

all the shiftable appliances separately. For the PV panel and EV/ESS discharging, 

variable “A” will be negative as it is not load consuming appliance but a local source 

of power. 

4.1.2 Interior Point Optimization Algorithm  

The IPO is a gradient method used to solving large-scale nonlinear convex 

multi-variable functions. It is known for its simplicity in mathematical modeling. It 

starts with an initial guess and iterates based on a given scheme. The iterations stop 
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when certain constraints are reached [83]. To avoid the violation of constraints, the 

objective function is augmented by a barrier term. At each iteration, there are two main 

types of steps, which are used to solve the optimization problem: a direct step and a 

conjugate gradient step. By default, the IPM takes the direct step first. If it is not 

applicable, it takes the conjugate gradient step. When the direct step cannot be used, 

the approximate problem is not locally convex near the current iterate[83]. A flowchart 

illustrating the IPM algorithm employed is given in Figure 4-2.  
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Figure 4-2 Flowchart of IPO Algorithm. 

 

 

In this work, IPO is used to optimize the controllable appliance load profile. The 
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controllable appliances’ power consumption is controlled for 24 hours, starting from 1 

to 24. Depending on the electricity price, appliance importance parameter, the appliance 

operation is regulated between maximum and minimum power level, as presented by 

(3.18). For example, if we have a controllable appliance with the following parameter: 

 

 

Table 4-3 Controllable appliance parameters 

Parameter Value 

n 2 

𝑒𝑛,𝑚𝑖𝑛 0.8 kW 

𝑒𝑛,max 2 h 

𝑇𝑛,𝑖𝑛𝑡 1 h 

𝑇𝑛,𝑒𝑛𝑑 24 h 

𝑇𝑛,𝑡𝑜𝑡𝑎𝑙 24 h 

 

 

First, the IPO starts with an initial guess X0 for the optimization variable X. The 

algorithm attempts to find a minimum value of X described in the objective function. 

In this example, X is the appliance power level, and it is bounded between  𝑒𝑛,𝑚𝑖𝑛 (0.8 

kW ) and 𝑒𝑛,𝑚𝑎𝑥 (2 kW) . In order to implement the appliance model in MATLAB, the 

function “fmincon” is used. The syntax for the “fmincon” in MATLAB is given as in 

(4.4) and (4.5) [83]. 

min𝑓(𝑥) 𝑠ℎ𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

{
 
 

 
 

𝑐(𝑥) ≤ 0
𝐶𝑒𝑞(𝑥) = 0
𝐴 ∙ 𝑥 ≤ 𝑏

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞
  𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 (4.4) 
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X=fmincon (fun,X0,intcon, A,b, Aeq,beq,lb,ub, nonlcon) (4.5) 

Where 

• X represents the vector of variables (to be determined) 

• fun represents the objective function. 

• X0 refers to the initial guess for the objective function. 

• Nonlcon refers to nonlinear inequalities and equalities constraints. 

• A refers to the vector of linear inequality constraints. 

• b refers to the vector of linear inequality constraints. 

• Aeq refers to the vector of equality constraint. 

• beq refers to the vector of linear equality constraint. 

• lb refers to the lower bounds.  

• ub refers to the upper bounds.  

For this example, fun is equal to the objective function of electricity cost and 

customer dissatisfaction cost, presented by (4.6). Constraint (4.7) instructs the solver to 

select the operating power level between lb and ub to obtain the appliance's optimum 

operation.  

𝐶𝑛,ℎ = 𝜆ℎ ∙ 𝐸𝑛,ℎ + 𝜁𝑛(𝐸𝑛,ℎ − 𝑒𝑛,𝑚𝑎𝑥)
2 (4.6) 

0.8 ≤ 𝐸𝑛,ℎ ≤  2 (4.7) 

4.2 Algorithm Implementation  

The flowchart for the proposed HEMS algorithm is presented in Figure 4-3, 

which shows the proposed optimization problem's implementation process as described 

perversely. For 24 h time slots, the date for electricity price, PV output, and transformer 

load are received. The transformer thermal model receives the predicted transformer 

load, and the transformer load level is considered. After that, loss of life is calculated 

according to its load condition. Then, optimization algorithms are utilized to perform 
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DR decisions for different appliances, ESS, and EV. Finally, the algorithm checks that 

the power limits imposed from the utility are not violated.  

 

 

 

Figure 4-3 Flow chart for the proposed DR algorithm  
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4.3 Assumptions and Considerations 

To execute the formulated DR optimization problem, several considerations and 

assumptions are made. These assumptions and considerations come under two main 

categories: (i) predictions of the model input data and (ii) executing the scheduled load 

proposed by the HEMS. Each of these points is examined by prior literature, as 

highlighted in the following paragraphs. 

The user has a DR contract with the utility. This DR-contract is categorized by 

different periods: off-peak, demand peak, and coincident peak. This work assumes that 

the hourly energy cost (𝜆ℎ) is known for each end-user. This price is not the accurate 

price that the user will pay, but it indicates the next day's expected prices. Utility 

announces the actual price in real-time, a common procedure in real-life [55].   Besides, 

to aid customers, the utility should have the Peak Alert-DR program in which they issue 

alerts notifying participants of potential peak hours each day/month. This program 

simply provides forecasted alerts. In practice, prices and coincident peak predictions 

can be made using historical data that is generally available by the utilities operating 

demand response programs. Other parameters needed by the algorithm are considered 

perfectly known and can be fairly predictable in practice. For example, the algorithm 

needs the predicted renewable generation and transformer load as input. The input data 

prediction can be made in many ways, e.g., [56], [57]. In practice, the household owner 

may set the appliances' information according to their needs, or an intelligent system 

that learns the household owner’s behavior could be adapted. 

  Given the predictions for the coincident peak, transformer load, electricity price, 

renewable generation, etc., the proposed algorithms make ideal energy scheduling 

decisions to fulfill the optimization problem objectives since the optimization problem 

is convex. In a simple form, it can be solved efficiently. For simplicity, the ESS 
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degradation cost is neglected. The remaining work is implementing and consolidating 

the HEMS on the household level by giving the energy schedule. 

4.4 Description of Major Household Appliances Parameters 

In this thesis, for load profiles of appliances, a mid-size home is considered with 

the main electrical appliances. The home also has a photovoltaic (PV) panel for 

electricity generation. Each appliance has a specific operating time to complete its 

cycles. Also, it has different power consumption levels according to its operation cycle.  

The exact power for each appliance can be determined by measuring their demand 

experimentally for one operational cycle. In this thesis, it is considered that appliances 

are working on rated power during their operation. 

Appliances with major contribution in terms of energy consumptions such as 

dishwasher, cooker, refrigerator, plugs, washing machine, clothes dryer, water heater, 

lights, air conditioners, and electric vehicle, are considered in our model to study their 

DR and optimize their operation over a period of time to optimize the total energy cost 

and the load profile.  

Other electrical appliances such as electric kettles, laptops, microwaves, etc. 

considered non-shiftable appliances (fixed). Loads of these appliances are small 

compared to the major load discussed in this thesis. Also, these appliances are 

interactive and depend on users. Thus, they have little scheduling flexibility. Therefore, 

it is considered as “other” loads.  

Some attributes are considered for the appliances, for example, are as follows:  

• ID number.  

• Scheduling window.  

• Importance parameter. 

• Power rating. 
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• Operating time duration. 

Many devices have multiple switching time constants, such as 𝑇𝑛,𝑖𝑛𝑡, 𝑇𝑛,𝑒𝑛𝑑, 𝑇𝑛,𝑠𝑡𝑎𝑟𝑡 

and 𝑇𝑛,𝑡𝑜𝑡𝑎𝑙. 

𝑇𝑛,𝑖𝑛𝑡: It is the initial time of the scheduling window. 

𝑇𝑛,𝑒𝑛𝑑: It is the end time of the scheduling window. 

 𝑇𝑛,𝑠𝑡𝑎𝑟𝑡: It is the scheduled starting time by the DR algorithm.  

𝑇𝑛,𝑡𝑜𝑡𝑎𝑙: It is the total required time for the appliance to stays in on state. 

  Table 4-4 presents different kinds of Fixed, shiftable and controllable 

appliances with different attributes.  

 

 

Table 4-4 Parameters of Household Appliances 

ID Importance 

Parameter 

(𝜻𝒏) 

Power 

rating 

(kWh) 

scheduling 

window 

[𝑻𝒏,𝒊𝒏𝒕, 𝑻𝒏,𝒆𝒏𝒅] 

Operating 

time 

(𝑻𝒏,𝒕𝒐𝒕𝒂𝒍) 

Type 

Cooker - 1.5 - - Fixed 

Plugs - 1 - - Fixed 

REFR - 0.75 - - Fixed 

other - 2 - - Fixed 

WM 0 1.5 17-22 3 shiftable 

DW 0 1.2 7-12 2 shiftable 

DRY 0 2 20-24 2 shiftable 

WH 2 0.6-1 6-9, 20-22 - Controllable 

AC1 2 0.8-2 0-24 - Controllable 

AC2 2.5 0.8-2 0-24 - Controllable 

AC3 3 0.8-2 0-24 - Controllable 

L 0.3-2 0.2-0.8 6-12 - Controllable 

 

 

 Also, Chevy Volt electric vehicle is considered. The EV batteries are charged 

through the home-electricity socket. Therefore, it is named a plug-in EV. The EV’s 
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maximum charging rate is limited to 3.3 kW. The EV takes 4 hours to charge at a 

maximum charging rate of 3.3 kW fully. EV is considered a shiftable load to charge 

when the electricity price is the lowest. With high electricity prices, EV is considered a 

source of energy to supply the household load. In this case, the load is considered 

negative as it is not a consuming load but a local power source. The charging efficiency 

is considered 90%. It.  

 The home is also equipped with ESS, which charges from the PV source and 

discharges during high price periods. The ESS capacity can be varied between 0 and 6 

kWh according to the user needs. The ESS is controlled similarly to EV. However, the 

ESS is available all day at the house to be utilized. The EV and ESS parameters are 

shown in Table 4-5. 

 

 

Table 4-5 ESS and EV data of each household 

Type ESS EV 

Maximum power accumulated in the battery (kWh) 3 16 

Maximum energy of Charging/Discharging (kWh) 0.6 3.3 

Minimum discharging Level (%) 40 30 

Maximum charging Level (%) 90 90 

Initial SOE (%) 90% 50% 

Arrival time - 2pm 

Departure time - 6am 

 

 

For this thesis's purpose, the PV source is designed to meet about 10% of home 

demand for 24 h. The PV output power is utilized when the PV generation is greater 

than appliance consumption. When electricity produced by PV is less than the home's 

demand, the HEMS will consume power from the grid. The utilized power profile of 

the PV panel is presented in Figure 4-4.  
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Figure 4-4 PV panel output 

 

 

4.5 Transformer Parameters 

A 30 KVA, 11/0.433 kV ideal distribution transformer is considered [81]. The 

transformer parameters are presented in Table 4-6. Parameters were obtained from a 

transformer manufacture specification sheet for distribution transformers [81].  

Additionally, according to the IEEE standard C57.91-2011, the ideal distribution 

transformer's normal lifetime is 20.6 years, which equals 180000 hours approximately.   

 

 

Table 4-6 Transformer parameters 

Item Value Item Value 

System Voltage 

(max.) 
12 kV 

Average daily ambient air temperature 

(°C) 
40 

Rated Voltage HV  11 kV 
Rated TOT rise over ambient 

temperature (°C) 
35 

Rated Voltage LV (v) 433-250 
Rated HST rise over ambient 

temperature (°C) 
40 
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Item Value Item Value 

Line current HV (A) 1.57 Exponent n 0.8 

Line current LV (A) 40 Exponent m 0.8 

Over fluxing limit 12.5% Total loss at rated (W) 695 

Max. ambient air temp 

(°C) 
50 Ratio of load to no-load loss 8 

Min. ambient air temp 

(°C) 
-5 Top oil time constant 24 

 

 

4.6 Simulated Cases 

The proposed DR code is run to optimize appliances consumptions for 

minimizing the energy cost (lower utility bill), customer dissatisfaction cost, and 

transformer LoL cost based on  equations (3.38), (3.39), and (3.40) for the following 

(see Figure 4-5): 

• Case (0): is considered a reference case in the study, without the DR algorithm.  

