
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

CLIENT-BASED CONFIDENTIAL DATA SHARING USING UNTRUSTED CLOUDS

BY

NAHEEL FAISAL KAMAL

A Thesis Submitted to

the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computing

June 2021

© 2021. Naheel Faisal Kamal. All Rights Reserved.

COMMITTEE PAGE

The members of the Committee approve the Thesis of

Naheel Faisal Kamal defended on 22/04/2021.

Prof. Qutaibah Malluhi
Thesis Supervisor

Prof. Roberto Di Pietro
Committee Member

Dr. Abdelkarim Erradi
Committee Member

Dr. Elias Yaacoub
Committee Member

Approved:

Khalid Kamal Naji, Dean, College of Engineering

ii

ABSTRACT

KAMAL, NAHEEL, F., Masters : June: 2021, Master of Science in Computing Title:

Client-Based Confidential Data Sharing using Untrusted Clouds

Supervisor of Thesis: Prof. Qutaibah Malluhi.

Cloud storage has been used widely by organizations and individuals. However, using

known cloud providers is not a solution that can fit the needs of many entities that need

to store private and sensitive data. This is due to the fact that the data stored in the cloud

is not hidden from the cloud providers themselves. This issue can be critical for example

in use cases including the usage of governmental data, health care and patients data, or

even for individual users who are careful about their privacy. A simple solution to this

problem can be encrypting the data with a symmetric key before uploading it to the cloud

and decrypt to reuse. However, this raises several issues including the lack of the ability

to share files with different users. The proposed solution tackles the issue of sharing

data confidentially by designing and implementing a system that allows encrypted data

sharing and revocation between users. The clouds are considered untrusted where all

computations are performed on the client-side with no trusted third party. The scheme

is analyzed and the implementation is evaluated and compared to existing solutions

showing that it outperforms them. Two practical prototypes were implemented using

the proposed scheme including a cloud storage application and an IoT cloud system.

Those applications show that the work presented in this thesis is applicable in real-life

scenarios.

iii

DEDICATION

To my family.

iv

ACKNOWLEDGMENTS

I would like to thank my supervisor, Prof. Qutaibah Malluhi for his great efforts

in providing continuous support, advice, and feedback. Suggestions and support from

many faculty members of the Computer Science and Engineering department are also

strongly appreciated. I deeply appreciate the help and support of my family and friends.

Without all of this support, this work would not have been possible.

v

TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGMENTS.. v

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

Chapter 1: Introduction.. 1

Motivation.. 1

Objectives and contribution ... 3

Thesis overview ... 4

Chapter 2: Background and related work .. 5

Background .. 5

Related work .. 6

Systems for secure data sharing ... 7

IoT-based solutions .. 11

Sharing-enabled encryption schemes .. 12

Chapter 3: Problem formulation and scheme construction 15

Assumptions and constrains... 16

Scheme construction .. 17

Security analysis .. 19

Chapter 4: Implementation .. 23

Cryptographic configuration .. 24

Integrity checking .. 26

vi

Public keys distribution.. 26

Limitations ... 28

Chapter 5: Applications... 29

Cloud storage application... 29

User-space encrypted filesystem .. 29

Filesystem implementation ... 30

Organization of shared files between users.. 32

IoT system application ... 34

Software interface .. 35

Hardware prototype ... 36

Chapter 6: Evaluation .. 38

Public storage overhead.. 38

Performance evaluation.. 42

Baseline evaluation .. 45

Chapter 7: Conclusion ... 48

Future work .. 49

References .. 51

Appendix A: IoT circuit diagram and hardware interface ... 58

Appendix B: Cloud storage usage example ... 59

Appendix C: Public storage overhead regression .. 61

vii

LIST OF TABLES

Table 3.1. Terminology used in the scheme construction ... 15

Table 4.1. Hardware specifications of devices used for testing and evaluation 23

Table 4.2. List of commands implemented for the prototype applications 24

Table 5.1. Structure of encrypted files stored in the filesystem 31

Table 6.1. Performance and storage size baseline evaluation 46

viii

LIST OF FIGURES

Figure 3.1. Scheme operations including a. adding a file, b. retrieving a file, c.

sharing a file, d. retrieving a shared file, and e. revoking a user from a shared file . 20

Figure 5.1. Cloud storage filesystem block diagram .. 31

Figure 5.2. IoT system architecture block diagram ... 34

Figure 5.3. IoT system prototype .. 37

Figure 6.1. Public storage overhead with respect to the number of files and the

number of users ... 41

Figure 6.2. 3D representation of the public storage overhead 42

Figure 6.3. Public storage overhead as a percentage of the total storage 42

Figure 6.4. Revocation performance with respect to the size of the file and the

number of file shares. Performed on the Raspberry Pi ... 43

Figure 6.5. Revocation performance with respect to the size of the file and the

number of file shares. Performed on the Intel-based machine 44

Figure 6.6. Performance and storage size baseline evaluation plots. (a) and (b)

show the encryption time (in milliseconds) with respect to y and r, (c) and (d)

show the decryption time with respect to y and r, and (e) and (f) show the storage

with respect to y and r .. 47

Figure A.1. Schematic of two nodes of the IoT prototype .. 58

Figure C.1. Difference in the values of d2 between real and regressed data 63

ix

CHAPTER 1: INTRODUCTION

Sharing of data is a common function of most traditional cloud storage systems.

However, attempting to confidentially share data on untrusted clouds increases the

complexity of the problem. This chapter motivates the issue this thesis is attempting to

solve, lists the objective and the contributions of this thesis, and presents an overview

of the structure of the rest of the chapters.

1.1. Motivation

Cloud storage comes with a lot of benefits like scalability, sharing, and cost-

effectiveness. Because of that, organizations of various sectors are choosing to use

cloud storage for different applications [1], [2]. However, relying on a third-party cloud

provider might not always be suitable when the stored information is highly confidential.

Secure sharing is a critical requirement of many conventional cloud applications [3].

Examples range from direct file-sharing between cloud storage users to sharing between

nodes in IoT systems. IoT systems typically need to share, for example, sensory data that

it has collected through cloud storage. This data is then accessed by other nodes to be

analyzed or to be used to control any kind of actuator device. Whether it is IoT system

data or a shared set of users’ files, the data is ideally expected to be hidden from other

parties including the cloud providers themselves. However, traditional cloud services

do not provide such levels of data confidentiality and user privacy.

One way to secure confidential data on public clouds is to encrypt it with a symmetric

cipher. However, this limits the ability to use the data until it is decrypted back. In

such a scenario, it is not possible to share data between different users in the system.

1

Attempting to share one file with one user means that the symmetric key must be shared,

which gives the recipient user access to all the encrypted files in the cloud. In addition,

the only way to revoke such access is to re-encrypt all files with a new key which can

be very expensive. Such a symmetric cipher is not sufficient to allow different users

to access different sets of files. Another obvious solution can be using an asymmetric

cipher. An asymmetric cipher can be used to encrypt a file with the recipient’s public

key and decrypted with his/her private key. However, this process needs to be repeated

between every pair of users as asymmetric ciphers typically work between two parties

only. Thus, neither symmetric nor asymmetric ciphers are good solutions to the problem

of confidential sharing in typical settings. Many researchers have approached this issue

providing novel solutions as presented in Chapter 2. However, each of those solutions

faces different challenges; most notably, the key escrow problem. The key escrow

problem is when a system relies on a central trusted or a semi-trusted third party. This

third party is usually the cloud provider who is given access to stored user’s data.

Several different approaches were used to address the key escrow problem. Most

notably, two techniques are found in the literature, certificate-based schemes and de-

centralized schemes [4]. Certificate-based schemes work by relying on an authority to

generate a partial secret key [5], [6]. This key is then modified by the users with some

randomness to generate the full key. These kinds of schemes partially solve the key

escrow problem as the authority knows a part of the key and it still acts as a central

point of failure. Decentralized schemes, also known as multi-authority schemes, do

not rely on a single authority [4], [7], [8]. Instead, multiple users in the system act as

authorities. Those authorities generate partial secret keys and collaborate to build a full

secret key. This scheme improves over certificate-based schemes as it would take as

2

many authorities used to generate the key to expose the full secret key.

This thesis proposes a method that allows data to be shared confidentially. The main

idea is to have a different key for every file. Sharing a file, in this case, can be done

by sharing the key of that specific file. However, storing a key for every corresponding

file can be very expensive for a large number of files. Instead of storing every key for

every file, the proposed scheme derives keys when needed. The protocol behind this

process is explained in-depth in Section 3.2. The system allows sharing and revoking

access to a file between different users seamlessly. All of the system operations rely on

client-side computations only with no collaboration, central authority, multi-authority,

nor any trusted third-party. Therefore, the system is decentralized and can be easily

deployed by any user. Deploying such a system can be extremely beneficial for entities

to be able to share confidential data between different sectors (e.g. governments, health

care institutions, etc. . .) while using cost-effective public clouds.

1.2. Objectives and contribution

The main objectives of this thesis can be summarized as follows:

1. Designing decentralized encryption and key management scheme that allows

sharing and access revocation of encrypted data using client-side computations

with no central authority.

2. Demonstrate the applications of the proposed scheme by employing it in two

scenarios; cloud storage and sharing in IoT cloud system.

3. Evaluate the system and compare it to existing literature.

3

The contribution of this work is in introducing a scheme that allows sharing and

revocation while being fully decentralized and not dependent on any third party. In

addition, practical prototypes of two applications were built on top of this scheme

to showcase the capabilities of the protocol in real-life scenarios. These applications

function as a proof-of-concept for the proposed scheme. Developers and researchers can

use those provided applications with minor modifications to come up with new solutions

to match their needs in any scenario that requires confidential data sharing. The scheme

and its implementation are also analyzed, evaluated, and compared to other works found

in the literature.

1.3. Thesis overview

This chapter introduces and motivates the work. The rest of the chapters are or-

ganized as follows. Chapter 2 introduces basic concepts and cryptographic primitives.

Related work of systems and encryption schemes is also presented and contrasted to this

thesis in Chapter 2. Chapter 3 goes over formal definitions, main scheme construction,

and security analysis of the formulated solution. In Chapter 4, the implementation

details of the system are described. Applications of that implementation are listed and

explained in Chapter 5 that discusses employing the proposed scheme to build prototypes

for a cloud storage application and as an IoT system application. Chapter 6 evaluates the

proposed scheme and the implemented system. The thesis is then concluded in Chapter

7 that summarizes the main results and proposes future improvements to this work.

