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The problem addressed in this paper is the two-machine job shop scheduling problem when the objective is to minimize the total
earliness and tardiness from a common due date (CDD) for a set of jobs when their weights equal 1 (unweighted problem). This
objective became very significant after the introduction of the Just in Time manufacturing approach. A procedure to determine
whether the CDD is restricted or unrestricted is developed and a semirestricted CDD is defined. Algorithms are introduced
to find the optimal solution when the CDD is unrestricted and semirestricted. When the CDD is restricted, which is a much
harder problem, a heuristic algorithm is proposed to find approximate solutions.Through computational experiments, the heuristic
algorithms’ performance is evaluated with problems up to 500 jobs.

1. Introduction and Literature Review

Many objectives in scheduling are linked to due dates, which
focus on meeting costumers’ delivery dates. When a CDD
is considered, a set of components must be assembled into
a finished product, for example, or several jobs must be
shipped together to a certain customer. In Just in Time (JIT)
manufacturing and production systems, it is intended to
reduce both earliness and tardiness by constructing a job
schedule in which the jobs are finished as close as possible
to their due date. Minimizing tardiness reduces the cost of
missing due dates and increases customers’ satisfaction, while
minimizing earliness reduces the holding and inventory cost.

Most of the published literature on minimizing ear-
liness/tardiness (𝐸/𝑇) addressed the single machine 𝐸/𝑇
problem (e.g., Kanet [1], Sundararaghavan and Ahmed [2],
Szwarc [3], Bagchi et al. [4], Hall and Posner [5], Hall et al.
[6], Hariri and Potts [7], Rabadi et al. [8], Mason et al. [9],
Rabadi et al. [10], Atan and Selim Akturk [11], Hepdogan
et al. [12], Baptiste et al. [13], and Cheng et al. [14]). Baker
and Scudder [15] published a comprehensive state-of-the-art

review for different variants of the𝐸/𝑇 problem including the
problem with a CDD. Also, many papers addressed the same
objective in multimachine scheduling environment such as
parallel machines (e.g., Emmons [16], Cheng and Chen [17],
Alvarez-Valdes et al. [18], Kayvanfar et al. [19], Li et al. [20],
Kubiak et al. [21]) and flow shops (e.g., Sarper [22], Sung and
Min [23], Mosheiov [24], Gupta et al. [25], Lauff andWerner
[26], Chandra et al. [27], Behnamian et al. [28], andM’Hallah
[29]). Much less has been published on scheduling problems
for job shops (e.g., Lauff and Werner [30], Baptiste et al. [31],
Yang et al. [32], and Wang and Li [33]). Gordon et al. [34]
have reviewedmore recent literature of the𝐸/𝑇 problemwith
CDD. Lauff andWerner [30, 35] reviewed multistage systems
involving earliness and tardiness problems with CDD as well.

Kanet [1] developed an algorithm to find an optimal
solution for the single machine 𝐸/𝑇 problem with an
unrestricted CDD. In his work, some properties of optimal
solutions were proved and used to construct a polynomial
algorithm. Sundararaghavan and Ahmed [2] developed a
heuristic algorithm for the same problembutwith a restricted
CDD (i.e., when the CDD is small enough to constrain the

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 6591632, 11 pages
http://dx.doi.org/10.1155/2016/6591632



2 Mathematical Problems in Engineering

schedule) where they used some of the properties defined
for the unrestricted case by Kanet. Bagchi et al. [4] extended
Kanet’s work and developed an exact algorithm to generate
alternate optimal solutions. They also developed an implicit
enumeration procedure for the restricted case in a single
machine environment. Raghavachari [36] extended the V-
shape property of optimal schedules established by Kanet [1]
to any CDD.

Hoogeveen and van de Velde [37] developed a dynamic
programming (DP) algorithm to solve the single machine
scheduling problem with a small CDD and a positive weight
for each job. They found out that the problem with equal
processing times for all jobs and the problem with equal
weight to processing time rates are polynomially solvable.
Also, Hall and Posner [5] developed a DP algorithm for
the single machine problem considering an unrestricted
CDD and different weights for the jobs. Hall et al. [6]
constructed an exact algorithm based on DP to find optimal
solutions for the unweighted version of the single machine
𝐸/𝑇 problemwith restrictedCDD. Rabadi et al. [8] developed
a branch-and-bound procedure to find optimal solutions
for single machine problems with an unrestricted CDD and
considering sequence-dependent setup times.

In multimachine environments, Emmons [16] developed
an algorithm that is able to solve the identical parallel
machine scheduling problem when all jobs have a CDD and
earliness and tardiness have different cost rates. Cheng and
Chen [17] studied the problem of assigning a common due
date and sequencing a set of simultaneously available jobs on
several identical parallel machines.

Sarper [22] developed a mixed integer linear program-
ming formulation for the two-machine FlowShop Scheduling
Problems (FSSP) with unweighted earliness and tardiness
cost over a CDD. Sung andMin [23] studied the two-machine
FSSP with batch processing machines and a CDD. Mosheiov
[24] studied the unit processing time on an m-machine
flow shop 𝐸/𝑇 problem over nonrestricted and restricted
CDD. Gupta et al. [25] defined some properties of optimal
schedules for the two-machine 𝐸/𝑇 FSSP, developed lower
and upper bounds, derived dominance criteria, and proposed
an enumerative algorithm for finding an optimal schedule.
Finally, based on some structural properties of the problem,
Lauff and Werner [26] developed heuristic algorithms, both
constructive and enumerative, to solve the two-machine
FSSP with a given CDD considering asymmetric linear and
quadratic penalty functions. Wang and Li [33] presented
hybrid heuristic that combines variable neighborhood search
with mathematical programming to minimize the sum of
earliness and tardiness for the job shop scheduling problem
with multiple due dates. Baptiste et al. [31] defined an integer
programming model for the JITJSSP problem and proposed
methods based on two Lagrangian relaxations of themodel to
derive lower and upper bounds. Yang et al. [32] introduced an
enhanced genetic algorithm to solve the job shop scheduling
problem of minimizing the weighted tardiness and earliness
of jobs in the presence of due dates and deadlines. So far, there
is no reported research on the job shop scheduling problem
(JSSP) considering 𝐸/𝑇 over a CDD, and therefore, the two-
machine JSSP is addressed in this paper.