• Case (1): This case minimizes the total daily operation cost considering the 

CDC (𝐹3) and ignoring the transformer LoL cost (𝐹1). Also, different 

appliances' important parameters are considered in the simulation.  

• Case (2): This case shows the effect of considering transformer LoL cost (𝐹1). 

• Case (3): This case emphasizes the benefits of the DR algorithm by utilizing 

assets such as PVs, ESSs, and EVs. 

• Case (4): Finally, a performance evaluation is conducted to show the proposed 

algorithm's effectiveness in minimizing the optimization objectives.  

Reducing the cost of electricity bills is one of the main objectives of the 

optimization problem. Therefore, the electricity operation cost will be studied and 

calculated for the five different scheduling scenarios shown above. 
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Figure 4-5 Demand response simulation cases 

 

 

4.7 Calculation of Energy Consumption and Cost 

Electricity consumption (kWh) of any appliance is determined by calculating 

the area under the curve of load (kW) profile E versus operation time in h hours. 

Electricity consumption of appliance n is given as ∫𝑃𝑛 ∙ 𝑑ℎ; where Pi is the load profile 

of appliance n. If the load varies with time, the electricity consumption is approximated 

as the area under the curve comprising summation of the area of series of rectangles 
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formed on time slots. The smaller the time slot size, the better the approximation for 

calculating the area under the curve. In this thesis, the time slots are considered 1 hour 

each. 

Reducing the electricity bill's cost under the RTP tariff is achieved through 

shifting and changing appliances’ power consumption levels when the tariff is low. The 

optimized scheduling of appliances under RTP and different constraints is obtained, as 

explained in chapter 3. After having established the starting and ending times of the 

appliances associated with their respective load profile on the time scale having 24-

time slots with zeros in unoccupied/unassigned slots, the operation cost of electricity is 

calculated as the following: 

Let 𝑃𝑛,ℎ denotes the load profile vector of appliance n for all different starting 

time h of appliances, on a time scale of 24 slots, then the sum of energy (kWh) of N 

appliances is given as 

∑𝑃𝑛,ℎ

11

𝑛=1

 

The energy (kWh) summation is a vector of order 1 × 24, and RTP (₵/kWh) is also a 

vector of order 1 × 24. Therefore, the following equation gives the total cost of energy 

used by all appliances in a day, and all energy requirements are met from the national 

grid. 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = [∑𝑃𝑛,ℎ

11

𝑛=1

] ∙ [𝑅𝑇𝑃]𝑇 

When a part of electrical energy is being met through DERs like PV or EV, the power 

imports from the grid will be reduced equal to the power supplied by the DERs. 
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CHAPTER 5 : RESULTS AND DISCUSSION: CONVENTIONAL APPROACH 

This chapter demonstrates the simulation and performance evaluation results 

carried out by MATLAB to analyze the optimal load management in smart home 

integrated considering different cases. The proposed DR algorithm is implemented to 

compare three operating cases with a base case representing a reference without using 

the proposed algorithm. The utility and customer balance parameter (ρ) is set to 0.5 for 

all the following cases unless specified otherwise.  

 The ability of the HEMS to sell the extra energy back to the grid complicates 

the simulation study. Also, there are many policies regarding the injected energy to the 

grid, requiring separate analysis. In this respect, selling energy back to the grid is not 

considered in the analysis.  

5.1 Base Case:  Without the DR Program 

This case is considered a reference in the study, which presents the household 

load profile before participating in the DR program (no reduction or shift on energy 

consumption). Figure 5-1 presents the accumulated energy consumption of household 

loads and EV and energy cost signals. Based on the cost signal, the energy consumption 

cost is calculated, as explained in the previous chapter. The total consumption cost for 

the base case is 6.1 USD. 
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Figure 5-1 Aggregated energy consumption of all loads before DR (Base Case) 

 

 

5.2 The Impact of Customer Dissatisfaction Cost  

The main objective, in this case, is to reduce the daily operation cost considering 

CDC and ignoring transformer LoL cost. The customer comfort level is reflected in the 

optimization algorithm, considering 𝜁𝑛 parameter, as illustrated in Table 4-4. Figure 

5-2 shows the aggregated household load along with the electricity price signal after 

participating in DR Case 1. The proposed DR algorithm attempts to optimize energy 

consumption and achieve the lowest electricity charge cost. Specifically, all active loads 

(controllable and shiftable loads) are scheduled to operate outside electricity high-price 

slots. The controllable loads are scheduled to consume less energy from 15:00-20:00 

times and consume more energy from 1:00-8:00 and 21:00-24:00. The shiftable loads 

(DRY and WM) are scheduled to operate at 23:00 and 24:00, where the tariff is low. 

The DW remains operating in slots 7 and 8 as it is the lowest in its working period, as 

specified in Table 4-4. The DR algorithm reduced the operation cost by scheduling the 
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EV charging in the lowest price slots (22:00-24:00 and 4:00) during the time that EV is 

available at home. In this case, there is no power limit on total energy consumption 

from the utility  

 

 

 

Figure 5-2 Load profile considering the impact of customer dissatisfaction 

 

 

To present the HEMS algorithm's efficiency, Figure 5-3 is plotted to highlight 

the behavior of the considered controllable appliances (AC1, AC2, AC3, WH, L) in 

each time slot. It can be observed that the consumption of appliances is high during the 

first four-time periods. After that, the consumption is reduced due to the increase in 

electricity cost at time 5:00. When the price reaches its maximum amount around 18:00, 

each appliance's energy consumption is reduced to its specified minimum operation 

value Table 4-4. Finally, from time 20:00 to time slot 22:00, the appliances’ 

consumption starts to increase since the electricity tariff decreases. 
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Figure 5-3 Energy consumption of controllable appliances during the day 

 

 

Figure 5-4 presents AC1 energy consumption under different importance 

coefficients (𝜁𝑛). As can be seen, when the value of 𝜁𝑛 increases, the AC1 energy 

consumption increases. The appliance importance coefficient directly affects customer 

comfort. Similarly, Figure 5-5 presents the effect of 𝜁𝑛 on shiftable appliances. in first 

graph, the DW operating time is scheduled according to the least price time in its 

scheduling interval (17:00 – 22:00). In the second graph, 𝜁𝑛 set to 0.2. According to 

equation (3.21), the CDC increases as the waiting time of the customer for a device to 

start and finish the operation increases. Thus, the appliance is scheduled to start at 17:00 

instead of 19:00 to minimize the CDC.  Table 5-1 presents the effect of 𝜁𝑛 on operation 

cost. It can be observed that the operation cost increase as 𝜁𝑛 value increase in both 

shiftable and controllable appliance. Customers can set the values 𝜁𝑛 for each 

appliances according to their needs and requirements. This is to guarantee that they 
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suffer less dissatisfaction with the proposed HEMS algorithm. 

 

 

 

Figure 5-4 Effect of appliance importance coefficient (𝜁𝑛) on power consumption of  

AC1 
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Figure 5-5 Effect of appliance importance coefficient (𝜁𝑛) on scheduling DW 

 

 

Table 5-1 Effect of appliance importance coefficient (𝜁𝑛) on the operation cost 

Appliance type Controllable (AC) Shiftable (DW) 

𝜁𝑛 0 0.5 1.5 2 0 0.2 

Operation cost (¢/ kWh) 53.7 71.1 78.4 86.6 8.7 9.9 

 

 

  The total electricity consumption cost of implementing case 1 (Figure 5-2) is 

4.5USD, 25% less than the reference case. Customers’ engagement in the DR program 

depends on the class of customers. Technology supporters have the potential to 

participate in such a HEMS-DR program and other energy market opportunities. 

However, another class of end-users still presents a challenge and needs additional 
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incentives for engagement, even with the electricity cost reduction achievement. Hence 

full engagement in this program is limited to the technology-supporter class of 

customers. Furthermore, having individual control of the DR algorithm per individual 

end-user may cause the low-cost periods to operate as a sink for all customers to operate 

their appliances during these intervals and generate new load peaks detected by utility 

assets. 

5.3 The Impact of Transformer LoL Cost 

In this case, the objective function of transformer LoL mitigation cost (𝐹1) is 

considered in (1). The HEMS employs a method to fulfill the consumer's expectations 

and decreases the transformer's LoL by monitoring transformer load and electricity 

price. The DR program's impact on a 30-kVA distribution transformer based on the 

IEEE standard C57.91-2011 is used to investigate its life cost loss. The transformer is 

assumed to be supplying three houses where their household loads are monitored and 

controlled by the proposed DR algorithm.  Based on case 1, the transformer has a peak 

demand in lower price slots as the DR algorithm operates all the smart appliances in 

these periods. Therefore, the load and LoL factor during these periods increased 

compared with the reference case's low-price periods. 

The DR algorithm overcomes this issue by including the LoL as transformer 

deterioration cost using (5). Figure 5-6 shows case 2 optimal scheduling for the 

household load after adding LoL cost. It can be observed that the EV charging load is 

shifted to slots 1:00-3:00 of high electricity price compared to slots 22:00-24:00 used 

in case 1. While this load shift may increase the electricity cost, it satisfies the LoL cost 

and overcomes the distribution transformer's overload condition and other assets.  

Case 2 results in a peak demand reduction of 18% compared to case 1, positively 

impacting the utility assets. The new load profile of case 2 has an electricity cost of 4.6 
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USD, which is higher than case 1; however, lower than the base case by 23% and 

provides direct benefits to both the end-user and utility operator. 

 

 

 

Figure 5-6 Load profile considering the impact of transformer loss of life cost 

 

 

5.4 The Impact of DERs  

The DERs are essential in developing active customers to engage in the local 

energy market and hence integrated into the HEMS-DR program. This case emphasizes 

the DR algorithm's benefits by utilizing assets, such as PVs, ESSs, and EVs. The energy 

supplied by the PV source, EV, and ESS is used to minimize the supplied power from 

the grid and balance the demand/generation relationship. It is assumed that PV-to-home 

(PV2H), ESS-to-home (ESS2H), and EV-to-home (V2H) capabilities are available. 

Figure 5-7 presents the results of this case, and the following are observed: 

• The PV generated power is used to partially cover the demand and charge the 
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ESS as long as it is available. 

• When prices are high, ESS's available energy is utilized to cover part of the load 

and reduce electricity consumption cost, as illustrated during the 17:00–19:00 

time period.  

• As the EV reaches the household with sufficient energy, it supplies the 

household needs through V2H mode during 19:00-2:00 time. It is also observed 

that the HEMS-DR algorithm avoids chagrining the EV in high price slots. 

The electricity cost of case 3 is 4.2 USD, which is 31% lower than the base case, 

9% lower than case 1, and 10% lower than case 2.  

 

 

 

Figure 5-7 Load profile considering the impact distributed energy resources 
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Table 5-2 EV consumption costs using different parameters 

Initial SOE (%) Arrival / Departure time Cost (₵) 

30% 2 P.M 425.84 

30% 5 P.M 428.81 

30% 7 P.M 434.80 

50% 2 P.M 419.60 

50% 5 P.M 421.63 

50% 7 P.M 427.71 

70% 2 P.M 411.75 

70% 5 P.M 415.56 

70% 7 P.M 423.58 

 

 

To complete the analysis, different initial SoE and EV arrival times are 

examined. This is done to study the effect of the consumer’s behaviors on the 

operational cost. Table 5-2 presents the analysis results. The operational cost increases 

as the EV arrives later in the day. This is expected since the EV contributes to supplying 

the household at less costly periods, covered by the grid's energy during higher price 

periods. Also, as EV initial SoE increases, the cost decreases. Specifically, an increase 

in SoE by 20 % renders a 2.3% reduction in the cost. The reduction is calculated, 

considering that the EV arrival time is 2:00 P.M. 

