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ABSTRACT
Background  Vaccines against SARS-CoV-2 have 
been developed, but their availability falls far short 
of global needs. This study aimed to investigate the 
impact of prioritising available doses on the basis of 
recipient antibody status, that is by exposure status, 
using Qatar as an example.
Methods  Vaccination impact (defined as the 
reduction in infection incidence and the number 
of vaccinations needed to avert one infection or 
one adverse disease outcome) was assessed under 
different scale-up scenarios using a deterministic 
meta-population mathematical model describing 
SARS-CoV-2 transmission and disease progression in 
the presence of vaccination.
Results  For a vaccine that protects against 
infection with an efficacy of 95%, half as many 
vaccinations were needed to avert one infection, 
disease outcome or death by prioritising antibody-
negative individuals for vaccination. Prioritisation by 
antibody status reduced incidence at a faster rate 
and led to faster elimination of infection and return 
to normalcy. Further prioritisation by age group 
amplified the gains of prioritisation by antibody 
status. Gains from prioritisation by antibody status 
were largest in settings where the proportion of the 
population already infected at the commencement 
of vaccination was 30%–60%. For a vaccine that 
only protects against disease and not infection, 
vaccine impact was reduced by half, whether this 
impact was measured in terms of averted infections 
or disease outcomes, but the relative gains from 
using antibody status to prioritise vaccination 
recipients were similar.

Conclusions  Major health and economic gains can 
be achieved more quickly by prioritizing those who 
are antibody-negative while doses of the vaccine 
remain in short supply.

Summary box

What are the new findings?
►► This study showed that major health gains 
can be attained by prioritising available 
COVID-19 vaccine doses to individuals 
who are antibody-negative.

►► Such prioritisation reduced infection 
incidence and COVID-19 hospitalisations 
at a faster rate and led to faster 
elimination of infection and return to 
normalcy.

►► Gains from prioritisation by antibody 
status (reduction in the incidence of 
infection and disease) were largest in 
settings where the proportion of the 
population already infected at the start of 
vaccination is 30%–60%.

►► For a vaccine that only protects against 
disease and not infection, vaccine impact 
was reduced by half, but the relative gains 
from using antibody status to prioritise 
vaccination recipients were similar.

How might it impact on healthcare in the 
future?

►► Vaccine delivery systems need to prioritise 
available doses to those who are 
antibody-negative while vaccine doses 
remain in short supply.

►► This prioritisation will substantially ease 
the burden of COVID-19 acute-care and 
ICU-care bed hospitalisations.
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INTRODUCTION
The SARS-CoV-2 pandemic has been one of the 
most challenging global health emergencies in recent 
history.1 2 It is widely believed that vaccination offers 
the most effective solution to this emergency.3 More 
than a 100 vaccines are currently under development,4 
with 3 of them reporting efficacies as high as 95%,5–7 
but access to them remains a formidable challenge. 
Speed of production, logistics and costs act as barriers 
for many countries to benefit from vaccine develop-
ment.8–12 With supply limitations and high demand, it 
is foreseeable that a large proportion of the world’s 
population may not have access to these vaccines 
before 2022.13

Prioritising vaccination for specific subpopulations 
that will benefit most from it is one potential approach 
to optimise vaccine impact while vaccine supply is 
being expanded. Vaccine prioritisation is not meant to 
deprive any specific subpopulation of vaccination, but 
to maximise the impact of limited available supplies, 
until doses are enough to vaccinate everyone. Evidence 
suggests that reinfection with SARS-CoV-2 is a rare 
phenomenon and that most infected persons develop 
protective immunity against reinfection that lasts 
for at least a few months postprimary infection.14–16 
Therefore, vaccination is conceivably more beneficial 
for those who are antibody-negative than those whose 
immune systems have already confronted this infection 
and cleared it.

Against this background, the objective of this study 
was to investigate the impact of vaccination with or 
without prioritization by antibody status (ie, exposure 
status), using Qatar as an example. With the exact 
vaccine mechanism of action still unclear, its impact 
was assessed assuming two possible mechanisms of 
action, acting against both infection and disease, or 
acting only against disease. The study was possible 
thanks to a synergistic application of innovations in 
public health systems: use of mathematical model-
ling to inform public health response, use of digital 
healthcare systems to link diverse health informa-
tion systems, create and analyse databases and use of 
outputs for development of mathematical models to 
forecast the epidemic trajectory, healthcare needs and 
impact of interventions such as vaccination.

