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A B S T R A C T

The s-box plays the vital role of creating confusion between the ciphertext and secret key in any cryptosystem,
and is the only nonlinear component in many block ciphers. Dynamic s-boxes, as compared to static, improve
entropy of the system, hence leading to better resistance against linear and differential attacks. It was shown
in Easttom (2018) that while incorporating dynamic s-boxes in cryptosystems is sufficiently secure, they do not
keep non-linearity invariant. This work provides an algorithmic scheme to generate key-dependent dynamic
𝑛 × 𝑛 clone s-boxes having the same algebraic properties namely bijection, nonlinearity, the strict avalanche
criterion (SAC), the output bits independence criterion (BIC) as of the initial seed s-box. The method is based
on group action of symmetric group 𝑆𝑛 and a subgroup 𝑆2𝑛 respectively on columns and rows of Boolean
functions (𝐺𝐹 (2𝑛) → 𝐺𝐹 (2)) of s-box. Invariance of the bijection, nonlinearity, SAC, and BIC for the generated
clone copies is proved. As illustration, examples are provided for 𝑛 = 8 and 𝑛 = 4 along with comparison of the
algebraic properties of the clone and initial seed s-box. The proposed method is an extension of Hussain et al.
(2012); Hussain et al. (2012); Hussain et al. (2018); Anees and Chen (2020) which involved group action of
𝑆8 only on columns of Boolean functions (𝐺𝐹 (28) → 𝐺𝐹 (2) ) of s-box. For 𝑛 = 4, we have used an initial 4 × 4
s-box constructed by Carlisle Adams and Stafford Tavares (Adams and Tavares, 1990) to generated (4!)2 clone
copies. For 𝑛 = 8, it can be seen (Hussain et al. (2012); Hussain et al. (2012); Hussain et al. (2018); Anees and
Chen (2020)) that the number of clone copies that can be constructed by permuting the columns is 8!. For
each column permutation, the proposed method enables to generate 8! clone copies by permuting the rows.
. Introduction

Cryptography has emerged as a key solution for protecting in-
ormation and securing data transmission against passive and active
ttacks. Substitution box or s-box is a vital component of symmetric
lock encryption schemes such as Data Encryption Standard (DES),
dvanced Encryption Standard (AES) and International Data Encryp-

ion Algorithm (IDEA). The cryptographic strength of these encryption
ystems mainly depends upon the efficiency of their substitution boxes
eing the only components capable of inducing the nonlinearity in
he cryptosystem [1]. This attracted the attentions of many researches
o design cryptographically potent s-boxes for the sake of developing
obust encryption schemes. Theoretically, there are several properties
hat can evaluate the performance of a proposed s-box [2]. The most
ommonly applied properties are the bijective property, nonlinearity,
trict avalanche criteria (SAC) and bits independence criterion (BIC).
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M.T. Mustafa).

Depending on the design nature of s-box, it can be classified into
either static or dynamic. The static s-box is one whose values are key-
independent and once defined by the designer it is maintained during
the whole encryption process. This means that the same s-box will be
used in every round, and so it might be vulnerable to cryptanalysis.
On the other hand, dynamic s-boxes do not suffer from fixed structure
block ciphers since the s-boxes itself are changed in every encryption
round and it is considered key-dependent. Hence, the adoption of
dynamic s-boxes improves the security of the system and better resists
against various differential and cryptanalysis attacks [3].

Many researchers have explored several ideas for s-box design such
as randomness, dynamicity, and key-dependency. For instance, Krish-
namurthy and Ramaswamy employed s-box rotation and used it as an
additional component in the traditional AES algorithm to design a dy-
namic s-box [4]. The process consists of three steps in which the s-boxes
are rotated based on fixed, partial and whole key values to increase
vailable online 1 December 2021
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their security. In [5], Piotr Mroczkowski proposed an algorithm to re-
place the available s-boxes through using pseudo-randomly generators
to design similar s-boxes in both encryption and decryption processes.
The work claims that changing of s-boxes could prevent intruders from
receiving enough information to execute effective cryptanalysis attack.
Stoianov [6] proposed a novel approach for changing the s-boxes used
in the AES algorithm through introducing two new s-boxes known as
SBOXLeft and S-BOXRight that employs the left and right diagonals as
the axis of symmetry.