5.5 Performance Evaluation 

5.5.1 The Impact of Power Limiting Strategy 

The proposed HEMS aims to schedule the load in the low-price periods and 

respond to the utility’s specific load-shape requirements. To evaluate this, a power limit 

restriction is enforced throughout the time horizon to limit the drawn energy from the 

grid to a maximum value of 8 kWh to reduce the customer peak demand, as presented 

in (3.35) and (3.36). Violating the power limit is allowed under a penalty that is equal 
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to the demand charge tariff. The demand charged is assumed to be equal to 110% of 

the day’s highest electricity price (3.8 cents). As shown in Figure 5-8, under this 

strategy, the total peak is further decreased to 8kW, and as a result, the EV charging is 

reduced, and the charging period is increased. However, the load stays the same as the 

previously discussed case (Case 3). 

Also, it may be noticed that in previous cases where the power limiting strategy 

is not applied, increasing the capacity of ESS or EV battery will increase the maximum 

power (customer peak). This leads to more cost reduction for the customer. From the 

utility perspective, the flexibility offered to the customer by increasing the ESS capacity 

results in inconsistent and fluctuating load profiles. This will create challenges for the 

power system, such as increasing customer peaks and load balancing problems. As 

shown in Figure 5-8, when the power limit strategy is imposed, the EV charging pattern 

has changed. For instance, if the EV/ESS capacity increases, the HEMS will be forced 

to increase the charging time to eliminate the peaks to avoid being charged with higher 

electricity rates. 
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Figure 5-8 The impact of the power limiting (8kW limit) 

 

 

 

5.5.2 The Impact of the Balance Parameter ρ 

The balance parameter for customer and utility benefits directly impacts the 

objective function in (1). Figure 5-9 and Table 5-3 show the electricity consumption 

and electricity cost of the three previously mentioned cases using the proposed DR 

program under different values of the customer-utility balance parameters (ρ). A large 

value of ρ magnifies transformer LoL mitigation cost (𝐹1) and the energy operation cost 

(𝐹2) in the objective function. On the other hand, using a small ρ magnifies customer 

dissatisfaction cost (𝐹3) in the objective function, where the end-user has more impact 

on the cost function compared with the utility. Hence selecting the value of ρ is an 

essential element in the optimization algorithm and should be defined based on a mutual 

agreement that reflects the customer and utility operator benefits. 
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Figure 5-9. The impact of the balance parameter on electricity consumption 

 

 

Table 5-3 The impact of the balance parameter on electricity consumption 

Case 
Total Load (p.u) Total Cost (¢/ kWh) 

0.3 0.5 0.8 0.3 0.5 0.8 

Case 1 0.60 0.80 0.97 298 318 268 

Case 2 0.55 0.79 0.96 318 461 418 

Case 3 0.45 0.70 0.88 461 607 501 

 

 

5.5.3 The Impact of DR Program on Distribution Transformer  

The impact of the DR program's three cases on a distribution transformer (DT) 

loading condition is studied. The loads of three houses are used, and the DERs are 

randomly varied. All the households are considered to be equipped with DR-controlled 

appliances. So, all households have the DR capabilities to shift or reduce the 

consumption of the appliance properly. The aggregated load of the three houses 
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supplied by a 30-kVA distribution transformer is estimated, and the results of the DR 

program of the previous cases are illustrated in Figure 5-10. The price pattern is also 

included in the figure to help in result analysis. To evaluate the proposed DR algorithm's 

efficacy, the base case is considered with a severe loading where the DT loading 

condition shows 4-hours continuous overloading above 100% rating during the 18:00-

22:00 time interval and another 10-hours above 80% rating.  Case 1 of the DR program 

supports customers' benefit in energy cost reduction. However, the results present an 

alarming indication of a possible overloading condition that accelerates transformer 

degradation. 

Furthermore, part of the overloading conditions time intervals has a low-price 

signal, which may work as a sink for other customers to operate their appliances and 

magnify the DT’s load peak condition. Implementing case 2 of the DR program shows 

a reduction in the DT load beyond the 80% rating and an increase in the energy cost 

due to load shifting to high-price electricity cost intervals. This is shown in the figure 

during the time intervals 1:00-4:00 and 20:00-24:00. Case 1 and case 2 of the DR 

program show similar responses during the time interval 4:00-20:00. Including DERs 

in the DR program (case 3) shows the optimal operation scenario as expected. The DR 

program generates a DT loading below all the cases during the time interval from 7:00-

19:00 and merges with the lowest case (case 2) during the time intervals 4:00-7:00 and 

19:00: 24:00.  
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Figure 5-10 The impact of the DR on the distribution transformer load profile 

 

 

According to Eq. 5 to Eq. 14, the transformer's TOT and HST will increase 

during overloads. Minimizing the transformer load reduces HST based on the 

transformer's thermal modeling. Figure 5-11 shows the thermal HST of the considered 

transformer. The results show the effect of the DR program on the transformer. As 

shown, the HST reached around 73°C without DR, and with the DR, the average and 

maximum HST for transformers have been reduced in all the cases. DR case 3 delivers 

the maximum drop in the transformer load, showing a 17% reduction in the winding 

temperature. The drop in the transformer temperature explains the thermal limits for 

transformer loading and protects the transformer insulation. The HST curve has the 

same shape of the transformer load in all the cases because of the minimal value of the 

exponential function, almost 0, in (3.4) and (3.7).  

Since the HST has a considerable impact on transformers’ aging, minimizing HST 

will minimize transformer LoL%. As shown in Figure 5-12, the transformer LoL can 
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be minimized up to 25% by the proposed DR algorithm.  A comparison of the total 

transformer load, HST, and LoL% is shown in Table 4-5. The benefits of utilizing DR 

case 3 are more noticeable where the maximum load is reduced to 0.83. 

 

 

 

Figure 5-11 The impact of the DR on distribution transformer HST 
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Figure 5-12 The impact of the DR on distribution transformer LoL% 

 

 

  Table 5-4 Comparison with and without DR 

 Max. Load (p.u) Maximum HST (°C) Max. LoL (%) 

Without DR 1.13 79.40 0.000038 

With DR (Case 1) 0.90 68.20 0.000035 

With DR (Case 2) 0.83 65.50 0.000033 

With DR (Case 3) 0.83 65.40 0.000027 

 

 

5.6 Challenges and Opportunities  

One of the chief benefits of the proposed model is its flexibility. It can be 

automatically adjusted and adapted to consider more appliances and constraints and 

generate the best possible scheduling solutions. The equations can be solved in more 

than one way. The result was obtained using a laptop (i7 at 2.6 GHz, 16 GB of RAM, 

64-bit Windows) with a computation time, on average, of 5 s. With a more powerful 
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processor and high-capacity RAM, the computation time will be further reduced. 

However, implementing such an algorithm for larger-scale applications may increase 

the computational burden. Since the scheduling problem's computational complexity is 

non-polynomial (NP)-hard, as the number of constraints and variables increases, the 

developed model’s computational time exponentially increases. However, a detailed 

analysis of the computational complexity would be necessary to evaluate its potential 

for future large-scale applications fully. 

A variety of control and optimization strategies have been developed to solve 

the load scheduling problems, such as mathematical method [85], programming method 

[48], [49], or heuristic methods like genetic algorithm [86]. However, there is several 

challenges to implement these optimization approaches. Therefore, it is necessary to 

have an effective methodology that produces robust DR decisions and minimizes real-

time uncertainty errors. The proposed method requires the system model to be known 

in order to manage. When it comes to practical systems, the exact models may not be 

obtainable. It is required in the power system control sector to develop a control 

algorithm, which is implementable in practice and real environments. 

The above-mentioned methods use an explicit mathematical equation to model 

the system. In this case, these models' accuracy cannot be guaranteed since the 

household appliances' efficiency and different variables keep changing over time. In 

the simulation, these optimization methods can show good performance due to the 

assumption of accurate input data prediction. On the downside of these methods, the 

model dynamics have to be modeled with great precision knowing all the environment 

information that limits its application on large-scale systems, where the system 

parameters could be partially or completely unknown. For instance, renewable energy 

is considered most effective if applied on a large scale. If the model parameters have to 
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be adjusted from one case to another, conventional optimization techniques will limit 

large-scale implementation [87]. These techniques may also suffer from high 

complexity and computational cost in real-time applications due to the significant 

number of variables involved. 

Moreover, some of these methods ignore a few unquantifiable parameters or 

adapt ungeneralizable and inaccurate model formulas such as the users’ comfort and 

satisfaction. Therefore, conventional optimization techniques are case-specific and 

need to be adjusted when the system environment changes during abnormal situations. 

For example, in 2020, with the current COVID-19 pandemic, the most current society's 

daily life is affected. Around 30% of the global population has been put in lockdown 

with different levels of nation-wide quarantines [88]. This ongoing situation is causing 

a social readjustment of most societies’ daily routines, practices, behaviors, and 

expectations. The lifestyle is changed globally as people are mostly staying and 

working from home. This leads to a significant increase in residential load demand. 

This leads to significant impacts on the power system (from production to consumption) 

[89].  

Therefore, it is necessary to develop a robust DR methodology, enabling a better 

integration between customer and utility. This will improve the performance of the 

home energy management and power system operation under such conditions in the 

future. The model-free ML approaches appear to be a good solution to beat the 

traditional optimization method to optimize power consumption effectively and 

manage such big data in real-time effectively [90]. The model-free methods are entirely 

based on data and do not need precise modeling of the system, making it more 

generalizable and can adapt to environmental changes.  
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CHAPTER 6 : REINFORCEMENT LEARNING 

To overcome traditional optimization method limitations discussed in chapter 

5, a Reinforcement Learning (RL) algorithm is introduced to optimize power 

consumption effectively and manage such big data. This chapter explains RL rules and 

their applications in the power system.  Section 1 provides background and related work 

for the RL algorithm. Section 2 discusses the details of the Markov decision process as 

a decision-making model for RL. Section 3 explains the main elements that jointly drive 

the performance of an RL algorithm. RL categories are explained in section 4. Section 

5 discusses the integration of deep neural networks in RL algorithms.  

6.1 Background and Related Work 

To address the upcoming complex challenges in power systems such as high 

generation from Renewable Energy Sources (RESs) and the increasing number of price-

responsive-demand participants, recent studies look into computational intelligence and 

Machine Learning (ML) techniques as potential problem-solvers. Among ML 

techniques, Reinforcement Learning (RL) is a technique that learns from an interactive 

environment through trial and error. Over the last years, RL has become one of the 

valuable research directions of ML. Algorithms in ML are often divided into 

supervised, unsupervised or reinforcement learning. Supervised learning is an 

algorithm using input data and labeled output data (target). The supervised algorithm 

attempts to find a relation between the input data and output data in a manner that 

generalizes well to unseen input data. Examples of supervised learning are regression 

and classification algorithms. Algorithms using unsupervised learning attempt to find 

structure in unlabeled data. Examples of unsupervised learning are clustering and 

anomaly detection. The terms supervised and unsupervised do not describe well the 

mechanisms of RL algorithms. An RL agent learns from communicating with the 
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environment and receiving rewards based on the taken action. The agent's goal is not 

to use labeled data in some sense or explicitly finding general structures in the data. As 

a result, RL is considered a category of its own [91]. The relation between supervised, 

unsupervised, and RL is shown in Figure 6-1. 

 

 

 

Figure 6-1 The three main categories of machine learning 

 

 

RL's motivation is that RL is a method to solve problems that follow Markov 

decision processes (MDPs). One of the main advantages of the MDP framework is its 

generality. It can handle different reward functions, such as nonlinear, stochastic 

dynamics, and non-quadratic functions [91]. This makes the RL have the ability to 

handle a wide range of problems such as planning, management, optimization, and 

control problems. Besides its generality, RL is a model-free algorithm where the agent 

does not need prior knowledge about selecting an action. Hence, RL is an effective 

technique to find near optimum solutions for different nonlinear systems when the 

system parameters are unknown, mostly in the power systems. There are considerable 

amounts of historical interaction data that demonstrate the informative behaviors of 

power consumption in the residential sector, which can be a rich source of information. 

RL algorithms can utilize such data sets to scale to real-world problems and give 



  

92 

 

solutions that generalize substantially better. Using these data for RL will enable the 

pre-train and test model to learn in the real world.  

