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ABSTRACT 

EWIS, DINA, Mohamed,Masters:June:2021,

Masters of Science in Environmental Engineering 

Title: Development of Novel Magnetic Bentonite Based Adsorbents Combined With 

Different Carbon Sources for Removal of Oil Content from Produced Water 

Supervisor of Thesis: Dr. Abdelbaki Benamor . 

Water scarcity is a challenge faced worldwide due to depleting sustainable good quality 

water resources. Produced water, associated with the production of gas and oil, usually 

comes as oil contaminated water, creating real problems in water resources’ 

management. Therefore, removing oil content from produced water is crucial to meet 

the discharge limits set by governmental legislation.  Compared to the current state of 

produced water treatment technologies, adsorption is envisaged as a promising 

technique due its simplicity, and ease of operation. For that, the development of 

adsorbents with high removal capability, good stability, high recoverability, 

inexpensive, and environmentally friendly nature is the most important step in 

adsorption process. Bentonite is a type of clay minerals that is inexpensive, non-toxic, 

and naturally occurring that have been utilized in water remediation applications.  Thus, 

the aim of this work is to develop novel magnetic bentonite-based adsorbents combined 

with different carbon sources (reduced graphene oxide, and multiwall carbon 

nanotubes) for oil content removal. The developed adsorption composites were 

characterized using XRD, TGA, SEM, EDX, TEM, and BET analysis techniques. 

Furthermore, the adsorptive behavior of the developed composites was compared to 

magnetic bentonite under the same experimental conditions examining the effect of 
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various parameters on the adsorption capability. The experimental data were analyzed 

using three isotherm models including Langmuir, Freundlich and Sips models using 

non-linear regression fitting and were compared using Akaike Information Criterion 

statistical model. The results showed that developed composites attained enhanced 

adsorption capacity and had shorter equilibrium times compared to magnetic bentonite. 

Furthermore, the oil content removal performances of all synthesized composites 

reported in this study were investigated in a fluidized bed reactor and a possible 

adsorption mechanism was proposed. Overall, this work confirms the feasibility of the 

proposed adsorbents for oil removal in industrial adsorption process. 

 

Keywords: Magnetic bentonite, reduced graphene, Carbon nanotubes, Adsorption, Oil 

treatment.  
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CHAPTER 1: INTRODUCTION  

1.1 Research overview  

Deterioration of water quality due to the continuous discharge of contaminated water 

induced by the world’s population growth, modernization, and rapid industrialization 

has become a global issue of concern [1, 2]. This situation is getting worse in the Gulf 

cooperation council (GCC) countries, with less than 1% of the total available freshwater 

resources worldwide available for 6% of the world population [3].  The frequent and 

continuous discharge of produced water that results from oil and gas industry became 

one of the serious problems worldwide causing considerable impact on ecological 

equilibrium, environment, and economy [4, 5].  Produced water (PW)  is wastewater 

that is produced during the exploration and production of gas and oil [6]. It represents 

around 80% of the residuals and wastes produced, and its quantity rises significantly to 

reach up to 98% in depleted fields [7]. The composition of produced water varies 

according to the location and the type of the oil and  gas fields, but generally, it is 

characterized by high content of oil and dissolved organics [8].It primarily consists of 

dissolved oil, hydrocarbon gases, organic acids, phenols, metals, and various chemical 

additives. The dissolved oil contaminants contain recalcitrant organic compounds such 

as benzene, toluene, xylene, , waxes, and surfactants [9]. The disposal of PW without 

proper treatment can interfere with the environmental sustainability harming aquatic 

life, thus, produced water remediation is a crucial task [10].  Strict governmental 

legislation to limit the amount of oil and grease in discharged produced water was set. 

According to the U.S. Environmental protection Agency, the allowable produced water 

on monthly and daily average are 29 mg/L and 42 mg/L, respectively [11].  Therefore, 

it is crucial to treat produced water prior to discharge into reservoir.  

Several treatment technologies have been used for oil contaminants removal. For 
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instance, membranes and advanced oxidation are used for oily water treatment; 

however, their use is limited due to high capital and maintenance cost. Chemical 

flocculation attains high removal efficiency and requires small floor space, but it 

consumes huge amounts of energy. Biological treatment is also used despite causing 

secondary pollution that requires further treatment and consumes time [12, 13]. 

Compared to the current state of produced water treatment technologies, adsorption is 

envisaged as a promising technique due its simplicity, ease of operation and high 

removal capability [14]. Nevertheless, the main drawback  associated with adsorption 

technology is the adsorbents high cost, which in turn elevates the cost of the treatment 

process [15]. Therefore, it is important to develop adsorbents with high efficiency, low 

cost, great selectivity, and excellent recyclability.  

The utilization of low-cost adsorbents can potentially reduce the cost of insulation and 

maintenance. Besides, it is important to consider the recyclability, porosity, and 

separation efficiency of the adsorbents for an effective adsorption process [16]. 

Chitosan is a type of adsorbent that is known for good adsorption capacity along with 

low cost and non-toxicity [17]. However, it has low mechanical strength, low solubility 

in acidic solutions and can be deformed after drying [18]. Zeolites and biomass have 

been suggested as adsorbents, but their applications are limited due to low adsorption 

rates [18]. Clay minerals (CMs) are known for their excellent adsorption capabilities, 

but their applications are limited because of their high dispersion of CMs in aqueous 

solutions, which makes them difficult to recycle and reuse [19]. Among CMs, Bentonite 

is available abundantly, inexpensive, contains wide interlayer spacing, attains ion 

exchange capacity and has high specific surface area [20, 21]. Even though bentonite 

has high dispersity in aqueous solution that renders its ability to be recovered and 

regenerated, it can be combined with other adsorbent, such as iron oxide nanoparticles 
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(Fe3O4 NPs) to facilitate its separation from aqueous solution.  Fe3O4 NPs are known 

for their biological adaption, magnetic property, and large surface to volume ratio, 

environmentally friendly nature, and their high ability to remove organic contaminates 

from wastewater [22, 23]. Encapsulating Fe3O4 NPs into inorganic matrix (e.g 

bentonite) facilitate the magnetic composite separation from aqueous solution in the 

presence of external magnetic field due to Fe3O4 NPs magnetic property. Besides, the 

fabricated magnetic composite could have exceptional physicochemical properties 

including large specific surface area , enhanced Fe3O4 NPs chemical stability, and 

availability of a wider range of active sites [24]. Furthermore, carbonaceous adsorbents 

including activated carbon (AC), activated carbon fiber (ACF), and carbon nanotubes 

(CNTs) are known for high adsorption capacity, surface reactivity, and high surface 

area [25, 26]. More recently, the development of clay/carbon composites have received 

attention due to their enhanced properties including high recyclability, adsorption 

capacity, surface area, and porosity compared to the composite’s individual 

components. Liang et al.[27], fabricated carbon/bentonite composite for alkaline 

industrial wastewater treatment. The composite attained around 91% removal for initial 

COD value of 79,834 mg/L. In addition, the composite showed a high removal 

efficiency for nine regeneration cycles. Yet, there is a growing focus on the 

development of low cost, and sustainable adsorbents that possess high adsorption 

ability for wide range of organic and inorganic contaminants.  

1.2 Tangible objective  

Considering the above-mentioned characteristics of a desired adsorbent for organic 

contaminants removal, the objectives of this study are:  

I. To investigate the adsorptive capability of Fe3O4/Bentonite composite towards 

emulsified oil by examining the effect of adsorbent dosage, initial oil 
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concentration, solution pH, and contact time in a batch mode experiment.  

II. Evaluate the adsorption capacity of Fe3O4/Bentonite for emulsified oil 

removal by conducting isotherm and kinetics study as well as assessing the 

adsorption mechanism.  

III. To develop novel magnetic bentonite-based composites combined with 

reduced graphene oxide and multiwall carbon nanotubes (Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs) for emulsified oil removal.  

IV. To investigate the adsorptive capability of Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs composite by examining the effect of initial oil 

concentration and contact time in a batch mode experiment.  

V. Evaluate the adsorption capacity of Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs composites towards emulsified oil by conducting 

isotherm and kinetics study as well as assessing the adsorption mechanism.  

VI. To investigate the performance of Fe3O4 NPs, Fe3O4/Bentonite 

Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs towards emulsified oil removal in 

a fluidized bed reactor.  

VII. Conduct a comparison between Fe3O4/Bentonite and the developed 

composites in term of morphology, physiochemical properties, adsorptive 

capability and uptake mechanism.   

1.3 Research novelty   

Even though the synthesis of Fe3O4/Bentonite composite and its utilization for organic 

and inorganic water contaminants removal was reported in the literature, this work 

includes the composite synthesis and reports its adsorptive behavior towards emulsified 

oil under various parameters for the first time. In addition, in this work, novel 

Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs composites were synthesized through co-
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precipitation method for emulsified oil removal. The composites morphology, surface 

characteristics and physiochemical properties were investigated. Finally, the adsorptive 

behavior of Fe3O4 NPs, Fe3O4/Bentonite, Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs 

towards emulsified oil in fluidized bed reactor was investigated.  

1.4 Thesis outline  

This research comprises five chapters. The first chapter introduces the research work, 

emphasizes the research novelty, and highlights the publications generated from this 

work. Chapter 2 offers an overview on PW sources, constituents, and management, 

legislation, and treatment technologies. The chapter also includes an overview on 

adsorption technology and the performance of various adsorbents in oil removal 

reported in the last decade.  The chapter explains the theory of various types isotherm 

and kinetic models used in this work as well as Akaike Information Criterion (AIC), 

which was used to compare between the models. Chapter 3 includes the materials and 

chemicals used in this study, the synthesis procedures for all adsorbents as well as the 

synthetic produced water preparation. Chapter 4 represents the adsorbents 

characterization analysis and the adsorption results of Fe3O4/Bentonite, 

Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs. In addition, the chapter emphasizes on the 

adsorption mechanism of emulsified oil onto the above-mentioned adsorbents and their 

performance in a fluidized bed reactor. Chapter 5 includes the main outcomes of the 

research work highlighting the future work.  

1.5 Research outcome (publications)  

I. Ewis, D., Benamor, A., Ba-Abbad, M. M., Nasser, M., El-Naas, M., & Qiblawey, 

H. (2020). Removal of oil content from oil-water emulsions using iron 

oxide/bentonite nano adsorbents. Journal of Water Process Engineering, 38, 

101583. doi:10.1016/j.jwpe.2020.101583 
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II. Ewis, D., Ismail, N. A., Hafiz, M., Benamor, A., & Hawari, A. H. (2021). 

Nanoparticles functionalized ceramic membranes: Fabrication, surface 

modification, and performance. Environmental Science and Pollution Research. 

doi:10.1007/s11356-020-11847-0 

III. Ewis, D., Hameed, BH. (2021). article A review on microwave-assisted 

preparation of adsorbents and its application in the removal of water pollutants. 

Journal of Water Process Engineering, 41, 102006. 

doi.org/10.1016/j.jwpe.2021.102006 

IV. Ewis, D., Mahmud, N., Benamor, A., Ba-Abbad, M. M., Nasser, M., & El-Naas, 

M. (2021). Development of Novel Magnetic Bentonite Based Adsorbents 

combined with different Carbon Sources for Removal of Oil Content from 

Produced Water. Colloids and Surfaces A: Physicochemical and Engineering 

Aspects. submitted. 

V. Ewis, D., El-Naas, M., Ba-Abbad, M., Benamor, A. (2021). Adsorption of 

Organic Water Pollutants by Clay Minerals composites: A Review. Applied Clay 

Science. Under preparation.    
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CHAPTER 2: LITERATURE REVIEW  

2.1 Produced water.  

Produced Water (PW) associated with oil and gas exploration and production is one of 

the largest wastewater streams generated. PW consist of mainly dissolved oil and 

grease, polycyclic aromatic hydrocarbon (PAH), chemical additives, BTEX, organic 

acids, inorganic compounds, and dissolved solids (DS) [9]. Figure 1 shows the 

composition of PW. 

Figure 1: Constituents of produced water. 

The composition of PW varies according to various factors including age and depth of 

geological formation, the field geographic location, type of produced hydrocarbon and 

the chemical composition in the oil and/or gas reservoir. Generally, the amount of DS 

ranges between 100 and 300,000 mg/L. The major contributor to the value of DS are 

mainly chloride and sodium ions, which are originally from water salinity. Inorganic 

compounds such as sodium, chloride, calcium, cobalt, mercury, magnesium, sulfate, 

carbonate, and lead are also present in PW [28, 29]. The concentration of sodium and 

chloride can vary from 0-150,000 mg/l and 0-270,000 mg/l, respectively. While other 

metals can vary from 0 to few thousands in ppm concentration [30]. The 

concentration of oil in PW associated with natural gas ranges between 6-60 mg/l [31]. 
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Another study indicated that the concentration of oil in produced water ranges 

between 40 and 2000 mg/l [32]. Organic acids present in PW are mainly formic acid 

and acetic acid. The concentration of formic acid ranges from 0 up to 68 mg/l, 

whereas acetic acid ranges from 8 up to 5735 mg/l [33]. Moreover, BTEX are 

aromatic compounds that are present in oil and gas products, which can easily escape 

to the atmosphere due to their low boiling point. Dorea et al.[34] reported that 

benzene represents the highest concentration among BTEX solution with a 

concentration that ranges between 0.44-2.80 mg/l. Furthermore, phenols in gas-field 

PW presents in greater amounts compared to oil-field PW. The concentration of 

phenols ranges between 0.36 up to 16.8 mg/l [35, 36].Table 1 shows a typical 

concentration and characteistics of PW.  

Table 1: Typical concentration and characteistics of PW. 

Parameter  Unit  Concentration  

TOC   mg/l 0-1500 

COD  mg/l 0-1220 

pH - 4.3-10 

TSS mg/l 1.2-1000 

Total Oil mg/l 2-565 

BTEX mg/l 0.39-35 

Sulfate  mg/l 2-1650 

Ammonium  mg/l 30-300 

Phenols mg/l 9.7-600 

 

 

The environmental effect of PW is catastrophic. For instance, phenols, and BTEX can 



  

9 

 

harm human causing poisoning, skin and eye irritation, cancer, inhalation injuries, 

kidney damage, leukemia etc., which, on a long-term exposure can lead to death [37, 

38]. Furthermore, PAHs have carcinogenic properties, and cause DNA damage. Marine 

environments are also affected by PAHs as heavy PAHs can cause carcinogenicity and 

problems to fish’s reproductive system [39]. Moreover, heavy metals have constituted 

a great concern due to their toxic  effect on aquatic organisms and birds if accumulated 

in high concentrations [40].  