 

METHODS
Mathematical model
A deterministic meta-population mathematical model 
was constructed to assess the impact of SARS-CoV-2 
vaccination in Qatar by extending and adapting our 
previously validated and published models.3 17–19 The 
model description is summarised below, and further 
details can be found in the previous publications.3 19

The model consisted of a set of coupled, non-linear 
differential equations and was structured by age (0–9, 

10–19, …, ≥80 years) and grouped by the major 
nationalities of the population of Qatar. Unvaccinated 
and vaccinated populations were further stratified 
based on infection status (uninfected, infected), infec-
tion stage (mild/asymptomatic, severe, critical) and 
disease stage (severe disease requiring acute-care bed 
hospitalisation, critical disease requiring ICU-care bed 
hospitalisation) (online supplemental figure S1).

Susceptible populations were assumed at risk of 
acquiring the infection at a hazard rate that varies 
based on the infectious contact rate per day, nation-
ality, age-specific exposure/susceptibility to the infec-
tion and subpopulation mixing and age group mixing 
matrices, parametrising mixing between individuals in 
different nationality and age groups. Infected individ-
uals develop mild (or asymptomatic), severe or critical 
infections, following a latency period. The proportion 
of infected persons developing mild, severe or crit-
ical infections was age-dependent, based on relative 
risks that were based on the SARS-CoV-2 epidemic 
in France.20 Severe and critical infections progress 
to severe and critical disease, respectively, prior to 
recovery. These are hospitalised in acute-care and ICU-
care beds, respectively, based on existing standards of 
care. Critical disease cases have an additional risk of 
COVID-19 mortality.

The model assumes that infected individuals spend 
an average of 3.69 days in the latent infection stage, 
and 3.48 days in the infectiousness stage.20 Duration 
of hospital stay in an acute-care bed and duration of 
hospital stay in an ICU-care bed were estimated through 
model fitting, at 7.4 days and 16.2 days, respectively.19 
The model assumes that infected persons are equally 
infectious regardless of symptoms.19

The model was coded, fitted and analysed using 
MATLAB R2019a.21

Model parametrisation and fitting
Model parameterisation was based on current data 
for SARS-CoV-2 natural history and epidemiology. 
The model was calibrated through fitting to the stan-
dardised and centralised databases of SARS-CoV-2 
testing, infections, hospitalisations and mortality in 
Qatar (online supplemental figure S2),22 23 as well 
as to findings of recently completed epidemiological 
studies.22 24–26 Fitting to input data was performed 
using a non-linear least square fitting technique, based 
on the Nelder-Mead simplex algorithm.

Characteristics of the novel vaccine and its scale-up
Since the primary end point of vaccine random-
ized clinical trials was efficacy against laboratory-
confirmed COVID-19 cases,6 7 27 and not any infection 
documented or undocumented, it is unknown whether 
the vaccine acted by prophylactically reducing suscep-
tibility to the infection (ie, ‍VES‍ efficacy, defined as 
the proportional reduction in susceptibility to infec-
tion among those vaccinated, compared with those 
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unvaccinated3), or whether it simply acted by reducing 
serious symptomatic COVID-19 cases with no effect 
on infection (ie, ‍VEP‍ efficacy against disease progres-
sion, defined as a proportional reduction in the frac-
tion of individuals with severe or critical infection 
among those vaccinated, but who still acquired the 
infection, compared with those unvaccinated3). These 
two mechanisms of action bracket the two extremes 
for the vaccine’s biological effect and impact, with the 
reduction of both infection and disease being the most 
optimistic and the reduction of only severe disease 
forms being the most conservative.