Recently, RL has been utilized to solve many optimization and control 

problems. In the optimization and control engineering context, RL bridges the gap 

between conventional optimization and adaptive control algorithms [1]. Although both 

RL and conventional optimization approaches have a common goal (optimal decision 

making), their fundamental working principles are different. RL is a data-driven 

approach, where the optimization process is achieved by an agent that performs an 

action and receives feedback. The feedback is an indication of how great the new state 

of the environment is. For example, the agent will get a positive numeric reward when 

it takes optimal actions (acts in a desired behavior) and negative numeric rewards for 

action the agent should stray away from (acts in an undesired behavior ). When the 

agent gets negative rewards as a feedback of its action, it will be less likely to choose 

that action later. Similarly, when it gets a positive reward, it will more likely choose a 

similar action given the same observed state. By allowing the agent see many states and 

explore different actions, it can eventually learn behavior that yields a lot of positive 

rewards. The RL agent's main objective is to learn a policy to pick actions based on the 

current state, leading to good states on average [91], [92]. RL's framework in decision-

making and control is illustrated in Figure 6-2. There are three phases of the framework: 

training, testing, and execution. The training phase oversees learning the policy, and 

the testing phase is the assessment of the quality of the learned policy and how much 

reward the agent obtains if it follows that policy. After evaluating the algorithm, the 

learned knowledge can be deployed to make optimized decisions in a real physical 

environment. 
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Figure 6-2 RL framework 

 

 

To achieve the best policy, the RL agent takes time in the learning or training 

process as it has to explore the whole system, making it improper and inapplicable to 

problems with large state and action spaces. As a result, most RL applications are 

inadequate in real-world problems. Recently, deep learning [93] is considered a new 

revolution technique that can beat the RL limitations. This has opened a new era for RL 

improvement, named Deep Reinforcement Learning (DRL), where RL is combined 

with a deep neural network (DNNs). DRL can handle more complex and challenges 

problems with high-dimensional state and action spaces and enable continuous state 

and action spaces [94]. Recently the DRL field has attracted the researchers’ attention 

due to its impressive success in games [95],[96], robotics [97], finance, and business 

management [98], [99]. In power system applications, DRL has already shown its 

usefulness in problems like demand response [100], energy management [101], 

operational control [102], cybersecurity [103], economic dispatch [104], and power 

system optimization [105]. 

 More spherically, work in [106] and [107] proposes DR RL-based model to 

control the residential thermostatically controlled loads. The model schedules the 
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operation of a heat-pump thermostat for 24 hours ahead. Also, RL and neural network 

are utilized to model the HVAC system's thermal dynamics in a building. The HVAC 

loads are controlled to lower the electricity bill while considering the user satisfaction 

level in terms of the indoor temperature [108], indoor temperature, and air quality [109]. 

The results showed that the proposed DRL algorithms had achieved more cost savings 

than the rule-based control approach. Some work aimed to optimize the 

charging/discharging schedule for the EV using RL [110]-[112]. Work in [110] aimed 

to reduce the EV charging cost. The charging problem is modeled as MDP. In [111], 

the authors propose a decentralized charging control to schedule a plug-in EV fleet's 

charging. Work in [112] presented a multiagent RL architecture that aims to reduce 

energy generation costs and avoid transformer overloads by coordinating the EVs 

charging time.  

Work in [113] proposed a multi-agent hour-ahead DR algorithm to schedule the 

household appliances. Each agent represents different types of home appliances. The 

energy consumption is optimized using the Q-learning algorithm. Also, the ANN model 

is used for real-time price prediction. Complementary with this work, authors in [114] 

introduced a more comprehensive model considering EV. The results showed that RL 

has significantly reduced the price compared to the GA and MILP algorithms. Also, 

few researchers have utilized RL in home energy management with DERs and ESSs. 

Work in [100] presented an RL model to schedule the residential loads PV source. Also, 

[115] proposed a HEMS with ESS and rooftop PV panels. ESS is utilized to achieve 

energy and cost savings. Moreover, RL is utilized in [116] to enable energy trading 

between the utility and its customers to balance the supply and demand and enhance 

grid reliability, neglecting customer comfort.  
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6.2 Markov Decision Process 

In RL, the problem is described as a Markov Decision Process (MDP). An MDP 

is a mathematical framework describing sequential decision making and interaction 

with an environment, where the outcome can be stochastic [94]. The environment starts 

at 𝑡 = 0 and is described by an initial state 𝑠0 ∈ 𝑺. The agent executes the action 𝑎0 ∈ 

𝑨 and receives a reward 𝑟1 ∈ 𝑹 ⊆ ℝ based on how good that action is. The action 𝑎0 

interacts with the environment and gives a new state 1. This starts the sequence of 

states, actions, and rewards.  

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, ⋯ (6.1) 

The interaction lasts until the environment reaches a terminal state, for instance, 

when the self-driving car reaches its destination or if it crashes. The transitions from 

start state 𝑠0 to terminal state 𝑠𝑇 constitutes an episode in the RL algorithm. An example 

of an MDP with 2 states and 1 action is shown in Figure 6-3. Formally, a finite MDP 

𝓜 is a tuple consists of 4 elements, as presented in 6.2.  

𝓜= 〈𝑺,𝑨, 𝑷, 𝑹 〉 (6.2) 

where S and A respectively are finite sets of states and actions, P is the matrix of state 

transition probabilities, and R is a reward function [94]. The probability of transitioning 

to the next state 𝑠𝑡+1 and receiving 𝑟𝑡+1 only depends on the previous state 𝑠𝑡 and action 

𝑎𝑡 in a MDP [94]. In Figure 6-3, the numbers on each line are the state transition 

probabilities. Formally, a state 𝑠𝑡 is MDP if and only if 

ℙ[𝑠𝑡+1|𝑎𝑡, 𝑠𝑡] = ℙ[𝑠𝑡+1|𝑎𝑡, 𝑠𝑡, 𝑎𝑡−1, 𝑠𝑡−1, ⋯ , 𝑎0, 𝑠0] (6.3) 

where ℙ is a symbol for probability transition. This is called the Markov property of 

the state [94]. In other words, the history of states and actions leading up to the current 

state is not relevant for the probability of transitioning to state 𝑠𝑡+1. Let the transition 

function 𝑝 ∶  𝑺 × 𝑹 × 𝑨 → [0, 1] be the probability of transitioning from state 𝑠 to 𝑠’ 
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and receiving reward 𝑟 given the action 𝑎. 

𝑝(𝑠’, 𝑟, 𝑠, 𝑎) = ℙ[𝑠𝑡+1 = 𝑠’, 𝑟𝑡+1 = 𝑟|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (6.4) 

If the transition function 𝑝 in (6.4) is known, it can be used for planning actions 

in an RL algorithm. 

 

 

 

Figure 6-3 Example of MDP with 2 states and 1 action 

 

 

6.3 Reinforcement Learning Elements 

The agent and the environment are a fundamental part of any RL algorithm. The 

RL agent and environment communicate in a series of episodes. These episodes are 

divided into a sequence of timesteps. Each timestep, the RL agent receives information 

that presents the environment, and based on that information, the agent selects an 

action. As a result of its action, the agent collects the rewards and move to a new 

environment state. The interface between the agent and the enviroument goes on until 

a terminal state is achieved. In this state, the agent cannot take any further action. The 

communication between the agent and environment is visualized in Figure 6-4. More 

specifically, all the elements in the RL model oare explained below. 
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Figure 6-4 Relation between the agent and the environment in RL 

 

 

6.3.1 Agent 

The agent is the decisionmaker (Learner), which learns from interacting with a 

dynamic environment to choose actions in order to maximize future rewards. There are 

different types of RL agents, such as Q Learning, Deep Deterministic Policy Gradient 

(DDPG), Deep Q-Network Agents (DQN), and Actor-Critic (AC). It is essential to 

select an agent that is compatible with the action and state spaces.  

6.3.2 Environment 

The environment in RL is the thing that the agent interacts with. It is also called 

a system model. RL can be used to learn directly by interacting with the real system or 

a system model. The system model can be a simulation or mathematical model. 

6.3.3 State Space 

State-space is a set of possible states occupied by the agent at different instants 

of timesteps. At any time, the agent will be at one of the states from the entire state 

space. The state-space can be discrete or continuous. The state of the agent at time 𝑡 

can be represented as st. The entire state space is then taken as 𝐒 , where at any timestep 

t st ∈ 𝐒. The state-space should contain useful information that the agent needs to make 
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the right decision. The states should be easily fed into the DNN and catch as much 

information of the environment as possible. 

6.3.4 Action Space 

The action space is all the possible decisions that the agent can take. The agents 

usually select from a list of possible actions. The action space can be discrete or 

continuous. During the training, the agent has to make a series of actions or state 

transitions, 𝑎0, 𝑎1 ... ... ... 𝑎𝑁−1, where 𝑎t ∈ 𝐀 . Initially, the agent does not have any 

prior knowledge about the effects of its actions on the environment. Gradually, by 

training, the agent learns the desired action at each state to maximize the reward 

function. In some application, for istance, games the action space is simple. In other 

application the actions might need modifications, such as discretization or trimming. 

6.3.5 Reward Function 

Designing a reward function is a crucial point in any DRL problem. Reward 

function should guide the agent to advance in the right direction to achieve the 

objectives. For simple problems, the reward can be a function of the states, 𝑟(𝑠𝑡), or 

with specifying more detail, e.g., 𝑟(𝑎𝑡, 𝑠𝑡, ) or 𝑟(𝑎𝑡, 𝑠𝑡, 𝑠𝑡+1 ) for challenging problems. 

A well-specified reward function will help the agent to learn better and converge faster. 

There are no absolute restrictions on designing a reward function. In some cases, it can 

be straightforward; in some other cases, it is not. The reward function can be a discrete 

or continuous function depending on the application. Also, it can be a positive or 

negative value. Positive rewards motivate the agent to keep going to accumulate 

rewards. Negative rewards encourage the agent to avoid some actions at certain states 

or to incentivize the agent to reach the goal state as fast as possible. A key to making 

the training work can shape the reward functions in reasonable ways. For example, 

using sparse rewards, the agent will not get rewarded very often. This may lead the 
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training not to converge, or the agent may be stuck in local minima. Instead, shaping 

the reward function so that the obtained gradual feedback will help the agent to learn 

faster.  

Different strategies to design the reward functions to enhance agent learning 

and training are proposed. The authors in [117], [118] have proposed a heuristic reward 

for DRL algorithms to be deployed in problems with extremely large state space. Others 

have proposed a design for reward functions to accelerate learning, which utilizes 

implicit domain knowledge [119]. Work in [120] proposes a reward function design, 

adapted according to the degree of uncertainty in predicted data. However, it is still 

challenging to determine the ideal reward function for a specific environment. The 

reward representation is case-specific and may vary depending on the complexity of an 

environment.  

6.3.6 Policy 

A policy (𝜋) is the agent's approach in choosing the next action based on the 

current state. It maps states to actions with the highest reward. The objective is to find 

an optimal policy 𝜋∗ where the expected total cost is lower compared when following 

any other policy 𝜋 ∈ Π. The policy can both be deterministic or stochastic. A 

deterministic policy maps a given state to the same action every time, while a stochastic 

policy maps the state to a probability distribution over the action space. 

6.3.7 Value Function 

The value function, 𝑉(𝑠), is a function of state-action pairs that estimate the 

cumulative future reward of being in a given state. Value function determines the 

goodness of a policy. The agent has to follow a good policy starting from the initial 

state to reach the goal at the minimum cost. The minimum cost obtained is also defined 

as 𝑉∗(𝑠), and it is called the optimal value function. It estimates the total expected 
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future discounted reward that could be gained while following a particular policy over 

𝑁 time steps. The future reward is discounted with a discount factor (𝛾). The reason for 

discounting the future reward is that the real goodness of an action may not be reflected 

by its immediate reward. The gamma term is a hyper-parameter that can be tuned, and 

it determines how relevant future rewards are. If γ = 0, then the agent only considers 

the immediate reward as relevant. If γ = 1, then the agent will evaluate each of its actions 

based on the sum of all of its future rewards. For values between 0 and 1, the importance 

of a reward decreases exponentially with every time step. For instance, if 𝛾 = 0:5 the 

rewards for the next steps are weighted 0.5;  0.25;  0.125,⋯. Having 𝛾 smaller than 1 

is also a mathematical convenience that ensures that the discounted return is finite in a 

continuous task, as long as the rewards are bounded. The problem environment decides 

the value of the discount factor. 