The practice of using key-dependent generated s-boxes in cryptog-
raphy has been also extensively studied in the literature. For instance,
the work in [7] used RC4 algorithm to generate key dependent s-
boxes based on the input key. The authors showed that their generated
dynamic s-boxes have increased the AES complexity and also make the
differential and linear cryptanalysis more difficult. In [8], Kazlauskas
et al. proposed an approach to randomly generate key dependent s-box
that rely on changing only one bit of the secret key. Their approach
is claimed to solve the problem of the fixed structure s-boxes, and
increase the security level of the AES block cipher system due to its
resistance of linear and differential cryptanalysis attacks. Ghada Zaibi
et al. presented dynamic s-boxes based on one dimensional chaotic
maps and evaluated its efficiency compared to the static s-box [9].
Their findings showed that AES using dynamic chaotic s-box is more
secure and efficient than AES with static s-box. In their work [10],
Jie Cui et al. proposed to increase the complexity and security of AES
s-box by modifying the affine transformation cycle. The evaluation
results suggested that the improved AES s-box has better performance
and can readily be applied to AES. Likewise, Anna Grocholewska-
Czurylo [11] described an AES-like dynamic s-boxes generated using
finite field inversion. The significant remark for this work indicates that
removing the affine equivalence cycles from s-boxes does not influence
on their cryptographic properties. Julia Juremi et al. [12] proposed a
key-dependent s-box to enhance the security of AES algorithm through
employing a key expansion algorithm together with s-box rotation. The
obtained results showed that the enhancement on the original AES
does not violate the security of the cipher. Similar to the work in [8],
Razi Hosseinkhani et al. [13] introduced an algorithm to generate
dynamic s-box from cipher key. The quality of this algorithm was
tested by changing only two bits of cipher key to generate new s-
boxes. The authors claim that the key advantage of this algorithm is
that various s-boxes can be generated by changing cipher key. Iqtadar
Hussain et al. [14] presented a method for constructing 8 × 8 s-boxes
using the Liu J substitution box as a seed during the creation pro-
cess. The proposed design relies on the symmetric group permutation
operation which is embedded in the algebraic structure of the new
s-box. An extension of the above work was conducted by the same
authors in [15]. They proposed a novel method that uses the symmetric
group permutation based on the characteristics of affine–power–affine
structure to generate nonlinear s-box component with the possibility
to incorporate 40320 unique instances. The work presented a deep
analysis to evaluate the properties of these new s-boxes and determine
its suitability to various encryption applications.

In the middle of the last decade, several attempts were made to
design robust dynamic s-boxes for symmetric cryptography systems.
For instance, Oleksandr Kazymyrov et al. [16] described an improved
method based on the analysis of vectorial Boolean functions properties
for selection of s-boxes with optimal cryptographic properties that
would lead to provide high level of robustness against various types
of attacks. Mona Dara et al. [17] used chaotic logistic maps with
cipher key to construct key dependent s-boxes for AES algorithm. The
proposed s-box was tested against equiprobable input/output XOR dis-
tribution, key sensitivity, nonlinearity, SAC and BIC properties. In [18],
Eman Mahmoud et al. designed and implemented a dynamic AES-128
with key dependent s-boxes using pseudo random sequence generator
with linear feedback shift Register. The quality of the implemented s-
2

boxes is experimentally investigated, and compared with original AES
in terms of security analysis and simulation time. In their work [19],
Sliman Arrag et al. improved s-box complexity through using nonlinear
transformation algorithm. Further, they also adjusted key expansion
schedule and use s-box lookup table to make it dynamic. Fatma Ahmed
et al. [20] proposed s-boxes by using dynamic key and employed it as
a repository for randomly selecting s-boxes in AES algorithm.

