

Facile and novel LiAlO₂ film electrodes for energy efficient

Li recovery from seawater reverse osmosis (SWRO) brine

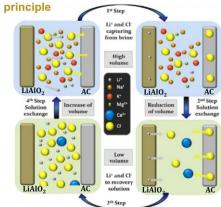
Umme Hafsa^{1,*}, Sifani Zavahir¹, Tasneem ElMakki¹, Zubair Ahmad², Dong Suk Han^{1,**}

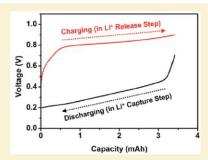
¹Center for Advanced Materials, Qatar University, Doha, Qatar ²Young Scientists Center, Qatar University, Doha, Qatar *Presenter: uh1807926@qu.edu.qa **Corresponding author: dhan@qu.edu

Undergraduate Students Sciences and Engineering

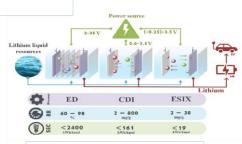
Introduction

Market demand for Li is high and growing Current approach is time consuming and geographically confined


Proposed work replaces:


solar drying of salt-lake brine

electrically switched ion exchange (ESIX)


Li capture and release cycle: operating

Acknowledgment

This work is supported by the Qatar National Research Funds (QNRF) [NPRP12S-0227-190166] and [GSRA8-L-2-0414-21012].

جامعة قطر QATAR UNIVERSITY

Experimental Approach

- \circ Synthesis of LiAlO $_{\!2}$ by sol-gel method followed by two steps annealing
- o Confirmation of crystal structure
- o Implementation in 2 electrode system with AC counter electrode
- Use of simulated concentrated SWRO brine Li rich resource
- Use of CaCl₂ and KCl as recovery solution

Results and Discussion

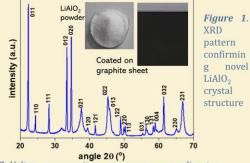


Figure 2. Voltage vs capacitance curve corresponding to Li capture and release half cycles

Conclusion

XRD and XPS confirms $LiAlO_2$ catalyst was fabricated with high degree of crystallinity At 0.5 mA.cm⁻², purity of Li recovered is 97%

Specific energy consumption of Li recovery is 100 W.h/mol