In the next section, a formulation of the problem with
its three different cases is given. In section three, opti-
mality conditions are introduced for two out of the three
cases. Section 4 presents a dynamic programming algorithm
to optimally solve the semirestricted case and a heuristic
algorithm to solve the restricted case. Then, in Section 5,
computational experiments for the three cases are analyzed.
Finally, Section 6 discusses the results and Section 7 presents
the conclusions and further research.

2. Formulation of the Two-Machine
Job Shop Scheduling Problem with
a Common Due Date

This article addresses a nonpreemptive, no recirculation
(jobs do not revisit the same machine) 𝐸/𝑇 JSSP with two
machines, n jobs, and an integer CDD when all jobs are
available at time 𝑡 = 0. Although JIT entails more detail and
concepts, the 𝐸/𝑇 problem seems to mathematically capture
the scheduling essence of it.

Let 𝐶𝑗, 𝐸𝑗, and 𝑇𝑗 represent the completion time, earli-
ness, and tardiness of job j, respectively; 𝐸𝑗 and 𝑇𝑗 can be
defined as

𝐸𝑗 = max (0,CDD − 𝐶𝑗) =
󵄨󵄨󵄨󵄨󵄨CDD − 𝐶𝑗

󵄨󵄨󵄨󵄨󵄨 ,

𝑇𝑗 = max (0, 𝐶𝑗 − CDD) =
󵄨󵄨󵄨󵄨󵄨𝐶𝑗 − CDD

󵄨󵄨󵄨󵄨󵄨 .
(1)

Associated with each job there is an earliness penalty 𝛼𝑗 >
0 and a tardiness penalty 𝛽𝑗 > 0 per time unit, which in
this research are all equal to 1 (unweighted problem). The
basic earliness and tardiness (𝐸/𝑇) objective function for a
schedule S can be written as 𝑓(𝑆) as follows:

min 𝑓 (𝑆) =
𝑛

∑
𝑗=1

(𝛼𝑗𝐸𝑗 + 𝛽𝑗𝑇𝑗) . (2)

The CDD is restricted when it is small enough to restrict the
scheduling decision and hence impacts the optimal sequence.
The restricted version of the problem is much harder than
the unrestricted version [30]. For the single machine 𝐸/𝑇
problem over a CDD, it would be desirable to construct a
schedule in which half of the jobs are before the CDD [37].
If the CDD were too tight, then not enough jobs would be
scheduled before the CDD, because they cannot start before
time zero. For the single machine problem, the unrestricted
case can be solved by using a polynomial algorithm [1]. In the
JSSP, if the CDD is large enough, the problem can be solved
in polynomial time by solving m (m = 2 in this paper) single
machine problems [30].

Formally, there is a quantitative procedure to decide if
a CDD is restricted or unrestricted for the single machine
problem. In this paper, such procedure will be extended to
the 𝐸/𝑇 JSSP over a CDD with two machines.

Initially, for the 𝐸/𝑇 single machine problem, Kanet [1]
assumed that CDD ≥ ∑𝑛𝑗=1 𝑝𝑗, where 𝑝𝑗 is the processing
time for job j so that the problem can be solved optimally by
using his algorithm SCHED. Later, Bagchi et al. [4] showed
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thatKanet’s algorithm is able to reach optimal solutions under
the weaker assumption that the CDD ≥ Δ, where

Δ =
{
{
{

𝑝1 + 𝑝3 + ⋅ ⋅ ⋅ + 𝑝𝑛, if 𝑛 is odd,

𝑝2 + 𝑝4 + ⋅ ⋅ ⋅ + 𝑝𝑛, if 𝑛 is even,

𝑝1 ≤ 𝑝3 ≤ ⋅ ⋅ ⋅ ≤ 𝑝𝑛.

(3)

For a CDD in a two-machine JSSP to be unrestricted, two
conditionsmust hold. First, the remaining time to process the
last operations on each machine must be enough to apply the
SCHED algorithm [1] as if each machine is an unrestricted
singlemachine problem. Second, the completion time of each
job’s first operation on its corresponding machine has to
be less than or equal to the starting time of its subsequent
last operation. This starting time is given by the SCHED
algorithm. The second condition is equivalent to finding a
schedule for each single machine problem where no jobs are
tardy.

In order to minimize the deviation over the CDD for
all the jobs, the first operations of each job should have
priority on each machine in order to allow the subsequent
operations to be processed. The set of first operations and
the set containing the last operations to be scheduled on
each machine before the CDD compete for the time available
within the interval from t = 0 to t = CDD. If the CDD is loose
enough, say if CDD ≥ PT, where

PT =
2

∑
𝑖=1

𝑛

∑
𝑗=1

𝑝𝑖𝑗, (4)

where 𝑝𝑖𝑗 is the processing time for the operation of job j to
be performed on machine i with i = 1, 2, then, the SCHED
algorithm can be applied to the twomachines and an optimal
solution will be obtained. The closer the CDD to 𝑡 = 0 the
tighter (i.e., more restricted) the schedule. This fact can be
used to define whether the CDD is restricted or not. Let
𝑀1 = set with jobs to be finished on machine 1,
𝑀2 = set with jobs to be finished on machine 2,
|𝑀1| = 𝑛1 = number of jobs to be finished on machine 1,
|𝑀2| = 𝑛2 = number of jobs to be finished on machine 2.
Also, let

Δ 1 =
{
{
{

𝑝11 + 𝑝13 + ⋅ ⋅ ⋅ + 𝑝1𝑛1 , if 𝑛1 is odd,

𝑝12 + 𝑝14 + ⋅ ⋅ ⋅ + 𝑝1𝑛1 , if 𝑛1 is even,

Δ 2 =
{
{
{

𝑝21 + 𝑝23 + ⋅ ⋅ ⋅ + 𝑝2𝑛2 , if 𝑛2 is odd,

𝑝22 + 𝑝24 + ⋅ ⋅ ⋅ + 𝑝2𝑛2 , if 𝑛2 is even,

(5)

where

𝑝11 ≤ 𝑝12 ≤ ⋅ ⋅ ⋅ ≤ 𝑝1𝑛1 ,

𝑝21 ≤ 𝑝22 ≤ ⋅ ⋅ ⋅ ≤ 𝑝2𝑛2 .
(6)

Finally, let

𝐹1 = ∑
𝑗∈𝑀𝐶1

𝑝1𝑗,

𝐹2 = ∑
𝑗∈𝑀𝐶2

𝑝2𝑗,
(7)

where𝑀𝐶1 is the complement of𝑀1 and𝑀𝐶2 is the comple-
ment of𝑀2.