During oil and gas production, PW represents around 80% of the residuals and its 

amount can reach up to 98% in depleted fields [41]. Moreover, the ratio of water to oil 

is 3:1 and this ratio may increases to reach 12:1 in some cases [42-44]. In 2009, the 

amount of PW generated worldwide was estimated to be more than 70 billion barrels 

per annum  [45]. In Qatar, the amount of PW associated with gas production is 

estimated to be 50,508,816.54 barrels per annum  [46]. The expansion of oil and gas 

industry and their end products wide applications are responsible for the increase in PW 

volume on a yearly basis and consequently increase the amount of contaminants 

released into waterbodies [47]. However, some studies have indicated that the main risk 

is the concentration of PW constituents rather than the volume of PW discharged. 

Therefore, it is important to manage the amount of PW released to the environment as 

well as ensuring that its constituents are kept within the allowable discharge limits.  

PW water management could be through either minimizing its production through PW 

reinjection into the well or release it to the environment to be used for irrigation. 

However, treatment of PW prior to discharge is required.  

2.2 Environmental legislation  

Strict legislations have been set by the authorities for PW discharge. United States 

Environmental Protection Agency (USEPA) set a daily allowable discharge of oil and 



  

10 

 

grease 42 ppm. China set a monthly average limit of oil and grease discharge as well as 

COD of 10 ppm and 100 ppm, respectively [28, 48]. In 2000, the EU water Framework 

Directive (WFD) has adopted zero discharge in order to protect the marine 

environment. Since then, countries around the world started to adopt the zero discharge 

of contaminants in PW. Recently, countries started to adopt new technologies that are 

economically visible to reuse PW in industry or for agriculture after proper treatment 

[48].  

2.3 Treatment technologies  

PW treatment requires series of individual units due to its complex constituents that 

could not be eliminated in a single process. The treatment of PW includes the removal 

of oil, suspended solids, soluble organics, inorganic compounds, bacteria, and 

chemicals. For that, the treatment usually involves a combination of physical, 

biological, and chemical processes. PW treatment process involves three stages: pre-

treatment, main treatment, and final polishing. The pre-treatment stage concerned with 

the removal of large oil droplets and coarse particles. The main treatment stage consists 

of primary and secondary steps in which small oil droplets and particles are removed. 

The primary step is employed through different techniques such as API separators. In 

the secondary step, smaller oil droplets and particles are removed using techniques such 

as biological treatment, membrane, and gas floatation. The polishing step is 

implemented to remove ultra-small particles and droplets using technologies, such as 

reverse osmosis, adsorption, advanced chemical oxidation, and photochemical  [7, 9, 

49]. In this section, insights into the polishing step technologies are discussed, 

highlighting the advantages and disadvantages of each one.   

2.3.1 Chemical treatment technologies   

2.3.1.1 Chemical advanced oxidation  
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Chemical Oxidation working mechanism is based on oxidizing the contaminant in 

wastewater stream to carbon dioxide or transfer the nature of the contaminant into other 

metabolite product. This process is achieved through using strong oxidizers such as 

Ozone (O3), hydrogen peroxide (H2O2), and chloride (Cl2) that interact with the 

contaminant through oxidation-reduction reactions. In addition, other techniques are 

used to increase the removal effect through using ultraviolet (UV) light along with a 

strong oxidizer [50]. Chemical oxidation is able to remove the COD, BOD, organic 

materials, some types of inorganic materials, color and odor from PW. The removal is 

achieved through the release of OH∙ that is able to oxidize the contaminant existing in 

PW. This process does not include wastes’ production, can achieve high water recovery 

rate (~100%), has small footprint, and does not need pre-treatment process. However, 

it is associated with high chemical cost, regular maintenance, and production of 

byproducts that need to be removed [7]. Furthermore, the process is associated with 

high energy consumption if ozone is used as an oxidant [51].  

2.3.1.2 Electrocoagulation  

Electrocoagulation (EC) is a process that combines coagulation, flotation and 

electrochemistry. EC is comprised of an electrolytic cell with anode and cathode 

electrodes immersed in the wastewater. The electrodes are connected to external DC 

power source that apply electrical field. In the EC cell,  the anode dissociates to produce 

metal cations when DC passes and serve as a coagulant. Whereas, on the cathodic 

electrode, hydrogen bubbles are evolved and OH- ions are released into the solution. 

Meanwhile, electrons flow freely to destabilize surface charges of the containments, 

which leads to the formation of large flogs that eventually precipitate [52]. Esmaeilirad 

et al.[53], reported that EC system was able to reduce the concentration of Calcium, 

Magnesium, Strontium, Barium, Boron, and TOC in produced water in a batch mode 
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experiment by 90%, 70%, 61.1%, 74.2%, 74%, and 64% respectively. Another study 

indicated that hardness and COD in PW in a pilot scale were reduced by 85.81% and 

66.64%, respectively [54].  

EC technology offers several advantages including elimination the production of 

secondary pollution and the need for chemical addition. Furthermore, the technology is 

simple and able to produce odorless, colorless and clear effluent [55-57]. On the other 

hand, this technology is limited by high operating cost, regular replacement of anode, 

and fluctuation of EC efficiency due to cathode passivation (precipitation of ion on the 

cathode surface) [55, 56].  

2.3.2 Physical treatment technologies 

2.3.2.1 Electrodialysis  

Electrodialysis (ED) is an electromechanical separation technique that is based on using 

ion-exchange membranes (IEM) within an electrical filed for ion separation. This 

technology is able to treat sea water and wastewater including PW [58]. It has been 

implemented on an industrial scale 50 years ago[59]. ED system consist of IEM, power 

supply, ED stack and auxiliary materials, (electrodes, spacers, Gasket seal).  

The ED system consists of two plates. Inside the ED system, anodic and cathodic 

exchange membrane exist for the separation of charged particles. In addition, series of 

electrodes, spacer and gasket seal. The spacer gasket is used to separate IEM and create 

concentrate and dilute compartments. The membranes act as a barrier to nutrient 

migration in which it allows the ion passage according to its electric charge. 

Furthermore, ED system includes two electronic devices that are responsible on 

converting ions current into an electrons current [58]. Figure 2 shows a schematic 

diagram of ED system.  
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Figure 2: A schematic diagram of Electrodialysis system[60]. 

The concept of ED is based on applying a voltage between cathodic and anodic 

electrodes that is pass through IEM inside the ED cell, which causes the charged species 

to separate from uncharged matter [58].  

ED technology is a promising for wastewater treatment including PW as it offers higher 

water recovery rate compared to RO, ease of operation, long membrane lifetime, 

flexible operating conditions, and eliminates the need for pre-treatment or post-

treatment [58].  However, the high capital and operating cost that mainly from the high 

cost of the IEM limit their application in wastewater treatment. Furthermore, other 

concerns associated with ED are rapid fouling especially with saline streams, non-ionic 

contaminants cannot be removed, and the need for highly skilled and trained labor for 

maintenance and operation [61].  

2.3.2.2 Membrane technology  

Membrane technology is one of the most effective technologies available for 

desalination and wastewater treatment. Water filtration using membrane technology is 

characterized by several features, such as small footprint, ease of operation, low 

operating temperature, and high removal efficiency [13]. Membranes are classified 

according to their pore size into microfiltration (MF), ultrafiltration (UF), 

nanofilteration (NF), and reverse osmosis (RO). MF membranes attain pore size 
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ranging from 0.1-10 𝜇m, which is suitable for most types of bacteria and suspended 

solids removal [62]. This type of membrane is used in pre-treatment stage of PW [63, 

64]. UF membranes have pore size ranging between 0.01 and 0.1 𝜇m in which it is able 

to remove bacteria, proteins, plastics and PW dissolved constituents [65]. NF 

membranes pore size ranging between 0.001 and 0.01 𝜇m. NF membranes can provide 

rejection of divalent ions > 99%. Moreover, NF membranes can reject COD 

contaminants, oil particles, nitrate, and sulfate. However, NF membrane are not able to 

reject sodium and chloride ions [66]. The pore size of RO is <0.001 𝜇m. This 

technology has been proved to be efficient in PW treatment as it is able to reject solutes 

> 99% [67]. More recently, a combination of two membrane systems has been 

implement by several researchers. For instance, Maltos et al.[68], reported the 

performance of Forward osmosis/reverse osmosis (FO/RO) for PW treatment on a pilot 

plant scale. The results indicated that the system reached >99% and >95% rejection of 

all ions and hydrocarbon, respectively.  

Membrane technology is able to produce effluent with excellent quality, occupy small 

footprint, and does not produced secondary products (e.g. sludge). However, membrane 

fouling (accumulation of the particles on membrane surface), and the high capital and 

operating cost are a major concern [69].  

2.4 Adsorption technology  

Adsorption is the adhesion of a substrate in a gas or a liquid phase to the adsorbent 

surface’s functional groups [70]. In wastewater treatment, adsorption technology is 

used extensively, mostly as a polishing step rather than standalone technology. The 

technology is based on using an adsorbent that interacts chemically or physically with 

the water contaminant. The adsorbent can be re-generated and utilized in the adsorption 

process. Compared to the above-mentioned technologies, adsorption is one of the most 
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economically feasible and efficient process that is widely used for wastewater treatment 

applications. The major advantages of adsorption technology are low capital and 

operating cost, high treatment efficiency, ease of operation, and low energy requirement 

compared to other technologies. However, the major drawback is the high cost of 

adsorbents, which can be eliminated by using economical, and highly efficient 

adsorbents [3]. For these reasons adsorption process is widely used in several 

wastewater treatment technologies such as, Total Oil Remediation and Recovery 

(TORR) [71].   

2.5 Adsorbents  

The selection of the suitable adsorbent is a crucial matter as it contributes to the 

adsorption process cost. A suitable adsorbent should have the following characteristics 

[72]: 

(1) High removal capability for wide range of contaminants. 

(2) Environmentally friendly nature.  

(3) Inexpensive.  

(4) Can be regenerated and used for several cycles.  

(5) High stability. 

In this section, the most commonly used adsorbents for PW treatment are discussed, 

highlighting their performance, and physiochemical properties.  

2.5.1 Clay minerals.  

CMs fall under Phyllosilicates family in which their structure consists of one or two 

silica tetrahedral sheets with alumina based octahedral sheets (plate-like structure) [73]. 

The tetrahedral sheets are composed of Si2O6(OH)4 in which each unit consists of a 

silicon atom surrounded by four hydroxyl atoms. Whereas octahedral unit consist of 

Aluminum (Al), magnesium (Mg) or iron (Fe) surrounded by six oxygen or hydroxyl 
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atoms in an octahedral as shown in Figure 3.  

 

Figure 3: Crystaline structure of Clay minerals (a) Octahedral (b) Tetrahedral (re-

drawn from [74]). 

CMs have three surfaces: outer surface, edges and interlayer space between the layers. 

The outer surface and interlayer space are susceptible to alteration through two distinct 

processes: adsorption and ion exchange. Furthermore, CM edges may develop charge 

depending on the environment’s pH that affects the bond of Al-O and Si-O [73].  

CMs including kaolinite (1:1 ), montmorillonite (2:1), bentonite (2:1) as well as illite 

(2:1) are utilized as adsorbents [75]. They have received considerable attention due 

their high adsorption capability and unique physiochemical characteristics.  Among 

clay minerals, bentonite has been reported in previous studies as an adsorbent for 

various types of water contaminants. Bentonite is composed of smectite clay minerals 

such as montmorillonite, and hectorite. The chemical composition of bentonite is 

(Na)0.7(Al3.3Mg0.7)Si8O20(OH)4.nH2O. Its structure consists of three layers, an 

aluminum based octahedral sheet that is surrounded by two tetrahedral silica sheets 

(Figure 4). Bentonite possess a net negative charge due to the isomorphic substitution 

of Al atoms by lower valence elements (Fe and Mg). Furthermore, silica atoms are 

prone to substitution by Al atoms, which contributes to the negative surface charge [73]. 
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Bentonite results from the volcanic ash alteration. It attains a distinct 2D layer structure 

and  excellent properties including ion exchange capacity, high surface area ,and 

charged surface and edges [76]. The interlayer space enable to trap the water 

contaminants within its structure, which is known as swelling capacity [77]. The 

charged edges, large surface area, interlayer spacing, and existence of exchangeable 

ions such as H+, Na+ and Mg+ empower bentonite with good adsorption capability. 

These unique characteristics increase bentonite affinity towards cationic and anionic 

water contaminants removal from aqueous solutions.  

The main drawback of using bentonite, or clay minerals in general, in adsorption 

process is that they have high dispersity in aqueous solutions, which limits their ability 

to be separated and re-generated [19].  
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Figure 4: Bentonite structure [78]. 
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2.5.2 Carbon-based adsorbents.  

Carbon-based adsorbents including AC, ACF and other carbonaceous adsorbents, such 

as graphene, are widely used for water remediation applications. Carbon-based 

adsorbents vary in their adsorption performance due to their variation in surface area, 

porosity, and surface functional groups. AC is widely used as an adsorbent in water 

treatment applications due to its high surface area, good mechanical strength, reactive 

surface, and high stability [79-81]. It is produced from several precursors that results in 

adsorbents with different properties and adsorption efficiency depending on the nature 

of the precursors [82]. AC can be produced via carbonization and activation techniques 

[83, 84]. Carbonization involves exposing the carbonaceous substrate to high 

temperature in the presence of nitrogen gas. Whereby, the activation of AC is achieved 

by two approaches, which are physical activation using oxidative gases such as steam 

or carbon dioxide, or by chemical activation using chemical reagents such as potassium 

hydroxide, potassium carbonate, sodium hydroxide, zinc chloride, phosphoric acid etc.  