6.3.8 Action-Value Function  

The action-value function 𝑄 (𝑎, 𝑠), also called the Q-function, quantifies the 

expected discounted return given that the action 𝑎𝑡 in state 𝑠𝑡 and that the policy 𝜋 is 

followed. In other words, it can evaluate a specific action in a given state, in contrast to 

the value function 𝑉(𝑠)  that only evaluates the state. The optimal value 𝑄∗(𝑠, 𝑎) is 

used to represent the maximum accumulative reward, which can be obtained. There is 

a crucial recursive relation between the action-value function in two successive states 

𝑠𝑡 and 𝑠𝑡+1, known as the Bellman equation.  

𝑄∗(𝑠, 𝑎) = 𝑟𝑡+1 + 𝛾𝑚𝑎𝑥⏟
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) (6.5) 

In other words, the action-value for state 𝑠𝑡 and action 𝑎𝑡 is the expected sum 

of the immediate reward 𝑟𝑡 and the action-value in the next state. The Bellman equation 

is used in several reinforcement algorithms to guide the Q-values' estimates closer to 

the true values. At the end of each iteration, the estimate of Q-value 𝑄𝑡 is updated by 
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𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[ 𝑟𝑡 + 𝛾𝑚𝑎𝑥⏟
𝑎𝑡+1

𝑄∗(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡)] (6.6) 

The main concept of this update is to find the difference between the predicted Q-value, 

i.e., 𝑟𝑡 + 𝛾𝑚𝑎𝑥⏟
𝑎𝑡+1

𝑄∗(𝑠𝑡+1, 𝑎𝑡+1) and its current value, i.e., 𝑄(𝑠𝑡, 𝑎𝑡).  This is known as 

Temporal Difference (TD) learning which is a model-free type of RL. In (6.6), 𝛼 ∈ [0, 

1] is a learning rate that indicates the degree of overriding the old Q-values. If the value 

of  𝛼 is 0, this is means that the agent considers only prior estimates. If the value of 𝛼  

is 1 this is means that the agent considers only the current knowledge to explore 

opportunities. The action-value function 𝑄(𝑎, 𝑠) and state-value function 𝑉(𝑠) are 

similar to each other and can be used to measure the advantage of an action 𝑎. The 

advantage 𝐴𝜋(𝑠, 𝑎) of action 𝑎 in state 𝑠 under policy 𝜋 is defined as 

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠) (6.7) 

If the advantage is positive, it is better to take action 𝑎 than following the action chosen 

by the policy in state 𝑠. Similarly, a negative advantage means that action 𝑎 is worse 

than following the action chosen by the policy.  

Q-learning is one of RL's common algorithms that follow the TD method used 

to learn the Q-function. When Q-learning is performed, a q-table is designed, and the 

q-values are initialized to zero. The q-table is presented by the shape of [𝑠𝑡, 𝑎𝑡]. Then 

the q-values are updated and stored at each episode. After the number of iteration, the 

q-table becomes good enough to be considered a reference for the agent to select the 

optimum action-based. The details of the Q-learning process are presented in Figure 

6-5. 
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Figure 6-5 Q-learning process 

 

 

6.3.9 The Exploration - Exploitation Dilemma 

A problem that arises when constructing an RL algorithm is how to both be able 

to exploit a good policy and at the same time explore new policies. If an agent always 

follows its policy and picks the action it believes is the best, it will never explore new 

and perhaps better approaches to solve a problem. At the same time, the agent cannot 

merely explore new behavior all the time since its goal is to maximize future rewards. 

Therefore, it should also exploit the behavior that works. This is called the exploration-

exploitation dilemma [91].  

There are different approaches to solve this dilemma, one of which is to have 

two different policies. One policy is called the target policy, while the other is called 

the behavior policy. The target policy is used to find the optimal solution, and the 

behavior policy is used to explore new behaviors [91]. An RL algorithm using a 

behavioral and target policy is said to be learning off-policy because it can learn from 

the experiences made from another agent [91]. On the other hand, an RL algorithm that 

only learns from its own experiences is said to be learning on-policy. 

6.4 Reinforcement Learning Categories  

There are different classifications of reinforcement learning algorithms. The 

two main classifications are model-based and model-free algorithms. A model-based 

algorithm uses the dynamics of the system to plan actions. For instance, the transition 

function 𝑝 in equation (6.4) gives a probability distribution over the next state and 
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reward, which can be used for planning in dynamic programming [121]. The RL 

explicitly uses a model of the environment to choose actions. In this situation, transition 

function 𝑝 should be known. When transition function is unknown, it becomes costly 

to use a model-based RL algorithm.  

The second category is called model-free reinforcement learning. As the name 

suggests, it requires no model or information about the dynamics in the environment. 

This is useful in situations where no transition function describes the dynamics in the 

environment, but experiences can be sampled. Model-free algorithms can be divided 

into two subcategories: Value-based and policy-based. The categories are visualized in 

Figure 6-6.  

 

 

Figure 6-6 RL Categories 

 

 

The first subcategory of the model-free algorithm is called value-based 

methods, where the approach is to approximate the action-value function Q and use that 

to take action. Examples of value-based algorithms are Q-learning, Deep Q-Network 

(DQN), and State Action Reward State Action (SARSA) [121]. An advantage of value-
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based methods is that they can learn off-policy, for instance, by learning from experts' 

behavior. Value-based methods are simple as they do not need to store any explicit 

policy but can learn from the action-value function Q (pick the action with the best Q-

value).   

 The disadvantage is that value-based methods are not well suited for function 

approximation, such as neural networks, as they tend to be unstable [121].  

Policy-based methods (also called policy gradient) directly parametrize the 

policy function 𝜋 without involving the action-value function Q in the decision-making. 

Examples of policy-based algorithms are Deep Deterministic Policy Gradients 

(DDPG), Proximal Policy Optimizer (PPO), and Trust Region Policy Optimizer 

(TRPO) [121]. In contrast to value-based methods, they are stable when using function 

approximation but inefficient. In other words, the weakness of value-based methods is 

the advantage of the policy-based methods and vice versa. A natural idea is then to 

combine the two methods into a more robust method. This is called an actor-critic 

model, a mix of policy-based and value-based reinforcement learning, as illustrated in 

Figure 6-7. The policy 𝜋 is called the actor, because it chooses the action to take. The 

action-value function Q is named the critic because it evaluates the action picked by the 

actor. 
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Figure 6-7 Actor-critic in relation to value-based and policy-based methods [122] 

 

 

6.5 Reinforcement Learning and Deep Neural Networks. 

RL has advanced to DRL, where RL is combined with a deep neural network 

(DNNs). DRL shares the same basic framework with RL. DRL combines artificial 

neural networks with an RL concept where agents learn the best actions possible in 

dynamic environments to attain their objectives. The possible output values from the 

state vector form a vast state space. In the high dimension, the agent is too slow to learn 

the value of each state individually. The conventional RL algorithms, i.e., Q-learning, 

become unrealistic when the state and action spaces are in high dimension. DQN is 

proposed to overcome this problem. The only difference between Q-learning and DQN 

is the agent’s brain. The agent’s brain in Q-learning is the Q-table, but in DQN, the 

agent’s brain is a DNN, as shown in Figure 6-8. 
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Figure 6-8 Difference between Q- learning and Deep Q-learning 

 

 

The key role of neural networks in RL is that they are used as function 

approximators for the policy function and action-value function Q. Formally, the neural 

network function maps an n-dimensional input space to an m-dimensional output space. 

The input space can, for instance, be the pixel values of a picture or any other numerical 

representation of the environment state. The output space of a neural network 

approximating the policy function is the action space. For instance, in a car driving 

environment, the input space could be numerical information about the speed, lane 

position, distance to the closest car, etc., and the output space would have one 

component each for the acceleration, brake, and angle of the steering wheel.  

DNN is organized in different layers, where each layer consists of several nodes 

or neurons, as visualized in Figure 6-8. The network has a 1-hidden layer architecture, 

with 5 neurons each. The input features are sent to the network's input layer, consisting 

of neurons for each input value. All the input neurons are connected with the neurons 

in the next layer by a scalar weight, represented by arrows in Figure 6-8. The first step 

for determining a neuron's value in the first hidden layers is by computing a linear 

combination of all the input features connected to it, and then adding a bias factor. It 

should be emphasized that the weights and bias are randomly initialized, and the whole 

point of training a neural network is to find appropriate values for them.  
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Once the linear combination is computed, it is sent through a non-linear 

activation function, whose output value will determine the neuron's value. Several 

activation functions are used, such as the hyperbolic tangent (tanh), the sigmoid 

function, and rectified linear unit (ReLU). Once all the neurons in a layer are found, the 

next layer can be calculated with the same process. When DNN is used as an 

approximator of the value function Q, the training process is all about updating the 

weights and biases such that the output layer gives the true Q-value for different states 

and actions. An advantage of using a DNN to approximate the Q-value is that the 

algorithm can evaluate an action in a new and unseen state. This is useful when the state 

representation is substantial. 

 Combing the RL with the black-box nature of DNNs as function approximators 

is not always valid, and that they do come at a price. Therefore, it is imperative to be 

aware of the challenges of combing the RL with DNNs to determine whether using 

DNNs as a function approximator is a safe choice. Theoretically, the combination of 

RL with DNNs offers a vague algorithm. It provides vast possible functions, making it 

challenging to find the optimum parameters for the optimization problem. Also, while 

it has been stated that DNNs can solve and approximate any continuously differentiable 

function, there is no guarantee that a particular network can learn a particular function 

approximation [123]. The network may end up stuck in a local minimum, and it may 

never increase its accuracy over a certain threshold. This makes the DNNs sensitive to 

their weight's initial randomized values, which leads to a significant limitation of DRL 

[124].  Table 6-1 summarizes a comparison between RL and DRL approaches.  
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Table 6-1 Comparison Among RL and DRL 

Algorithm Advantages Disadvantages Applications 

RL 

• Simple and stable 

• converges to 

the optimum action-values 

with probability one. 

• The state and 

action spaces are 

very limited. 

• Applicable for 

MDPs with a 

small number of 

action states. 

DRL 

• Advanced model of RL, 

which utilizes DNNs as 

a universal function 

approximation method. 

• Can handle even a vast 

state space. 

• Design and 

implementation 

complexity. 

• Sensitive to their 

weight's values. 

 

• Applicable to 

almost all MDPs. 
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CHAPTER 7 : DEEP REINFORCEMENT LEARNING BASED HOME ENERGY 

MANAGEMENT SYSTEM 

This chapter explains home energy management using deep reinforcement 

learning (DRL).  Section 1 presents the HEMS problem formulation based on the DRL 

algorithm. Section 2 outlines the home energy management framework and elucidates 

how a DRL agent can produce optimal solutions in the home energy management 

system. Finley, Section 3 presents the algorithm implemented process. 

7.1 Problem Formulation for DRL-Based HEMS 

The energy management in a residential house can be presented as an 

optimization problem with various devices with different characteristics and 

environmental changes. Optimal control of these devices is a key element in 

maximizing their energy efficiency and DR proficiencies. In this section, a single 

household's load profile is optimized using HEMS DRL-Agent. The appliances’ 

operation is scheduled under a real-time pricing tariff. The objective is to minimize the 

electricity cost, considering the user comfort level and transformer conditions. An 

inconvenience price is determined by the user to be considered by the agent to schedule 

the loads according to user preferences and priorities.  

 As DRL alternative terminology, a sequential decision-making approach at a 

timestep of 1 hour is considered. Then a complete episode is defined as one complete 

day (T=24).  In each time step, the HEMS determines the optimum action for 

appliances, EV, and ESS.  For example, a time slot 𝑡, the HEMS agent examines the 

appliances state 𝑠𝑡 and chooses the action 𝑎𝑡. Then the agent calculates the reward 

𝑟𝑡(𝑎𝑡, 𝑠𝑡) for taking this action at that state. The details about the formulation of each 

DRL element are discussed below.  

