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Abstract
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efficiency improvement in power production field. The huge amount of studies on this topic shows promising results of
utilization low to medium grade heat of power generation. Several layouts, arrangements, and thermodynamical features
were presented to improve the performance of the power cycle. A main property of such a power cycle that it utilizes a
waste heat to produce electricity. One source of waste heat is flared gas in oil and gas industry, flaring process Is Compact Turbomachinery Utilization of Wasted Energy
considered as an extensive economic loss due to its high heating value. This flare gas is burned in industry due to several I Resources Less Operational Cost

Generating electricity from power cycle using supercritical carbon dioxide (sCO,) as a working fluid is a step towards / Gﬂ) \ /

purposes, mainly safety and process needs. Utilization of flare gas in producing electricity through sCO, cycle is being
proposed in this research. Where two cycles were proposed to study the performance of the cycle using flare gas as fuel.
Flare To Power sCO2 (FTP1- sCO,) cycle utilizing the flare gas mixed with natural gas to heat the working fluid of the
cycle which sCO2. The second cycle (FTP2- sCO,) flare gas is utilized in reheating process for the exhaust flow of a
primary heated working fluid. The performance of the cycles is evaluated by implementing energetic, and exegetic
analysis. The results of the study showed that FTP 1 has higher thermal and overall exergy efficiencies compared with c Heat-Exch Efficient System
FTP 2. Furthermore, the analysis showed that as maximum pressure increases thermal efficiency increase, the same \Ompaa satxe angers/ \LGSSGree”house Gases/

behavior was found also while increasing T,,,,,- The maximum thermal efficiency found to be 44.87% at T,,,,,, = 850 °C,

P, = 25MPa, P, = 3.3 MPa, Ty,;;, = 32°C,and 15,4, = 0.18 kg /s, for a 50 MW power capacity. sCO, Major Benefits Flare Gas Utilization Benefits Proposed Integrated Systems
Benefits

Flare Gas Recovery Technologies
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