AC prepared via physical activation is still a challenge due to its inferior textural 

properties compared to AC prepared by chemical activation method, which possesses 

high specific surface area and pore volume [85]. In addition, applying surface 

modification to AC can potentially enhance its adsorptive performance towards water 

pollutants [86]. The main problem associated with AC is the high cost of production 

and regeneration [87].  

ACFs are microporous materials with negligible mesoporosity, which exhibit a well-

defined porous structure in fibrous form. Despite the fact that ACFs show similar 

properties to AC such as porosity, they exhibit several advantages over AC owing to 

their structure [88]. Similar to AC, ACFs are produced from different precursors such 

as polyacrylonitrile (PAN) [89], coal tar pitch [90], petroleum pitch [91] etc.  
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AC, ACF can be produced via carbonization and activation techniques. However, prior 

to carbonization, a pretreatment is required to improve the yield and the strength of the 

final product [92]. In addition, physical and chemical activation are applied to ACF. 

The main advantage in activation processes is the removal of disorganized carbon, 

which consequently is reflected on the pore distribution. Other carbonaceous 

adsorbents such as graphene and CNTs are widely used for wastewater treatment, 

especially towards organic pollutants owing to their unique structure and 

physiochemical properties such as high pore volume, large specific surface area, and 

surface hydrophobic, and π-π interaction. In addition, they contain a large number of 

oxygen-containing functional groups, which are mainly responsible for their high 

adsorption performance [93]. The main concern associated with carbon-based 

adsorbents is that they are not easy to be separated from aqueous solutions for re-

generation. The separation process is usually implemented through sedimentation 

process or by filter beds [94].  

2.5.3 Magnetic metals oxides  

Magnetic metals oxides such as MnO3, Co3O4, Fe3O4 and NiO2 have been used in 

adsorption processes extensively. They exhibit remarkable properties including, high 

specific surface area, good mechanical and chemical stability, tolerated size, 

biocompatibility, and low toxicity. Moreover, their magnetic properties enable their 

separation from aqueous solution by an external magnet [95]. Magnetic metals oxides 

exhibit good adsorption capability towards various water contaminants. However, their 

performance is poor compared to other adsorbents such as AC, and CMs towards 

organic water contaminants [95]. Therefore, most of the adsorption studies incorporate 

metals oxides to other adsorbents. The main reason is to facilitate the adsorbent 

separation from aqueous solution by an external magnet, and enhance the adsorbent 
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removal capability.   

2.5.4 Modified adsorbents  

Adsorbent modification includes physical and chemical treatment processes are applied 

to enhance the adsorbent structure, functional groups, stability, and morphology [96]. 

Physical modification process involves the application of high temperature that ranges 

between 120 ℃ and 700 ℃. Whereas, chemical modification involves the use of strong 

chemicals, such as acids. These processes contribute to the increase in the adsorbent 

cost and energy requirements, which elevates the overall adsorption process cost. In 

addition, even after the modification process, some adsorbents such as CMs still suffer 

from relatively poor-medium adsorption capacity towards organic water contaminants, 

especially in multipollutant system [97].  

2.5.5 Composites  

In the last decade, the literature witnessed an increasing number of research articles 

related to developing composites for wastewater treatment that exhibit enhanced 

adsorption capacity and physiochemical properties compared to the composites’ 

individual components. For instance, the adsorption capacity of malachite green using 

graphene oxide/sodium montmorillonite composite was triple the adsorption capacity 

of raw montmorillonite and reduced graphene oxide towards the same water 

containments [98-100]. Ahmed et al.[101], reported that incorporation of adsorbents 

results in more stable structure, high removal capability and enhanced pore properties.  

The performance of various types of composites in real PW treatment or oily 

wastewater as representative of PW concentration was reported in a limited number of 

studies. Fe3O4/Bentonite composite was studied for BOD and COD removal with initial 

concentration of 394 mg/L and 1875 mg/L, respectively, which are a good 

representative of BOD and COD content in PW [102]. The study showed that the 
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composite attained a removal percentage of 84.88% and 88.8% for BOD and COD 

respectively. In another study, El-Dib et al. [103], studied the ability of Chitosan 

immobilized Bentonite composite for the treatment of industrial wastewater with initial 

COD of 10,1791 mg/L. The study indicated that the composite was able to reduce the 

COD concentration by 83% and the effluent color by 78% in 3 hours. The performance 

of bentonite with carbonaceous adsorbent for industrial wastewater treatment was 

better. Liang et al. [27], used bentonite/carbon composite for the treatment of alkaline 

wastewater with COD value of 79,834 mg/L. The results showed that the indicated 

composite was able to reduce the COD concentration by maximum 91% in 2 hours. 

Moreover, the composite was regenerated and used for 9 cycles and showed a removal 

percentage > 60% in all cycles.  

The physiochemical characteristics of composites might be enhanced compared to the 

composites’ individual components. For instance Dotto et al.[104], reported that 

chitosan/bentonite composite attained higher mechanical strength compared to raw 

chitosan. In another study, cross-linked chitosan coated bentonite (CCB) attained 

higher thermal stability compared to raw bentonite and chitosan. In addition, CCB 

exhibited porous and irregular surface, whereas, chitosan seemed fibrous, regular and 

loose [105]. The porosity and surface area might also increase after incorporation of 

two adsorbents together. A study confirmed that the porous structure of cellulose-

derived carbon/montmorillonite (CMt) was responsible for rapid and high adsorption 

capability. The composite attained specific surface area of 41.8 m2/g, meanwhile, acid 

activated montmorillonite attained 39.5 m2/g [106].  The pore size of the composite was 

also higher than acid activated montmorillonite. The increase in pore size could be 

attributed to the introduction of carbonaceous materials into the interlayer region, 

destroying some main basal spacing of montmorillonite and caused the formation of 
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new mesopores on the composite. These factors resulted in an increase in the adsorption 

capacity of CMt composite. Xu et al.[107], confirmed that the increase in specific 

surface area enhances the adsorption capacity. The study involved the fabrication of 

graphene oxide/bentonite (BG) composite for toluidine blue removal. The results 

demonstrated that increasing graphene oxide content in the composite from 1wt% to 

2wt%, has increased the specific surface area from 56.8 m2/g to 63.4 m2/g. 

Consequently, the adsorption capacity of the composite was increased from 458.7 mg/g 

to 471.7 mg/g. Table 2 summarizes the adsorption performance of various composites 

towards PW organic constituents.   
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Table 2: The adsorption performance of various composites towards produced water organic constituents.   

 

 

Adsorbent Pollutant Experimental conditions 

Adsorption performance 

Ref. Adsorption capacity 

qm (mg/g) 
Adsorption % 

Fe3O4/Bentonite BOD (394 mg/L) pH (7.5-8.5), Room 

temperature 

- 84.88 [102] 

COD (1875 mg/L) pH (5.5-6.5), Room 

temperature  

- 88.8 

Chitosan immobilized 

Bentonite 

Industrial wastewater 

(COD=10,1791 mg/L) 

298 K, pH=4.76 - 83 [103] 

Lignin xanthateresin–

bentonite 

Doxycycline 

hydrochloride 

298 K, initial concentration (0-

600 mg/L),  

438.75 - [108] 

montmorilonite/ poly 

(vinyl alcohol)/sodium 

dodecyl sulfate aerogel 

Dodecane oil -  23.6 (g/g) - [109] 

Motor oil 25.84 (g/g) - 

Bentonite/carbon alkaline water 

(COD=79,834 mg/L) 

pH= 13.4, temperature 298 K - 91 [27] 
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Adsorbent Pollutant Experimental conditions 

Adsorption performance 

Ref. 

Adsorption 

capacity qm 

(mg/g) 

Adsorption % 

Octadecyl trimethyl ammonium-

Bentonite/Alginate beads 

2,4-

dichlorophenol 

Temperature 297 K, pH= 6.4 392 - [110] 

Hexadecyl trimethyl ammonium-

Bentonite/Alginate beads 

185 

sulfur-doped titanium dioxide 

hollow spheres loaded on magnetic 

bentonite 

bisphenol A Room temperature 77.36 - [111] 

Magnetic molecularly polymers 

(MMIPs) based on kaolinite/Fe3O4 

bisphenol A Temperature 318 K 113.6 - [112] 

magnetic non-imprinted polymers based 

on kaolinite/Fe3O4 

Temperature 298 K 112.4 
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Adsorbent Pollutant 

Experimental 

conditions 

Adsorption performance 

Ref. 

Adsorption 

capacity qm

(mg/g) 

Adsorption % 

Montmorillonite/alginate gel polychlorinated 

biphenyl 

Temperature 298 K - 93 [113] 
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2.6 Adsorbents synthesis methods  

The extensive use of adsorption technology in wastewater treatment and the essential need for low 

cost, effective, and non-toxic adsorbents with specific physiochemical characteristics caused rapid 

development of several synthesis techniques including co-precipitation, hydrothermal, 

solvothermal, ultrasound, and microwave-assisted (MW) method. These methods result in 

adsorbents with different morphology, surface characteristics, physiochemical properties as well 

as different adsorption behavior. This section highlights the most commonly used adsorbents 

synthesis techniques.  

2.6.1 Co-precipitation  

Chemical co-precipitation is the most common used method for adsorbents’ synthesis. In this 

method, the precursors are reduced using reducing agents such as ammonia, and sodium 

hydroxide. The reducing agent’s pH has a strong influence on the final adsorbent properties, 

structure, and adsorbent size. In addition, the adsorbent size can be controlled by temperature and 

ionic strength [114]. During adsorbent synthesis using co-precipitation method, the adsorbent 

particles might be agglomerated, especially for magnetic metal oxides nanoparticles. The 

agglomeration of nanoparticles reduces the uptake capability of the adsorbent and thus limits their 

utilization in the adsorption process. Therefore, co-precipitation is recently combined with 

ultrasound synthesis method to reduce the agglomeration of the nanoparticles over a support layer 

[102].  

2.6.2 Hydrothermal  

Hydrothermal fabrication technique was developed in the 19th century. In this method, the 

precursors are placed inside a rector under high temperature and pressure for several hours. This 
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method is based on the reaction of the precursor mixture in the vapor phase with a solid material, 

which eventually leads to the deposition of small particles. The adsorbents fabricated through this 

method are smaller than those produced by co-precipitation method [114]. Furthermore, 

nanocrystals with high crystallinity are produced through this method with the desired size and 

shape [115]. However, the major disadvantages of this method is that the synthesis process is 

difficult to control and the limitation of reliability and reproducibility [116].  

2.6.3 Solvothermal  

The method is based on the preparation of nanomaterials in presence of water or other organic 

solvent. The reaction occurs in a pressure vessel in which the solvent is heated above its boiling 

point. The major advantage of this method is the preparation of high quality crystallized 

nanocrystals with high degree of crystallization [117].  

2.6.4 Microwave-assisted  

MWs are an electromagnetic radiation that have a wavelength ranging between 1 mm and 1 m and 

frequency between 300 MHz to 300 GHz. In industrial applications, the most common used 

frequencies for heating purposes are 915 MHz ,2.45 GHz, 5.8 GHz, and 22.125 GHz [118]. MW 

technology has been used in material science and processing including powder synthesis and 

polymers synthesis [119-121]. In particular, MW technology as a heating source has been used in 

adsorbents synthesis instead of conventional heating due to: (i) low energy consumption and 

processing time (ii) rapid and simple irradiation process (iii) uniform temperature throughout the 

material (iv) enhanced diffusion process [122]. In addition, MW energy reduces the risk of 

overheating that subsequently leads to the material combustion (e.g. AC) [123]. A schematic 

diagram of microwave heating system is shown in Figure 5. 
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Figure 5: Schematic diagram of Microwave system(re-drawn from [124]). 

In conventional heating technique, the material surface is heated first followed by the transfer of 

heat inwards. This occurs by heat transfer between objects by conduction, convection, and 

radiation. Whereas, in MW heating, the material couples with MW and absorbs the 

electromagnetic energy volumetrically. Then, energy is transformed into heat within the material 

and then transfers outwards as shown in Figure 6. As a result, the morphology and the 

physicochemical properties of the adsorbent are enhanced significantly compared to adsorbents 

prepared by conventional heating techniques [125-127]. 
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Figure 6: Heat flow in direction in Microwave and conventional heating systems [128]. 

The MW heating system consists of four basic components as shown in Figure 7, which are: power 

supply, magnetron, applicator and waveguide [118]. In this system, the material is placed in a 

metal applicator that varies according to the process specification and heated by MW energy that 

is directed by the waveguide. During the heating process, the material is moved through the oven 

by an insulated conveyor belt for better energy distribution [128].  

 

Figure 7: Microwave heating system [118]. 

The literature shows a lack of studies related to PW treatment using microwave-synthesized 

adsorbents. Nevertheless, extensive number of studies utilized microwave synthesized adsorbents 

for organic pollutants removal. Several authors studied the use of MW irradiation as an alternative 



  

31 

 

energy source for polymer-based adsorbents synthesis. Masinga et al. [129], compared the 

morphology and the adsorptive behavior of B-cyclodextrin/N-doped carbon nanotube 

polyurethane nanocomposite(N-CNTs/b-CD) synthesized by conventional and microwave heating 

techniques. It was found that the MW preparation of N-CNTs/b-CD reduced the synthesis time 

compared to conventional method from 24 hr to 10 minutes. A visual observation reveals that N-

CNTs/b-CD synthesized using MW was soft and powdery. Whereas N-CNTs/b-CD composite 

prepared using conventional heating technique was in granular form and attained a coarse-like 

structure. In addition, the MW synthesized composite was less densely packed and had high 

surface area compared to conventionally prepared composites, which allowed more pollutant to be 

trapped. The adsorption experiment using both composites showed that MW synthesized 

composite had higher removal capability of nitrophenol even at ng/L pollutant concentration. 

Thermogravimetric analysis (TGA) revealed that MW synthesized N-CNTs/b-CD composite 

attained a slight shift in the decomposition. However, due to the use of low temperature in water 

purification, it is not expected to be an issue.  Furthermore, the FTIR analysis showed that both 

composites showed identical surface functional group. These results indicate that MW irradiation 

does not affect the polymer’s surface functional group, but it did affect the surface morphology 

and the adsorbent adsorptive capability. MW provides uniform heat distribution that might cause 

an enhancement in pore structure, surface properties and adsorbent stability. However, the 

microwave irritation time and power should be optimized to avoid collapse in the adsorbent 

morphology. In addition, the setup area should be secured, and proper safety measurements should 

be considered to avoid human body exposure to microwaves as they can damage the body tissues. 