7.1.1  Environment (System Model) 
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The environment refers to the dynamic energy consumption of household 

appliances and equipment. It is assumed that the household is equipped with PV source, 

EV, ESS, and different appliances, divided into three categories: shiftable appliances, 

controllable appliances, and fixed appliances. Each category has its operational state 

𝑠𝑛,𝑡 which is presented by 

𝑠𝑛,𝑡 = (𝑢𝑛,𝑡, 𝑝𝑛,𝑡, 𝑙𝑛,𝑡) (7.1) 

where 𝑢𝑛,𝑡 ∈  {0, 1} presents the operation status. It takes 1 if the appliance is 

working or 0 if otherwise; 𝑝𝑛,𝑡 evaluates the appliances’ operational progress, and 𝑙𝑛,𝑡 

measures the time or power constraints. Next, state 𝑠𝑛,𝑡 is formulated for each type of 

appliances. 

Time-Shiftable Appliances - Their operation time can be shifted, and it has 

two operational states that use “ON−1 or OFF−0”. Assume a shiftable appliance needs 

a duration 𝑑𝑛 of time slots to complete one cycle. Defining the time constraints of the 

𝑛 time-shiftable appliance by 𝑡𝑎,𝑛 and 𝑡𝑏,𝑛 where (𝑡𝑎,𝑛 > 𝑡𝑏,𝑛+𝑑𝑛). Accordingly, the 

state 𝑠𝑛,𝑡 of the appliance is defined as 

(𝑢𝑛,𝑡, 𝑝𝑛,𝑡, 𝑙𝑛,𝑡) = {
(1, 𝑘𝑡,𝑛/𝑑𝑛,, 𝑡𝑏,𝑛 − 𝑑𝑛), 𝑡 ∈ [𝑡𝑎,𝑛, 𝑡𝑏,𝑛]

(0,0,0),                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.2) 

where 𝑘𝑡,𝑛 determines whether to start the operation (𝑘𝑡,𝑛= 1) or not (𝑘𝑡,𝑛= 0); the 

operational constraints 𝑝𝑛,𝑡 measures the required operating duration, and 𝑙𝑛,𝑡 

determines the end of the appliance scheduling window. By the end of the scheduling 

window 𝑘𝑡,𝑛/𝑑𝑡,𝑛 should equal to 1 to satisfy the appliance operational constraints.  

Controllable Appliances - For this type, the power consumption is adjustable. 

The state 𝑠𝑛,𝑡 of these appliances is defined as 

(𝑢𝑛,𝑡, 𝑝𝑛,𝑡, 𝑙𝑛,𝑡) = (1, 𝐸𝑛,𝑡 − 𝐸𝑛
𝑚𝑎𝑥 , 𝐸𝑛

𝑚𝑎𝑥), ∀𝑡 (7.3) 
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𝐸𝑛
𝑚𝑖𝑛 < 𝐸𝑛,𝑡 < 𝐸𝑛

𝑚𝑎𝑥 (7.4) 

Their power consumption (𝐸𝑛,𝑡) can be regulated between the maximum (𝐸𝑛
𝑚𝑎𝑥) and 

minimum (𝐸𝑛
𝑚𝑖𝑛) in response to price changes, as presented in (7.4). 

Fixed Appliances - The load of these appliances cannot be reduced or shifted. 

It can be regarded as a fixed demand for electricity usage. Assuming a fixed appliance 

𝑛 operates in the interval [𝑡𝑎, 𝑡𝑏] with the rated power, its state 𝑠𝑛,𝑡 is defined by 

(𝑢𝑛,𝑡, 𝑝𝑛,𝑡, 𝑙𝑛,𝑡) = {
(1, 𝐸𝑛,𝑡, 𝑡), 𝑡 ∈ [𝑡𝑎, 𝑡𝑏]

(0,0,0),               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.5) 

Electric Vehicle -  The EV charging and discharging power can be controlled 

by satisfying certain constraints. consider the EV arrives at 𝑡𝑎,𝑛 and departs at 𝑡𝑏,𝑛, the 

state 𝑠𝑛,𝑡 can be defined as 

(𝑢𝑛,𝑡, 𝑝𝑛,𝑡, 𝑙𝑛,𝑡) = {
(1, 𝑆𝑂𝐸𝑡, 𝑆𝑂𝐸

𝑚𝑎𝑥), 𝑡 ∈ [𝑡𝑎,𝑛, 𝑡𝑏,𝑛]

(0,0,0),                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.6) 

The dynamics of the EV battery is modeled by 

𝑆𝑂𝐸𝑛,t+1
𝐸𝑉 = 𝑆𝑂𝐸𝑡 + 𝜂

𝐸𝑉 ∙ 𝐸𝑛,t
𝐸𝑉 , 𝑡 ∈ [𝑡𝑎, 𝑡𝑏] (7.7) 

𝑆𝑂𝐸𝑚𝑎𝑥 ≤ 𝑆𝑂𝐸𝑡 ≤ 𝑆𝑂𝐸𝑚𝑎𝑥 (7.8) 

The EV is charging if 𝜂𝐸𝑉 is positive and discharging otherwise.  

Energy Storage System - The ESS state is modeled in a similar way to EV, as 

presented by (7.6)–(7.8). However, according to the DR program, the ESS is available 

all day at the house to be utilized (charging/discharging). 

7.1.2 State Space Representation 

In this example, the state 𝑠𝑡  at time slot 𝑡 include the required information to 

help the agent schedule the load to meet the problem objectives. For example, the state 

space may include the appliances states such as appliances load and State of Energy 

(SoE) of ESS and EV. The considered data is updated each 1 hour. This means that a 

1-hour time resolution is provided to the agent. The 1-hour time frame is adequate to 
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describe in detail the use of several household appliances and electricity cost variation. 

While there are other state representations provided in the literature which are more 

information-dense. By doing this, the problem's dimensionality is increased, which may 

increase the learning burden. For example, if the price and appliances data are updated 

every 10 minutes, we will have 144 steps (T=144). This means that the agent will take 

more time to learn the policy since it has more states to visit every episode. Therefore, 

it is crucial to select a time resolution that can describe the system states without losing 

any important information or increasing the agent's learning burden. Moreover, some 

studies fund that the gain from more information-dense state representations is 

marginal, meaning that agents can optimize the policy with reasonable state inputs 

[125].  

The state is a description of the current situation in the MDP, and it is correlated 

with a set of attributes specific to the appliances, EV, and ESS. The state 𝑠𝑡 at time step 

𝑡 is presented as 

𝑠𝑡 = (𝑠1,1,⋯ , 𝑠𝑁,𝑇 , 𝜆1, ⋯ , 𝜆𝑇 , 𝐸1
𝑃𝑉, ⋯ , 𝐸𝑇

𝑃𝑉 , 𝑃1
𝑡𝑥, ⋯ , 𝑃𝑇

𝑡𝑥) (7.9) 

The attributes considered for the state encapsulates the appliances states (𝑠𝑛,𝑡), the 

electricity price (𝜆𝑡 ), the PV output (𝑃𝑡
𝑃𝑉) and the transformer load (𝑃𝑡

𝑡𝑥). To simplify 

the model and minimize the computation time, the transformer load is categorized into 

three levels: low, average, and high, as presented in (7.10).  The transformer load in per 

unit will be used to calculate the hourly LoL%.  

𝑃𝑡
𝑡𝑥 = {

𝑃𝑡
𝑡𝑥,𝑙𝑜𝑤,                           𝑖𝑓 𝑃𝑡

𝑡𝑥 ≤ 0.8 𝑝. 𝑢

𝑃𝑡
𝑡𝑥,𝑎𝑣𝑒𝑟𝑎𝑔𝑒

, 𝑖𝑓 0.8 ≤ 𝑃𝑡
𝑡𝑥 ≤ 1 𝑝. 𝑢

𝑃𝑡
𝑡𝑥,ℎ𝑖𝑔ℎ

,                            𝑖𝑓 𝑃𝑡
𝑡𝑥 ≥ 1 𝑝. 𝑢

 (7.10) 

7.1.3 Action Space Representation 

Action Space is a combination of all the actions that the agent can decide for 

each appliance. The action for each appliance depends on the environment state defined 
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in the previous section. The agent should perform the binary action {1, 0 } to turns on 

or off the time-shiftable appliances, which consume constant energy. The action set for 

controllable appliances is discretized into 5 levels of energy consumption. Similar to 

the controllable appliances' actions, the EV and ESS discrete actions are specified with 

2 charging levels and 2 discharging levels. The actions are subject to power balance, 

the physical constraint of devices, demand satisfaction, user preferences constraints, 

and transformer loading condition. The state 𝑎𝑡 is defined as 

𝑎𝑡 = (𝑘𝑡,𝑛, 𝐸𝑡,𝑛, 𝐸𝑡,𝑛
𝐸𝑉 , 𝐸𝑡,𝑛

𝐸𝑆𝑆), ∀𝑡 (7.11) 

Where 𝑘𝑡,𝑛 determines whether to start the shiftable appliance’s operation (𝑘𝑡,𝑛= 1) or 

not (𝑘𝑡,𝑛= 0); 𝐸𝑡,𝑛 is the controllable consumption level; 𝐸𝑡,𝑛
𝐸𝑉 and 𝐸𝑡,𝑛

𝐸𝑆𝑆 are the 

charging/discharging power for the EV and ESS, respectively. 

7.1.4 Reward Representation 

Unlike the traditional method of setting the dissatisfied function, the proposed 

method encapsulates customers’ satisfaction into the rewards. The agent gradually 

learns the resident's electricity consumption habits through a continuous interface with 

the environment. Therefore, it tends to meet user needs when scheduling the appliances. 

Unlike the fixed discomfort function, the proposed method is more adaptable to the 

dynamic environment. The reward is formulated considering the electric cost, customer 

discomfort cost, and transformer LoL cost. The comprehensive reward function for the 

HEMS is the inverse of (12).    

𝑟𝑡 = 𝐶𝑡
𝑒𝑙𝑒𝑐 + 𝐶𝑡

𝑐𝑑𝑐 + 𝐶𝑡
𝐿𝑜𝐿 ,   ∀𝑡 (7.12) 

Where 𝐶𝑡
𝑒𝑙𝑒𝑐 is electricity cost measured in $, 𝐶𝑡

𝑟𝑑𝑐 is an index of discomfort caused to 

the customers by the DR scheduling measured in $ and 𝐶𝑡
𝐿𝑜𝐿 presents the transformer 

degradation cost measured in $. 

Electricity cost- The electricity operational cost is calculated by 
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𝐶𝑡
𝑒𝑙𝑒𝑐 = 𝜆𝑡 (𝐸𝑡

𝑔
− 𝐸𝑡

𝑃𝑉),   ∀𝑡 (7.13) 

Where 𝐸𝑡
𝑔

 is the total energy consumed from the grid by the household and 𝜆𝑡 is the 

electricity market price and charged with the RTP tariff. First, the HEMS will share the 

PV output sequentially to the home appliances. The fixed appliances are served first 

since they always have constant load and ensure the residents' convenience. After that, 

the surplus energy 𝐸𝑡
𝑃𝑉 is delivered based on the importance coefficients (𝜁𝑛) of the 

remaining appliances. Finally, If the home demand is higher than the solar energy 

generation, the HEMS will purchase energy from the grid with electricity market price 

𝜆𝑡 . 

Customer Discomfort Cost- The resident discomfort cost (RDC) index 

measures i) undesired operation cost for the time-shiftable appliances, ii) the thermal 

discomfort of the controllable appliances, and iii) the energy utilization of the EV and 

ESS. 

Equation (7.14) reflects the customer discomfort cost in the scheduling 

program. It presents the resident's discomfort due to waiting for the appliance to start 

the operation. The importance factors 𝜁1 maps the discomfort level into money, and it 

is measured in $/kWh. 

𝐶𝑡
𝑟𝑑𝑐 = 𝜁1(𝑡𝑠𝑡𝑎𝑟𝑡,𝑛 − 𝑡𝑎,𝑛) (7.14) 

Nonetheless, power reduction can cause thermal discomfort for the resident. 