Notwithstanding this uncertainty, considering the results 
of both the Pfizer-BioNTech and Moderna vaccines,5 6 the 
impact of the vaccine was assessed assuming each of these 
mechanisms of action, ‍VES = 95%‍ and ‍VEP = 95%‍, and 
assuming that the vaccine will offer 1 year of protection. 
We further assumed that those vaccinated who still acquire 
the infection are equally infectious to those unvaccinated 
(no vaccine efficacy against infectiousness, ie, ‍VEI = 0%‍).

Vaccine programme scenarios
Several vaccination scenarios were considered and 
these were informed by the availability of the vaccine 
in Qatar and the tentative schedule of its incoming 
shipments over the coming months. The first shipment 
of the Pfizer-BioNTech COVID-19 vaccine arrived 
on 21 December 2020, and vaccination had just been 
launched.

The considered vaccination scenarios included 
administering the vaccine only to those who are 
antibody-negative, or irrespective of antibody status, 
administering a specific number of vaccinations or 
vaccinating to reach a specific coverage in a specific 
target population, and prioritising specific age brackets 
as opposed to others. While the impact of vaccination 
in Qatar was the focus of this study, the generic impact 
of vaccination was also assessed at different assumed 
levels of infection exposure in the population at time 
of onset of vaccination, to reflect generically the diver-
sity of the epidemic situation in different countries.

It was assumed that the vaccine was introduced on 
1 January 2021 and will be scaled up within 6 months. 
Vaccination was defined as completion of the full two-
dose vaccine regimen. Since the purpose of vaccination 
is to alleviate the need for restrictions that affect social 
and economic activities, and since public perception of 
risk may change after the launch of vaccination towards 
more social contacts, it was assumed that social and 
physical distancing restrictions will be eased gradually 
during these 6 months, so that full ‘normalcy’ will be 
attained. Normalcy was defined as a contact rate in the 
population that is similar to that prior to the pandemic, 
leading to a basic reproduction number ‍R0 = 4‍ at the 
end of the 6 months duration for easing of restrictions. 
The value of ‍R0 = 4‍ is justified by the value reached 
in the very early phase of the epidemic in Qatar, right 
before the onset of interventions, existing estimates 

of ‍R0‍ for an epidemic in absence of interventions28 29 
and the recent emergence of variants of concern with 
higher infectiousness.19 30–32

Measures of vaccine impact
Direct and indirect public health benefits of vacci-
nation were assessed. The direct impact results from 
direct effects of the vaccine (‍VES‍ or ‍VEP‍). The indirect 
impact results from the reduction in onward transmis-
sion of the infection, applicable only in the case of ‍VES‍.

The total impact of the vaccine, the sum of its direct 
and indirect impacts, was estimated by comparing inci-
dence at a given time in presence of vaccination, with 
that in the no-vaccination counterfactual scenario. 
Impact was also estimated by quantifying effective-
ness, the number of vaccinations needed to avert one 
infection or one adverse disease outcome during a 
specific period. This metric is closely related to cost-
effectiveness, but with no costs included. Impact of the 
vaccine was further assessed by estimating the number 
of days needed to eliminate the infection after initi-
ating vaccination, with infection elimination being 
defined as an incidence rate ≤1 infection per 100 000 
person-days.

Uncertainty and sensitivity analyses
Ranges of outcome uncertainty predicted by the model 
were calculated using 500 simulation runs that applied 
Latin Hypercube sampling33 34 from a multidimen-
sional distribution of model parameters, assuming 
each set of parameters is equally likely. These param-
eters include the duration of the latent infection stage 
and the duration of the infectiousness stage. At each 
run, input parameter values were selected from ranges 
specified by assuming ±30% uncertainty around 
parameter point estimates. The resulting distribution 
for each outcome predicted by the model was then 
used to derive the means and associated 95% uncer-
tainty intervals for vaccine effectiveness at each time 
point. Further details about this type of uncertainty 
analysis can be found in the study by Ayoub et al.19

Given that the variants of concern may reduce the 
efficacy of the vaccines,35 impact of the vaccine was 
assessed in a sensitivity analysis in which both ‍VES‍ and 
‍VEP‍ were reduced and varied between 50% and 95%. 
In addition, the impact of the vaccine was assessed in 
another sensitivity analysis in which the vaccine dura-
tion of protection varied between 6 and 12 months.