Consequently, these drawbacks limit the application of MW technology in adsorbents synthesis. 

Table 3 summarizes the advantages and disadvantages of using MW in adsorbents preparation.  
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Table 3: The advantages and disadvantages of using microwave heating in absorbents preparation. 

Advantages Disadvantages Ref. 

• Results in more homogeneous, even, 

and highly porous structure. 

 

• Might cause the absence of some 

functional groups. 

[130-

132] 

• Homogenous distribution of 

nanoparticles over a support surface. 

• Decrees in thermal energy required for 

adsorbent synthesis 

• Might cause a collapse in the 

carbonaceous material pore structure 

at high microwave power due to 

carbon calcination, which decreases 

the adsorbent pore volume. 

[133-

135] 

• Prevent the aggregation of reduced 

graphene oxide sheets.  

• Results in polymeric adsorbents with 

less densely packed structure. 

• Might Increase the material purity. 

• Minimize the synthesis time to few 

minutes. 

• Minimize defects in polymeric 

adsorbents integrity. 
 

• Microwave heating power and 

irritation time should be optimized to 

avoid a collapse in the adsorbent 

morphology and structure. 

• The setup area should be secured, and 

proper safety measurements should be 

considered to avoid human body 

exposure to microwaves as it can 

damage the body tissues.  

[136, 

137] 

• No major changes in the adsorbent 

morphology after several regeneration 

cycles.   

• Might increase the adsorbent specific 

surface area. 

• Increase the adsorbent removal 

capability.  

• Enhances the reaction rate and the 

degree of functionalization. 

- [129, 

138-

141] 
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2.7 Adsorption isotherms  

The relation between the equilibrium contaminant concentration in aqueous media and 

the equilibrium adsorption amount on the solid phase at constant temperature and pH 

is referred as isotherm. Generally, adsorption isotherm models, which are mathematical 

models that are based on certain assumptions, provide insights into the process of a 

substance release from aqueous media to a solid phase. From these models, adsorption 

information including the adsorption mechanism, adsorption capacity, degree of 

affinity of the adsorbents, and the adsorbent surface properties can be obtained [142, 

143].  

Several adsorption isotherm models were proposed over the years using three 

fundamental approaches: kinetics in which the rate of adsorption and desorption are 

equal, thermodynamics, and potential theory. The main difference between the 

isotherm models is the derivation in more than one approach, which leads to difference 

physical interpretation of isotherm model parameters [143]. The most commonly used 

adsorption models for the removal of PW organic constituents are described below.  

2.7.1 Langmuir model 

Langmuir model was initially developed to describe the adsorption of gaseous 

components onto activated carbon (solid phase). Later, it was extended to describe the 

relation between liquid phase and solid phase at equilibrium. The model assumes a 

monolayer adsorption in which the adsorption can only occur on a fixed number of sites 

that are identical and equivalent. In addition, the model assumes that each molecule of 

adsorbate possess constant enthalpy and adsorption activation energy [144]. Langmuir 

mathematical model is described by Equation 1.  

𝑄𝑒 =
𝑞𝑚𝐾𝐿𝐶𝑒

(1+𝐾𝐿𝐶𝑒) 
                  1 

Where, KL (L/mg) and qm (mg/g) represent the Langmuir constant, and the maximum 
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adsorption capacity, respectively.  

One of the most important features of Langmuir isotherm is a constant called separation 

factor, which is expressed as follows [145]:  

𝑅𝐿 =
1

1+𝐾𝐿𝐶0
                          2 

The separation factor (RL) indicates the type of the adsorption according to the RL value 

compared to 1 in which: (1) Unfavorable when RL>1, (2) Linear when RL =1, (3) 

favorable when 0 < RL <1, (3) Irreversible when RL =0. 

2.7.2 Freundlich model 

Freundlich isotherm model assumes the adsorbent surface is heterogeneous.  

The major problem associated with this model is the lack of thermodynamic 

fundamentals as it does not reduce to Henry’s law at low concentration. The model can 

be represented by Equation 3: 

𝑄𝑒 = 𝐾𝑓 . 𝐶𝑒
1/𝑛

                                                  3 

Where, n is the Freundlich empirical constant and it indicates the adsorption efficiency. 

Kf (mg.g-1)(L.mg-1)1/n is associated with the adsorption capacity. 

2.7.3 Sips model  

Sips isotherm model is a combination of Langmuir and Freundlich model that is applied 

for describing the adsorption on a heterogeneous adsorbent surface and eliminate the 

restriction of limited adsorbate concentration range implied by Freundlich mode. At 

low concentration range, the model reduces to Freundlich model; while at higher 

concentrations, sips model predicts Langmuir monolayer adsorption. The model is 

described by Equation 4.  

𝑄𝑒 =  
𝑞𝑚𝑏𝐶𝑒

1/𝑛

1+𝑏𝐶𝑒
1/𝑛                                       4 

Where b (L/mg) is related to energy of adsorption and n is sips isotherm constants.   

2.8 Adsorption kinetics  
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Adsorption kinetics are vital in determining the rate at which the contaminant is 

removed from a solution by the adsorbent at constant temperature. In addition, 

adsorption kinetic models (e.g. intra-particle diffusion model) can identify the 

adsorption-controlling step.  The most commonly used kinetics models are pseudo-

first-order (PFO), pseudo-second-order (PSO) and intra-particle diffusion model. 

2.8.1 Pseudo first order  

PFO model assumes that the adsorption rate is proportional to the number of available 

sites. This model is described by Equation 5 in linear form, 

𝐿𝑛(𝑞𝑒 − 𝑞𝑡) = ln(𝑞𝑒) − 𝑘1𝑡                  5 

Where qt (mg/g) corresponds to the adsorption capacity at time t and k1 (min-1) is the 

first order rate constant. 

2.8.2 Pseudo second order  

PSO model is based on the adsorption equilibrium capacity and it is described by 

Equation 6. 

𝑡

𝑞𝑡
=

1

𝑘2
2𝑞𝑒

+
𝑡

𝑞𝑒
                                              6 

Where, k2 (g/mg.min) is the second-order rate constant. 

2.8.3 Intraparticle diffusion model  

Intraparticle diffusion model is an important model as it indicates the rate controlling 

step during the adsorption process. The model can be expressed using the following 

equation: 

𝑞𝑡 =  𝑘𝑖√𝑡 + 𝐶                                    7 

Where, ki (mg/g min0.5) is the rate constant and C (mg/g) is the intercept. 

2.9 Akaike Information Criterion  

AIC method compares between different models and identify the best model that fits 
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the experimental data. The best model attains the lowest AIC value and it is expressed 

as [146, 147]:  

𝐴𝐼𝐶 = 2𝑝 + 𝑁 ln (
𝑆𝑆𝐸

𝑁
)                                                                                                     8 

Where p and N are the degree of freedom and sample size, respectively. Small sample 

size (N/P<40) implies the use of second-order AIC (𝐴𝐼𝐶𝑐), which is defined as [147]:  

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + [
2𝑝(𝑝+1)

𝑁−𝑝−1
]                                                                                                    9 

The model that attains the most statistical confidence is the one that has the highest 

value of information criterion weight (𝑤𝑖) and it is defined as [147]:  

𝑤𝑖 =
exp (−

1

2
∆𝐴𝐼𝐶𝑐(𝑖))

∑ exp (−
1

2
∆𝐴𝐼𝐶𝑐(𝑖))𝑅

𝑖=𝑟

                                                                                                     10 

Where ∆𝐴𝐼𝐶𝑐 is the difference between the information criterion value of i model 

relative to the best candidate model and it is expressed as:  

∆𝐴𝐼𝐶𝑐 = ∆𝐴𝐼𝐶𝑐(𝑖) − ∆𝐴𝐼𝐶𝑐(min)                                                                                       11 

2.10 Performance in fluidized bed reactor  

Fluidized bed reactor (FBR) is used extensively in wastewater treatment, especially in 

advanced oxidation and biological processes. The working mechanism of FBR involves 

the suspension of particles in a fluid (liquid phase medium). This is achieved by passing 

the fluid with a superficial velocity that is enough to suspend the particles.  This process 

facilitates uniform temperature distribution, good mixing, and high mass transfer rate. 

Besides, FBR operating cost is relatively low, which caused FBR to become one of the 

most important reactor systems in chemical and biological applications [148, 149].  

Adsorption is conducted in a batch, and/or fixed bed column [150, 151]. However, 

problems such as non-uniform temperature distribution, dead zones in which the 

contact between adsorbent and the adsorbate is eliminated, clogging are encountered. 

These drawbacks are eliminated in FBR, which caused growing interest on the 
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application of FBR in adsorption. Zhou et al.[152], studied the removal of phenol using 

SiO2/AC composite in a fluidized bed integrated with flocculation system. The results 

showed the adsorption in fluidization regime was higher than fixed bed regime at low 

hydraulic retention time (HRT) (below 50 minutes).  In addition to HRT, the adsorption 

depends on initial solution concentration, gas and liquid velocity, fluidized bed particle 

size, as well as the column specification, such as internal diameter [152-154]. The 

performance of adsorbents in PW consistent removal is presented in Table 4. 

 

Table 4: Perfomance of fluidized bed reactor in organic polluants removal by 

adsorption. 

Adsorbent  Pollutant   Operational condition  Removal %  Ref.  

SiO2/AC Phenol  UL= 4-8 mm/s 

HRT= 7 s 

80% [152] 

AC Phenol  Ug=0.0219 m/s  95 % [155] 

AC  Phenol  Q= 0.15-0.35 dm3/min  

Umf = 0.0085 m/s 

62 % [156] 

Formulated clay-lime  Congo red  Qa= 1 L/min 99% [157] 

Q: liquid flow rate, UL: liquid superficial velocity. HRT hydraulic retention time, Ug: 

gas superficial velocity, Umf: minimum fluidization velocity, Qa: air flow rate    
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CHAPTER 3: MATERIALS AND METHODS  

3.1 Materials and chemicals  

Ferric chloride (FeCl3.6H2O) (99%, purity), graphite powder (C) (99%, purity), sodium 

nitrate (NaNO3) (99.5%, purity), potassium permanganate (KMnO4) (99%, purity), 

hydrogen peroxide (H2O2) (30%, purity), hydrochloric acid (HCl) (35-38%, purity), 

sulfuric acid (H2SO4) (98%, purity), ferrous chloride (FeCl2.4H2O) (99%, purity), and 

ammonia 25% (NH4OH) were supported from Research-Lab, India. Diesel oil was 

purchased from Local petrol station in Doha, Qatar. MWCNTs were obtained from 

NanoKarbon Co., Ltd,Korea. ethyle-enediamine-tetrakis-tetrol (≈100%, purity) (non-

ionic surfactant) and raw-Bentonite were purchased from Sigma-Aldrich.  

3.2 Adsorbents preparation  

3.2.1 Synthesis of iron oxide nanoparticles  

Fe3O4 NPs were synthesized using the conventional Co-precipitation method as 

described by N.Balaji et al. [158]. Briefly, 1.72 g of ferric chloride (FeCl2.4H2O) and 

4.72 g of ferrous chloride (FeCl3.6H2O) was dissolved in 80 ml of distilled water under 

nitrogen environment. After that, 10 ml of ammonia (25%) were added to the final 

solution and stirred for 1 hr under nitrogen environment at 80 ℃. Finally, the magnetic 

nanoparticles were dried in a Vacuum oven.  

3.2.2 Synthesis of graphene oxide 

Graphene oxide was prepared using modified Hammers method [159, 160]. In brief, 5 

grams of graphite and 2.5 grams of NaNO3 was dissolved in 115 mL H2SO4 and the 

mixture was stirred for two hours at room temperature. After that, 20 g of KMnO4 was 

added to the solution in an ice bath to maintain the overall temperature at 15 ℃.  The 

mixture was left under stirring for 2 more hours during which the color of the solution 

gradually turned from black to greenish black. Then, the temperature of mixture was 
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raised to 35 ℃ and stirred for an additional hour. Afterwards, 230 mL of distilled water 

was slowly added to the solution under continuous mixing while maintaining the 

temperature was maintained at 90 ℃. Finally, the solution was diluted with 250 mL, 

followed by the addition of 10 mL of 30% H2O2 that caused the solution color to turn 

into yellow. The product was then washed with 5% HCl to removed imputers, and left 

overnight to settle down. Finally, the product was washed several times till the pH 

reaches near neutral, centrifuged and freeze-dried to obtain graphene oxide powder.  

3.2.3 Synthesis of iron oxide/Bentonite composite  

Fe3O4/Bentonite was prepared using ultrasound assisted co-precipitation method, 

following the procedures with adjustments reported by Khatamian et al. [161]. Briefly, 

solution A was prepared by dissolving 2.5 grams of ferrous chloride (FeCl2.4H2O) and 

1.5 grams of ferrous chloride (FeCl3.6H2O) in 100 ml of distilled water under 

continuous stirring in a Nitrogen environment. Solution B was prepared by dispersing 

2 g of raw bentonite in 15 ml of ammonia (25%) at a temperature of 50 ℃. Generally, 

Ammonia and sodium hydroxide (NaOH) are used as reducing agents in co-

precipitation. However, Ammonia is preferred as it is a better stabilizer than sodium 

hydroxide (NaOH) and help in the growth of nanoparticle unlike NaOH [162].Then 

solution A was added gradually  to solution B and left under continuous stirring for 1 

hr. The obtained mixture was moved to an ultrasonic bath for 3h. The synthesized 

composite material was separated using a magnet and washed with distilled water and 

ethanol. This process was repeated 3-5 times. Finally, the magnetic nanocomposite 

placed in a vacuum oven to dry.  