4

CHAPTER 2: BACKGROUND AND RELATED WORK

Secure cloud sharing has been an area of interest for many researchers and inventors.

Some researchers have addressed the topic from a purely theoretical point of view by

designing new encryption schemes. Others tried to build system implementations for

cloud storage and IoT systems that provide such features. Besides, several companies

attempted to invent techniques that achieve secure sharing using existing art. For this

reason, the work of this research tries to address some aspects that the existing literature

lacks by introducing a new scheme that matches the objectives listed in Section 1.2.

2.1. Background

Several researchers in the literature have been trying to solve the issue of secure data

sharing on public untrusted clouds. However, those solutions suffer from the problem

of having a trusted or semi-trusted third party for keys generation and distribution. Such

systems rely on a cryptographic primitive known as broadcast encryption [9]. It is based

on the idea that some public parameters are shared in the initial phase of the system

setup and only authorized users can decrypt. This method was applied mainly to share

encrypted TV content for subscribed users.

Based on broadcast encryption, several cryptographic schemes have been developed

throughout the years. Most of them fall under the concepts of Identity-Based Encryption

(IBE) [10] and Attribute-Based Encryption (ABE) [11]. IBE has been introduced back

in 1984. It works by encrypting the data using keys that are related to the users’ identity

(e.g. email). ABE was introduced after several years in 2005. The keys in ABE schemes

are not only based on the identity, but are also based on the attributes related to the user.

5

ABE has been used to build many other schemes used for cloud storage applications

[12].

Another cryptographic primitive that has been used to allow multiple users to access

shared data is proxy re-encryption [13] to allow secure sharing of data. The ciphertext

in such schemes is transferred from using one public key to another using the proxy to

be able to share data between users. However, this proxy needs to be semi-trusted in

order to function.

Using one of the techniques mentioned above can be sufficient to allow encrypted

data to be accessed by different users. However, most papers in the literature introduce

a third party to the system to manage the keys among the users and act as a central

authority [5], [14]–[16]. This can be problematic because the central authority needs

to be trusted or at least semi-trusted. It also raises the issue of having a central point

of failure. For this reason, some research efforts attempted to decentralize it with the

addition of extra features [8], [17].

2.2. Related work

Related work to this thesis varies between different areas of research. Section 2.2.1

presents cloud storage systems that provide secure cloud sharing. Section 2.2.2 shows

different implementations of secure data sharing in IoT systems. General cryptographic

schemes are then presented in Section 2.2.3.

6

2.2.1. Systems for secure data sharing

A system named Mona was introduced in 2013 providing cloud sharing with multiple

owners with the existence of a group manager [15]. ABE was used to allow secure

sharing for cloud computing [18]. This system also allows revoking access to data.

However, the revocation is done by the cloud server. Also, a trusted attribute authority

is needed for key generation. CloudDocs was another application introduced in 2015

that attempt to provide secure cloud sharing using another system named TrustStore

[14]. In 2017, SeShare was another similar work allowing secure cloud sharing [16].

The focus of this work was targeting file updates collision prevention and the authors

managed to achieve that using blockchain. Another IBE system was presented in 2019

using Certificateless Hybrid Signcryption [5]. This implementation required no pairing

and thus lower cost and complexity. However, a third party is needed to manage the

system.

However, all of the previously mentioned implementations require a trusted third

party for user management and key distribution. This raises the key escrow problem

which arises when an authorized entity is responsible for the management of the system.

This problem has two major impacts. First, it allows the authority to have access to the

users’ information as it generates the keys and distributes them to users. Secondly, it

acts as a single point of failure where the system stops in case the main authority goes

down.

The work [19] was done for secure sharing with untrusted cloud providers in mind.

A new progressive elliptic curve encryption scheme was utilized in this work. It was

designed to make it possible to encrypt a file with multiple keys but only decrypt once

7

with one key. Sharing between parties is done by encrypting the already encrypted file

by the cloud provider and decrypting by the receiver. This process reveals nothing to

the cloud provider. However, this protocol assumes the ability to do computations on

the cloud. In addition, the scheme was not implemented but the authors mentioned that

the performance of the scheme is not as good as existing schemes.

Secure sharing is an important part of many existing commercial solutions provided

by different companies. Because of that, several patents exist on this topic.

Dropbox, Inc. is one of the companies that targeted the issue of sharing. In one of

their inventions, they describe the process of sharing a file [20]. Their mechanism of

sharing is based on sending the file from the client to the content management system

(i.e. online servers). The content management system then generates a link which the

user can send to the recipient(s) to allow them to access the file. The described process

in this system is a simple method of sharing. However, it describes no particular way

of securing the shared data. The only mention of securing user’s data is that standard

transmission protocols are used to secure the communication channel (e.g. SSL, HTTPS,

etc. . .)

Another invention that is assigned to Dropbox, Inc. is a secure protocol for sharing

and synchronizing data over local area network (LAN) [21]. The protocol starts with

the first client (i.e. the sender) communicating with the content management system to

generate an identifier and a secret key associated with the shared folder. The identifier is

then announced over the LAN and the second client (i.e. the recipient) sends a request

for synchronization. The second client is then authenticated by the first and the data is

shared and synchronized securely. This method is good for sharing data between users

8

on a LAN securely while keeping it hidden from unauthorized users. However, the

security of this method is limited to the LAN. The cloud management system, which is

provided by the cloud provider, is involved in generating the secure key. Thus, the cloud

provider still has access to the shared files.

Box, Inc. has also presented efforts on the topic of secure sharing. A patented method

was assigned to them focusing on secure sharing and deduplication of data on the cloud

[22]. The deduplication of the files is performed first by the cloud server before sharing.

Sharing is then done over several steps assuming that the client has an enterprise key.

First, the shared file is hashed using a hash function to form a content-based encryption

key. The file intended for sharing is then encrypted using the content-based encryption

key and stored on the cloud. Next, the content-based encryption key is encrypted using

the enterprise key and stored on the cloud. Such a protocol can be considered secure

under the assumption that the enterprise key is secured. However, the enterprise key

is known by the cloud provider. This means that the cloud provider can decrypt the

content-based key and the encrypted files.

Several other companies have been patenting different methods of secure sharing.

In a method for securely storing and sharing files assigned to Invenia [23], a client has

a username and a password. An asymmetric key pair is then generated and the private

key is encrypted with the hash of the password. A file-specific symmetric key is then

generated and used to encrypt the file intended for sharing. The file-specific key is then

encrypted using the previously generated public key. The encrypted file-specific key is

then set as the header of the encrypted file and stored on the cloud server. The problem

with such a technique is that it is limited to sharing between only two parties.

9

Another patented work focusing on secure cloud data sharing was done by MyMail

Technology, LLC. [24]. The process of sharing in this method starts by generating

a file-specific key associated with the file to be shared. This assumes that the file is

already stored encrypted in the cloud server. The file-specific key is then encrypted

using the identification key where the identification key to associated with the recipient.

The recipient is then notified and the data can be downloaded and decrypted using the

recipient’s identification key. The issue in this method is that the identification key is

known by the cloud server. This means that the cloud provider can access and decrypt

the shared files.

Similar work on secure data sharing was patented for Masimo Corporation [25].

This system was intended mainly for the health care sector. However, the system can be

applied to other domains. The method of this system is based on having a hierarchy of

keys to access a master key. This was done to offer the users alternatives like having a

password or a security question. Sharing of files is done in this process by encrypting the

data with the recipient’s public key and decrypting with the private key once received. In

other words, sharing on this system is based on typical asymmetric encryption between

only two parties.

Most of the prior art that was found assumes the existence of a cloud server that

can generate the keys and/or manages the encryption process. Other techniques were

limited to sending and receiving between two parties closer to being typical public-key

cryptography methods. This shows that more work needs to be done in the area of

secure cloud sharing without exposing the data to the cloud provider.

10

2.2.2. IoT-based solutions

Secure sharing is a significant part of IoT systems. It is a common scenario in IoT

that sensor devices read data and store it in cloud services. These sensory data are

then accessed by other devices to be analyzed or by actuator devices to take actions

based on the data. This should be done ideally while keeping the data hidden from

other parties that should not have access to the data, including the cloud providers. For

this reason, several researchers have designed various methods to secure this kind of

communication.

Some researchers approached the problem by designing new encryption schemes.

Partially Homomorphic Encryption was used to implement sharing with revocation ca-

pability [26]. This technique relies on proxy re-encryption where a third party transforms

the ciphertext from a public key to another without learning the plaintext. Revocation

in this work is done under the assumption that a trusted proxy or a semi-honest cloud

exists. Also, the cloud provider is required to perform some computation. This work

has been showcased using two applications with smartphones and IoT devices.

Another special-purpose encryption scheme was made to work for IoT devices

particularly on the edge [27]. The purpose of this protocol is to reduce the computation of

IoT devices. However, the edge servers need to be semi-trusted. This work also supports

searching along with data sharing. However, user revocation was not considered in this

research.

Information-centric IoT is a kind of network where the information gets cached on

the nodes. A secure sharing scheme was designed for Information-centric IoT [28].

11

This scheme was built on the top of Ciphertext-policy Attribute-Based Encryption (CP-

ABE). The problem with CP-ABE is that it requires a dedicated server for attributes

management. The work in this research provides a similar scheme to CP-ABE while

being distributed and publisher-driven scheme with revocation capabilities. However, a

trusted third party is still needed to act as a data sharing authority.

Blockchain has been used to aid in implementing secure data sharing systems in IoT

[29], [30]. Blockchain was used as an access control system for IoT data in [29]. This

work uses key regression where new keys are frequently generated over time and only

the last key is shared. Another work has used blockchain along with proxy re-encryption

to dynamically distribute the re-encryption keys [30]. Even though the process of re-

encryption does not reveal any information, a third party is still needed to perform the

computation. Another big trade-off while using blockchain is that the transactions are

very slow. For example, in the latter research, the process of sharing takes around 28.01

seconds [30].

2.2.3. Sharing-enabled encryption schemes

In addition to papers focusing on cloud systems and IoT scenarios, many papers were

focused on building novel encryption schemes that can allow secure sharing of data.

Ciphertext-Policy ABE (CP-ABE) was introduced in 2007 [31]. It introduces a

new ABE scheme where the policy is stored within the ciphertext. Many researchers

have been attempting to make such encryption schemes distributed and decentralized.