Definition 1. A CDD is unrestricted if CDD ≥ max {𝐹1 +
Δ 1, 𝐹2 + Δ 2} and the number of tardy jobs in sets 𝑀𝐶1 and
𝑀𝐶2 are equal to zero.
Discussion. If max {𝐹1 + Δ 1, 𝐹2 + Δ 2} = 𝐹1 + Δ 1, let 𝐵1 =
{𝑖 = 1, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ∈ 𝑀1 | 𝐶1𝑗 ≤ CDD}, where 𝐶1𝑗 is
the completion time of the jobs with their last operation on
machine 1 and to be completed before or on CDD. Similarly,
let 𝐴1 = {𝑖 = 1, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ∈ 𝑀1 | 𝐶1𝑗 > CDD},
where 𝐶1𝑗 is the completion time of the jobs with their last
operation on machine 1 and to be completed after CDD and
Δ 1 is the summation of processing times of the jobs in 𝐵1.
The optimal schedule for the machine 1 can be obtained by
applying Kanet’s SCHED algorithm to the jobs in sets𝐴1 and
𝐵1.The starting times of the jobs in sets𝐴1 and𝐵1 provide the
due dates for their first operations to be processed onmachine
2 (i.e., jobs in set𝑀𝐶2 ).The jobs whose first operationmust be
performed onmachine 1, jobs in𝑀𝐶1 , are processed before the
jobs in𝐵1 without interfering with the optimal schedule since
CDD ≥ 𝐹1 + Δ 1.

In order to find out if the number of tardy jobs in𝑀𝐶1 is
equal to zero, the earliest due date (EDD) rule needs to be
applied to jobs in𝑀𝐶1 . If an EDD sequence yields either zero
or one tardy job, then it minimizes the number of tardy jobs
[38].

Let 𝐵2 = {𝑖 = 2, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ∈ 𝑀2 | 𝐶2𝑗 ≤ CDD}, where
𝐶2𝑗 is the completion time of the jobs with their last operation
on machine 2 to be completed before or on the CDD and Δ 2
is the summation of processing times of the jobs in 𝐵2. Since
𝐹2 + Δ 2 ≤ 𝐹1 + Δ 1, jobs to be finished on machine 2 can be
optimally scheduled by applying Kanet’s SCHED algorithm
to the jobs in sets𝐴2 and 𝐵2, where𝐴2 is defined similarly to
𝐴1. In the same way, the starting times of the jobs in sets 𝐴2
and 𝐵2 provide the due dates for their first operations to be
processed on machine 1 (i.e., jobs in set𝑀𝐶1 ). The jobs whose
first operation must be performed on machine 2, jobs in𝑀𝐶2 ,
are performed before the jobs in 𝐵2 without interfering with
the optimal schedule. Also, it is possible to find whether the
number of tardy jobs in𝑀𝐶2 is equal to zero by applying the
EDD rule to jobs in𝑀𝐶2 .

The same reasoning can be applied if max {𝐹1 + Δ 1, 𝐹2 +
Δ 2} = 𝐹2 + Δ 2. Tables 1 and 2 show the processing times and
the operation-machine assignment for a seven-job example.
Figure 1 illustrates the optimal solution for this example when
theCDD is unrestricted and equal to 30. In this casemax {𝐹1+
Δ 1, 𝐹2 +Δ 2} = max {8+13, 20+10} = 𝐹2 +Δ 2 = 30. Note that
if the CDD > 30, the problem is still unrestricted.



4 Mathematical Problems in Engineering

CDD

J3

J1 J4 J3J6

J2 J5 J7J6

J2 J5 J7

J1 J4

5 10 15 20 25 30 35 40

M1

M2

Figure 1: Example optimal schedule for the unrestricted version.

CDD

J3

J6

J1

J1 J4

J5 J7J4

J3

J2J6

J5 J7 J2

5 10 15 20 23 30 35 40

M1

M2

Figure 2: Example optimal schedule for the semirestricted version.

Table 1: Processing times.

Job Processing time for first
operation

Processing time for second
operation

1 9 3
2 2 7
3 1 4
4 6 2
5 2 3
6 4 10
7 4 3

Table 2: Operation-machine assignment.

Job First operation at machine Second operation at machine
1 2 1
2 1 2
3 2 1
4 2 1
5 1 2
6 2 1
7 1 2

Definition 2. ACDD is semirestricted if CDD≥ min {𝐹1+Δ 1,
𝐹2 +Δ 2} and CDD < max {𝐹1 +Δ 1, 𝐹2 +Δ 2} and the number
of tardy jobs in the sets𝑀𝐶1 and𝑀𝐶2 are equal to zero.
Discussion. If max {𝐹1+Δ 1, 𝐹2+Δ 2} = 𝐹2+Δ 2, thenmin {𝐹1+
Δ 1, 𝐹2 + Δ 2} = 𝐹1 + Δ 1. 𝐵1 and 𝐵2 are as in Definition 1.
Hence, Δ 1 and Δ 2 are the summation of processing times of
the jobs in 𝐵1 and 𝐵2, respectively. Given CDD ≥ 𝐹1 + Δ 1, in
an optimal schedule jobs in𝑀𝐶1 are performed before the jobs
in 𝐵1 without interference with the jobs in 𝐵1. The optimal
schedule for machine 1 can be obtained by applying Kanet’s
SCHED algorithm to the jobs in 𝐵1 and 𝐴1. The starting
times of the jobs in sets 𝐴1 and 𝐵1 provide the due dates
for their first operations to be processed on machine 2 (i.e.,
jobs in the set 𝑀𝐶2 ), which are processed before the jobs in
𝐵2. But given that CDD < 𝐹2 + Δ 2, jobs in 𝑀2 cannot be

optimally scheduled by using the SCHED algorithm; instead
this problem needs to be treated as a single machine problem
with a restricted CDD, which can be optimally solved by
using the dynamic programming (DP) procedures proposed
by Hall et al. [6]. The starting times of the jobs in𝑀2 given
by the optimal solution provide the due dates for their first
operations to be processed on machine 1 (i.e., jobs in the set
𝑀𝐶1 ). The jobs whose first operation must be performed on
machine 1, jobs in 𝑀𝐶1 , are processed before the jobs in 𝐵1
without interfering with the optimal schedule since CDD ≥
𝐹1 + Δ 1. Similar to the unrestricted case, jobs in𝑀𝐶1 and𝑀𝐶2
need to be sequenced by using the EDD rule to check if the
number of tardy jobs is equal to zero. If both sequences yield
zero tardy jobs then the problem is semirestricted. Following
the same numeric example, Figure 2 describes the case when
theCDD is equal to 23which is greater thanmin {𝐹1+Δ 1, 𝐹2+
Δ 2} = 𝐹1 + Δ 1 = 21 and is less than max {𝐹1 + Δ 1, 𝐹2 + Δ 2} =
𝐹2 + Δ 2 = 30.