3.2.4 Synthesis iron oxide/bentonite/reduced graphene oxide  

Fe3O4/Bent/rGO was fabricated using co-precipitation method. Solution I was prepared 

by dissolving 2.5 g of (FeCl2.4H2O), and 1.5 g of (FeCl3.6H2O) in 100 ml of distilled 
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water, under stirring at 60 ℃. Solution II was prepared by dispersing 0.2 grams and 0.1 

grams of GO and bentonite, respectively, in 100 ml distilled water for 30 minutes at 50 

℃ by the application of ultrasound. Then, solution II was added to solution I under 

stirring. The temperature of the solution was raised up to 80 ℃. Then, 20 ml of 

ammonia (25%) was added to the mixture. The mixture was left for 3 hours for the 

reaction to occur and the final product was separated by a magnet and washed several 

times with distilled water and ethanol.  Finally, the obtained nanocomposite was dried 

in a under vacuum at 70 ℃. 

3.2.5 Synthesis of iron oxide/bentonite/multiwall carbon nanotubes  

Similar to Fe3O4/Bent/RG, Fe3O4/Bent/MWCNTs was fabricated using the same 

procedure expect dispersing commercial MWCNTs instead of GO in solution II. 

3.1 Adsorbents characterization  

The surface morphology was visualized via Scanning Electron Microscopy (SEM) 

(Nova Nano SEM 450, USA) coupled with an energy-dispersive spectrometer (EDS) 

to reveal the surface elemental composition. The morphology within the composite was 

observed using transmission electron microscope (TEM) (TECNAI G2 TEM, TF20). 

The surface functional group before and after oil adsorption was detected by Fourier 

Transform Infrared Spectroscopy (FTIR) using Perkin Elmer spectrum one analyzer.  

The structure of the crystalline material was detected by X-ray diffraction (XRD) 

patterns using Rigaku MiniFlex-600 ° instrument. The composites thermal stability was 

tested using Thermogravimetric analysis TGA Q500 TA instrument (USA).  The 

samples were heated from 30℃ to 850℃ at a heating rate of 10 ℃/min. The BET 

surface area and pore volume were conducted using Brunauer Emmett Teller (BET, 

Micromeritics, Tristar II series). 

3.2 Synthesis of produced water 
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Water-in-oil emulsion solution was prepared by mixing deionized water with a 

surfactant followed by adding diesel oil droplets. The solution was homogenized for 20 

minutes at temperature of 296 K. The concentration of oil was varied from 20 to 160 

mg/L [163]. The ratio of oil droplets and surfactant were adjusted to obtain the intended 

concentration.  

3.3 Adsorption experiments  

The adsorption experiments were conducted by varying adsorbent dosage, solution pH, 

oil initial concertation and contact time at 200 rpm rotational speed, temperature of 303 

K. After experiment completion, the adsorbents were separated by external magnet and 

samples were analyzed using Shimadzu TOC 5000 analyzer. All experiments were 

conducted in triplicate form for data accuracy.  Figure 8 shows the experimental 

procedure.  

 

 

Figure 8: The adsorption experiment procedure. 

The adsorbent adsorption capacity in mg oil/g composite was calculated using Equation 

12:  
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𝑄𝑒 =
𝐶𝑜−𝐶𝑒

𝑚
𝑉                             12 

Where, C0 is the initial concentration (mg/L) and Ce is the equilibrium concentration 

(mg/L). m is the mass of the nanocomposite (grams), and V is the water-in-oil solution 

volume (L). 

The removal efficiency was evaluated using Equation 13.    

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 % =  
𝐶𝑜−𝐶𝑒

𝐶𝑜
𝑥100       13 

3.4 Fluidized bed experiments  

A laboratory scale fluidized bed made of Pyrex column with internal diameter of 25 

mm and height of 202 mm was used. The fluidized bed was equipped with porous gas 

distributor plate that is connected to an air pump from the bottom of the column. The 

column was operating at atmospheric pressure and room temperature (297 K) in a batch 

mode experiment (without regeneration column). The experimental was conducted 

under pH 6.5, air flow 24 L/min for 180 minutes. Figure 9 shows the fluidized bed 

structure used.  
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Figure 9: Fluidized bed setup. 
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CHAPTER 4: RESULTS AND DISCUSSION  

4.1 Characterization  

4.1.1 X-ray diffraction  

The XRD pattern for Fe3O4 NPs, raw bentonite, Fe3O4/Bentonite, Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs are presented in Figure 10. For raw bentonite, montmorillonite 

is the main phase exist with characteristic peaks 2θ = 7.26°, 19.75° ,21.87°, 29°, 

35°,55°, and 62.9°. In addition, other phases including Plagioclase, Quartz, Gypsum, 

Kaolinite and Illite present as impurities [102, 164]. The absorption peaks of Fe3O4 NPs 

are in 2θ = 30.24°, 35.62° ,43.26°, 53.56°, 57.12°, and 62.78°. These values correspond 

to (220), (311), (311), (400), (422), (511) and (440) planes. The observed XRD pattern  

indicate that Fe3O4 NPs possess face-centered cubic lattice (fcc) crystal structure [165]. 

After loading Fe3O4 NPs onto the surface Bentonite, XRD patterns show only peaks of 

Fe3O4 nanoparticles (30.24°, 35.62°, 43.26°, 53.56°, 57.12°and 62.78°) with no other 

peaks which confirms that Fe3O4 NPs cover the entire Bentonite surface. For 

Fe3O4/Bent/rGO, the XRD pattern shows obvious peaks at 2θ= 7.26°, 19.75°, and 

21.87°, which are for bentonite; while, the absorption peaks at 2θ= 30.24°, 35.62°, 43.3°, 

53.56°, 57.5° and 62.9° are for Fe3O4 NPs. The absorption peak at 2θ= 26.25° 

corresponds to the presence of reduced graphene oxide [166]. These results affirm the 

successful synthesis of Fe3O4/Bent/rGO composite. For Fe3O4/Bent/MWCNTs, the 

XRD pattern shows peaks similar to Fe3O4/Bent/rGO that correspond to the existence 

of Fe3O4 NPs and bentonite, but with less intensities. The peaks observed at 2θ= 28.8° 

indicate the presence of MWCNTS [167]. The slight spikes of Fe3O4/Bent/rGO sample 

are observed due to the agglomeration of many Fe3O4 particles on the surface of rGO, 

which caused a growth on these particles. However, few smaller particles of Fe3O4 with 

less agglomeration attached on MWCNTs surface, which had no effect on their overall 
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size observed in TEM and EDX analysis. Overall, the lattice strain was one of the major  

factor affecting nanoparticle synthesis and crystal growth [168].
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Figure 10: XRD pattern for Fe3O4, raw bentonite, Fe3O4/Bentonite, Fe3O4/Bent/rGO, and Fe3O4/Bent/MWCNTs.  
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4.1.2 Thermogravimetric analysis  

The thermal stability of all composites was performed using TGA. As shown in Figure 

11, the thermogram of Fe3O4/Bent/rGO showed a continuous decrease in the weight 

loss (19%) over temperature range 30℃-770℃ followed by slightly constant thermal 

stability. This could be attributed to the dehydration and the removal of oxygen present 

on rGO surface at temperature below 200 ℃. Above 200 ℃, the weight loss is 

attributed to the gasification of carbonadoes materials as a result of rGO oxidation and 

the transformation of Fe3O4 to Fe2O3 and Fe(OH)3. The sudden decrease in weight loss 

at 435 ℃ might be due to the degradation of carbon material intercalated with bentonite 

[169]. The thermogram of Fe3O4/Bent/MWCNTs displayed a dehydration weight loss 

(7%) in temperature range 30℃-100 ℃ followed by a slightly constant thermal stability 

up to 600 ℃. Finally, a gradual weight loss (2%) continued up to 850 ℃, which could 

be due to the transformation of Fe3O4 to Fe2O3 and Fe(OH)3. For Fe3O4/Bentonite, the 

composite attained showed continuous decrease in weight loss (~12%) up to 

temperature of 700 ℃, which could be due to the transformation of Fe3O4 to Fe2O3 and 

Fe(OH)3. After that, the composite attained constant thermal stability up to temperature 

of 850 ℃. Overall, Fe3O4/Bent/rGO showed a better thermal stability over temperature 

range 30℃-250 ℃ [170]. From these results, it can be concluded that the combination 

of  Fe3O4 NPs and MWCNT lead to positive synergism causing the composite 

(Fe3O4/Bent/MWCNTs) to exhibit higher temperature stability compared to 

Fe3O4/Bent/rGO and Fe3O4/Bentonite [171]. This is confirmed by the Fe amount 

presents in EDX analysis and Fe3O4 NPs shown in TEM images indicating the presence 

of less amount of Fe3O4 NPs on Fe3O4/Bent/MWCNTs composite, causing it to exhibit 

better thermal stability at higher temperatures.  
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Figure 11: TGA specturm  for Fe3O4/Bentonite, Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs.    

4.1.3 Scanning electron microscope/ Energy-dispersive X-ray spectroscopy  

The SEM images are used to observe the surface structure, morphology, uniformity, 

and distribution of the samples. Figure 12 shows the SEM images for rGO, bentonite, 

Fe3O4 NPs, Fe3O4/Bentonite , Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs at a different 

magnitude along with the elemental analysis on the surface presented in Table 5. 

Carbon (C), oxygen (O), and iron (Fe) are the main elements existing in all composites. 

The existence of Fe3O4 NPs is indicated by the existence of elements O and Fe. 

Moreover, the existence of the carbonaceous materials on bentonite surface are 

indicated by elemental Carbon. The EDX analysis also indicates the existence of silica 

(Si), Aluminum (Al) and magnesium (Mg) in all composites, which are related to 

80

85

90

95

100

105

0 100 200 300 400 500 600 700 800 900

W
ei

gh
t 

%

Temperature (℃)

Fe3O4/Bent/MWCNTs

Fe3O4/Bent/rGO

Fe3O4/Bentonite



  

49 

 

bentonite. In addition, the EDX analysis of Fe3O4/Bentonite indicated the presence of 

titanium (Ti) and Sodium (Na) elements, which do not present in other composites.  

These elements are constituents of bentonite clay that present in small quantities. Their 

absence in other composites reveal the presence of rGO, MWCNTs and Fe3O4 NPs on 

the composites surface in a considerable amount. Moreover, the existence of Na and 

absence of calcium (Ca) in all composites reveals that the bentonite is sodium-based, 

which was also confirmed by the XRD analysis.  

Figure 12 shows the SEM for rGO, raw bentonite, Fe3O4 NPs, Fe3O4/Bentonite, 

Fe3O4/Bent/rGO, and Fe3O4/Bent/MWCNTs. The SEM image shown in Figure 12a 

indicate that rGO sheets are thin and possess wrinkled surface structure with distinct 

edges. On the other hand, bentonite is rock-like structure with a rough surface (Figure 

12b). Moreover, Figure 11c shows the agglomeration of Fe3O4 NPs, which could be 

attributed to their high surface energy they attain, as a result of large surface-to-volume 

ratio [172]. Another reason could be the strength of the magnetic force between the 

particles [173]. Figure 12d shows the SEM images of Fe3O4/Bentonite confirming the 

successful decoration of bentonite with Fe3O4 NPs.  

The SEM image of Fe3O4/Bent/rGO composite is shown in Figure 12e and 12f. rGO is 

believed to be formed on the surface of bentonite as indicated by the wrinkled edge 

structure and/or intercalated into bentonite layers [107]. It is worth noting that rGO 

sheet formed due to the application of high temperature during Fe3O4/Bent/rGO 

synthesis, which caused the transformation of Graphene oxide (GO) into rGO sheet 

[160, 174]. Similarly, the SEM images of Fe3O4/Bent/MWCNTs indicate that bentonite 

acts as a support for Fe3O4 NPs and MWCNTs (Figure 12g and h). In addition, it can 

be observed that MWCNTs are distributed over bentonite surface without any 

agglomeration. The SEM images of Fe3O4/Bentonite, Fe3O4/Bent/rGO and 
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Fe3O4/Bent/MWCNTs show that Fe3O4 NPs were formed randomly on rGO, bentonite, 

and MWCNTs surface with obvious agglomerations, which is also confirmed by the 

TEM images shown in Figure 13.  

Table 5: EDX analysis for Fe3O4/Bentonite/ Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs.  

 

 

 

 

 

 

 

 

Element Fe3O4/Bentonite   Fe3O4/Bent/rGO Fe3O4/Bent/MWCNTs 

C 14.44 35.63 64 

O 31.35 41.23 23.21 

Mg 0.17 0.43 0.16 

Al 0.99 1.39 0.68 

Si 2.11 3.15 1.93 

Cl - 0.69 0.2 

Fe 49 18.49 9.82 

Na 0.32 - - 

Ti 0.05 - - 
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Figure 12: SEM images (a) rGO at 50 𝜇m  (b) Bentonite at 50 𝜇m  (c) Fe3O4 NPs at 0.5 𝜇m(d) Fe3O4/Bentonite at 3 𝜇m (e) Fe3O4/Bent/rGO at 

5𝜇m (f) Fe3O4/Bent/rGO at 3𝜇m (g) Fe3O4/Bent/MWCNTs at 5𝜇m  (h) Fe3O4/Bent/MWCNTs at 3𝜇m
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4.1.4 Transmission electron microscopy  

Figure 13 shows the TEM images for Fe3O4 NPs, Fe3O4/Bentonite, Fe3O4/Bent/rGO, 

and Fe3O4/Bent/MWCNTs. It can be observed that Fe3O4 NPs are agglomerated as was 

indicated by the SEM images due to their high surface energy (Figure 13a). After 

loading Fe3O4 NPs onto bentonite clay, it can be observed that Fe3O4 NPs are uniformly 

distributed on bentonite clay, which is due to the application of ultrasound waves during 

synthesis. The use of ultrasonic waves causes the particles to disperse due to cavitation 

and explosion process of bubbles that results from the high shear stress applied on the 

particles. Consequently, the process of cavitation can accelerate the sild particles to 

move with high speed and the resultant collisions can potentially produce significant 

changes in the morphology [173]. Additionally, the particle size of iron oxide 

nanoparticles on bentonite’s surface are in the range of an average value of 13.55 nm. 

While Fe3O4 NPs at 100 nm average diameter attained a value of 13.65 nm.  This 

indicates that ultrasound waves have a slight effect on the particle size, yet they 

significantly affected the distribution of iron oxide on bentonite surface. 