A distributed ABE scheme was introduced in 2008 [32]. In this scheme, multiple

authorities co-exist on the system to distribute the secret attribute keys. However, only

12

one master authority distributes user keys. Besides, this scheme only allows disjunctive

normal form attributes.

Later in 2011, a decentralized ABE scheme was introduced [7]. This scheme shares

many similarities with the previously mentioned work [32] Improvements were made

where any party in the system can act as an authority. Also, if an authority fails, other

authorities can still function. In addition, any Boolean formula can be accepted as the

attributes. However, the creation of the initial parameters requires a trusted setup.

Another similar scheme based on CP-ABE allowed multiple authorities [33]. Multi-

ple central authorities distribute users’ keys and multiple attribute authorities distribute

attribute keys. However, the initial setup also needs to be trusted.

Anonymous IBE allowed better revocation for file sharing scenarios [34]. The idea

of this scheme is that revocation does not need decryption and re-encryption due to

hiding users’ identities. However, the revocation process is done by the cloud server.

Certificate-based broadcast encryption is also considered as an anonymous scheme

[6]. Having certificates and certificate authorities in the system allows constant decryp-

tion cost. Also, certificate authorities know only a portion of the keys in this scheme.

Another work focused on using CP-ABE for lightweight devices [8]. This is done

by having a constant key size with optimized ciphertext size and optimized computation

time. This paper implements two schemes where one of them supports revocation and

the other does not. Each of those schemes has its advantages and disadvantages. Those

schemes are implemented, benchmarked, and compared against other schemes found

in the literature. A similar decentralized scheme was built as a broadcast encryption

13

scheme [4]. This work improves the performance over the previous scheme.

Blockchain was used to introduce a decentralized privacy-preserving storage and

sharing system [35]. This system relies entirely on blockchain to perform its operations.

Being a scheme that is based on CP-ABE, an attribute authority is needed in the system.

Instead of using a single trusted attribute authority, attribute authorities are considered

as special kinds of blockchain users. This design has the advantage of being fully

decentralized with no central authority. However, attribute authority users are still

needed to generate the attributes for other users. Revocation is also not included in the

scheme. In addition, heavily depending on the blockchain can introduce long delays.

Overall, schemes have been improving with time towards more secure solutions.

However, schemes that allow both sharing and revocation still rely in a way or another

on some third party or a trusted authority.

14

CHAPTER 3: PROBLEM FORMULATION AND SCHEME CONSTRUCTION

For users U , cloud files F , and file owner A, files are shared with B, where A ∈ U

and B ⊆ U . Table 3.1 lists a summary of the various terms used in this thesis.

Table 3.1: Terminology used in the scheme construction

Terminology Description

A Data owner user (i.e. Alice)

B Set of other users (i.e. Bob(s))

U Set of users where A ∪B ⊆ U

Bi Sample other users (i.e. Bob)

F Set of files

FA Set of files owned by A

FBi Set of files shared with Bi

f Example file where f ∈ F

f ′ Encrypted version of f

H() Cryptographic hash function (e.g. SHA)

Esym(), Dsym() Symmetric crypto functions (e.g. AES)

Easym(), Dasym() Asymmetric crypto functions (e.g. RSA)

X|Y Concatenation of variables X and Y

X − Y Delete Y from the beginning of X

k Encryption key

”X” String value of X (e.g. user name, file name, etc. . .)

S(X) Byte size of X

15

3.1. Assumptions and constrains

For the system to function, two statements must be valid in all cases:

1. For files FBi shared by A with every user Bi ∈ B, a user Bi must always have

access to files FBi while keeping those files hidden from other users in U .

2. When a user Bi is revoked from accessing a certain file f , Bi will no longer be

able to access f without affecting the sharing state of other users in U .

In order to keep the data hidden from any adversary and from the cloud providers

themselves, the statements above must hold a certain context of constraints:

1. The cloud is treated as a passive storage system where only basic file operations

can be performed (e.g. downloading, uploading, listing, etc. . .)

2. No coordination is involved and computation is only possible on non-communicating

clients.

Having such cloud usage restriction adds the advantage that the system can function

on any abstract cloud interface. This includes using simple cloud storage or using a

more sophisticated system that allows multi-cloud storage [36].

The lack of central coordination and constraining the system to be fully decentralized

transforms the problem of data sharing from a simple operation in traditional clouds to

a more complex problem. Another issue that is introduced is the fact the users either get

full read and write privileges or none. This is due to the limitation that only basic cloud

file operations are possible. This means that preventing an adversary from destroying

or corrupting the data is out of the scope of this work. Such issues can be solved by

16

improving the availability like using a multi-cloud storage setup [36]–[38]. Instead,

this thesis focuses on constructing a scheme that ensures data confidentiality under the

assumptions and constraints listed above.

3.2. Scheme construction

The proposed scheme tries to achieve confidential sharing of data on untrusted

clouds. The escrow problem is also an important consideration of the design where no

central authority exists in the system. Figure 3.1 presents the general operations that

the scheme needs to support, which include adding a file, retrieving a file, retrieving

a shared file, and revoking a user. The steps of these operations are formally defined

below.

• KeyGen: Given A’s symmetric key kA and an initialization vector (IV) IVf used

later while encrypting f , the key kf for file f ∈ F is computed as

kf = H(IVf |kA) (3.1)

Note that IVf is used here instead of any other generic file identifier to enable

changing the key whenever the file is re-encrypted. This is important for revoca-

tion.

• Encrypt: Given kf and a random IV IVf , we encrypt the plaintext file f ∈ F to

get the ciphertext f ′ as follows

f ′ = IVf |Esym(f, kf) (3.2)

17

Note that the IV is also used for revocation.

• Decrypt: Given kf and encrypted file f ′

f = Dsym(f
′ − IVf , kf) (3.3)

Note that in case kf is not available, it can be reconstructed only by the owner

who has kA. Using IVf extracted from f ′, kf can be reconstructed as shown in

the KeyGen section.

• Share: In order for A to share file f with Bi, file f is added to the set FBi (i.e.

the set of files shared with user Bi). This process is done given A’s symmetric

key kA and B’s asymmetric keys kBipriv and kBipub.

TA = Esym({”B0” 7→ FB0, . . . , ”Bi” 7→ FBi, . . .}, kA)

TA,Bi = Easym({”f” 7→ kf , . . .}, kBipub)

(3.4)

Where TA is used by A to keep track of shared files with other users and TA,Bi
is

provided by A for Bi to access files FBi where f ∈ FBi.

• Decrypt shared file: Given that f is shared by A with Bi, to decrypt f ′, Bi

downloads f ′ and TA,Bi and perform the following.

Dasym(TA,Bi, kBipriv) = {”f” 7→ kf , . . .}

Dsym(f
′, kf) = f

(3.5)

• Revoke: To revoke user Bi from accessing file f owned by A

18

1. A downloads TA and decrypts it using kA, i.e. Dsym(TA, kA) = {”Bi” 7→

FBi, . . .}.

2. Remove ”f” from the FBi.

3. Encrypt the table again and upload it, i.e. Esym(TA, kA).

4. Regenerate TA,B and upload it replacing the old table. Where the new

regenerated table does not include kf .

5. Download f ′ and decrypt it to get f .

6. Randomize IVf , generate new kf , and encrypt again to get f ′′.

7. Upload f ′′.

8. Regenerate TA,Bj where Bj ∈ the set of users A shares the file f with.

Note that removing the table entry is done before the re-encryption of the file

because it is assumed that the tables are smaller than the files in most cases. This

means that the revocation will be faster in case B is honest. The remaining steps

ensure revocation regardless of B’s honesty. Also, the steps in this process need

to be atomic. A copy of the tables must be kept in case of failure for recovery. The

last step is performed to update the new key for other users who have the same

file shared by A.

3.3. Security analysis

The scheme is constructed using symmetric and asymmetric ciphers in addition to a

cryptographic hash function. Every file f in this model is assumed to have a different key

kf generated using the hash functionH() as shown in Section 3.2. This key combines the

19

1. kf = H(fIV | kA)
2. f' = fIV | E(f, kf)
3. Upload f'

1. Download f'
2. kf = H(fIV | kA)
3. f = D(f' - fIV, kf)

TA,Bi = E({"f":kf}, kBi pub)
TA = E({"Bi":["f"]}, kA)
Update tables

kBi priv
kBi pub

1. Download f' and TA,Bi
2. D(TA,Bi, kBi priv) → kf
3. f = D(f', kf)

- Update tables removing "f"
- A get f
- Randomize the IV
- Upload the new f'

kA

kA

f

Cloud provider

Cloud providerA

kA

f

A

A

kA

Cloud provider

Bi

Cloud provider

f'

TA,Bi

Bi

kBi priv

f

A

Bi

Cloud provider

a.

b.

c.

d.

e.

Figure 3.1: Scheme operations including a. adding a file, b. retrieving a file, c. sharing
a file, d. retrieving a shared file, and e. revoking a user from a shared file

symmetric key kA of the file owner A and the initialization vector IVf of the file f . The

key kf is then used to encrypt and decrypt the file using the symmetric cryptographic

functions Esym() and Dsym(). This means that the key generation step is as secure as

the used hash function and file access is as secure as the used symmetric cryptographic

20

functions.

Sharing a file f owned by A with a user Bi, in this scheme, is the process of

adding the key kf to a table TA,Bi that maps the files A allows Bi to access to their

corresponding keys. This table functions like a capability list of Bi to access files of

A. It is also encrypted with the asymmetric cipher Easym() using the public key of

Bi, kBipub. When Bi wants to access f , he decrypts TA,Bi with the asymmetric cipher

Dasym() using his private key kBipriv to get the key kf and be able to access the shared

file f . This means that accessing files shared between users is as secure as the used

asymmetric cipher. If A decides to revoke Bi from accessing f , she follows the scheme

revocation steps where IVf is regenerated, a new kf is generated, and f is re-encrypted.

Building on top of this model, the assumptions can be listed as follows.

1. Functions H(), Esym(), Dsym(), Easym(), and Dasym() are assumed to be crypto-

graphically secure.

2. Clients trust no party other that themselves.

3. All users have read and write access to the encrypted data stored in the cloud

storage.

The main advantage of using this scheme is the ability to share and revoke access

to files between users. For that, the statements below must always hold.

Property 1: When a file f is shared by A with user Bi, the file is always accessible

by Bi while staying hidden from any adversary.