RESULTS
For 500 000 vaccinations administered (regardless 
of age) in the first 6 months of the year (‍VES = 95%‍), 
vaccination of only antibody-negative persons would 
yield, by 30 June 2021, a reduction of 98% in the daily 
number of new infections, 83 200 averted infections, 
5.9 vaccinations to avert one infection and 155 days to 
eliminate the infection (figure 1). Meanwhile, vaccina-
tion irrespective of antibody status would yield, by 30 
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June 2021, a reduction of 73% in the daily number of 
new infections, 40 600 averted infections, 12.0 vacci-
nations to avert one infection and 228 days to elimi-
nate the infection.

For ‍VES = 95%‍, figure 2 shows the impact of achieving 
vaccine coverage of 80% only among those who are 
antibody-negative, or of reaching 80% coverage in 
the whole population, by 30 June 2021. As expected, 
the impact of the vaccine on infection is the same in 
both scenarios, as the number of people who benefited 
from the vaccine (only those antibody-negative) is the 
same in both scenarios. Seventy-seven days are needed 
to reach elimination, but elimination is reached with 
far fewer vaccinations if only those who are antibody-
negative are prioritised. This is reflected in effective-
ness, as only 8.6 vaccinations would be needed to 
avert one infection by prioritising antibody-negative 
persons, but 20.6 vaccinations would be needed by 
vaccinating irrespective of antibody status. Similar 
results are found for gains (reduction in incidence of 
infection and disease) attained by prioritising according 

to antibody status in the case of a vaccine that only 
reduces disease with ‍VEP = 95%‍ (online supplemental 
figure S3).

Figure 3 shows the impact of SARS-CoV-2 vaccina-
tion to reach 80% coverage among those antibody-
negative for a vaccine that reduces both infection and 
disease (‍VES = 95%‍) compared with a vaccine that 
reduces only disease (‍VEP = 95%‍). Figure 4 shows the 
corresponding effectiveness in terms of the number of 
vaccinations needed to avert one severe disease case, 
one critical disease case or one COVID-19 death. A 
vaccine with ‍VES = 95%‍ has a twofold higher impact 
than a vaccine with ‍VEP = 95%‍, whether this impact 
is measured in terms of averted infections or disease 
outcomes (figure  3), or effectiveness in terms of the 
number of vaccinations needed to avert one disease 
outcome (figure 4).

Online supplemental figure S4 shows, for ‍VES = 95%
‍, the effectiveness of age-group prioritisation in admin-
istering the vaccine only to those who are antibody-
negative. Fewer vaccinations would be needed to avert 

Figure 1  Impact of 500 000 SARS-CoV-2 vaccinations with or without prioritisation by antibody status. Impact was assessed based 
on (A) the number of new infections, (B) the cumulative number of averted infections and (C) the number of vaccinations needed 
to prevent one infection. Vaccination is introduced on 1 January 2021 and is scaled up until 30 June 2021, with concurrent gradual 
easing of social and physical distancing restrictions to reach an ‍R0‍ of 4 by 30 June 2021. The vaccine is assumed to have an efficacy 
of 95% against infection: ‍VES = 95%‍. Duration of vaccine-induced protection is 1 year.
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one infection or one disease outcome by prioritising 
the vaccine for those 20–49 years of age and older, as 
expected given the lower susceptibility to infection for 
children as opposed to adults. Online supplemental 
figure S5 shows the same results, but by administering 
the vaccine irrespective of antibody status. While vacci-
nating those 20–49 years of age and older irrespective 
of antibody status is also more effective, the differen-
tial gains are reduced and the effectiveness has a more 
complex pattern. This complexity arises from the fact 
that seroprevalence varies considerably by age in Qatar 
with the lowest levels among children, followed by those 
>50 years of age and is highest among those 20–49 
years of age.22 25 26 36

The above results show the impact of vaccination 
in Qatar, a country where 56.2% of the population is 
estimated, through serological surveys and mathemat-
ical modelling,19 22 25 26 36 to have been infected by 1 
January 2021, at the onset of vaccination. Meanwhile, 
figure 5 shows the impact of vaccination at different 

assumed levels of infection exposure in the population 
at the onset of vaccination with the assumption that 
easing of restrictions will begin following the onset 
of vaccination. The figure specifically compares the 
number of days needed to eliminate the infection in a 
scenario in which vaccination is administered only to 
people antibody-negative at a coverage of 80%, with a 
scenario in which an equal number of vaccinations was 
administered, but irrespective of antibody status. In 
the scenario in which only those antibody-negative are 
being vaccinated, the higher the infection exposure is 
at onset of vaccination, the less time is needed to reach 
elimination, as expected, as the vaccine is provided 
only to those who will directly benefit from it.