In this sense, a CDD is semirestricted when the optimal
schedule of either one of the machines can be obtained
by using Kanet’s SCHED algorithm. The optimal schedule
for the other machine has different features, and so the
SCHED algorithm will not be able to find it. Instead, the DP
procedures developed by Hall et al. [6] need to be used to
find the optimal schedule. This procedure is extended to the
problem studied here in the next section.

Definition 3. A CDD is restricted if neither Definition 1’s
conditions nor Definition 2’s conditions hold.

Discussion. If CDD < min {𝐹1+Δ 1, 𝐹2+Δ 2}, let min {𝐹1+Δ 1,
𝐹2+Δ 2} = 𝐹1+Δ 1, and 𝐵1 = {𝑖 = 1, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ∈ 𝑀1 | 𝐶1𝑗 ≤
CDD}, where𝐶1𝑗 is the completion time of the jobs with their
last operation on machine 1. Hence, Δ 1 is the summation of
processing times of the jobs in𝐵1. Since CDD < 𝐹1+Δ 1, there
is noway to optimally schedule jobs in𝑀1 withoutmodifying
the starting times of the jobs in 𝑀𝐶1 (the first operations of
jobs in𝑀2). Hence, a tradeoff between jobs in𝑀𝐶1 and jobs
in 𝐵1 must be made. The jobs in 𝑀𝐶1 (those with their first
operation to be performed on machine 1) interfere with the
optimal schedule on this machine. On the other hand, if at
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CDD

J3

J2 J5 J7 J4 J1J3

J4 J2 J5 J7 J1 J6

J6

5 10 15 20 25 30 35 40 43

M1

M2

Figure 3: Example final scheduled for the restricted version.

least one of the jobs in 𝑀𝐶1 is delayed, this delay interferes
with the optimal schedule on machine 2.The same reasoning
can be applied if min {𝐹1 +Δ 1, 𝐹2 +Δ 2} = 𝐹2 +Δ 2. Following
the same numeric example, Figure 3 illustrates the case when
the CDD = 15 which is less than min {𝐹1 + Δ 1, 𝐹2 + Δ 2} =
𝐹1 + Δ 1 = 21.

Additionally, if there is at least one tardy job in the cases
given in Definitions 1 or 2, then the CDD is also considered
restricted since precedence constraints for at least one job
(i.e., the tardy job) do not hold.

Next, optimality conditions for the unrestricted and
semirestricted case are presented. Also, two properties of the
optimal solution for the restricted case are proved and used
to construct approximate solutions.

3. Optimality Conditions

Optimal solutions for the two-machine 𝐸/𝑇 JSSP with
restricted CDD are difficult to characterize. In this paper,
optimal solutions will be defined when the CDD is unre-
stricted and semirestricted. Approximate solutions, obtained
by a heuristic procedure, will be defined when the CDD is
restricted.

3.1. Unrestricted CDD. If the CDD is unrestricted as
described in Definition 1, the optimal solution can be found
by using Kanet’s SCHED procedure on each machine. The
properties of the optimal schedule as defined in Kanet [1] will
be extended for our use.

Property 1. There is no idle time between jobs in sets𝑀1 and
𝑀2.

Property 2. The jobs in both 𝐵1 and 𝐵2 are sequenced by
longest processing time first (LPT).

Property 3. The last jobs in 𝐵1 and 𝐵2 are completed at time
𝑡 = CDD.

Property 4. Let 𝐴1 and 𝐴2 represent an ordered set of jobs
pertaining, respectively, to 𝑀1 and 𝑀2 to be scheduled
without inserted idle time such that the first job in both 𝐴1
and 𝐴2 starts at time 𝑡 = CDD. In an optimal schedule, jobs
in both𝐴1 and𝐴2 are sequenced by shortest processing time
(SPT) first.

Property 5. If 𝑛1 is even then |𝐵1| = |𝐴1|. If 𝑛1 is odd then
|𝐵1| = |𝐴1| + 1. If 𝑛2 is even then |𝐵2| = |𝐴2|. If 𝑛2 is odd then
|𝐵2| = |𝐴2| + 1.

Property 6. There is a one-to-onemapping of the jobs in both
𝐴1 and 𝐴2 onto the jobs in 𝐵1 and 𝐵2 such that 𝑘1 ∈ 𝐴1
and 𝑘2 ∈ 𝐴2 and 𝑗1 ∈ 𝐵1 and 𝑗2 ∈ 𝐵2 ⇒ 𝑝1𝑘1 ≤ 𝑝1𝑗1 and𝑝2𝑘2 ≤ 𝑝2𝑗2 .

The proofs of these properties and the proof that SCHED
yields optimal solutions can be easily extended from Kanet
[1] and Definition 1. It is important to note that SCHED runs
in polynomial time as discussed by Kanet [1]. Figure 1 shows
the optimal schedule of the same numerical example when
the CDD is unrestricted.

3.2. Semirestricted CDD. If the CDD is semirestricted as
described in Definition 2, the optimal solution can be found
by using Kanet’s SCHED procedure on the machine with
min {𝐹1 + Δ 1, 𝐹2 + Δ 2}. The optimal solution in this machine
preserves the properties given for the unrestricted case. For
the other machine, some properties must be defined in order
to characterize the optimal solution. The properties of the
optimal schedule as defined by Hall et al. [6] will be extended
for our use.

Let 𝑡∗1 or 𝑡∗2 denote the starting times in an optimal
schedule of the first job processed on either 𝑀1 or 𝑀2,
respectively, corresponding to the machine where max {𝐹1 +
Δ 1, 𝐹2 + Δ 2} holds.