Proof : To be able to access file f , its key kf must be accessible. Those keys are

previously encrypted using kBipub and stored as TA,Bi by A. Bi is the only user who

21

has his private key kBipriv. Using the asymmetric cipher, Bi can decrypt TA,Bi with his

private key kBipriv and obtain kf to be able to decrypt f ′ and get the shared file f . For

an adversary to access f , either kA or kBipriv must be known. However, those keys are

kept private in their owners’ local machines. Therefore, f cannot be accessed by any

adversary while always being accessible to A and Bi.

Property 2: If A revokes Bi from accessing file f that was previously shared with

Bi, the file can never be accessed by Bi unless it is shared again.

Proof : When a file f is already shared withBi, its key kf is exposed toBi. Assuming

that Bi is still able to access f after he has been revoked by A, he attempts to download

f ′ and decrypt it with his kf . However, the decryption results in garbage data. This is

because when A revoked Bi, a new IVf was generated. Consequently, the generated key

kf has changed and the file f is re-encrypted with a new key different than the old kf

owned by Bi. Therefore, by contradiction, Bi can never access f again unless A decides

to share it again with him.

22

CHAPTER 4: IMPLEMENTATION

The implementation of the system is divided into different modules. The core

module of the system provides a direct implementation of the scheme described in

Section 3.2. This core module functions independently from the cloud storage method

and the intended application. Instead, it acts as an abstract interface that other modules

can make use of to implement more specific applications. Public key sharing is another

module that is discussed in Section 4.3. Other modules of the system are the sample

applications discussed in Section 5. The complete implementation is publicly available

as a git repository 1

Table 4.1 shows the specifications of the hardware used for testing and evaluating

the implemented software. Table 4.2 lists the commands for the implemented software

modules, other than the core, and their description. Assuming that the main program

is in the current directory and is named main.py, executing commands should be

as ./main.py [COMMAND] [ARGUMENTS]. These commands are further explained in

their corresponding sections.

Table 4.1: Hardware specifications of devices used for testing and evaluation

Device Raspberry Pi Zero W Intel-based laptop

CPU ARM1176JZF-S 32-bit Intel® Core™ i7-5500U 64-bit

@ 1GHz @ 2.40GHz

RAM 512MB 16GB

OS Raspberry Pi OS Lite Arch Linux

1https://github.com/Naheel-Azawy/ccdsuc

23

https://github.com/Naheel-Azawy/ccdsuc

Table 4.2: List of commands implemented for the prototype applications

Command Description

bcpki: Control the blockchain public key infrastructure described

in Section 4.

fs-mount: Mount storage filesystem as shown in Section 5.1.

fs-cmd: Execute a command on a mounted filesystem.

iot-server: Start the prototype TCP server for the IoT system explained

in Section 5.2.

iot-sens-ldr: LDR sensor with raspberry pi.

iot-act-led: LED with raspberry pi.

iot-sens-sim: Simulated IoT sensor for testing.

iot-act-sim: Simulated IoT actuator for testing.

4.1. Cryptographic configuration

The system was implemented using the cryptographic library pycryptodome for

Python [39]. For the purpose of this system, both symmetric and asymmetric ciphers are

needed. So, AES and RSA were chosen for our implementation. In practice, these can

be replaced by any other symmetric and asymmetric techniques. The keys sizes selected

for AES and RSA are 256-bits and 2048-bits, respectively. AES is set to be used in the

counter mode (CTR). Using CTR is particularly useful while reading and writing large a

file where only portions of the file are accessed as blocks. The cloud storage application

in Section 5.1 benefits from using CTR by enabling seamless filesystem operations. The

block size of AES is set to be 16 bytes. This block size is also used as the size of the IV

24

across the system.

The asymmetric cipher needs to accommodate data with arbitrary plaintext size. For

this reason, RSA was only used to encrypt a 256-bits random session key. This session

key is then used to encrypt the plaintext with AES. The encrypted session key is then

concatenated along with the ciphertext generated from AES. To decrypt, the encrypted

session key and the AES ciphertext are first separated. Then the session key is decrypted

with the RSA cipher. Finally, the session key is used to decrypt the ciphertext.

One issue with this implementation is that it can be inconvenient for the user to keep

the three keys. To solve this issue, the keys need to be generated from a passphrase a user

can memorize. To generate the AES key, the passphrase is hashed using SHA-256 where

SHA-256 generates a 256-bits hash that fits as an AES key. RSA keys, on the other

hand, require randomness to be generated. However, the keys in the case of this solution

need to be deterministic based on the passphrase given to the user. So, the solution

was to modify the random number generator used by the RSA keys generator making

it seed from the user passphrase. This is done thanks to the used library which allows

passing a custom function as the random number generator to be used internally for key

generation. The implemented function uses the system’s random number generator that

is initially seeded with the user’s passphrase. This way, RSA keys can be regenerated

deterministically using only the user’s passphrase. Using this process is less secure than

using randomly generated keys as it moves the complexity to the passphrase. However,

it introduces the convenience needed for this prototype.

25

4.2. Integrity checking

The main focus of this work is preserving the confidentiality of data. However,

ensuring the integrity can be relatively easy to add. Message authentication codes

(MACs) are usually used to check the integrity of data for various applications [40].

Several traditional options of MACs exist such as HMAC [41] and GMAC [42]. GMAC

is widely used not only as a MAC, but as an encryption mode. This is usually referred

to as Galois/Counter Mode of Operation (GCM) and is typically used with AES. The

system implemented presented in this chapter is constructed using AES with CTR mode.

This means that adding authentication to the system can be done by changing the AES

mode of operation to one offering authenticated encryption (such as GCM).

Introducing authentication to the system comes with some costs in storage and

performance. Using a typical GCM, for example, adds a tag to the encrypted data. The

size of this tag varies based on the implementation but it typically ranges between 4 and

16 bytes [39]. Performance can be also affected as verifying the integrity would require

going over the whole file. Such an effect can significantly reduce the performance,

especially for large files. Therefore, this could lead to losing the important CTR mode

property of being able to encrypt and decrypt individual blocks as discussed in Section

5.1. However, some newer authentication techniques have the promise for achieving

higher performance [43].

4.3. Public keys distribution

In order to share a file with a particular user, the public key of that user is needed to

be known by the sharer. However, sharing the public keys using the cloud provider or

26

any other third party might not be safe. This is because the third party or any malicious

user can act as a man in the middle and change the public keys allowing them to access

data that is not shared with them. One solution could be to statically add the public keys

of the users with whom we intend to share our data. However, this would introduce a lot

of hassle every time a new device is added. For this reason, a public key infrastructure

(PKI) is needed to dynamically share public keys with digital certificates.

Using a classical PKI has some drawbacks. Requesting a digital certificate from a

certificate authority (CA) can be a long process. It also introduces the CA as a third

party that needs to be trusted to manage the public keys honestly. Because of that, the

implemented prototype relies on a simple blockchain-based PKI. This implementation

choice was done to match with the decentralized nature of the scheme in this thesis.

Similar techniques can be found in the literature [44]. Etheruem is used with its smart

contract to build such systems [45]. The CA interface is implemented in Solidity to

implement a simplified certificate structure acting as a simplified version of the X509

standard. A snippet of the smart contract is shown below.

struct Certificate {
uint version;
string valid_to;
string public_key;
address issuer_id;
string subject_id;
string subject_name;
bool exist;
address wallet_owner;

}
mapping(string => Certificate) certs;
mapping(string => bool) crl;

The smart contract is capable of enrolling, revoking, and verifying a certificate. It

can also return a particular certificate, the list of certificates, and the certificate revocation

27

list (CRL). These operations are done by calling the contract functions. The certificates

and the CRL are stored in the contract as mappings using the hash of the certificate. In

addition, enrolling and revoking certificates are functions that are restricted only to the

certificate owner, which is the CA in this system. These operations can be invoked as

listed in Table 4.2 by running ./main.py bcpki add, get, and revoke.

4.4. Limitations

Prototypes implemented in this work do lack some features that are taken for granted

in typical cloud systems. However, different solutions and workarounds can be applied

to add more features to the system. One of those features is the ability to search the

content of the files. Searchable encryption schemes can be used as the symmetric

cipher instead of AES to solve this problem. Several schemes have been developed and

discussed in the literature to address this problem [46].

Another issue is the lack of access control. This is due to the assumption that the

system deals with a passive server as discussed in section 3.1. One way to solve this

issue can be by relying on a cloud server that supports access control. But in this case,

the cloud server will have more control over the system. Using multiple clouds can

enhance the reliability and thus reduce the risk of corrupting the data by a malicious

user [36]. Based on that, multi-cloud storage systems can be used as a workaround to

the issue of access control. Some other features were not implemented in this system

such as notifying the users when a file is shared or when a shared file is modified. Such

features can be implemented in the future without any significant compromise. The

system can be also ported to other platforms to support mobile and web platforms.

28

CHAPTER 5: APPLICATIONS

Based on the implementation of the proposed scheme, applications can take ad-

vantage of the core implementation to allow confidential sharing in any cloud-based

application. As a proof-of-concept, two applications were developed; secure cloud

storage and IoT systems. These applications are bundled together as a command-line

program to keep the prototype simple and to the point. The commands implemented

can be seen in Table 4.2.

5.1. Cloud storage application

Building a cloud storage application is usually dependent on the API provided by the

cloud provider. However, the built system is expected to work with any cloud provider.

Well-known cloud storage providers usually provide a desktop sync application. Based

on that, a virtual filesystem can be implemented to store encrypted data on the cloud and

expose a decrypted view of the data for the user. This means that the system can be easily

deployed on top of many existing cloud providers like Dropbox, Box, Google Drive,

One Drive, etc. . . In addition, it can be used on top of other systems like SafeDrive

where multiple clouds are used [47]. Example usage of this application can be found in

appendix B.

5.1.1. User-space encrypted filesystem

Similar ideas can be found in user-space disk encryption techniques [48], [49]. Such

systems implement a user-space filesystem acting on two directories. One directory

is usually a physical filesystem that stores the encrypted data to be considered as the

root directory. The other directory is the virtual mount directory. The mount directory

29

shows a decrypted view of the root directory and cryptographic operations are performed

on-demand per data block. This kind of virtual filesystem provides a seamless user

experience while keeping the data encrypted in the root directory.