However, the situation is more nuanced for the 
scenario in which individuals are vaccinated irrespec-
tive of antibody status. If infection exposure is very low 
at the onset of vaccination, less time would be needed 
to reach elimination, as the vast majority of those 
vaccinated are antibody-negative and will directly 

Figure 2  Impact of SARS-CoV-2 vaccination to reach 80% coverage among only the antibody-negative, or to reach 80% coverage 
of the whole population. Impact was assessed based on (A) the number of new infections, (B) the cumulative number of averted 
infections and (C) the number of vaccinations needed to prevent one infection. Vaccination is introduced on 1 January 2021 and 
is scaled up until 30 June 2021, with concurrent gradual easing of social and physical distancing restrictions to reach an ‍R0‍ of 4 
by 30 June 2021. The vaccine is assumed to have an efficacy of 95% against infection: ‍VES = 95%‍. Duration of vaccine-induced 
protection is 1 year.
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benefit from the vaccine. If infection exposure is very 
high at onset of vaccination (>60%), less time would 
also be needed to reach elimination, as the population 
is already close to the herd immunity threshold (at 
80% infection exposure for ‍R0‍ of 4), and will attain 
it quickly, even though most of those vaccinated are 
already antibody-positive and will not directly benefit 
from vaccination. The longest time to elimination is 
seen when infection exposure at onset of vaccination 
is in the intermediate range, between 30% and 60%, 
as the population is not close to the herd immunity 
threshold, but at the same time, many of those vacci-
nated have already been exposed to the infection and 
will not directly benefit from the vaccine.

Online supplemental figure S6 shows the results 
of the uncertainty analysis for vaccine effectiveness. 
The results demonstrate relatively narrow uncertainty 
intervals, thereby affirming the results. Online supple-
mental figures S7 and S8 show the impact of varying 

‍VES‍ and ‍VEP‍ between 50% and 95%, and the impact of 
varying the vaccine duration of protection between 6 
and 12 months, respectively. The results affirmed the 
gains from prioritisation by antibody status, even for 
broad ranges of vaccine efficacy or vaccine duration 
of protection.

DISCUSSION
The first finding of this study is that there are major 
gains by prioritising available vaccines to persons 
who are antibody-negative, regardless of whether the 
vaccine reduces infection and disease, or just disease. 
With vaccine availability falling far short of global 
needs, such prioritisation will reduce the incidence 
rate of the infection more quickly, thereby eliminating 
the infection and returning to normalcy sooner. Vacci-
nation would thus avert more disease cases and deaths 
and would be more cost-effective, with fewer vaccina-
tions needed to avert one infection or disease outcome. 

Figure 3  Impact of SARS-CoV-2 vaccination to reach 80% coverage for a vaccine that reduces infection and disease (‍VES = 95%
‍) compared with a vaccine that reduces only disease (‍VEP = 95%‍). Impact was assessed based on (A) the number of new infections 
per day, (B) the number of new hospital admissions in acute-care beds per day and (C) the number of new hospital admissions in ICU 
beds per day. Only those who are antibody-negative are being vaccinated. Vaccination is introduced on 1 January 2021 and is scaled 
up until 30 June 2021, with concurrent gradual easing of social and physical distancing restrictions to reach an ‍R0‍ of 4 by 30 June 
2021. Duration of vaccine-induced protection is 1 year.
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As much as our results point toward substantial health 
and economic gains for vaccine prioritisation by expo-
sure status, actual implementation of such an approach 
is still contingent on the feasibility and cost of wide-
scale antibody testing, as a component of vaccination 
programmes in various countries, as well as equity in 
prioritising the vaccine for some as opposed to others.

