Facile and novel LiAlO₂ film electrodes for energy efficient # Li recovery from seawater reverse osmosis (SWRO) brine Umme Hafsa^{1,*}, Sifani Zavahir¹, Tasneem ElMakki¹, Zubair Ahmad², Dong Suk Han^{1,**} ¹Center for Advanced Materials, Qatar University, Doha, Qatar ²Young Scientists Center, Qatar University, Doha, Qatar *Presenter: uh1807926@qu.edu.qa **Corresponding author: dhan@qu.edu Undergraduate Students Sciences and Engineering ## Introduction Market demand for Li is high and growing Current approach is time consuming and geographically confined Proposed work replaces: solar drying of salt-lake brine electrically switched ion exchange (ESIX) Li capture and release cycle: operating #### Acknowledgment This work is supported by the Qatar National Research Funds (QNRF) [NPRP12S-0227-190166] and [GSRA8-L-2-0414-21012]. جامعة قطر QATAR UNIVERSITY ## **Experimental Approach** - \circ Synthesis of LiAlO $_{\!2}$ by sol-gel method followed by two steps annealing - o Confirmation of crystal structure - o Implementation in 2 electrode system with AC counter electrode - Use of simulated concentrated SWRO brine Li rich resource - Use of CaCl₂ and KCl as recovery solution #### **Results and Discussion** Figure 2. Voltage vs capacitance curve corresponding to Li capture and release half cycles #### Conclusion XRD and XPS confirms $LiAlO_2$ catalyst was fabricated with high degree of crystallinity At 0.5 mA.cm⁻², purity of Li recovered is 97% Specific energy consumption of Li recovery is 100 W.h/mol