Unlike Fe3O4/Bentonite, Fe3O4 NPs were agglomerated in Fe3O4/Bent/rGO, and 

Fe3O4/Bent/MWCNTs composites because the use of conventional co-precipitation 

method as the preparation method. The size of Fe3O4 NPs over Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs were 11.6 nm and 8.83 nm, respectively. These values are 

smaller than Fe3O4 NPs size formed over Fe3O4/Bentonite composite. Although the 

same amount of precursors were used for the preparation of all composites, the amount 

of Fe3O4 NPs existing on Fe3O4/Bent/MWCNTs surface is less than the amount present 

in Fe3O4/Bent/rGO and Fe3O4/Bentonite composites. This fact is indicated by the 

amount of Fe and O in EDX analysis (Table 4) and further observed in the TEM images 

as well (Figure 13).   
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Figure 13: TEM image (a) Fe3O4 NPs at 100 nm (b) Fe3O4/Bentonite at 100 nm (c) Fe3O4/Bent/rGO at 50nm (d) Fe3O4/Bent/rGO at 100nm (e) 

Fe3O4/Bent/MWCNTs at 100 nm (f) Fe3O4/Bent/MWCNTs at 50 nm. 

a b c 

d e f 
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4.1.5 Brunauer Emmett Teller  

The BET analysis for Fe3O4/Bentonite, Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs is 

shown in Table 6. It is observed that Fe3O4/Bent/MWCNT attained higher BET surface 

area and pore volume compared to Fe3O4/Bent/rGO, which is expected to yield an 

enhancement in oil uptake. Generally, surface area and pore volume are important 

factors that influence the adsorbent uptake capacity. This is because surface area 

determines the number of effective collisions between the adsorbent and the 

contaminant [175], whereas higher pore volume allows to trap more contaminants 

within its pores. In addition, both adsorbents attained higher surface area compared to 

Fe3O4/Bentonite composite reported by Khatamiana et al. [102], which indicates that 

both composites are expected to attain better adsorption performance. 

Table 6: BET analysis of the synthized composites.  

Adsorbent 
BET surface 

Area (m2/g) 

total pore 

volume (cm3/g) 

Average pore 

radius (based on 

BHJ) (nm) 

Fe3O4/Bentonite [102] 44.82 - - 

Fe3O4/Bent/rGO 145.336 0.52816 7.27 

Fe3O4/Bent/MWCNTs 156.26 0.85848 10.99 
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4.2 Adsorption results  

4.2.1 Performance of iron oxide/Bentonite  

Fe3O4/Bentonite is reported in the literature, but it has not been reported emulsified oil 

adsorption. Therefore, the adsorption experiments were carried out in order to compare 

the adsorptive performance of Fe3O4/Bentonite composite with the novel composites 

developed in this work.  

4.2.1.1 Effect of adsorbent dosage   

The impact of varying Fe3O4/Bentonite dosage from 0.05 grams to 0.2 grams on oil 

removal is represented in Figure 14 and the raw data are represented in Table 14 in the 

Appendix. All other experimental parameters were maintained constant. This includes 

initial oil concentration of 100 ppm, contact time of 90 minutes and 6.5 pH. The figure 

demonstrates a remarkable increase in oil removal percentage as the Fe3O4/Bentonite 

dosage was increased from 0.05 g to 0.1 g, which is attributed to the increase in the 

unoccupied adsorption sites and functional groups on the Fe3O4/ Bentonite surface. 

However, for the dosage increase from 0.1 g to 0.2 g, the change in the removal 

percentage was not significant. This could be due to the agglomeration of the 

composite, which potentially reduced the surface area available for adsorption [176]. 

This suggests that 0.1 g contains the required number of active sites to attain the 

maximum removal. Thus, a determined optimum mass of 0.1 g was then used to carry 

out the rest of the experiments.  
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Figure 14: Effect of Fe3O4/Bentonite dosage on the removal of oil at 6.5 pH, 298K, oil 

concentration of 100 ppm, and contact time 90 min. 

4.2.1.2 Effect of solution pH 

The surface charge , adsorbent stability and pollutant structure are greatly affected by 

the changes in pH [177]. Therefore, the emulsified oil pH effect on Fe3O4/Bentonite 

adsorption capability was studied by varying the emulsified oil pH from 3.0 to 9.0 using 

0.1 g of adsorbent and 100 ppm oil concentration for 90 min contact time.  The raw 

data are represented in Table 16 in the appendix. As shown in figure 15, the oil removal 

increased by increasing pH up to a maximum pH of 6.5, which is the neutral pH of the 

emulsified oil solution. Then, the removal decreased to reach a minimum removal 

percentage at pH 9. Generally, the removal percentage in acidic or alkaline conditions 

are lower than the neutral condition. This behavior could be due to the partial 

dissociation of the surface functional groups in acidic or alkaline emulsified oil 

solution, which results in electrostatic repulsion between the oil droplets and 
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Fe3O4/Bentonite [177].  The poor performance in alkaline conditions compared to 

neutral and acidic conditions could attributed to the higher electrostatic repulsion 

between Fe3O4/Bentonite and the oil deports[178].  

 

Figure 15: Effect of pH on oil removal by Fe3O4/Bentonite 298K ,dosage 

concentration of 0.1g, 90 min contact time and oil concentration 100 ppm. 

4.2.1.3 Effect of contact time  

Figure 16 shows the effect of varying the contact time between the Fe3O4/Bentonite and 

the emulsified oil solution on the removal capability of Fe3O4/Bentonite composite and 

the raw data are represented in Table 18 in the appendix. Initially, the oil removal 

percentage increased due to the availability of active sites on the composite. The 

equilibrium was reached after 90 minutes with a maximum removal of 67%. After that, 

no remarkable change in the emulsified oil concentration was observed, which indicates 

the saturation of adsorption sites [17].  
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Figure 16: Effect of contact time on oil removal by Fe3O4/Bentonite at 298 K, initial 

concentration 100 ppm, 0.1 g dosage concentration and 6.5 pH 

4.2.1.4 Effect of initial oil concentration  

The effect of initial oil concentration on the removal percentage of emulsified oil by 

Fe3O4/Bentonite was carried out by changing the initial oil concentration from 66 to 

170 mg/L at pH 6.5 using composite dosage of 0.1 g for 180 min.  The raw data are 

represented in Table 17 in the appendix. The effect of initial emulsified oil 

concentration on the Fe3O4/Bentonite removal capability is shown in Figure 17. The 

figure indicates a negative correlation between removal percentage and initial oil 

concentration. This could be due to the reduction in the saturation concentration value 

with a higher initial concentration, which cause the removal percentage to decrease 

[179].  
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Figure 17: Effect of initial oil concentration on Removal percent using Fe3O4/Bentonite 

after 180 minutes at 298 K, dosage concentration 0.1 g and 6.5 pH. 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

50 70 90 110 130 150 170 190

R
em

o
va

l %

Initial concentration Co (ppm)



  

60 

 

4.2.1.5 Adsorption isotherms  

The experimental adsorption data were fitted to Langmuir, Freundlich and sips models 

using non-linear regression by employing Marquardt-Levenberg algorithm to find the 

minimum function that is a sum of squares of nonlinear functions [180]. The fitting of 

adsorption oil data to the isotherm models using Fe3O4/Bentonite is represented in 

Figure 18. The isotherm parameters are displayed in Table 7. It can be observed that at 

low equilibrium concentration, the isotherms’ curves exhibit higher slope due to the 

availability of active sites on Fe3O4/bentonite (Figure 18). 

 

 

Figure 18: Non-linear isotherm model fitting for oil adsorption onto Fe3O4/Bentonite 

adsorbent.  
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Table 7: Isotherm parameters for Langmuir, Freundlich and Sips models for oil 

adsorption onto Fe3O4/Bentonite. 

Isotherm Model Parameter Value 

Langmuir 
qm(mg/g) 53.64 

kL(L/mg) 0.0318 

Freundlich 
kf (mg.g-1)(L.mg-1)1/n 5.74 

n 2.28 

Sips 

qm(mg/g) 44.54 

b (L/mg) 0.0078 

n 0.654 

 

A comparison of the isotherm models was performed based on the sum of square errors 

(SSE), correlation coefficient (R2) and Akaike Information Criterion (AIC) method 

[181]. AIC method compares between different models and identify the best model that 

fits the experimental data. Table 8 shows the SSE, R2, 𝐴𝐼𝐶, 𝐴𝐼𝐶𝑐 and 𝑤𝑖 values of the 

three isotherm models for Fe3O4/Bentonite. The model that best fits the experimental 

data showed attain the lowest SSE, and 𝐴𝐼𝐶; while it should attain the highest R2, and 

𝑤𝑖 considering that the sum of 𝑤𝑖 is equal to 1. The results indicate that Langmuir model 

best fits the experimental data for the adsorption of emulsified oil onto Fe3O4/Bentonite 

with R2=0.983 and 𝑤𝑖= 0.869. These results confirm the adsorption followed Langmuir 

model, which indicates a monolayer distribution of oil on identical and homogenous 

active sites. The maximum oil adsorption capacity was 53.64 mg/g.  

Figure 19 shows the values of RL for adsorption of emulsified oil onto Fe3O4/Bentonite, 

which indicates that the adsorption is favorable as RL lies within the favorable limit (0 

< RL <1) [182].  
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Table 8: A comparison of the adsorption isotherm models for oil adsorption onto 

Fe3O4/bentonite.  

Model SSE R2 AIC AICc wi 

Langmuir 8.986 0.983 5.74 8.74 0.869 

Freundlich 18.25 0.966 10.708 13.708 0.0728 

Sips  7.163 0.987 6.16 14.16 0.0580 

 

 

Figure 19: Separation factor (RL) of emulsified oil adsorption onto Fe3O4/Bentonite. 
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kinetics parameters of the fitted models are presented in Table 9. It is clear from Figure 

20a that the kinetics experimental data do not fit well PFO kinetic model since the 

correlation constant R2 attained a value of 0.6709. However, pseudo second order 

kinetic model (Figure 20b) shows a better fitting to the experimental data as R2 attained 

a value of 0.9868. This indicates that adsorption kinetics of oil onto Fe3O4/Bentonite is 

best described by PSO kinetic model. Figure 20c for the intra-particle diffusion model 

shows the involvement of three complex stages in the adsorption process, two linear 

and one curved transition portion. The first linear part is associated with the surface 

adsorption, in which the oil particles diffuse to the external surface of Fe3O4/Bentonite 

adsorbent with a diffusion rate constant of ki1. The second intermediate stage (curved 

portion) represents the external boundary layer diffusion. The Last linear stage 

corresponds to the diffusion through interior surface of Fe3O4/Bentonite with a 

diffusion rate constant kd3. As shown in Table 8, the value of kd1 is greater than kd3, 

which indicates that the interior pore-diffusion is the rate-limiting step [179]. The 

influence of the boundary layer is represented by the intercept C. the numerical values 

of C1 and C3 shown in Table 8, reveal that the intraparticle diffusion is not the only rate-

limiting step since C does not pass through the zero point [179]. In addition, the larger 

the value of C, the greater the influence of the boundary layer on the diffusion 

process[182].   
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Figure 20: Kinetics models fitting for oil adsorption onto Fe3O4/Bentonite using (a) PFO (b) PSO (c) intraparticle diffusion model. 
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Table 9: Kintic models parameters for oil adsorption onto Fe3O4/Bentonite.  

Kinetics Model Parameter Value 

PFO qe (mg/g) 67.41 

k1(1/min) 0.0024 

R2 0.6709 

PSO qe(mg/g) 35.67 

k2 (g/mg.min) 0.00153 

R2 0.9868 

Intraparticle 

diffusion 

kd1 (mg/g.min0.5) 3.4458 

kd3 (mg/g.min0.5) 0.1624 

C1 (mg/g) 0.2552 

C3 (mg/g) 29.575 

 

4.2.1.7 Adsorption mechanism  

The FTIR spectrum presented in Figure 21a shows the functional groups on the surface 

of Fe3O4/Bentonite. The absorption peak at approximately 598 cm−1 can be ascribed to 

Fe-O vibrational mode of Fe3O4 NPs. The absorption peaks at 3604 cm-1 and 1692 cm-

1 correspond to stretching vibration of –OH (water) and -FeOO- [183]. Additionally, 

the other broad absorption peak at 1038 cm-1 can be attributed to Si-O-Si while 609 cm-

1 can be ascribed to the bending vibration of Si-O-Al group [184]. These results show 

the successful decoration of Bentonite surface by Fe3O4 as confirmed by XRD and TEM 

analyses results.  The FTIR spectra of Fe3O4/Bentonite after diesel oil adsorption is 

represented in Figure 21b. The figure clearly shows the appearance of new peaks at 

1057 cm-1 and 2922 cm-1 which is attributed to the stretching vibration of C–O and C–

H, respectively [185]. In addition, the peak sharpness intensity was increased at 1038 

cm-1, 1429 cm-1 and 3604 cm-1 and this confirms the interaction between 

Fe3O4/Bentonite with the hydrocarbon chain presented in the emulsified diesel oil. 

Moreover, the composite could have a hydrophobic interaction with oil and tends to 

adsorb oil molecules, due to the hydrophobic nature of bentonite and iron oxide [186, 

187]. In addition, the FTIR spectra shows no shift in Fe3O4/Bentonite peaks after oil 
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adsorption, which indicates that the hydrophobicity interaction has an important role in 

the adsorption process [188]. It can be observed that the absorption peak of O-H after 

adsorption has increased, which indicates that hydrogen bonding is involved in the 

adsorption mechanism. In addition, the presence of positive ions as indicated by EDX 

analysis (Table 4) could results in an electrostatic interaction. Therefore, chemical, 

physical (e.g hydrogen), hydrophobic, and electrostatic interaction are involved in oil 

uptake mechanism. Figure 22 illustrates the feasible mechanism of oil removal using 

Fe3O4/ Bentonite.  
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Figure 21 FTIR spectra of Fe3O4/Bentonite (a) before oil adsorption (b) after oil adsorption.  
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Figure 22 The possible adsorption mechanism of diesel oil by Fe3O4/bentonite. 
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4.2.2 Performance of Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs 

In order to compare the performance of the developed composites compared to 

Fe3O4/bentonite in oil removal, the adsorption experiments were conducted using the 

same adsorbent dosage (0.1 g), solution pH (6.5), temperature (303 K), and rotation 

speed (200 rpm). The effect of contact time and initial oil concentration were varied 

and fitted to isotherm and kinetics models to have insights into the removal capability 

of the developed composites as well as the adsorption mechanism.   