An approach similar to encrypted virtual filesystems was chosen in this application,

where the root directory is the cloud sync directory. The mount directory represents

the decrypted user’s logical view of files. This means that the virtual filesystem will be

responsible for encrypting and decrypting data while reading and writing, listing files

shared with the users as a logical directory, and performing commands on files such as

sharing and revoking.

5.1.2. Filesystem implementation

This implementation is built using filesystem in user-space (FUSE) [50]. FUSE is

installed as a kernel module that provides a bridge to the user-space through libfuse

to implement filesystem operations. Using FUSE to implement a filesystem requires

implementing the basic filesystem operations such as opening, closing, listing, reading,

writing, etc. . . In this particular application, calling read() decrypts the data from the

root directory. Calling write() encrypts data and writes it to the root directory after

reading and decrypting unaligned blocks if any. These operations run on segments of

the data given the requested offset and size. In addition, file listing and other filesystem

operations are deeply integrated with the sharing system to allow a seamless user expe-

rience. Figure 5.1 shows the block diagram of the filesystem implementation with the

rest of the system components of one user device. The figure shows sharing-fs as the

interface controlling the filesystem operations based on the sharing core implementation.

30

5.1. CLOUD STORAGE APPLICATION 31

FUSE

Storage CA contract

CA UI

...

Passive
Cloud Server

PKI
Certificate Authority

Blockchain

Virtual
filesystem

libfuse

sharing-fsUser's root
directory

Cloud
provider

sync
Sharing

core

User space
Kernel space

...

Users' personal computers

Figure 5.1: Cloud storage filesystem block diagram

Table 5.1: Structure of encrypted files stored in the filesystem

Data Size in bytes

IV 16

Padding size 1

Encrypted data Size of the plaintext

Padding 0–15

When a new file f is created, it gets encrypted with its key kf as described in Section

3.2 with a new randomly created IV . The file is encrypted using CTR mode to allow

read() and write() operations to be run on any given file offset and size without

reading the whole file. To make the file size a multiple of the block size, padding is

usually added to the end of the file if needed. In this case, the size of the padding

can be at most equal to the block size -1 (i.e. between 0 and 15). Table 5.1 shows

the structure of how a file is stored. The IV is added to the beginning of the file as it

is used to generate the key kf . Then the size of the padding is specified in cleartext.

This is necessary to be able to know the original size of the file without decrypting

the file. When f is modified, only corresponding blocks are encrypted and replaced.

Unaligned blocks are also decrypted and concatenated to the new data if needed. In case

of appending, padding is added as needed and padding size is updated.

5.1.3. Organization of shared files between users

Alice and Bob can be taken as a usage example of this application. Assuming that

their public keys have already been added and that files foo.txt and bar.txt are

owned by Alice and Bob respectively. Mounting the filesystem can be done as follows

for Alice.

$./main.py fs-mount /path/to/root/ /path/to/mount-alice/
Enter username: alice
Enter password: 123
Server started at :47585
...

The root directory is shown above as /path/to/root/. This path is expected

to be where the cloud provider sync directory is located. All of the data stored

in the root directory is encrypted as explained in Section 3.2. The mount point

32

/path/to/mount-alice/ is what Alice uses to read and write her files and files

shared with her. Knowing that Alice has a file named foo.txt, she can share it with

any other user. For instance, below, Alice shares her file foo.txt with Bob and then

lists the users that she shares foo.txt with.

$./main.py fs-cmd share foo.txt bob
true
$./main.py fs-cmd ls-shares foo.txt
["bob"]

Bob, on the other hand, can log in just like Alice with his username and password.

He is expected to have access to the same cloud Alice has used as her root directory.

$./main.py fs-mount /path/to/root/ /path/to/mount-bob/
Enter username: bob
Enter password: abc
Server started at :45975
...

To visualize how Alice and Bob see their files and how they are actually stored in the

root directory, below is a tree of the directories root, mount-alice, and mount-bob.

The root directory organizes data based on the users’ sub-directories. It also stores

the sharing tables in a dedicated sub-directory. Every file under the root directory is

encrypted as explained in the 3.2 Section and is decrypted on demand under the mount

directories. Shared files are listed in the mount directories under shared sub-directory.

File foo.txt is an example of that where it is listed under mount-bob.

root/ | mount-alice/
|-- alice | |-- foo.txt
| |-- foo.txt | \-- shared
| \-- shared +------------------------
|-- bob | mount-bob/
| |-- bar.txt | |-- bar.txt
| \-- shared | \-- shared
\-- __sharing_tables | \-- alice

|-- table_alice_bob | \-- foo.txt
\-- table_alice_others |

33

5.2. IoT system application

To build the prototype of an IoT system that uses the proposed scheme, several

components needed to be implemented. Figure 5.2 shows a generic block diagram of

the proposed architecture. This implementation differs from the virtual filesystem by

being lighter and built to be specifically compatible with IoT scenarios [51].

Cloud Client

Sharing

HW Interface

Storage CA contract

CA UI

...

Passive
Cloud Server

PKI
Certificate Authority

Blockchain

...

Cloud Client

Sharing

HW Interface ...

... ...

Sensors Actuators

Figure 5.2: IoT system architecture block diagram

A basic passive cloud server is implemented using TCP communication for the

34

purpose of demonstration. This can be replaced with API calls of any chosen cloud

provider. One important aspect of the system is that the server performs no computations

on the data. It is a passive server that only stores encrypted files and performs basic

filesystem operations such as reading, writing, removing, and listing files.

5.2.1. Software interface

IoT devices in the system interface with the hardware sensors and actuators. They

read and/or write data from the connected hardware and use the proposed scheme to

confidentially store and share the data between devices. The software is installed on

the IoT node and the hardware interface can be configured based on the needs of the

user. Code snippets for an example sensor and actuator hardware interface are shown

below. Implementations of read_sensor() and write_actuator() can be used to

directly communicate with the physically connected hardware. Other methods are used

to configure the node properties and their sharing relationships with other nodes.

class ExampleDevice(IoTDevice):
def __init__(self):

super().__init__(
device_passphrase = ...,
device_type = ...,
device_id = ...,
update_period = ...,
log_count = ...)

def file_name(self): ...
def shared_with_list(self): ...
def read_sensor(self): ...
def write_actuator(self, values): ...

ExampleDevice().run()

35

5.2.2. Hardware prototype

The hardware implementation of the described design was done using four nodes.

Each node is a Raspberry Pi Zero W single-board computer. This particular model was

chosen because of its low cost, small size, and onboard WiFi support, which make it

suitable for IoT applications. Table 4.1 shows the specifications of the used hardware.

Each node was connected to a simple sensor or actuator. The implemented software

was installed on all of the nodes and configured to interface with the attached hardware.

As a proof-of-concept, 4 nodes were deployed. Two of them as LDR light sensors

and two of them as LED lights (i.e. actuators). Each sensor shares its data with one

actuator. Based on the code snippets above, the hardware interface is implemented such

that the darker the reading from the LDR, the brighter the LED lights. Those interfaces

are named iot-sens-ldr and iot-act-led as shown in Table 4.2. Figure 5.3 presents

the connected prototype. More details about the prototype can be found in appendix A.

36

5.2. IOT SYSTEM APPLICATION 37

Figure 5.3: IoT system prototype

CHAPTER 6: EVALUATION

This chapter addresses the aspects where this scheme differs from using traditional

cryptographic methods in terms of space and time. The overhead is discussed theoreti-

cally as well as measured based on the implemented system.

6.1. Public storage overhead

In the set of users U , every user A ∈ U has a set of files FA and can share any file

f ∈ FA with an arbitrary number of other users Bi. Let bA,Bi,f be a bit which has a

value of 1 iff A shares file f with Bi, otherwise it has a value of 0. Let S() be a function

that returns the size in bytes, kf be the key for file f , MA,Bi,f be the additional space

for the mappings data structure of the tables, and ϵ be the extra bytes (e.g. for padding)

needed to encrypt the two tables (i.e. TA and TA,Bi). IV is a value concatenated to

the plaintext before encryption as explained in Section 3.2. Equation 6.1 calculates the

storage overhead, Θ, in bytes of implementing sharing on the cloud system.

Θ =
∑
A∈U

∑
Bi∈U

[(∨
f∈FA

bA,Bi,f

)
(∑

f∈FA

bA,Bi,f [2.S(”f”) + S(”Bi”) + S(kf) + S(MA,Bi,f)]
)
+ ϵ

]
+

∑
u∈U

∑
f∈Fu

S(IV)

(6.1)

This equation goes over every user A sharing files with other users Bi. The value of

the term
∨

f∈FA
bA,Bi,f is 1 if A shares any file with Bi, otherwise it is 0. ”f” is present

in both, TA and TA,Bi. ”Bi” is only present in TA and kf is only present in TA,Bi.

38

To simplify equation 6.1, A is assumed to be sharing all of her x files with y users.

This means x = S(FA) = S(FBi); i ∈ [0, y − 1]. Note that S(kf), S(MA,Bi,f), S(IV),

and ϵ are constant parameters of the system, x varies as files are added or deleted, y

varies as users join or leave the system, and b changes whenever a file is shared with

or revoked from a user. Based on the previous assumption, b can be eliminated. The

equation can be rewritten as in shown equation 6.2.

Θ =
∑
Bi∈B

(∑
f∈FA

[
2.S(”f”) + S(”Bi”) + S(kf) + S(MA,Bi,f)

]
+ ϵ

)
+

∑
f∈FA

S(IV)

(6.2)

To further simplify the equation, S(”f”), S(”Bi”), S(kf), and S(MA,Bi,f) are

assumed to be fixed and are replaced with S(”fs”), S(”Bs”), S(K), and S(M). Sub-

stituting with the variables x and y, the equation can be further simplified.

Θ = y.
(
x.
[
2.S(”fs”) + S(”Bs”) + S(K) + S(M)

]
+ ϵ

)
+ x.S(IV)

=xy.
[
2.S(”fs”) + S(”Bs”) + S(K) + S(M)

]
+ y.ϵ+ x.S(IV)

(6.3)

In equation 6.3, fixing y and varying x then fixing x and varying y shows that the

cost increases linearly with respect to both, the number of users and the number of files

in the system. This can be seen if some variables are replaced with constants as follows.

c1 = 2.S(”fs”) + S(”Bs”) + S(K) + S(M), c2 = ϵ, c3 = S(IV)

⇒ Θ = xy.c1 + y.c2 + x.c3

(6.4)

39

Fixing y results in a linear equation of x where the overhead equals to x(yc1 +

c3) + y.c2. Similarly, fixing x results in a linear equation of y where the overhead

equals y(xc1 + c2) + x.c3. Further explanation can be found in Section 6.2 with the

implemented model.