Thermal discomfort is determined based on the deviation |𝐸𝑛,𝑡 − 𝐸𝑛
𝑚𝑎𝑥|, as presented 

in (7.15). When the deviation |𝐸𝑛,𝑡 − 𝐸𝑛
𝑚𝑎𝑥| decrease, the thermal discomfort value 

decreases. If the deviation becomes large, the resident thermal discomfort increases. 𝜁2 

is the appliance’s importance parameter and introduced to map the discomfort terms 

into money. 
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𝐶𝑡
𝑟𝑑𝑐 = 𝜁2|𝐸𝑛,𝑡 − 𝐸𝑛

𝑚𝑎𝑥| (7.15) 

The EV model supports the engagement of customers in the energy market. 

Charging and discharging the EV battery is controlled based on the electricity price and 

battery health condition, and customer comfort. When EV available in the household, 

the charging action is rewarded when the electricity price is low. Conversely, the 

discharging action is rewarded when the electricity price is high. Besides, the model 

penalizes not having a fully charged EV at departure time, affecting customer comfort. 

In (7.16), the squared term measures the EV anxiety range for the uncharged battery 

energy in $/kWh2. 

𝐶𝑡
𝑟𝑑𝑐 = 𝜁3(𝑆𝑂𝐸𝑡 − 𝑆𝑂𝐸

𝑚𝑎𝑥) 2 (7.16) 

  In this case, ESS energy underutilization is considered to prevent undercharging 

or overcharging of the battery, as presented in (7.17). For example, the discomfort cost 

will increase when the accumulated energy in the battery (𝑆𝑂𝐸𝑡) more than the 

maximum value (𝑆𝑂𝐸𝑚𝑎𝑥) or less than the minimum value (𝑆𝑂𝐸𝑚𝑖𝑛). 

𝐶𝑡
𝑟𝑑𝑐 = {

𝜁4(𝑆𝑂𝐸𝑡 − 𝑆𝑂𝐸
𝑚𝑎𝑥) 2𝑖𝑓  𝑆𝑂𝐸𝑡 > 𝑆𝑂𝐸

𝑚𝑎𝑥

𝜁4(𝑆𝑂𝐸𝑡 − 𝑆𝑂𝐸
𝑚𝑎𝑥) 2𝑖𝑓  𝑆𝑂𝐸𝑡 < 𝑆𝑂𝐸

𝑚𝑖𝑛  (7.17) 

Transformer LoL cost- Ambient temperature and transformer load are the 

main cause of distribution transformer failure, as they affect the aging of the 

transformer insulation, and consequently, the transformer lifetime. In this part, the 

transformer thermal model is considered to calculate the percent LoL, as presented in 

chapter 3 equations (3.3)-(3.12). After that, the LoL of transformers is multiplied by 

the capital cost of transformers to calculate LoL degradation cost (𝐶𝑡
𝐿𝑜𝐿), as presented 

in equation (3.41). In this strategy, 𝐶𝑡
𝐿𝑜𝐿 is considered in the reward function as a 

penalty cost measured in $ to maximize the utility profit. Based on the price signal and 

transformer loading levels received from the utility, the agent intends to schedule the 
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load during the lowest price period without overloading the distribution transformer 

during these periods. This can improve the transformer utilization during abnormal and 

emergencies and prolong the transformer life by minimizing its LoL. 

7.2 DRL-Based Framework for HEMS 

In this section, the DQN algorithm is utilized to solve the previously formulated 

home energy management problem. The agent’s objective is to maximize the expected 

average or cumulative reward over an episode. It should be noted that the objective of 

minimizing electricity cost contradicts that of maintaining the desired comfort level, 

and the reward function attempts to balance the two objectives, considering the 

distribution transformer condition. During the operation of HEMS for 𝑖 time steps, we 

want to maximize the accumulative reward 𝑅 = ∑ 𝛾 ∙ 𝑟𝑡
𝑡=𝑖−1
𝑡=0 . The optimal 

value 𝑄∗(𝑠, 𝑎) is used to represent the maximum accumulative reward which can be 

obtained by taking action 𝑎𝑡 in state 𝑠𝑡. 𝑄
∗(𝑠, 𝑎) can be calculated iteratively as 

presented in Equation (6.6). As shown in Figure 7-1, the input of DNN is the 

environment states 𝑠𝑡 including electricity price, transformer load, and appliances states 

defined previously along with PV generation. The output is Q-value for each action 𝑎𝑡.  

 

 

 

Figure 7-1 The proposed DRL-based HEMS structure 
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After the model is completely trained using the off-line database, it can be 

deployed to make optimized decisions in a real physical environment. If there are 

emergencies, the agents will interact with the new environment. By adjusting actions, 

the agent gradually increases the obtained reward and restores the optimization effect. 

Figure 7-2 shows the proposed DRL-based framework for HEMS. The details of 

appliances state transition are defined in the previous section. The details of the DRL 

learning and implementation process are presented in the following subsection.  

 

 

 

Figure 7-2 The proposed DRL-Based HEMS based framework 

 

 

7.3 DRL-Based HEMS Implementation Process 

The implementation process of the DRL-based HEMS is presented in Algorithm 

1. The outer for loop determines the episodes number during the training, while the 

inner for loop performs load scheduling and power consumption management at each 

time step for one episode. First, the reply memory D and neural network weights 𝜽 are 

initialized. As presented in (6.6), updating the Q value network requires the optimal 

value. From (6.5), it can be observed that the optimal value depends on the Q value. To 
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break this dependency loop, in line 4, a copy of the neural network weights, 𝜽−, is 

designed to calculate the optimal Q value, 𝑄∗(𝑠, 𝑎). 

At each training episode, line 5, the states are observed, and the algorithm 

performs training and observes the new environment states (line 6 to 15). Specially, in 

the initial time slot, i.e., 𝑡 = 1,  the agent takes action, obtains a reward, and observes 

the next state (lines 7 to 9). The reward is calculated by (7.12). Next, in line11, the state 

transitions are stored in replay memory. After that, a random mini-batch of the state 

transition is selected from the memory. Then the neural network Q is updated. Next, 

the Q network is employed to determine the next action. This procedure is repeated 

until the agent reaches a terminal state. Finally, the agent will learn the optimal actions 

for hour-ahead, i.e., 𝑡 =  1, 2,3, … , 24. 

The 𝜖-greedy policy is used as an action selection strategy to select the optimum 

action. As the training starts, the agent can either discover the action space by randomly 

choosing an action with a probability of 𝜖 or choose the action which has the maximum 

Q-value, with probability 1 – 𝜀. After each iteration, the exploration rate 𝜖 will be 

decreased by a decay rate until it reaches its minimum value 𝜖𝑚𝑖𝑛. In this way, the agent 

has more probability of selecting different actions in the first couple of training 

episodes. As the training process advances, the agent will have a higher probability to 

apply the learned policy.  
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CHAPTER 8 : RESULTS AND DISCUSSION: DEEP REINFORCEMENT 

LEARNING APPROACH  

This Chapter provides simulation results and performance analysis of the 

proposed DQN algorithm for optimizing power consumption in the smart household.  

8.1 Case Study Setup 

In this paper, appliances with major contributions in terms of energy 

consumptions are considered in the model to study their DR and optimize their 

operation over a period of time to minimize the cost and optimize the transformer load 

curve, as presented in Table 8-1. We consider three time-shiftable appliances: a 

washing machine (WM), a clothes dryer (CD), and a dishwasher (DW); three 

controllable appliances: air conditioners (AC1, AC2, and AC3). Other appliances are 

in-home use, such as electric kettles, laptops, microwaves, etc. These appliances are 

interactive and depend on users (Fixed loads) and their load compared to the major 

loads is insignificant. Thus, they have little scheduling flexibility. Therefore, it is 

considered as “other” loads.   

Also, apart from these loads, EV load is considered. The EV maximum charging 

power rate is 3.3 kW, and the battery rating is 16 kWh. The EV takes 4 hours to charge 

fully at a maximum charging rate of 3.3 kW and immediately tapers off to zero. The 

home is also equipped with ESS, which charges from the PV source and discharges 

during high price periods. The ESS capacity can be varied between 0 and 6 kWh 

according to the user needs. The EV and ESS parameters are shown in Table 8-2. For 

this work purpose, the PV source is designed to meet about 10% of home demand for 

24 h. The PV output power is utilized when the PV generation is greater than appliance 

consumption. When the PV output is less than the home's demand, the HEMS purchases 

power from the grid. 



  

121 

 

During the training phase of the agent, different factors and parameters are 

considered to make the agent more adaptive to any changes that can be made by the 

user. First, a user’s random choice for operating appliances is considered. For example, 

while training, the starting time for shiftable appliances is randomly selected between 

6:00 AM – 10:00 AM and between 6:00 PM- 12:00 AM and EV departure time between 

5:00A- 8:00 AM and arrival time 2:00 – 7:00 PM. Also, these appliances' operating 

duration and their power consumption are randomized to depict users' diversity. This 

will allow users to change their preferences on appliances from time to time as their 

interests, needs, and external conditions also change. Besides, a 25-kVA distribution 

transformer is considered to investigate the transformer’s impact on the HEMS 

operation, based on the IEEE standard C57.91-2011.  

A training dataset is used to train the agent, and a different testing dataset is 

used to evaluate and test the learned knowledge by the agent. In the training phase, 

electricity price data [126]  from January 1st, 2017 to November 30, 2017, are used. In 

the test phase, the electricity price data from December 1st, 2017 to December 31st, 

2017, is used. During the test stage, we randomly select one day (24 h) from the testing 

dataset, and a different set of appliances data are generated.  We start using a network 

consisting of two parallel input layers (states and actions), 3 hidden layers (36 neurons, 

36 neurons, and 36 neurons), and one output layer. The DQN agent's hyper-parameters 

are presented in Table 8-3. The training process is performed on a computer with Intel 

Core i9-9980XE CPU @ 3.00 GHz using MATLAB R2020b. The MATLAB 

Reinforcement Learning Toolbox is used to implement the RL code [127]. 
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Table 8-1 Parameters of household appliances (DRL case) 

ID 𝜻𝒏 Power rating (kWh) [𝑻𝒏,𝒂, 𝑻𝒏,𝒃] 𝑻𝒏,𝒕𝒐𝒕𝒂𝒍 

DW 0.2 1.5 7-12 2 

WM 0.2 2 7-12 2 

DR

Y 
0.2 1.2 9-14 2 

AC1 2 0.7-2 0-24 - 

AC2 2.5 0.7-2 0-24 - 

AC3 3 0.7-2 0-24 - 

Othe

r 
- - - - 

 

 

Table 8-2 EV and ESS parameters (DRL case) 

Type ESS EV 

Charging Level [0.3, 0.6] [1.5, 3] 

Maximum energy of 

Charging/Discharging (kWh) 
3.3 0.6 

Minimum discharging Level (%) 40 30 

Maximum charging Level (%) 90 90 

Initial SOE (%) 90% 50% 

𝜁𝑛 2.5 2.5 

 

 

Table 8-3 Network hyper-parameters  

Description Value 

Maximum iterations (Episodes) 4000 

Time steps in each iteration 24 

Learning rate 0.01 

Discount factor 0.955 

Epsilon 

Maximum 1 

Decay 0.01 

Minimum 0.1 

 

 

8.2 Performance of DQN Algorithm 

Due to the algorithm's characteristics, the agent learns to adapt gradually to the 
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environment and gradually obtain more rewards. The episode and average rewards 

during the training process are presented in Figure 8-1. Initially, there are many random 

choices; after many iterations, the agent learns to choose the converging trend and 

possibilities close to the optimization objective as can be noted that the total rewards 

rise gradually and converge after 1500 iterations. As can be seen, after convergence, 

there is still a small variation in the rewards. The reason is that the proposed method 

adopts days as the training episodes and hours as time step and the different days have 

significant differentiation in electricity cost. The user can obtain economic benefits by 

controlling the three air conditioners, washing machine, clothes dryer, dishwasher, and 

the charging and discharging of the EV and ESS batteries.  

 

 

 

Figure 8-1 Episode and average rewards during the training process 
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8.3 Algorithmic Robustness 

After training using the applied algorithm, the agent can adapt to the dynamic 

environment and complete the optimization problem. The following subsection 

demonstrates the trained agent's testing and evaluation to analyze the smart home's 

optimal load management considering different scenarios. 