4.2.2.1 Effect of contact time  

The influence of contact time between the composites and the oil solution is shown in 

Figure 23 and the raw data are represented in table 20 and 22 in the appendix. The 

figure shows a rapid adsorption within the first 30 minutes followed by a gradual 

decrease until equilibrium was reached. This could be attributed to the availability of 

binding sites for adsorption in the first 30 minutes, after that, the sites become fully 

occupied and the adsorption starts to decrease.  Moreover, it can be observed that 

Fe3O4/Bent/MWCNTs reached equilibrium faster than Fe3O4/Bent/rGO, which could 

be attributed to the higher pore volume that the composite possesses. The maximum oil 

removal using Fe3O4/Bent/MWCNTs and Fe3O4/Bent/rGO were 97.7% and 92.4 %, 

respectively.  
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Figure 23: Effect of time on the adsorption capacity (Dosage 0.1 g, Oil Concentration 

120 ppm, 6.5 pH and Temperature 303 K. 

4.2.2.2 Effect of initial oil concentration  

The influence of initial oil concentration on the adsorption capacities of 
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ppm to 90 ppm.  This increase is attributed to the presence of greater amount of oil 

molecules at high concentrations that interact with the adsorbent’s active sites due to 
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ppm. However, at higher initial oil concentration, Fe3O4/Bent/MWCNTs attained 

higher removal capability. This behavior could be due to the presence of more binding 

sites on Fe3O4/Bent/MWCNTs surface compared to that of Fe3O4/Bent/rGO. The 

higher BET surface area and average pore volume that Fe3O4/Bent/MWCNTs 

composite (Table 5) attains are expected to be responsible for the increase in oil 

removal compared to Fe3O4/Bent/rGO. This allows Fe3O4/Bent/MWCNTs to trap oil 

molecules within its structure and increase the oil molecules contact with the adsorbent 

functional groups, which increases the overall removal efficiency. Moreover, high 

specific surface area and lower pore radius are expected to be the main parameters that 

determine the enhancement in the adsorption capacity. Despite that 

Fe3O4/Bent/MWCNTs attained higher average pore radius and specific surface area, it 

showed a higher removal capability [189]. Consequently, pore volume has a vital role 

in determining the composite removal capability.  
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Figure 24: Effect of initial concentration on the adsorption capacity (Dosage 0.1 g, Time 

210 minutes, 6.5 pH and Temperature 303 K). 

4.2.2.3 Adsorption isotherms  

The fitting of adsorption oil data to the isotherm models using Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs are represented in Figure 25 and 26, respectively. The isotherm 

parameters are displayed in Table 10. Similar to Fe3O4/Bentonite, it can be observed 

that at low equilibrium concentration, the isotherms’ curves of both composites exhibit 

higher slope due to the availability of active sites.  
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Figure 25: Non-linear isotherm model fitting for oil adsorption onto Fe3O4/Bent/rGO. 

 

Figure 26: Non-linear isotherm model fitting for oil adsorption onto 

Fe3O4/Bent/MWCNTs. 
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Table 10: Isotherm parameters for Langmuir, Freundlich and Sips models for oil 

adsorption onto the novel composites. 

Model Parameter Fe3O4/Bent/rGO Fe3O4/Bent/MWCNTs 

Langmuir 

kL (L/mg) 0.0146 0.000108 

qm(mg/g) 404.21 81351.14 

Freundlich 

kF (mg.g-1)(L.mg-1)1/n 5.8344 3.446 

nF 1.0634 0.636 

Sips 

𝑞𝑚 (mg/g) 81.65 77.12 

𝑏 (L/mg) 0.019 0.0010 

𝑛 0.485 0.208 

 

Table 11 and 12 shows the SSE, R2, 𝐴𝐼𝐶, 𝐴𝐼𝐶𝑐 and 𝑤𝑖 values of the three isotherm 

models for Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs, respectively. The model that 

best fits the experimental data showed attain the lowest SSE, and 𝐴𝐼𝐶; while it should 

attain the highest R2, and 𝑤𝑖 considering that the sum of 𝑤𝑖 is equal to 1. The results 

indicate that Sips model best fits the experimental data for the adsorption of oil onto 

Fe3O4/Bentonite/rGO with R2=0.997 and 𝑤𝑖= 0.9919. Similarly, the adsorption of oil 

onto Fe3O4/Bentonite/MWCNTs is best described by sips model with R2=0.9926 and 

𝑤𝑖= 0.9967.  These results confirm the adsorption followed Freundlich model at lower 

concentrations and Langmuir model when the oil concentrations were increased, which 

indicates the involvement of both physical and chemical adsorption process. The 

maximum oil adsorption capacity were 81.65 mg/g and 77.12 mg/g for 

Fe3O4/Bentonite/rGO and Fe3O4/Bent/MWCNTs, respectively.  
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Table 11: A comparison of the adsorption isotherm models for oil adsorption onto 

Fe3O4/Bent/rGO. 

Model SSE R2 AIC AICc wi 

Langmuir 143.3 0.957 25.133 28.133 0.005 

Freundlich 165.82 0.950 26.155 29.154 0.003 

Sips (L-F) 11.654 0.997 9.568 17.568 0.9919 

 

Table 12: A comparison of the adsorption isotherm models for oil adosrption onto 

Fe3O4/Bent/MWCNTs. 

Model  SSE R2 AIC AICc wi 

Langmuir  843.59 0.7747 37.542 40.542 0.0002 

Freundlich  390.26 0.8957 32.146 35.146 0.003 

Sips  27.586 0.9926 15.599 23.599 0.9967 

 

4.2.2.4 Adsorption kinetics  

The fitted adsorption experimental data onto both composites to three kinetics models 

are shown in Figures 27 and 28. The kinetics parameter calculated from the related plots 

are shown in Table 13. The high R2 values indicate that PSO model best describe the 

oil adsorption onto both composites. This implies that oil adsorption onto both 

composites involves chemisorption process [190]. In addition, the kinetics data were 

fitted to intraparticle diffusion model to have an insight into the adsorption rate 

controlling steps and the mechanism (Figure 27C and 28C). For both composites, the 

intraparticle diffusion model shows a multistage behavior. The first stage is the 

instantaneous adsorption of oil molecules represented by the sharp rise in qt with t0.5. 
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In this stage, the adsorption is controlled by external mass transfer. The second stage is 

a curved portion, which shows a slow adsorption rate controlled by intraparticle 

diffusion. The third stage represents the equilibrium stage where internal diffusion 

occurs within the composite’s pores. Moreover, the value of kd1 is greater than kd2 for 

both adsorbents (Table 12), which indicates that the rate limiting step is the interior 

pore-diffusion [191]. The intercept (C) describes the boundary layer thickness. The 

Larger the value of C, the greater the contribution of the surface adsorption in the rate 

controlling step. Finally, it can be observed that the plot of intraparticle diffusion model 

for both composites did not pass through the origin, which indicate that intraparticle 

diffusion is not the only rate-controlling step.  
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Figure 27: Kinetics models fitting for oil adsorption onto Fe3O4/Bent/rGO using (a) PFO (b) PSO (c) intraparticle diffusion model. 
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Figure 28: Kinetics models fitting for oil adsorption onto Fe3O4/Bent/MWCNTs using (a) PFO (b) PSO (c) intraparticle diffusion model. 
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Table 13: The kinetics parameters for oil adsorption onto novel composites.  

Model  Parameter  Fe3O4/Bent/rGO Fe3O4/Bent/MWCNTs 

PFO 

k1 0.0334 0.0103 

qe 20.217 3.067 

R2 0.8693 0.1833 

PSO 

k2 0.00594 0.0609 

qe 56.818 58.479 

R2 0.9996 1.000 

Intraparticle 

diffusion  

kd1 14.292 13.65 

kd3 0.24 0.0782 

C1 2.040 2.5357 

C3 52.297 57.651 

 

4.3 Performance in fluidized bed  

The performance of Fe3O4 NPs, Fe3O4/Bentonite, Fe3O4/Bent/rGO, and 

Fe3O4/Bent/MWCNTs in flidized bed reactor is shown in Figure 29 and The raw data 

are represented in Table 23 in the appendix. The figure Cleary indicates that the novel 

adsorbents developed in this work outperform Fe3O4 NPs and Fe3O4/Bentonite 

adsorbents, which is due to the addition of carbonaceous materials. Among the 

developed adsorbents in this work, it can be observed that Fe3O4/Bent/rGO was able to 

remove higher percentage of oil compared to Fe3O4/Bent/MWCNTs by more than 20% 

despite having lower specific surface area, and pore volume. Besides, in batch 

experiments, both adsorbents attained mostly similar adsorption behavior and 

adsorption capacity. This significant difference could be due to the different adsorbent 

size, density, and surface properties. The difference in the performance of the developed 
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composites could be due the difference in their particle size. From visual observation, 

the particles of Fe3O4/Bent/rGO were larger than those of Fe3O4/Bent/MWCNTs. 

Consequently, Fe3O4/Bent/rGO particles are capable to disintegrate larger bubbles that 

are evolved in fluidized bed resulting in a better contact between emulsified oil solution 

and the composite, which increases the removal percentage.  kim and kang reported 

that particle size could be the most important factor that control the mass transfer in 

FBR [192]. Furthermore, surface properties including surface hydrophobicity, surface 

irregularity, and surface angles sharpness are important factors  that influence the 

adsorbent removal capability significantly [193].  

 

 

Figure 29:  performance of Fe3O4 NPs, Fe3O4/Bentonite, Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs in fluidized bed reactor. 
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4.4 Adsorption mechanism  

The FTIR spectra shown in Figure 30 indicate the surface functional groups for both 

composites before and after diesel oil adsorption. The figure clearly indicates that both 

adsorbents attain similar absorption peaks except the absorption peak at 687 cm-1 that 

is observed for Fe3O4/Bent/MWCNTs, which is related to the strong bending of C=C 

bond. Moreover, the peaks observed at 3640 cm-1, and 1040 cm-1, are related to O–H, 

and C–O bond, respectively [194]. The bond stretching vibration of CO observed at 

1107 cm-1 is related to the carbon attached to the epoxy groups, while the absorption 

peak at 1639 cm-1 is attributed to the C=O bond [195]. The peak observed at 1430 cm-

1 is ascribed to the stretching vibration of CO3
-2 anion associated in dolomite that 

presents in bentonite as impurity [107]. The broad peak at 1038 cm-1 indicates the 

presence of Si–O–Si groups of the tetrahedral sheet. The peaks observed at 521 cm-1  

and 467 cm-1 correspond to Al–O–Si and Si–O–Si, respectively [196, 197]. The 

stretching vibration in the region between 800 cm-1 and 930 cm-1 are related to C–H 

bond. The peak observed between 500 cm-1 and 600 cm-1  are related to the presence of 

Fe–O bond [102]. In addition, the stretching vibration in the region between 3300 cm-1 

and 3600 cm-1 corresponds to the hydroxyl and carboxyl groups presented in GO [198]. 

The non-existence of absorption peaks at 1724 cm-1 confirms the successful reduction 

of GO into rGO [198]. After adsorption, the peaks’ intensity in this region were reduced 

and new peaks at 2928 cm-1 and 2857 cm-1 were observed.  These peaks indicate the 

presence of C–H bond, which indicate the chemical interaction between the adsorbents 

and the diesel oil molecules. The vibration region between 2309 cm-1, and 2371 cm-

1observed in Figure 30d for Fe3O4/Bent/MWCNTs after adsorption is indication of 

C=O=C bond.  
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Based on these results, it is expected that the removal of oil molecules by the fabricated 

composites is based on a chemical interaction as observed by the FTIR spectra 

represented in Figure 30.  Moreover, the hydrophobic interaction between oil molecules 

and the composites hydrophobic surface facilitated oil removal from the aqueous 

solution. The hydrophobic nature of the composites is determined by the presence of 

active functional groups with a lone pair of electrons such as O–H, and C–O groups 

that interact with the hydrophobic oil molecules. It can be observed from Figure 30c 

and d that the intensity of these groups was reduced after adsorption, which confirms 

the hydrophobic interaction. In addition, π-π interaction caused by the presence of 

graphene sheets and MWCNTs have primary role in oil molecules adsorption and 

accounts for the increase in oil adsorption compared to Fe3O4/Bentonite composite 

[199, 200]. Moreover, the existence of positively charged element such as Mg and Al 

(as indicated by the EDX analysis, Table 4) results in electrostatic interaction between 

the positively charged elements and the additives presents the Water-in-oil emulsion 

solution resulting in physical interaction. The possible adsorption pathway between the 

as-synthesized composites and oil molecules are illustrated in Figure 31.  
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Figure 30: FTIR spectra of (a) Fe3O4/Bent/rGO before adsorption (b) Fe3O4/Bent/MWCNTs before adsorption (c) Fe3O4/Bent/rGO after adsorption 

(d) Fe3O4/Bent/MWCNTs after adsorption.
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Figure 31: The possible adsorption mechanism of oil onto the novel composites. 
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4.5 Comparison of adsorbents  

The novel composites reported in this work (Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs) were developed to enhance oil uptake from emulsified oil 

solution. For this purpose, the removal capability of Fe3O4/bentonite composite, which 

is reported in the literature, was examined for oil removal and compared to the 

performance of the developed composites. The maximum adsorption capacity of 

Fe3O4/bentonite is 53.64 mg/g (obtained from Langmuir isotherm model) at pH 6.5, 

dosage 0.1 g, time 180 minutes under initial emulsified oil concentration between 66 

mg/l and 170 mg/l.  In addition, Fe3O4/bentonite reached equilibrium in 90 minutes in 

which no further adsorption occurs after the indicated time. On the other hand, the novel 

composites (Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs) attained an adsorption 

capacity towards emulsified oil of 81.65 mg/g and 77.12 mg/g, respectively, under 

similar Fe3O4/bentonite adsorption experimental conditions. Furthermore, sips 

isotherm model best fitted the experimental data for Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs. Whereas Langmuir isotherm model best fitted the adsorption 

data of emulsified oil onto Fe3O4/bentonite. This indicates that the adsorption 

mechanism and the type of interaction was affected. Furthermore, all composites 

followed PSO kinetic model, which suggests a chemisorption process.  The intraparticle 

diffusion model for all adsorbents confirm the existence of three stages. first stage is 

the instantaneous adsorption of oil molecules represented by the sharp rise in qt with 

t0.5. In this stage, the adsorption is controlled by external mass transfer. The second 

stage is a curved portion, which shows a slow adsorption rate controlled by intraparticle 

diffusion. The third stage represents the equilibrium stage where internal diffusion 

occurs within the adsorbents’ pores. It can be observed that the curved portion in 

intraparticle diffusion model for Fe3O4/Bent/MWCNTs is closer to linearity compared 
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to other composites. This indicate that MWCNTs have a significant role in oil 

adsorption.  