Figure 6.1 shows the measured storage overhead in the implemented system. It

illustrates the storage cost while varying to the number of shared files (x) and the storage

cost while varying the number of users, i.e. devices, (y) in the system while having

all files shared by one owner with all other users. These results reflect equation 6.3

showing a linear increase with respect to both, the number of users and the number of

shared files. An important observation is that the size increases faster while varying y

than varying x. This is because increasing y means creating more tables for more users

while increasing the size of F only adds additional entries on the existing tables. For

example, sharing 100 different files with another user added about 10KB of storage, and

sharing one file with 100 different users added about 40KB of storage. Another way

to visualize the storage overhead is presented in Figure 6.2. This plot represents the

measured sizes as a 3D graph. More extreme cases can be presented in this plot where

different numbers of users share different numbers of files. For example, sharing 100

different files with 100 different users adds about 1MB of storage.

Figure 6.3 presents the storage overhead as a percentage of the total storage with

respect to different file sizes. For testing purposes, this was done in a scenario where

there are 10 files shared with 10 users. The plot starts with a high percentage of almost

100% when the files are too small and decreases rapidly as the file size increases. The

percentage drops down to 1% when the size of the files is around 100KB and to 0.26%

40

when the size of the files is 512KB and keeps getting smaller for larger files.

Such results are expected since the storage overhead is independent of the size of

the file itself. Moreover, the overhead is very reasonable in practice since for small file

sizes, the storage size is not an important issue. For larger file sizes (i.e., when the

storage cost is important), the storage overhead is very small compared to file sizes.

Moreover, in practice, the file sizes required usually in applications are not typically

very small. Therefore, files can be shared confidentially between users with a negligible

storage overhead in the usual use cases.

The data shown in Figure 6.1 reflect the model represented by the equations listed

above. Appendix C goes over connecting the measured data with the model equations

to find the unknown constants.

0 20 40 60 80 100
0

10000

20000

30000

40000

Number of files

S
iz

e
in

 b
yt

es

0 20 40 60 80 100
Number of users

Size for different number of files

Size for different number of users

Figure 6.1: Public storage overhead with respect to the number of files and the number
of users

41

0

S
iz

e
in

 K
B

100
80

100
80

200

400

600

60

800

Number of users

1000

6040

Number of files
4020 20

0 0

Figure 6.2: 3D representation of the public storage overhead

0 100 200 300 400 500 600
0

20

40

60

80

100

File size (KB)

S
to

ra
ge

 o
ve

rh
ea

d
(%

 o
f t

ot
al

 s
to

ra
ge

)

Figure 6.3: Public storage overhead as a percentage of the total storage

6.2. Performance evaluation

Implementing this system is based on the well-known AES and RSA ciphers. How-

ever, sharing comes with additional costs in both time and space. The time cost mainly

comes out of the key generation before encryption and decryption and the space cost is

42

the size of the sharing tables. The performance measurements were performed on the

Raspberry Pi where it is suitable for IoT scenarios as explained in Section 5.2 and on an

Intel-based laptop where it is suitable for basic cloud storage scenario as explained in

Section 5.1. The specifications of those devices are listed in Table 4.1.

The speed of encryption and decryption is dependent on the library implementation

of AES. However, the key generation time is an important factor in the scheme that

affects the speed of the process. These keys are generated every time files get encrypted.

As it was shown in Section 3.2, the key for file f is kf = H(IVf |kA). The process of

concatenating the IV and the key and hashing them adds a small constant extra time.

Based on the run tests, the key generation process added about 60 extra nanoseconds

on average to the encryption and decryption speeds on the Raspberry Pi and about 1

nanosecond on the Intel-based machine.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

500

1000

1500

2000

2500

Size of the revoked file in megabytes

R
ev

oc
at

io
n

tim
e

in
 m

illi
se

co
nd

s

0 20 40 60 80
Number of users the file is shared with

Revocation time for different file sizes

Revocation time for different number of users

Figure 6.4: Revocation performance with respect to the size of the file and the number
of file shares. Performed on the Raspberry Pi

43

0 0.5 1 1.5 2
0

10

20

30

40

50

60

Size of the revoked file in megabytes

R
ev

oc
at

io
n

tim
e

in
 m

illi
se

co
nd

s

0 20 40 60 80
Number of users the file is shared with

Revocation time for different file sizes

Revocation time for different number of users

Figure 6.5: Revocation performance with respect to the size of the file and the number
of file shares. Performed on the Intel-based machine

Revocation is another important factor in the designed scheme having its performance

varying based on different variables. Figures 6.4 and 6.5 show the performance of

revocation while changing the file size and the number of users the file is shared with.

These metrics were chosen as they directly affect the revocation time. The process of

revoking a shared file involves re-encryption of the file by the user owning the file.

Because of that, the larger the size of the file the longer it will take to revoke it. Also, the

last step of the revocation process, as shown in Section 3.2, is to update the users who

have that particular file shared with them with the new key after revoking. This means

that the more users the file is shared with, the longer it will take to revoke the file from

one user.

The revocation cost can vary based on the network bandwidth in a real-life scenario.

Also, this performance cost is reasonable in practice as far as the number of users a file is

44

shared with is not too large. In addition, revoking a user is not a process that happens at

a high frequency. For this reason, such a delay may not be critical in real-life scenarios.

6.3. Baseline evaluation

The literature has many examples of schemes that allow secure sharing as shown

in Section 2.2. However, each scheme differs in the way it functions and the way it is

evaluated. Finding a common base to compare all schemes cannot be done using all the

variables in each system. Encryption time, decryption time, and storage overhead size

were chosen to evaluate this work against two other related schemes. The first one is a

certificate-based scheme [6] and the second is a decentralized scheme [4]. Table 6.1 and

Figure 6.6 present the evaluated metrics. Data shown were measured on the Intel-based

machine as shown in Table 4.1. The source code of the evaluated software in [4], [6] is

publicly available as a git repository 1 and the source of our scheme is also available as

described in Chapter 4. Encryption and decryption times are recorded in milliseconds

and the storage sizes are recorded in kilobytes. Those metrics are evaluated with respect

to y, the number of users, and r, the number of revoked users.

Encryption and decryption in [4], [6] are performed as specialized scheme opera-

tions. This increases the complexity of encryption and decryption and results in slower

performance. The performance is also affected by y and r in [6]. In [4], y encryption

times are almost constant. Decryption times, however, are slightly affected by y and

r. Our scheme, on the other hand, can use any symmetric cipher for file encryption.

This gives it the advantage of having faster encryption and decryption times that are

not dependent on y and r. Both encryption and decryption times are identical because

1https://github.com/tranvinhduc/dbe

45

https://github.com/tranvinhduc/dbe

the implemented system uses AES-CTR as shown in Section 4.1. The storage size for

all three schemes increases linearly with y. In [4], [6], r has no effect to the storage

size. Our scheme shows a small decrease in storage cost with higher values of r. This

is because entries are removed for the tables whenever a user is revoked as explained in

Section 3.2.

Table 6.1: Performance and storage size baseline evaluation

[6] [4] Ours

y, r Enc. Dec. Storage Enc. Dec. Storage Enc. Dec. Storage

100,10 13.59 3.23 6.695 2.64 1.98 71.76 0.048 0.038 40.192

100,20 11.87 3.29 6.695 2.70 1.99 71.76 0.055 0.051 39.040

100,30 10.61 3.28 6.695 2.77 2.04 71.76 0.043 0.040 37.872

200,20 25.47 3.44 13.195 2.80 2.17 143.26 0.043 0.038 80.336

200,40 23.53 3.59 13.195 2.83 2.10 143.26 0.060 0.043 78.016

200,60 19.81 3.40 13.195 3.02 2.23 143.26 0.063 0.051 75.696

400,40 49.43 3.22 26.195 2.87 2.09 286.26 0.041 0.040 160.624

400,80 43.85 3.23 26.195 3.50 2.88 286.26 0.045 0.039 155.984

400,120 38.67 3.53 26.195 3.34 2.55 286.26 0.055 0.048 151.344

800,80 96.36 3.32 52.195 4.11 2.37 572.26 0.081 0.079 321.184

800,160 87.87 3.23 52.195 3.59 2.87 572.26 0.077 0.075 311.904

800,240 75.36 3.35 52.195 4.31 3.55 572.26 0.072 0.061 302.624

46

6.3. BASELINE EVALUATION 47

100 200 300 400 500 600 700 800
0

20

40

60

80

(a)

E
nc

. (
m

s)

Number of users (y)

100 200 300 400 500 600 700 800
0

1

2

3

4

(c)

D
ec

. (
m

s)

Number of users (y)

100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

(e)

S
to

ra
ge

 (
K

B
)

Number of users (y)

50 100 150 200 250
0

20

40

60

80

100

(b)

E
nc

. (
m

s)
Number of revoked users (r)

50 100 150 200 250
0

1

2

3

4

(d)
D

ec
. (

m
s)

Number of revoked users (r)

50 100 150 200 250
0

100

200

300

400

500

600

(f)

S
to

ra
ge

 (
K

B
)

Number of revoked users (r)

Certificate-based [6]

Decentralized [4]

Ours

Figure 6.6: Performance and storage size baseline evaluation plots. (a) and (b) show
the encryption time (in milliseconds) with respect to y and r, (c) and (d) show the
decryption time with respect to y and r, and (e) and (f) show the storage with respect to
y and r

CHAPTER 7: CONCLUSION

In this thesis, a scheme of encrypted data sharing was developed. The scheme

developed allows sharing and revoking files between users. The major contribution of

this work is that all operations performed in the proposed protocol require no trusted

third party. The cloud server is treated as a passive storage server and all needed

computations are performed on the client side. The protocol has been analyzed and

proven to achieve its security objectives.

This scheme has been implemented on top of the well-known AES, RSA, and

SHA-256 cryptographic primitives inheriting their cryptographic strength. The imple-

mentation includes a complete system presenting a proof-of-concept of the scheme.

The core implementation provides an interface to be implemented by applications to be

able to introduce confidential sharing of data. Two applications were implemented to

showcase the possibilities of the system. The first application is a generic cloud storage

interface acting as a virtual filesystem. Such an application can be used by individuals

and organizations to securely share files between users on public clouds. The second

application is a method to share confidential data between IoT devices. This implemen-

tation differs from the first one by being lighter and optimized for IoT applications and

by providing an easy-to-use interface to be integrated with any hardware. In addition to

these applications, a system of public-key sharing has been built using blockchain. This

was added to simplify the process of accessing user’s public keys.