The second finding of this study is that the gains of 
prioritising vaccination by antibody status are largest 
in settings where the proportion of the population 
previously infected (at time of launch of vaccination) 
is between 30% and 60%. For countries that are still at 
limited infection exposure, prioritisation by antibody 
status will not yield such significant gains, as very few 
vaccinations are given to those previously infected, 
irrespective of whether prioritisation is implemented.

A third finding of this study is that the impact of the 
vaccine depends on whether the vaccine reduces infec-
tion and disease, or reduces only disease. The impact of 
the former was twofold higher than the impact of the 
latter, regardless of whether this impact is measured 

in terms of averted disease cases, or in terms of the 
number of vaccinations needed to avert one disease 
outcome. This finding is explained by the fact that 
for a vaccine that reduces susceptibility to infection (a 
‘‍VES‍’ vaccine), half of the beneficial impact is indirect, 
by reducing the onward transmission of the infection 
in the population, in addition to the direct impact of 
preventing infection among those vaccinated.

This study has some limitations. The study is specific 
only to the country of Qatar. However, the impact of 
prioritising vaccination by antibody status is undoubt-
fully more general, as it is driven by the same concept 
of providing the vaccine to those who will immedi-
ately benefit from it. Model estimates are contingent 
on the validity and generalisability of input data and 
assumptions. Our results are based on current under-
standing of SARS-CoV-2 natural history and disease 
progression, but our understanding of this infection is 
still evolving. A key assumption is that those infected 
acquire protective immunity against reinfection that 
lasts for at least a year. This assumption is supported 

Figure 4  Effectiveness of SARS-CoV-2 vaccination for a vaccine that reduces infection and disease (‍VES = 95%‍) compared with 
a vaccine that reduces only disease (‍VEP = 95%‍). The number of vaccinations needed to prevent (A) one severe disease case, (B) 
one critical disease case and (C) one COVID-19 death. Only those antibody-negative are being vaccinated with a coverage of 80%. 
Vaccination is introduced on 1 January 2021 and is scaled up until 30 June 2021, with concurrent gradual easing of social and 
physical distancing restrictions to reach an ‍R0‍ of 4 by 30 June 2021. Duration of vaccine-induced protection is 1 year.
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by epidemiological and basic science studies of rein-
fection and immune response,14 37–39 including two 
studies in Qatar that demonstrated very low incidence 
rate of reinfection (<1 per 10 000 person-weeks), no 
evidence of waning of immunity for over 7 months of 
follow-up and an efficacy of natural infection against 
reinfection of 95.2%.14 37 Further studies with long-
term follow-up are still needed to assess the exact 
duration of natural immunity.

Vaccine-induced immunity is assumed to last 
for 1 year, but the duration of this immunity is also 
unknown. Therefore, model predictions may not be 
valid if either duration of natural immunity or vaccine-
induced immunity lasts less than a year, whether 
because of waning immunity or appearance of mutant 
virus variants that circumvent immunity to earlier vari-
ants. The recent emergence of variants of concern may 
affect the potential impact of vaccination, as vaccines 
may be less efficacious against these variants.32 35 
Therefore, the above analyses need to be updated with 
the evolution of the epidemiological situation, and 
especially the introduction or emergence of new vari-
ants of concern.

The model assumes that vaccinated persons are 
protected once vaccinated, but vaccine protection 
builds up gradually over the course of few weeks 
following inoculation, and peaks only after the second 
dose.6 A vaccine that converts a symptomatic infec-
tion into an asymptomatic infection could, in theory, 

increase infection transmission, as asymptomatic infec-
tions are difficult to diagnose and isolate.40 However, 
growing evidence, including just-published, real-world 
vaccine effectiveness data from Israel,41 demonstrate 
that the vaccine was equally efficacious regardless of 
symptoms. Uncertainty and sensitivity analyses were 
conducted for a broader assessment of vaccination 
impact under different assumptions, and these analyses 
confirmed the findings (online supplemental figures 
S6–S8).

In conclusion, major health and economic gains can 
be attained by prioritising vaccination for those who 
are antibody-negative, as long as doses of the vaccine 
remain in short supply.
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