Also, define 𝐸1(2) = {𝑖 = 1(2), 1 ≤ 𝑗 ≤ 𝑛 | 𝐶1(2)𝑗 < CDD},
𝐸󸀠1(2) = {𝑖 = 1(2), 1 ≤ 𝑗 ≤ 𝑛 | 𝐶1(2)𝑗 ≤ CDD}, 𝑇1(2) = {𝑖 =
1(2), 1 ≤ 𝑗 ≤ 𝑛 | 𝐶1(2)𝑗 − 𝑝1(2)𝑗 ≥ CDD}, and 𝑇󸀠1(2) = {𝑖 =
1(2), 1 ≤ 𝑗 ≤ 𝑛 | 𝐶1(2)𝑗 > CDD}.

Property 1. There exists at least one of the following:
An optimal schedule with either 𝑡∗1 = 𝐹1 or 𝑡∗2 = 𝐹2.
An optimal schedule with 𝐶1(2)𝑎 = CDD, where 𝑎 is
a job with its last operation on machine 1(2) starting
before CDD and completing at CDD or later.

Property 2. In an optimal schedule, the jobs in 𝐸󸀠1(2) are in
LPT order, and the jobs in 𝑇1(2) are in SPT order.

Property 3. Each optimal schedule is weakly V-shaped. A
weakly V-shaped schedule means a job does not necessarily
end at the CDD.

Definition 4. On machine 1(2) a schedule is early V-Shaped
(EVS) if 𝑝1(2)𝑎 ≤ 𝑝1(2)𝑡min.

Definition 5. On machine 1(2) a schedule is tardy V-Shaped
(TVS) if 𝑝1(2)𝑎 ≤ 𝑝1(2)𝑒min, where 𝑒min = min {𝑝1(2)𝑗 ∈ 𝐸󸀠1(2)},
and 𝑡min = min {𝑝1(2)𝑗 ∈ 𝑇1(2)}.
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Property 4. If 𝑡∗1 = 𝐹1, then |𝐸1| ≥ |𝑇1| − 1 or if 𝑡∗2 = 𝐹2, then
|𝐸2| ≥ |𝑇2| − 1.

Property 5. Consider |𝐸1(2)| ≤ |𝑇1(2)| + 1.

Property 6. If 𝐶1(2)𝑎 = CDD, then ∑𝑗∈𝐸󸀠
1(2)
𝑝1(2)𝑗 ≤

∑𝑗∈𝑇1(2) 𝑝1(2)𝑗 + 2𝑝1(2)𝑠, where job 𝑠 is the first job scheduled
on machine 1(2).

The proofs of these properties can be extended from Hall
et al. [6] and Definition 2.

Based on these properties, the DP procedure can be
introduced to find the optimal solution examining all EVS
and TVS schedules if 𝑡∗1(2) = 𝐹1(2) by using 𝐸𝑉𝑆 and 𝑇𝑉𝑆
procedures described by Hall et al. [6]. If 𝑡∗1(2) > 𝐹1(2), then
it is possible to assume that 𝐶1(2)𝑎 = CDD and the 𝑁𝑜𝑠𝑝𝑙𝑖𝑡
procedure described by Hall and Posner [5] can be extended
to find an optimal schedule in which a job is completed at
CDD. By jointly using these procedures, an optimal solution
can be found for the two-machine JSSP with a semirestricted
CDD. More detail on these procedures will be presented in
the next section. It is important to note that, in the general
case, the dynamic programming approach proposed by Hall
et al. [6] for the single machine restricted case runs in
pseudopolynomial time. Figure 2 shows the optimal schedule
of the same previous numerical example when the CDD is
semirestricted.

3.3. Restricted CDD. To characterize the optimal solution
when the CDD is restricted is difficult. Hence, two properties
are defined in order to develop a heuristic algorithm to obtain
approximate solutions for the two-machine JSSP.

Define 𝐼1 = the set of jobs to be finished onmachine 1 and
to be scheduled around the restrictedCDD. 𝐼2 = the set of jobs
to be finished on machine 2 and to be scheduled around the
restricted CDD.

Clearly, 𝐼1 ⊆ 𝑀1 and 𝐼2 ⊆ 𝑀2.

Property 1. Jobs in 𝐼1 and 𝐼2 are scheduled without idle time.

Proof. By contradiction and similar to the approach by Baker
[38], assume that there exists an optimal schedule S with an
idle interval of length t between consecutive jobs a and b,
with b following a; a, 𝑏 ∈ 𝐼1 (𝐼2), and the predecessors of
a and b are already scheduled at machine 2(1). If job a is
early (𝐶1(2)𝑎 < CDD), then the total penalty cost can be
reduced by shifting job a (and any jobs that precedes it) later
by an amount Δ𝑡, where Δ𝑡 ≤ min (𝑡,CDD − 𝐶1(2)𝑎) without
affecting the feasibility of 𝑆. Denoting the values after the shift
with primes, it follows that 𝑇󸀠1(2)𝑘 = 𝑇1(2)𝑘 and 𝑇󸀠1(2)𝑘 ≤ 𝑇1(2)𝑘
strictly for at least one job. Similarly, if job b is tardy (𝐶1(2)𝑏 >
CDD), then the total penalty cost can be reduced by shifting
job b (and any jobs that follows it) earlier by an amount
Δt, where Δ𝑡 ≤ min (𝑡, 𝐶1(2)𝑏 − CDD) without affecting the
feasibility of S. Hence, it follows that 𝐸󸀠1(2)𝑘 = 𝐸1(2)𝑘 and
𝑇󸀠1(2)𝑘 ≤ 𝑇1(2)𝑘 strictly for at least one job. Since any schedule
must have either job a early or job b tardy, then schedule S
can be improved, and therefore, it cannot be optimal.

Property 2. The optimal schedule for the jobs in 𝐼1 and 𝐼2 is
weakly V-shaped, where a schedule S is weakly V-shaped if
all jobs completed before the CDD are ordered according to
LPT and all jobs that begin their processing after the CDD
ordered according to SPT.

Proof. By contradiction and similar to the approach in Baker
[38], assume S denotes an optimal schedule in which some
adjacent pair of early jobs in 𝐼1(2) is not in LPT order.
Then a pairwise interchange of these two jobs will reduce
the total earliness penalty and leave the tardiness penalty
unchanged on machine 1(2) without affecting the feasibility
of S. Similarly, if S is an optimal schedule containing an
adjacent pair of jobs that starts late in 𝐼1(2) and that violates the
SPT order, then an adjacent pairwise interchange will reduce
the total tardiness penalty and leave the total earliness penalty
unchanged on machine 1(2). In either case, S cannot be an
optimal schedule.