48

7.1. Future work

Several future improvements to the proposed system are possible. The limitations

discussed in section 4.4 can be addressed to improve the system. The scheme could

be further improved to allow sharing with groups instead of individual users only. In

this case, every group could have a set of keys and other users could share data with

that group. Members of a group should then be able to access the group data as well

instead of only accessing data shared with them directly. Implementing this can further

reduce the storage overhead in scenarios where many groups are needed. Another

improvement to the scheme can be developing a new method for revocation that has

better time complexity. Hierarchical structures of keys can be used as one to achieve

group sharing and simultaneously improve revocation performance.

More research can be done as well on the implementation of the protocol. One

direction of improving the system can be in using elliptic curve cryptography (ECC)

instead of RSA. Using ECC, smaller keys can achieve an equivalent level of security

compared to RSA. This makes ECC a better option for resource constraint applications

[52]. Another way to improve the system for resource constraint IoT scenarios is to

investigate implementing this protocol on a fog computing setup (a.k.a. on the edge).

This could reduce the cost for large numbers of IoT devices and allow more complex

computation using the more capable edge devices [53].

Using the scheme proposed in this thesis is not restricted to the research area.

Deploying this protocol as a system for production in real-life applications is the ultimate

goal of this work. Individuals and organizations can take advantage of this technology in

their day-to-day life. Cloud storage and IoT systems are only examples of how this work

49

can be deployed. Many other applications can be tuned to adopt the proposed scheme.

One example could be online cloud projects and document collaboration systems. Using

the protocol of this thesis can keep the data on the cloud completely hidden from the

cloud providers while still being able to function like any traditional collaboration

service. Users could be editing the same document on the cloud at the same time by

modifying the corresponding encrypted blocks in the cloud. Another example could

be building a social media platform where the service providers cannot see the users’

data. Several social media platforms already support encryption. However, they still

can access data on the servers. This can be solved by using the proposed protocol where

the data is only visible to the intended users. This means, for instance, posts that a user

shares can be only visible to the followers of that user. This is because the user shares the

decryption keys of the posts with his/her followers using their public keys. Unfollowing,

in this case, would be equivalent to revoking. Other operations like commenting, liking,

etc. can be in similar manners.

This thesis is only a step forward towards more privacy-focused data sharing systems.

Many other areas of improvement and applications can be targeted other than what has

been mentioned in this section. Such advancements can benefit organizations and

individuals by providing a safe way of sharing information without violating their

privacy.

50

REFERENCES

[1] P. P. Ray, “A survey of iot cloud platforms,” Future Computing and Informatics

Journal, vol. 1, no. 1-2, pp. 35–46, 2016.

[2] P. Yang, N. Xiong, and J. Ren, “Data security and privacy protection for cloud

storage: A survey,” IEEE Access, vol. 8, pp. 131 723–131 740, 2020.

[3] D. Thilakanathan, S. Chen, S. Nepal, and R. A. Calvo, “Secure data sharing in the

cloud,” in Security, privacy and trust in cloud systems, Springer, 2014, pp. 45–72.

[4] Q. Malluhi, V. D. Tran, and V. C. Trinh, “Decentralized broadcast encryption

schemes with constant size ciphertext and fast decryption,” Symmetry, vol. 12,

no. 6, p. 969, 2020.

[5] W. Luo and W. Ma, “Secure and efficient data sharing scheme based on certifi-

cateless hybrid signcryption for cloud storage,” Electronics, vol. 8, no. 5, p. 590,

2019.

[6] J. Li, L. Chen, Y. Lu, and Y. Zhang, “Anonymous certificate-based broadcast en-

cryption with constant decryption cost,” Information Sciences, vol. 454, pp. 110–

127, 2018.

[7] A. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in An-

nual international conference on the theory and applications of cryptographic

techniques, Springer, 2011, pp. 568–588.

[8] Q. Malluhi, A. Shikfa, V. Tran, and V. Trinh, “Decentralized ciphertext-policy

attribute-based encryption schemes for lightweight devices,” Computer Commu-

nications, vol. 145, pp. 113–125, 2019.

51

[9] A. Fiat and M. Naor, “Broadcast encryption,” in Annual International Cryptology

Conference, Springer, 1993, pp. 480–491.

[10] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Workshop

on the theory and application of cryptographic techniques, Springer, 1984, pp. 47–

53.

[11] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Springer, 2005, pp. 457–473.

[12] C.-W. Liu, W.-F. Hsien, C. C. Yang, and M.-S. Hwang, “A survey of attribute-

based access control with user revocation in cloud data storage.,” IJ Network

Security, vol. 18, no. 5, pp. 900–916, 2016.

[13] Z. Qin, H. Xiong, S. Wu, and J. Batamuliza, “A survey of proxy re-encryption

for secure data sharing in cloud computing,” IEEE Transactions on Services

Computing, 2016.

[14] C. Wise, C. Friedrich, S. Nepal, S. Chen, and R. O. Sinnott, “Cloud docs: Secure

scalable document sharing on public clouds,” in 2015 IEEE 8th International

Conference on Cloud Computing, IEEE, 2015, pp. 532–539.

[15] X. Liu, Y. Zhang, B. Wang, and J. Yan, “Mona: Secure multi-owner data sharing

for dynamic groups in the cloud,” IEEE transactions on parallel and distributed

systems, vol. 24, no. 6, pp. 1182–1191, 2012.

[16] L. Huang, G. Zhang, S. Yu, A. Fu, and J. Yearwood, “Seshare: Secure cloud data

sharing based on blockchain and public auditing,” Concurrency and Computation:

Practice and Experience, vol. 31, no. 22, e4359, 2019.

52

[17] D. H. Phan, D. Pointcheval, and M. Strefler, “Decentralized dynamic broadcast

encryption,” in International Conference on Security and Cryptography for Net-

works, Springer, 2012, pp. 166–183.

[18] J.-y. FU, Q.-l. HUANG, Y.-x. YANG, et al., “Secure personal data sharing in

cloud computing using attribute-based broadcast encryption,” The Journal of

China Universities of Posts and Telecommunications, vol. 21, no. 6, pp. 45–77,

2014.

[19] G. Zhao, C. Rong, J. Li, F. Zhang, and Y. Tang, “Trusted data sharing over

untrusted cloud storage providers,” in 2nd IEEE International Conference on

Cloud Computing Technology and Science, IEEE, 2010, pp. 97–103.

[20] V. Mody, A. Subramani, D. Ryazanov, T. Wen, and S. Cayre, Automatic file

storage and sharing, US Patent 10,506,046, 2019.

[21] A. Mityagin and D. Litzenberger, Advanced security protocol for broadcasting

and synchronizing shared folders over local area network, US Patent 10,425,391,

2019.

[22] T. Luthra and R. Malhotra, Secure cloud-based shared content, US Patent 10,402,376,

2019.

[23] A. Andersen, O. Pedersen, and T. Wold, Method for secure storing and sharing

of a data file via a computer communication network and open cloud services,

US Patent 9,224,003, 2015.

[24] T. D. Selgas and J. D. Heintz, Secure cloud data sharing, US Patent 9,767,299,

2017.

53

[25] A. Haider and A. Ahmed, Secure and zero knowledge data sharing for cloud

applications, US Patent 10,608,817, 2020.

[26] H. Shafagh, A. Hithnawi, L. Burkhalter, P. Fischli, and S. Duquennoy, “Secure

sharing of partially homomorphic encrypted iot data,” in Proceedings of the 15th

ACM Conference on Embedded Network Sensor Systems, 2017, pp. 1–14.

[27] M. B. Mollah, M. A. K. Azad, and A. Vasilakos, “Secure data sharing and

searching at the edge of cloud-assisted internet of things,” IEEE Cloud Computing,

vol. 4, no. 1, pp. 34–42, 2017.

[28] R. Li, H. Asaeda, and J. Li, “A distributed publisher-driven secure data sharing

scheme for information-centric iot,” IEEE Internet of Things Journal, vol. 4,

no. 3, pp. 791–803, 2017.

[29] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards blockchain-

based auditable storage and sharing of iot data,” in Proceedings of the 2017 on

Cloud Computing Security Workshop, 2017, pp. 45–50.

[30] A. Manzoor, M. Liyanage, A. Braeke, S. S. Kanhere, and M. Ylianttila, “Blockchain

based proxy re-encryption scheme for secure iot data sharing,” in 2019 IEEE In-

ternational Conference on Blockchain and Cryptocurrency (ICBC), IEEE, 2019,

pp. 99–103.

[31] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based en-

cryption,” in 2007 IEEE symposium on security and privacy (SP’07), IEEE, 2007,

pp. 321–334.

54

[32] S. Müller, S. Katzenbeisser, and C. Eckert, “Distributed attribute-based en-

cryption,” in International Conference on Information Security and Cryptology,

Springer, 2008, pp. 20–36.

[33] Z. Liu, Z. Cao, Q. Huang, D. S. Wong, and T. H. Yuen, “Fully secure multi-

authority ciphertext-policy attribute-based encryption without random oracles,”

in European Symposium on Research in Computer Security, Springer, 2011,

pp. 278–297.

[34] J. Lai, Y. Mu, F. Guo, W. Susilo, and R. Chen, “Anonymous identity-based

broadcast encryption with revocation for file sharing,” in Australasian Conference

on Information Security and Privacy, Springer, 2016, pp. 223–239.

[35] G. Li and H. Sato, “A privacy-preserving and fully decentralized storage and

sharing system on blockchain,” in 2019 IEEE 43rd Annual Computer Software

and Applications Conference (COMPSAC), IEEE, vol. 2, 2019, pp. 694–699.

[36] N. Mhaisen and Q. M. Malluhi, “Data consistency in multi-cloud storage sys-

tems with passive servers and non-communicating clients,” IEEE Access, vol. 8,

pp. 164 977–164 986, 2020.

[37] Q. M. Malluhi and W. E. Johnston, “Coding for high availability of a distributed-

parallel storage system,” IEEE Transactions on Parallel and Distributed Systems,

vol. 9, no. 12, pp. 1237–1252, 1998.

[38] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, “Charm: A cost-efficient

multi-cloud data hosting scheme with high availability,” IEEE Transactions on

Cloud computing, vol. 3, no. 3, pp. 372–386, 2015.