8.3.1 Scenario-1: Minimizing Electricity Cost and Resident Discomfort Cost 

The HEMS agent is evluated for different objectives. The First objective is to 

reduce the electricity cost (𝐶𝑡
𝐸𝑙𝑒𝑐.) and resident discomfort cost (𝐶𝑡

𝑟𝑑𝑐) are considered 

as presented in (7.11). In this scenario, the transformer LoL cost (𝐶𝑡
𝐿𝑜𝐿) is set to 0 in the 

reward function. Figure 8-2 shows the aggregated household load for with and without 

DR along with the RTP signal for one test day. As can be seen, the overall load peak is 

reduced compared to the conventional consumption, where no optimization is applied.  

The agent's dynamic behavior can be observed from Figure 8-3. The HEMS 

tends to purchase more energy when the prices are low in the time 05:00-12:00 and 

21:00-24:00. When the PV generation rises, the purchased energy is reduced since the 

PV energy is utilized. Also, the HEMS tends to reduce the price by cutting the 

purchased energy by effectively schedule the charging and discharging times of the EV. 

For example, the EV supplies the household needs through Vehicle-to-home (V2H) 

mode during 15:00 and 19:00 time periods, where the electricity cost is relatively high 

and charging during the time 21:00-24:00, where the electricity price is low. Moreover, 

the ESS captures the environmental changes and starts charging when the electricity 

price is low, and the PV energy generation rises and discharges when the electricity 

price is high.  
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Figure 8-2 Optimization results using DQN (one test day) 

 

 

 

Figure 8-3 The optimization learned by HEMS  

 

 

The schedule of the time-shiftable appliances is presented in Figure 8-4.  The 

figure shows that all the time-shiftable appliances are scheduled to work during their 

preferred scheduling interval when the prices are low. Moreover, the behavior of the 

considered controllable appliances (AC1, AC2, and AC3) in each time slot for one test 

day is highlighted in Figure 8-5. It can be observed that the consumption of appliances 
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is high during the time 05:00-12:00. After that, the consumption is reduced due to the 

increase in electricity cost at time 15:00. As the electricity price reaches its maximum 

at 19:00, each appliance's energy consumption is reduced to its specified minimum 

operation value, as presented in Table 8-1. Finally, from time 21:00 to time slot 24:00, 

the energy consumption starts to increase since the electricity price decrease. 

The resident comfort level is reflected in the reward function, considering the 

𝜁𝑛 parameter, as a penalty cost depending on the appliances’ importance. The 

controllable appliances are taken as an example to demonstrate the effectiveness of the 

𝜁𝑛. Different values of 𝜁𝑛 is given for AC1, AC2, and AC3, as presented in Table 8-1. 

Also, it can be observed that AC1 is always consuming more energy than AC2 and AC2 

is consuming more energy than AC3. This is due to the different values of 𝜁𝑛 where the 

appliances with a high value of 𝜁𝑛 consumes more energy to minimize the penalty 

(discomfort cost).  

 

 

 

Figure 8-4 Scheduling of time-shiftable appliances during the test day 
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Figure 8-5 Energy consumption controllable appliances during the test day 

 

 

8.3.2 Scenario -2:Minimizing Transformer LoL Cost 

Having individual control of the DR algorithm per individual end-user may 

cause the low-cost periods to operate as a sink for all customers to operate their 

appliances during these intervals and generate new load peaks detected by utility assets. 

This may increase the load and LoL factor during these periods compared with the 

reference case’s low-price periods. Thus, the transformer LoL cost is considered in the 

reward along with operation cost and resident discomfort cost, as presented (7.12). The 

HEMS learned an approach to fulfill the resident’s expectations and decrease the 

transformer’s LoL by monitoring transformer load, electricity price, and appliances 

states.  

The transformer load profile for one test day is presented in Figure 8-6. The 

residential load curves for different customers are aggregated to determine the load on 

the transformer. To evaluate the proposed DRL algorithm’s efficacy, the load profile is 

considered with a severe loading where the transformer loading condition shows 4-h 

continuous overloading above 100% rating during the 19:00–22:00 time interval and 
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another 10 h above 80% rating. Figure 8-7 shows the optimization learned by the HEMS 

agent considering LoL cost in the reward function. It can be noted that the EV charging 

load is shifted to slots 4:00–6:00 of high electricity price compared to slots 21:00–24:00 

used in scenario 1. While this load shift may increase the electricity cost, it satisfies the 

LoL cost and overcomes the distribution transformer’s overload condition and other 

assets. This results in a peak demand reduction of 24% compared to scenario 1, 

positively impacting the utility assets. The new load profile has a total electricity cost 

of USD 5.32, which is higher than the first scenario with 5.28; however, it is lower than 

when no DR is applied and provides direct benefits to both the end-user and utility 

operator. Table 8-4 presents a comparison of electricity costs in these scenarios. 

 

 

Figure 8-6 Transformer load profile 
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Figure 8-7 The optimization learned by HEMS considering transformer LoL cost in a 

typical test day 

 

 

Table 8-4 Comparison of electricity cost for different scenarios 

ID 

Electricity Cost ($) 

Without DR DR  Scenario-1 DR  Scenario-2 

DW 0.22 0.20 0.20 

WM 0.17 0.139 0.139 

CD 0.11 0.09 0.09 

AC1 2.38 1.72 1.69 

AC2 2.38 1.48 1.42 

AC3 2.38 1.23 1.19 

EV 0.92 0.43 0.59 

Total 8.560 5.289 5.319 

 

 

8.3.3 Comparison with Traditional Algorithms 

To evaluate the proposed algorithm, a conventional optimization is considered 

a benchmark, in which the formulated problem is solved by MATLAB optimization 

Toolbox using MILP. It is assumed that all the required information is known for the 

MILP algorithm to minimize the electricity and discomfort costs considering 
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transformer LoL as defined in Equations (7.12) -(7.16) with short-sighted actions. On 

the contrary, the DRL algorithm utilizes the learning knowledge to choose different 

actions to maximize the reward. Figure 8-8 demonstrates the total costs (the electricity 

and discomfort costs) under these two methods. As can be observed, although the MILP 

achieves less electricity cost, it leads to high discomfort cost. The reduction of the 

electricity cost ratio of the DQN model is only 2% less than MILP. Nevertheless, DQN 

achieves better cost reduction than MILP for thermal discomfort and EV anxiety ranges 

by 43% and 75%, respectively. This is because the DRL agent has learning capabilities 

and accounts for both the current reward and the future rewards, while the MILP has 

no learning capability. 

Theoretically, it should be highlighted that the DRL has more advantages and 

more robust in the actual dynamical environments. However, the DRL algorithm may 

lose its robustness if the environment is subjected to major changes. For example, if the 

residents change their habits or the electricity tariff is shifted significantly away from 

the training regime. The HEMS performance will drop off as the agent finds itself 

facing new states outside of its prior knowledge. The agents will take time to restore 

the optimization effect. This can be avoided by effectively train the agent on different 

datasets.  
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Figure 8-8 Total costs of DQN algorithm compared to MILP solver 
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CHAPTER 9 : CONCLUSION AND FUTURE RESEARCH 

9.1 Conclusion 

The thesis proposes a multi-objective HEMS model that coordinates the benefits 

of households and utility operators. The HEMS model seeks to minimize the individual 

electricity consumption cost while considering the customer’s comfort and lifestyle. 

The utility distribution transformer's load profile is integrated into the optimization 

model by incorporating the asset loss of life (LoL) cost in the multi-objective function. 

The proposed model's flexibility is supported by considering various 

demand/generation components that consume/produce electricity.  

First, the problem for time shiftable loads is formulated as a mixed-integer linear 

programming (MILP) with the decision variable for power ON and OFF of an appliance 

is binary. The controllable power loads are formulated as interior-point optimization 

(IPO) for different power levels. The household appliances' number can be increased 

by considering more appliances in the network. This application is presented by three 

operation scenarios, compared with a reference case, and illustrated customer's and 

operator's benefits in terms of consumption cost, customer dissatisfaction cost, and 

transformer asset load leveling. The multi-objective DR model results revealed a 38% 

reduction in the electricity usage cost and an 18% reduction in the distribution 

transformer's aggregated peak demand.  

Although this approach has shown a reduction in electricity cost and the 

aggregated peak demand of the distribution transformer, some limitations exist, as 

presented in chapter 5. First, the optimization problem developed in this approach is 

based on a static model and mathematical equations. It would be more applicable to 

have a dynamic presentation of the optimization problem. This approach may also 

suffer from high complexity and computational burden in real-time applications due to 
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the significant number of involved variables. Additionally, this approach is case-

specific and needs to be adjusted when the system environment changes during 

abnormal situations.  

Therefore, a model-free DRL algorithm is proposed to solve the optimization 

problem. Different elements that drive DRL models' performance and implementation 

details, are identified and examined.  A DQN agent is then utilized to schedule the 

household appliances considering customer comfort, hour-ahead electricity price, and 

transformer condition. The proposed algorithm's performance is validated through 

simulations. The results show that, compared with a conventional optimization 

approach, DRL is more efficient in minimizing the energy cost while adapting to the 

desired user’s comfort level. The proposed algorithm's application is presented by two 

operation scenarios, compared with a reference case, and illustrated customer's and 

operator's benefits in terms of consumption cost, customer discomfort cost, and 

transformer asset load leveling. The results show that DRL is an adequate method to 

address the HEMS problem since it successfully minimized both the electricity and 

dissatisfaction costs for a single household user. 

In conclusion, optimizing residential loads provide significant financial benefits 

to the end-user and the utility. Encouraging consumers to participate in DR programs 

by providing incentives and ensuring consumers’ comfort plays a vital role. Therefore, 

it is required to have a proper incentive to motivate the consumers without affecting the 

utility required minimum savings. Although this thesis has achieved its objectives, there 

were some unavoidable limitations. For example, some of the model parameters were 

based on assumptions for theoretical research. In real-world applications, it is required 

to select the parameters based on proper validation processes. Also, this thesis has not 

performed an extensive tuning of the model, but instead used default values for 
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hyperparameters and focused on the results that emerge from them. Therefore, it is 

natural to assume that improvements can be found, for instance, by increasing the 

training time or pretraining the DRL algorithm. 

9.2 Future work 

In future work, peer-to-peer energy trading and two-way energy trading with 

the grid will be considered an extension of the current work, further improving the 

HEMS's economic advantage. The Formulated HEMS framework is based on 1-hour 

time resolution. Therefore, it is not able to tackle problems in real-time. A finer time 

frame, for instance, every 10 minutes, could be implemented. Thus, the demand 

response program operates close to real-time. 

The adaptiveness of the DRL model can provide significant benefits to the 

utility during abnormal conditions. However, further research is still needed and the 

algorithm and implementation strategy should be discussed and analyzed. Also, special 

consideration should be given to comparing model-driven methods and data-driven 

optimization methods because they have advantages in different scenarios. 

Moreover, there are many hyperparameters that can be tuned in DRL, as in most 

machine learning algorithms. This thesis has not performed an optimal hyperparameter 

search. In future work an extensive tuning for the model can be done. For example, a 

key parameter that should be tested more thoroughly is the training time, as neural 

network networks are good at continuously learning from new data, and the action 

space is large. The presented results for DRL are only related to the DQN algorithm 

implemented and described in this thesis and do not necessarily represent other types 

of architectures or RL agents. The formulated optimization problem can consequently 

be applied and tested to different DRL algorithms.   
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Appendix A: Thesis Publications 

1. Home Energy Management System Embedded with a Multi-Objective Demand 

Response Optimization Model to Benefit Customers and Operators (Published, 

Energies 2021, 14, 257. https://doi.org/10.3390/en14020257). 

2. Deep Reinforcement Learning Demand Response for Home Energy 

Management Systems: Customers and Operators Perspectives (to be submitted 

to IEEE Smart Grid).  

3. Applicability and Challenges of Deep Reinforcement Learning for Load 

Scheduling in Smart Grids: Matlab/RL toolbox Perspective (In preparation 

phase). 

4. Step by Step implementation guidance for Deep Reinforcement Learning in 

Power System application (In preparation phase). 

 