Once the jobs to be included in 𝐼1 and 𝐼2 have been
defined, there are still two questions to be answered. First, in
an optimal schedule, is there some job thatmust be completed
exactly at 𝑡 = CDD? It was shown by Hall et al. [6] for
the single machine case with a restricted CDD that this is
not necessarily true. Second, in an optimal schedule, which
jobs are early and which ones are tardy? Figure 3 shows an
approximate schedule of the numerical example when the
CDD is restricted.

In order to find an approximate solution for the restricted
version of the problem addressed in this paper, Restricted
Heuristic, a heuristic procedure based on Properties 1 and
2 is proposed. By iteratively eliminating the job with the
longest processing time in either machine 1 or machine 2,
sets 𝐼1 and 𝐼2 are defined. This procedure tries to reduce a
restricted problem to the semirestricted version in order to
apply the SCHED, EVS, TVS, and Nosplit procedures. Given
the jobs removed are going to be tardy anyway, the SPT rule
is applied in order to minimize their tardiness. Each time a
remaining tardy job is scheduled, an improvement procedure
tries to look for early slots of time in the current schedule
in order to decrease the tardiness cost. Restricted Heuristic
reduces the problem to a semirestricted one in order to apply
the dynamic programming approach proposed by Hall et al.
[6] for the single machine restricted case; hence, it runs in
pseudopolynomial time. It is important to note thatRestricted
Heuristic does not guarantee an optimal solution.

4. Dynamic Programming Algorithm for the
Two-Machine JSSP

The algorithm JSSPET presented here uses a DP algorithm to
find optimal solutions for the two-machine 𝐸/𝑇 JSSP when
the CDD is semirestricted. This algorithm partitions the
solution space into schedules with either 𝑡∗1 = 𝐹1 or 𝑡∗2 = 𝐹2
and those with either 𝑡∗1 > 𝐹1 or 𝑡∗2 > 𝐹2. In the first case, jobs
either in𝑀1 or𝑀2 are scheduled in the interval [𝐹1, 𝐹1+𝑃1] or
[𝐹2, 𝐹2+𝑃2], where𝑃1 = ∑𝑗∈𝑀1 𝑝1𝑗 and𝑃2 = ∑𝑗∈𝑀2 𝑝2𝑗. Based
on Property 3, any optimal schedule is either EVS or TVS,
and so EVS (TVS) procedure discussed next will find optimal
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EVS (TVS) schedules which is completed at either 𝐹1 + 𝑃1 or
𝐹2 + 𝑃2. In the second case, suppose that either 𝑡∗1 > 𝐹1 or
𝑡∗2 > 𝐹2 and based on Property 1, it is possible to assume that
either 𝐶1𝑎 = CDD or 𝐶2𝑎 = CDD so that Nosplit procedure
discussed later will find an optimal schedule in which a job is
completed at CDD. Finally, the lower cost offered by the three
procedures is an optimal schedule. All three proceduresmake
use of Properties 2 and 3 (V-shaped structure).

Procedures EVS and TVS consider jobs in nonincreasing
order. From Property 3, job 𝑛1 (to be finished on machine
1) either starts at 𝐹1 or ends at 𝐹1 + 𝑃1, and job 𝑛2 (to be
finished on machine 2) either starts at 𝐹2 or ends 𝐹2 + 𝑃2.
The total processing time of previously scheduled jobs which
finish before CDD in EVS and after CDD in TVS procedures

is stored. Nosplit procedure considers jobs in nondecreasing
order.

4.1. Procedure EVS. Let 𝑓𝑘(𝑎1) = the minimum cost to
schedule jobs 𝑛1, 𝑛1 − 1, . . . , 𝑛1 − 𝑘 + 1 (similarly 𝑛2, 𝑛2 −
1, . . . , 𝑛2 −𝑘+1) provided that the latest job scheduled which
finished at or before CDD finishes at time CDD − 𝑎1, 𝑎1 ≥ 0
(similarly CDD − 𝑎2, 𝑎2 ≥ 0), and the earliest job scheduled
which finishes after CDD starts at time∑𝑛1−𝑘𝑗=1 𝑝1𝑗 − 𝑎1 +CDD
(similarly∑𝑛2−𝑘𝑗=1 𝑝2𝑗−𝑎2+CDD).That is, the latest job finishes
at 𝐹1 + 𝑃1 (similarly 𝐹2 + 𝑃2).

Recurrence relation is as follows:

𝑓𝑘+1 (𝑎1) =

{{{{{{{{{{
{{{{{{{{{{
{

min
{
{
{
𝑎1 + 𝑓𝑘 (𝑎1 + 𝑝1𝑛1−𝑘) ,

𝑛1−𝑘

∑
𝑗=1

𝑝1𝑗 − 𝑎1 + 𝑓𝑘 (𝑎1)
}
}
}
, if

𝑛1−𝑘

∑
𝑗=1

𝑝1𝑗 > 𝑎1, 𝑎1 + 𝑝1𝑛1−𝑘 ≤ CDD,

𝑎1 + 𝑓𝑘 (𝑎1 + 𝑝1𝑛1−𝑘) , if
𝑛1−𝑘

∑
𝑗=1

𝑝1𝑗 ≤ 𝑎1, 𝑎1 + 𝑝1𝑛1−𝑘 ≤ CDD,

+∞, otherwise.

(8)

Boundary condition is as follows:

𝑓0 (𝑎1) = 0, for 𝑎1 = CDD,

𝑓0 (𝑎1) = +∞, for 𝑎1 ̸= CDD.
(9)

Minimum cost schedule is defined by

𝑧 (𝜎∗EVS) = min
0≤𝑎1≤CDD

𝑓𝑛 (𝑎1) . (10)

4.2. Procedure TVS. Let 𝑔𝑘(𝑚1) = the minimum cost to
schedule jobs 𝑛1, 𝑛1 − 1, . . . , 𝑛1 − 𝑘 + 1 (similarly 𝑛2, 𝑛2 −
1, . . . , 𝑛2 − 𝑘 + 1) provided that the earliest job scheduled
which starts at or after CDD starts at time CDD+𝑚1,𝑚1 ≥ 0
(similarly CDD − 𝑚2, 𝑚2 ≥ 0), and the latest job scheduled
which starts beforeCDDfinishes at timeCDD+𝑚1−∑𝑛1−𝑘𝑗=1 𝑝1𝑗
(similarly CDD + 𝑚2 − ∑𝑛2−𝑘𝑗=1 𝑝2𝑗). That is, the earliest such a
job starts is at 𝐹1 (similarly 𝐹2).