The adsorption mechanism of emulsified oil adsorption onto Fe3O4/Bentonite was 

mainly chemical interaction, electrostatic interaction, hydrophobic interaction, and 

hydrogen bonding. Whereas the adsorption mechanism of novel composites was mainly 

chemical, electrostatic, hydrophobic and π-π interaction. The absence of hydrogen 

bonding might be involved in the Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs 

adsorption mechanism but might be insignificant.  

Among all adsorbents, Fe3O4/Bent/rGO attained the highest adsorption capacity. 

However, the batch adsorption experiments showed that Fe3O4/Bent/MWCNTs 

attained slightly higher removal capability compared to Fe3O4/Bent/rGO at higher oil 

concentration and contact time. This could be explained by the observed higher 

Fe3O4/Bent/MWCNTs pore volume compared to Fe3O4/Bent/rGO. Moreover, the 

amount of Fe3O4 NPs in Fe3O4/Bent/MWCNTs were less than their amount in 

Fe3O4/Bent/rGO and Fe3O4/Bentonite as indicated by the EDX analysis, and TEM and 

SEM images despite using the same amount of iron-based precursors. This also 

contributed to more surface availability on Fe3O4/Bent/MWCNTs as observed in BET 

analysis (Table 6). Consequently, slightly higher adsorption of oil was observed onto 

Fe3O4/Bent/MWCNTs compared to the other composites. The observed maximum 

adsorption capacities of emulsified oil onto the novel composites were further 

compared to the ones reported in the literature as shown in Table 14. The results clearly 

show that the novel composites developed in this study exhibit superior adsorption 

capability and outperforms all the reported adsorbents towards emulsified oil. These 

observations further affirm the potential of the Fe3O4/Bent/MWCNTs and 

Fe3O4/Bent/rGO composites to be utilized for oil removal.   
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In fluidized bed reactor application, Fe3O4/Bent/rGO outperform Fe3O4 NPs, 

Fe3O4/Bentonite, and Fe3O4/Bent/MWCNTs, which might be due to the large particle 

size that Fe3O4/Bent/rGO possess.  

The adsorption mechanism of oil onto Fe3O4/Bentonite was mainly electrostatic, 

hydrogen, hydrophobic and chemical interaction. Whereas, the adsorption of oil onto 

Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs was mainly through electrostatic, 

hydrophobic, chemical and  π-π interaction. It is observed that the addition of 

carbnonceous material to Fe3O4/Bentonite eliminated the interaction of the novel 

composites with oil through hydrogen bonding.  

Table 14: Comparsion between the performance of different adsorbent twoards 

emlusifed oil. 

Adsorbent Oil type 

Adsorption capacity 

mg/g  

Ref. 

Amberlite XAD 7 Gasoline 11.86 [16] 

Optipore L 493 9.51 

Lewatit  AF 5 13.35 

Bentonite Diesel  38.5 [201] 

Org-bentonite 48 

Fe3O4/Bentonite 53.64 This work 

Fe3O4/Bent/rGO 81.65 This work 

Fe3O4/Bent/MWCNTs 77.12 This work  
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CHAPTER 5: CONCLUSION AND FUTURE PERSPECTIVE  

Oil and gas industry generates significate amounts of PW that contains various organic 

and inorganic contaminants, such as PAH, heavy metals, phenols, etc. The direct 

discharge of PW threats the aquatic ecosystem and exacerbate water scarcity issue. 

Therefore, proper management and treatment of PW is required.  

  The literature review indicated that PW management and proper treatment is required 

due to its content of toxic, persistent and hazardous compounds, especially with the 

increase in its amount in old and depleted fields. Treatment technologies discussed in 

this work such as membrane, and EC are promising, but still significant efforts are 

required to make them economically feasible. Adsorption stands among the most 

effective technologies that can reduce the contaminants concentration significantly with 

the use of the suitable adsorbent. Besides, adsorption process is cost effective and 

known for its simplicity and ease of operation.  A suitable adsorbent should be able to 

remove high quantities of contaminants, non-toxic, inexpensive, environmentally 

friendly, and can be regenerated and used for several cycles. CMs meet these criteria, 

however, its dispersity in aqueous solution and relatively low adsorption capacity 

towards organic compounds limit their application. More recently, composites gained 

a great deal of attention due to their superior adsorption capacity towards several 

classification of organic contaminants and enhanced physiochemical properties 

compared to the composite individual components. Moreover, the studies related to the 

composite’s utilization for oil removal, which is a major constituent of PW are rare in 

the literature.  

In this work, Fe3O4/Bentonite was used to remove emulsified oil, which is a good 

representation of PW organic concentration. Moreover, new composites were 

developed in this study, which are Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs. The 
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new composites adsorptive behavior was compared to the performance of 

Fe3O4/Bentonite by examining different experimental parameters. 

 The characterization analysis showed that Fe3O4 NPs were less in quantity over 

Fe3O4/Bent/MWCNTs despite using the same amount of iron-based precursor. This 

contributed to the increase in its thermal stability compared to other composites at 

higher temperatures as revealed by TGA. However, Fe3O4/Bent/rGO attained the 

highest thermal stability at temperature less than 100 ℃. Furthermore, the SEM images 

revealed that bentonite acts as a support for Fe3O4 NPs, rGO and MWCNTs. In addition, 

it is expected that rGO is formed on the surface of bentonite as indicated by the wrinkled 

edge structure and/or intercalated into bentonite layers. TEM images showed a good 

distribution of Fe3O4 NPs over the three composites. Moreover, the particle size of 

Fe3O4 NPs was estimated to be 13.55 nm, 11.6 nm, and 8.83 nm for Fe3O4/Bentonite, 

Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs, respectively.  

The adsorption results showed that Fe3O4/Bentonite was able to remove almost 67% of 

oil after 90 min. The adsorption data were best described by Langmuir isotherm model 

with a maximum adsorption capacity of 53.64 mg/g. Whereas, Fe3O4/Bent/rGO and 

Fe3O4/Bent/MWCNTs followed Sips isotherm model with a maximum adsorption 

capacity of 81.65 mg/g and 77.12 mg/g, respectively. Moreover, the composites were 

able to reach equilibrium time in 50 minutes, which is less than the equilibrium time 

reached by Fe3O4/Bentonite composite. The kinetics studies showed that all composites 

followed PSO kinetic model confirming a chemisorption process. In fluidized bed 

reactor, Fe3O4/Bent/rGO outperform all composites reported in this study, which is 

mainly due to its particle size rather than its specific surface area and pore volume.  

The adsorption mechanism of oil onto Fe3O4/Bentonite was mainly electrostatic, 

hydrogen, hydrophobic and chemical interaction. Whereas the adsorption of oil onto 
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Fe3O4/Bent/rGO and Fe3O4/Bent/MWCNTs was mainly through electrostatic, 

hydrophobic, chemical and π-π interaction. It is believed that the high adsorption 

capacity that the developed composites possess is due to the π-π interaction that the 

carbonaceous material provided. The above findings well manifest that the prepared 

composite is promising in effectively purifying oily water. 

Future work should assess the regeneration through different techniques including 

chemical, ultrasound and MW regeneration. In addition, the composites morphology, 

physiochemical after regeneration should be investigated to reveal the composite 

stability. The performance of the developed composites in multipollutant system and 

real industrial wastewater with high COD value should be investigated. Other 

parameters such as salinity, TDS, temperature should be assessed. Moreover, the 

composite adsorption capability in fluidized bed reactor connected to a regeneration 

column under various parameters need to be assessed. Finally, plans should be 

implemented to deal with the spent adsorbents in which they cannot be regenerated 

further.  
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APPENDIX  

Table 15: Raw data for the effect of varying Fe3O4/Bentonite dosage on its removal 

capability .  

Dosage Equilibrium 

concentration (ppm) 

Average equilibrium 

concentration (ppm) 

0.05 47.4 45.33±2.07 

45.1 

43.49 

0.1 34.5 33±3.51 

35.01 

29.49 

0.15 30.1 30.8±1.96 

32.76 

29.54 

0.2 29.1 28.6±0.5 

28.5 

28.2 
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Table 16: Raw data for the effect of varying solution pH on  Fe3O4/Bentonite removal 

capability.  

pH 
equilibrium 

concentration (ppm) 

Average equilibrium 

concentration (ppm) 

3 47.4 44.71±3.08 

45.1 

41.63 

5 37.56 38.3±4.03 

35.01 

42.33 

6.5 34.78 33±1.54 

32.76 

31.46 

9 52.9 50.89±2.01 

50.1 

49.67 
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Table 17: Raw data for effect of initial oil concentration on Fe3O4/Bentonite removal 

capability. 

Initial 

concentration 

(ppm) 

equilibrium 

concentration (ppm) 

Average equilibrium 

concentration (ppm) 

66 21 23.2±3.4 

22 

26.6 

90 33.1 34±2.9 

32 

36.9 

100 38.1 37.01±3.48 

39.4 

33.53 

110 48.1 47.38±0.78 

46.6 

47.44 

170 93.2 90.53±2.67 

90.1 

88.29 
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Table 18: Raw data for effect of varying contact time on Fe3O4/Bentonite removal 

capability.  

Time (min) Equilibrium concentration 

(ppm) 

Average equilibrium 

concentration (ppm) 

0 101 100±1.5 

100.5 

98.5 

30 62.5 60±3.8 

61.3 

56.2 

60 47 47.34±1.28 

46.4 

48.62 

90 33.1 33.4±0.5 

33.9 

33.2 

120 37.1 37.76±0.66 

38.4 

37.78 

150 34.9 35.89±1.01 
 

35.87 

36.9 

180 37 37.01±0.62 

36.4 

37.63 
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Table 19: Raw data for effect of varying initial oil concentration on Fe3O4/Bent/rGO 

removal capability. 

Initial concentration 

(ppm) 

Equilibrium 

concentration (ppm) 

Average equilibrium 

concentration (ppm)  

150 14.63 14.63±1.3 

13.5 

15.76 

120 9.3 9.383±1.117 

10.5 

8.349 

90 9.6 7.035±2.565 

6.5 

5.005 

50 5 4.3±0.7 

4.1 

3.8 

35 4.1 3.2±1.2 

3.5 

2 

25 2.1 2.6±0.6 

2.5 

3.2 

15 2 2.4±0.7  

2.1 

3.1 
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Table 20: Raw data for the effect of varying contact time on Fe3O4/Bent/rGO removal 

capability. 

Time (min) Equilibrium concentration 

(ppm) 

Average equilibrium 

concentration (ppm) 

0 120.1 120 ±1.1 

121 

118.9 

5 38 38.07±0.43 

38.5 

37.7 

10 34 35.38±3.56 

33.2 

38.94 

20 20.1 19.24±1.02 

19.4 

18.22 

30 20.2 19.72±1.86 

21.1 

17.86 

60 13.1 13.4±0.8 

12.9 

14.2 

90 9.1 9.084±1.134 

10.2 

7.95 

120 9.1 9.383±0.867 

8.8 

10.25 

210 8.8 9.27±1.03 

10.3 

8.71 
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Table 21: Raw data for the effect of varying initial oil concentration on 

Fe3O4/Bent/MWCNTs removal capability. 

Initial 

concentration 

(ppm) 

Equilibrium 

concentration (ppm) 

Average equilibrium 

concentration (ppm) 

150 9.1 7.248±1.852 
 

7.1 

5.54 

120 5.1 5.128±1.072 

6.2 

4.08 

90 3.9 4.32±0.42 

4.5 

4.56 

50 4.1 3.623±0.654 

3.8 

2.969 

35 3.1 3.2±0.1 

3.2 

3.3 

25 2.1 2.6±0.6 

2.5 

3.2 

15 2 2.5±0.9 
 

2.1 

3.4 
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Table 22: Raw data for the effect of contact time on Fe3O4/Bent/MWCNTs removal 

capability. 

Time (min) Equilibrium 

concentration (ppm) 

Average equilibrium 

concentration (ppm) 

0 120.1 120±1.1 

121 

118.9 

10 12.3 11.44±0.92 

11.5 

10.52 

20 6.2 5.304±1.092 

5.5 

4.212 

40 3.5 3.262±0.276 

3.3 

2.986 

60 2.57 2.474±0.222 

2.6 

2.252 

90 2.1 2.679±0.579 

2.8 

3.13 

120 3.3 3±1.1 

3.8 

1.9 

210 2.1 3.1±1.9  

2.2 

5 
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Table 23: Raw data for performance of Fe3O4 NPs, Fe3O4/Bentonite, Fe3O4/Bent/rGO, 

and Fe3O4/Bent/MWCNTs in fluidzied bed reactor.  

Composite  Equilibrium 

concentration (ppm) 

Average equilibrium 

concentration (ppm) 

Fe3O4 95.1 95±2.3 

97.2 

92.7 

Fe3O4/Bentonite 47.4 47±0.4 

46.98 

46.98 

Fe3O4/Bent/rGO 15.1 14.06±1.44 

14.56 

12.62 

Fe3O4/bent/MWCNTs 37.87 38.23±1.05 

37.54 

39.28 

 

 