55

[39] H. Eijs. (2014). “Pycryptodome.” (Accessed on 06/03/2020), [Online]. Available:

https://www.pycryptodome.org.

[40] M. A. Simplicio Jr, B. T. De Oliveira, C. B. Margi, P. S. Barreto, T. C. Carvalho,

and M. Näslund, “Survey and comparison of message authentication solutions

on wireless sensor networks,” Ad Hoc Networks, vol. 11, no. 3, pp. 1221–1236,

2013.

[41] H. Krawczyk, M. Bellare, and R. Canetti, Hmac: Keyed-hashing for message

authentication, 1997.

[42] D. McGrew and J. Viega, “The galois/counter mode of operation (gcm),” sub-

mission to NIST Modes of Operation Process, vol. 20, pp. 0278–0070, 2004.

[43] M. A. Simplicio Jr, P. d. F. Barbuda, P. S. Barreto, T. C. Carvalho, and C. B.

Margi, “The marvin message authentication code and the lettersoup authenti-

cated encryption scheme,” Security and Communication Networks, vol. 2, no. 2,

pp. 165–180, 2009.

[44] A. Yakubov, W. Shbair, A. Wallbom, D. Sanda, et al., “A blockchain-based pki

management framework,” in The First IEEE/IFIP International Workshop on

Managing and Managed by Blockchain (Man2Block) colocated with IEEE/IFIP

NOMS 2018, Tapei, Tawain 23-27 April 2018, 2018.

[45] V. Buterin et al., “A next-generation smart contract and decentralized application

platform,” white paper, vol. 3, no. 37, 2014.

[46] R. Handa, C. R. Krishna, and N. Aggarwal, “Searchable encryption: A survey on

privacy-preserving search schemes on encrypted outsourced data,” Concurrency

and Computation: Practice and Experience, vol. 31, no. 17, e5201, 2019.

56

https://www.pycryptodome.org

[47] W. A. Mansour and Q. M. Malluhi, “Safedrive: A reliable and secure distributed

cloud storage,” 2020.

[48] V. Gough, Encfs: An encrypted filesystem for fuse, 2017.

[49] E. Acri, Portable aes-ctr encryption using fuse, https://crossbowerbt.

github.io/fuse_ctr_encryption.html, (Accessed on 02/19/2021), 2016.

[50] M. Szeredi, Fuse: Filesystem in userspace, http://fuse.sourceforge.net,

(Accessed on 02/19/2021), 2010.

[51] N. F. Kamal and Q. M. Malluhi, “Client-based secure iot data sharing using

untrusted clouds,” 2021.

[52] D. Mahto and D. K. Yadav, “Rsa and ecc: A comparative analysis,” International

journal of applied engineering research, vol. 12, no. 19, pp. 9053–9061, 2017.

[53] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “In-

ternet of things: A survey on enabling technologies, protocols, and applications,”

IEEE communications surveys & tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[54] J. W. Eaton, D. Bateman, S. Hauberg, et al., Gnu octave. Network thoery London,

1997.

57

https://crossbowerbt.github.io/fuse_ctr_encryption.html
https://crossbowerbt.github.io/fuse_ctr_encryption.html
http://fuse.sourceforge.net

APPENDIX A: IOT CIRCUIT DIAGRAM AND HARDWARE INTERFACE

The prototype of the IoT system shown in Figure 5.3 in Section 5.2 consists of 4

Raspberry Pi Zero W nodes. Two of them have an LED connected and two of them have

RC circuits with an LDR. Figure A.1 shows the circuit schematics of two nodes.

Figure A.1: Schematic of two nodes of the IoT prototype

An RC circuit is needed for the LDR nodes as the Pis do not provide analog

inputs. Instead, the RC circuit timing is measured. The read_sensor() interface is

implemented like what is shown below.

count = 0
while (GPIO.input(self.pin) == GPIO.LOW and count <= darkest):

count += 1
return count

The LED nodes implement the write_actuator(value) interface by changing

the pulse width modulation (PWM) cycle as shown below.

self.pwm.ChangeDutyCycle(value)

58

APPENDIX B: CLOUD STORAGE USAGE EXAMPLE

Below is an example showing how to operate with the cloud storage application

mentioned in sections 5.1.

First, a test blockchain is started and the smart contract is deployed on it.

$ ganache-cli --host 0.0.0.0 --port 8545 &
...
Listening on 0.0.0.0:8545

$./main.py bcpki deploy
...
Deploying ’CA’
...

$ export ETH_ADDR=’http://localhost:8545@0xF691E550AD7Fc3cB5192...’

Adding and revoking users.

$./main.py bcpki add alice 123 2030-01-01
0x4e1eb5aa1d29cc0761500b6ea925fdb66efa18e350cfcdf027e274c8901d5cb4

$./main.py bcpki add bob abc 2030-01-01
0x50334dbbd7087da60ddb099ffabf301d5b878e6d0bc2f74b52efbfcca9d8e7b2

$./main.py bcpki add eve bad 2030-01-01
0x2f426bf3a10f6225ce5ef1ac51d30fc043ccfd22a1a416047633e3fffb69b39e

$./main.py bcpki revoke eve
0xd4b46238ffb65c9d585f1450de681d7f6fc8a3bb2761a8697bca6a14bfd41ff5

$./main.py bcpki ls
[’alice’, ’bob’]

Mounting the filesystem to Dropbox directory and signing in as Alice.

$ mkdir ~/Dropbox/secure
$ mkdir -p ~/mount/alice
$ mkdir -p ~/mount/bob

$./main.py fs-mount ~/Dropbox/secure/ ~/mount/alice/
Enter username: alice
Enter password: 123
Server started at :34941

59

Creating a file by Alice and sharing it with Bob.

$ echo ’Hello from Alice’ > ~/mount/alice/text.txt
$./main.py fs-cmd share text.txt bob
true
$./main.py fs-cmd ls-shares text.txt
["bob"]

Signing in as Bob and checking the shared file.

$./main.py fs-mount ~/Dropbox/secure/ ~/mount/bob/
Enter username: bob
Enter password: abc
Server started at :48417

$ tree ~/mount/bob/
/home/naheel/mount/bob/
\-- shared

\-- alice
\-- text.txt

2 directories, 1 file

$ cat ~/mount/bob/shared/alice/text.txt
Hello from Alice

60

APPENDIX C: PUBLIC STORAGE OVERHEAD REGRESSION

This appendix lists the steps to find the unknowns in the storage overhead equations

mentioned in Section 6.1. From equation 6.3:

Θ(x, y) = xy.
[
2.S(”fs”) + S(”Bs”) + S(K) + S(M)

]
+ y.ϵ+ x.S(IV) (C.1)

x := number of shared files

y := number of users the files are shared with

From Section 4, S(K) = 32 bytes, S(IV) = 16 bytes

S(”fs”) is set to be 32 bytes and S(”Bs”) is set to be 4 bytes.

Unknowns: S(M) and ϵ

let c1 = 2.S(”fs”)+S(”Bs”)+S(K)+S(M) = 2∗32+4+32+S(M) = 100+S(M)

let c2 = ϵ

let c3 = S(IV) = 16

This simplifies to:

Θ(x, y) = xy.c1 + y.c2 + x.c3 (C.2)

Fixing y and varying x, let y = 1, m1 = c1 + c3, and d1 = c2

Θ(x, 1) = x(c1 + c3) + c2 = m1x+ d1 (C.3)

Fixing x and varying y, let x = 1, m2 = c1 + c2, and d2 = c3

Θ(1, y) = y(c1 + c2) + c3 = m2x+ d2 (C.4)

61

Using the data shown in Figure 6.1 and GNU Octave [54], linear regression can be

performed on the data to obtain m1, d1, m2, and d2.

vs_x = csvread("./benchmarks/test_sharing_x_vs_cost.csv"); % files
vs_y = csvread("./benchmarks/test_sharing_y_vs_cost.csv"); % users

function [slop, intercept] = regression(x, y)
X = [ones(length(x), 1) x];
theta = (pinv(X’ * X)) * X’ * y;
intercept = theta(1);
slop = theta(2);

end

[m1, d1] = regression(vs_x(:,1), vs_x(:,2))
[m2, d2] = regression(vs_y(:,1), vs_y(:,2))

The results are approximated to

m1 = 121, d1 = 347, m2 = 413, and d2 = 56

From equation C.3,

m1 = c1 + c3 (C.5)

m1 = [100 + S(M)] + 16 (C.6)

m1 = S(M) + 116 (C.7)

d1 = c2 = ϵ (C.8)

From equation C.4,

m2 = c1 + c2 (C.9)

m2 = [100 + S(M)] + ϵ (C.10)

m2 = S(M) + ϵ+ 100 (C.11)

d2 = c3 = 16 (C.12)

62

Using equation C.7 and m1 = 121, S(M) can be found:

S(M) = 121− 116 = 5 bytes

And ϵ can be found using equation C.8 where ϵ = d1 = 347 bytes.

The numbers do not perfectly match between the linearly regressed fitted values and

the model. For example, using equation C.11, ϵ = 413 − 100 − 5 = 308 bytes which

is different than the previous result. Another mismatch can be seen in equation C.12.

The equation shows that d2 = S(IV) = 16. However, the regressed values show that

d2 = 56. This is again due to the error in the fitted values. Figure C.1 shows that the

real data do match the model and is equal to 16 bytes.

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

Real measurements

Fitted values

Figure C.1: Difference in the values of d2 between real and regressed data

This part of the appendix is used to check if the system built-in Chapter 4 matches

the model described in Chapter 6. The numbers above show that the model and the

implementation do match.

63

	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Objectives and contribution
	Thesis overview

	Background and related work
	Background
	Related work
	Systems for secure data sharing
	IoT-based solutions
	Sharing-enabled encryption schemes

	Problem formulation and scheme construction
	Assumptions and constrains
	Scheme construction
	Security analysis

	Implementation
	Cryptographic configuration
	Integrity checking
	Public keys distribution
	Limitations

	Applications
	Cloud storage application
	User-space encrypted filesystem
	Filesystem implementation
	Organization of shared files between users

	IoT system application
	Software interface
	Hardware prototype

	Evaluation
	Public storage overhead
	Performance evaluation
	Baseline evaluation

	Conclusion
	Future work

	References
	IoT circuit diagram and hardware interface
	Cloud storage usage example
	Public storage overhead regression