Recurrence relation is as follows:

𝑔𝑘+1 (𝑚1)

=

{{{{{{{{{{
{{{{{{{{{{
{

min
{
{
{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛1−𝑘−1

∑
𝑗=1

𝑝1𝑗 − 𝑚1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 𝑔𝑘 (𝑚1) , 𝑚1 + 𝑝1𝑛1−𝑘 + 𝑔𝑘 (𝑚1 + 𝑝1𝑛1−𝑘)

}
}
}
, if

𝑛1−𝑘

∑
𝑗=1

𝑝1𝑗 > 𝑚1, 𝑚1 + 𝑝1𝑛1−𝑘 ≤ 𝑃1 − CDD,

𝑚1 + 𝑝1𝑛1−𝑘 + 𝑔𝑘 (𝑚1 + 𝑝1𝑛1−𝑘) , if
𝑛1−𝑘

∑
𝑗=1

𝑝1𝑗 ≤ 𝑚1, 𝑚1 + 𝑝1𝑛1−𝑘 ≤ 𝑃1 − CDD,

+∞, otherwise.

(11)

Boundary condition is as follows:

𝑔0 (𝑚1) = 0, for 𝑚1 = 𝑃1 − CDD,

𝑔0 (𝑚1) = +∞, for 𝑚1 ̸= 𝑃1 − CDD.
(12)

Minimum cost schedule is defined by

𝑧 (𝜎∗TVS) = min
0≤𝑚1≤𝑃1−CDD

𝑔𝑛 (𝑚1) . (13)

4.3. Procedure Nosplit. Let ℎ𝑘(𝑒1) = the minimum cost to
schedule jobs 1, 2, . . . , 𝑘 for either𝑀1 or𝑀2 without theCDD
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splitting any job, given that the total processing time of jobs
scheduled early (or on time) is either 𝑒1 or 𝑒2.

Recurrence relation is as follows:

𝑓𝑘+1 (𝑎1) =

{{{{{{
{{{{{{
{

min
{
{
{
𝑒1 − 𝑝1𝑘+1 + ℎ𝑘 (𝑒1 + 𝑝1𝑘+1) ,

𝑘+1

∑
𝑗=1

𝑝1𝑗 − 𝑒1 + ℎ𝑘 (𝑒1)
}
}
}
, if 𝑒1 ≥ 𝑝1𝑘+1,

𝑘+1

∑
𝑗=1

𝑝1𝑗 − 𝑒1 + ℎ𝑘 (𝑒1) , otherwise.
(14)

Boundary condition is as follows:

ℎ0 (𝑒1) = 0, if 𝑒1 = 0,

ℎ0 (𝑒1) = +∞, if 𝑒1 ̸= 0.
(15)

Minimum cost schedule is defined by

𝑧 (𝜎∗Nosplit) = min
0≤𝑒1≤CDD

ℎ𝑛 (𝑒1) . (16)

In all of the three procedures, the first alternative in the
recurrence relation represents the cost of scheduling the next
job as early as possible and the second one, similarly, as late as
possible. Since in the 𝑇𝑉𝑆 procedure an early job may finish
after the CDD, there is a need for the absolute value in the
first equation on its recurrence relation.

4.4. JSSPET Algorithm. In order to solve the two-machine
𝐸/𝑇 JSSP over a CDD, the three cases of the due date
must be considered. The JSSPET algorithm decides the
type of CDD (restricted, semirestricted, or restricted) and
then applies the appropriate procedure. When the CDD is
unrestricted, the JSSPET uses the SCHED procedure [1] to
find the optimal solution for both machines. When the CDD
is semirestricted, JSSPET jointly uses the SCHED procedure
to find the optimal solution for one of the machines (the
one with min {𝐹1 + Δ 1, 𝐹2 + Δ 2}), and the 𝐸𝑉𝑆, 𝑇𝑉𝑆, and
𝑁𝑜𝑠𝑝𝑙𝑖𝑡 procedures to find the optimal for the othermachine.
Finally, when the CDD is restricted, JSSPET uses Restricted
Heuristic (explained earlier) to find approximate solutions.
This heuristic procedure reduces a restricted problem to the
semirestricted version by iteratively removing one job at
the time. Once the problem is reduced to its semirestricted
version, the SCHED, 𝐸𝑉𝑆, 𝑇𝑉𝑆, and 𝑁𝑜𝑠𝑝𝑙𝑖𝑡 procedures are
applied. Since the jobs removed are going to be tardy anyway,
the SPT rule is applied in order to minimize their tardiness.
Each time a removed job is scheduled, an improvement
procedure runs in search for early time slots in the current
schedule to decrease the tardiness cost. The pseudocode for
JSSPET is given next.

Algorithm JSSPET

Calculate 𝐹1, 𝐹2, Δ 1, Δ 2
Apply SCHED procedure to𝑀1
Apply SCHED procedure to𝑀2

Calculate 𝑇1 = Number of tardy jobs in𝑀𝐶1
Calculate 𝑇2 = Number of tardy jobs in𝑀𝐶2
If CDD ≥ max {𝐹1 + Δ 1, 𝐹2 + Δ 2} and 𝑇1 = 0 and
𝑇2 = 0 then

Optimal schedule is given by SCHEDprocedure
on both machines
Schedule first operations on machine 1 and
machine 2 by using EDD rule.
Stop.

Else

Apply SCHED to machine where min {𝐹1 +
Δ 1, 𝐹2 + Δ 2} holds
Apply EVS to the other machine
Apply TVS to the other machine
Apply Nosplit to the other machine
Solution for the other machine is
min {EVS,TVS,Nosplit}
Calculate 𝑇1 = Number of tardy jobs on𝑀𝐶1
Calculate 𝑇2 = Number of tardy jobs on𝑀𝐶2
If CDD < max {𝐹1 + Δ 1, 𝐹2 + Δ 2} and CDD ≥
min {𝐹1 + Δ 1, 𝐹2 + Δ 2} and 𝑇1 = 0 and 𝑇2 = 0
then

Optimal schedule is given by SCHED and
min {EVS,TVS,Nosplit}
Schedule first operations on machine 1 and
machine 2 by using EDD rule.
Stop.

Else
Apply Restricted Heuristic

End If

End If
End Algorithm

5. Computational Experiments

Sets of problems with 2 machines, 5, 6, 7, 8, 10, 20, 50, 100,
and 500 jobs, with 30 problem instances per problem size,
were generated. The processing times were generated from a
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Table 3: Computational times for the unrestricted and semirestricted cases.

Jobs Unrestricted Semirestricted
Average (sec.) Deviation (sec.) Maximum (sec.) Average (sec.) Deviation (sec.) Maximum (sec.)

𝑛 = 5 0.004 0.007 0.016 0.6230 1.1485 2.6698
𝑛 = 6 0.004 0.007 0.016 0.7674 1.2943 2.8778
𝑛 = 7 0.006 0.008 0.016 1.1335 1.5152 3.0914
𝑛 = 8 0.006 0.008 0.016 1.2123 1.6205 3.3062
𝑛 = 10 0.006 0.008 0.016 1.4929 1.8597 3.7322
𝑛 = 20 0.014 0.005 0.016 4.9724 1.9837 5.7373
𝑛 = 50 0.029 0.007 0.047 19.9488 5.5026 32.9513
𝑛 = 100 0.056 0.008 0.063 67.1799 9.2983 74.6444
𝑛 = 500 0.294 0.014 0.359 1299.8607 63.9390 1590.2551

discrete uniform distribution 𝑈(1, 100) and the jobs routes
were obtained from another discrete uniform distribution
𝑈(1, m) where m is the number of machines (two in our
case). Similar to most random numbers generators in use
today, the processing times and jobs routes were generated
by using randomnumbers coming from a linear congruential
generator [39].

The CDD for the unrestricted case is given by

CDD = max (𝐹1 + Δ 1, 𝐹2 + Δ 2) . (17)

For the semirestricted case, the CDD is chosen to be in the
middle of the interval between min (𝐹1 + Δ 1, 𝐹2 + Δ 2) and
max (𝐹1 + Δ 1, 𝐹2 + Δ 2) as given by

CDD = min (𝐹1 + Δ 1, 𝐹2 + Δ 2) + 0.5

∗ [max (𝐹1 + Δ 1, 𝐹2 + Δ 2)

−min (𝐹1 + Δ 1, 𝐹2 + Δ 2)] .

(18)

Finally, for the restricted case, the CDD is given by

CDD = ⌊ℎ ∗min (𝐹1 + Δ 1, 𝐹2 + Δ 2)⌋ , (19)

where ℎ is the tightness factor, ℎ ∈ [0, 1), and it takes four
possible values, ℎ = 0.7, 0.8, 0.9, 0.95. ⌊𝑥⌋ is the largest integer
less than or equal to 𝑥.

Considering the four cases of the restricted version, the
single case of both the unrestricted and the semirestricted
version, a total of 9 ∗ 30 ∗ 6 = 1620 problem instances were
solved.

6. Results

The results in Table 3 show the average, standard deviation,
and maximum computational solution times for each set
of instances. The times are in seconds and exclude input
and output time. Computational solution times increase
approximately linearly with 𝑛 for the unrestricted case and
in proportion to 𝑛2 for the semirestricted case. These results
confirm that JSSPET algorithm finds optimal solutions for
both the unrestricted and the semirestricted cases for large

random instances of the problem within no more than 20
minutes. Such result is made possible by the new optimal-
ity conditions extended from the single machine problem
provided in this paper and which enable us to prove the
optimality of the dynamic programming procedure.

For restricted problems with 5, 6, 7, and 8 jobs, finding an
optimal solution is not guaranteed, but when compared with
optimal solutions obtained through a MILP formulation, it
turned out the JSSPET algorithm found optimal solutions
for about 30% to 40% of all the instances by applying the
Restricted Heuristic.

For restricted problems with 10 or more jobs, the JSSPET
algorithm is evaluated based on how far its solutions are
from a lower bound (LB). The LB used in this case is
the optimal solution for the same instances but with a
semirestricted CDD. Recall that a problem instance’s solution
with a restricted CDD will always be larger than the same
instance with unrestricted or semirestricted CDD.The closer
the tightness factor h to one, the smaller the deviation from
the LB (the semirestricted version). Also, as the number of
jobs increases, the deviation from the LB decreases. Since
the behavior of the optimal objective function value for the
restricted version of the problem is unknown, using the
solution of the semirestricted version as a LB for the restricted
case tends to underestimate the performance of the JSSPET
algorithm. Therefore, this LB needs to be used carefully and
a better one needs to be found.

7. Conclusions

The earliness and tardiness problem is an important prob-
lem in machine scheduling involving nonregular measures
of performance. In this work, a dynamic programming
(DP) algorithm to deal with the two-machine job shop
scheduling problem (JSSP) and a common due date (CDD)
were presented. The CDD can be classified as unrestricted,
restricted, or semirestricted depending on how large it is.
Lauff and Werner [30] conjectured that the definition of the
restrictedness of the CDD for a multimachine early/tardy
job shop scheduling problem is a NP-hard problem. In this
research, a pseudopolynomial procedure to define the class of
restrictedness was presented for the two-machine 𝐸/𝑇 JSSP.
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Additionally, some properties for this problem as well
as optimality conditions for the unrestricted and semire-
stricted casewere extended from the singlemachine problem.
Optimal solutions for the unrestricted and semirestricted
case were obtained for problems with up to 500 jobs by
using the SCHED algorithm and a dynamic programming
algorithm, respectively. Two properties for the restricted case
were proved and used to come up with a heuristic algorithm
for the two machines problem with restricted CDD.

Finally, through experiments, it was shown that the
JSSPET algorithm could find optimal solutions for the
unrestricted and semirestricted versions of the problem.
Also, the proposed algorithm works well as a heuristic for
the restricted case with large problems. However, there is
room to improve the performance of the JSSPET algorithm
through the development of optimality conditions for the
restricted case and by introducing better lower bounds to
better evaluate the performance of the heuristic.

Future research involves extending this work to job shop
scheduling problems with more than two machines.
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