Using pseudo-random generators have also been broadly employed
to design dynamic key-dependent s-boxes. Following the approaches
in [5,8,18], Adi Reddy et al. [21] enhanced the AES security by
designing s-boxes using random number generator for sub keys in key
expansion module of their algorithm. The work showed that the pro-
posed s-boxes are free from linear and differential cryptanalysis attack,
and also it required less memory with high processing speed compared
to other existing improvements. In [22], Kazlauskas et al. modified
the existing AES algorithm by generating key-dependent s-boxes using
random sequences. The authors claim that the new generated algorithm
outperform the traditional AES. Balajee Maram et al. [23] generated
key-dependent s-boxes by using Pseudo-Random generator. Their statis-
tical analysis shows that the proposed algorithm could generate s-boxes
faster than other available algorithms.

Recently, Shishir Katiyar et al. [24] generated dynamic s-boxes by
using logistic maps. The efficiency of the proposed dynamic s-box was
reviewed and analyzed over static s-box. The carried out experiments
have shown that the key-dependent s-box satisfies all the cryptographic
properties of good s-box and can enhance the security due to its
dynamic nature. In [25], Tianyong Ao et al. made affine transformation
key-dependent to generate dynamic s-boxes for their algorithm. The
authors investigations revealed that the algebraic degree of an s-box
is conditional invariant under affine transformation. Unal C. et al. [26]
proposed a secure image encryption algorithm design using dynamic
chaos-based s-box. The work showed that the developed s-box based
image encryption algorithm is secure and speedy. In [27], Agarwal
P. et al. developed a key-dependent dynamic s-boxes using dynamic
irreducible polynomial and affine constant. This latter algorithm was
used by Amandeep Singh et al. to [28] develop a new dynamic AES
in which s-boxes are made completely key-dependent. In [29], Iq-
tadar Hussain et al. proposed an encryption algorithm based on the
substitution–permutation performed by the S8 Substitution boxes and
also incorporates three different chaotic maps. The presented simula-
tion and statistical results showed that the proposed encryption scheme
is secure against different attacks and resistant to the channel noise.

Despite the extensive works by many researcher towards designing
key-dependent s-boxes, Chuck Easttom [30] showed that while key-
dependent variations of Rijndael are sufficiently secure, they do not
demonstrate improved non-linearity over the standard Rijndael s-box,
instead they do introduce additional processing overhead. To address
this claim, Amir Anees et al. [31] proposed a new method for creating
multiple substitution boxes with the same algebraic properties using
permutation of symmetric group on a set of size 8 and bitwise XOR
operation. Their analysis demonstrated that the proposed substitution
boxes can resist differential and linear cryptanalysis and sustain alge-
braic attacks. Ultimately to further extend the latter work, we propose
a novel method to generate key dependent s-boxes with identical alge-
braic properties by applying two permutations on both of the inputs and
outputs vectors of an initial s-box. A rigorous analysis is also presented
to evaluate the properties of the newly created s-boxes particularly the
bijection, nonlinearity, SAC, and BIC invariant.

The remainder of this paper is organized into following sections:
Section 2 discusses in details the common algebraic properties of the
s-box, Section 3 presents main theorem and describes the proposed
key-dependent dynamic s-box generation algorithm. The conclusion is

provided in Section 4.
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2. Preliminaries

A Boolean function of 𝑛 inputs, 𝑓 (𝑥1, 𝑥2,… , 𝑥𝑛), is a function of the
form 𝑓 ∶ {0, 1}𝑛 → {0, 1}. It can be regarded as a binary vector 𝐟 of
length 2𝑛, where 𝐟 is the rightmost column of the truth table describing
this function. We denote the set of all Boolean functions of 𝑛 inputs 𝐵𝑛.

The Boolean functions can serve as the 𝑛 output bits of the s-box.
Let 𝑓1, 𝑓2.....𝑓𝑛 be the 𝑛 Boolean functions, where each function 𝑓𝑖
corresponds to a binary vector 𝐟𝑖 of length 2𝑛. Then the s-box 𝑆 =
[𝐟1, 𝐟2.....𝐟𝑛] is a 2𝑛 × 𝑛 bit matrix with the 𝐟𝑖 as column vectors. Any
given input vector 𝑥 = 𝑥1, 𝑥2,… , 𝑥𝑛, maps to an output vector 𝑦 =
𝑦1, 𝑦2,… , 𝑦𝑛, by the assignment 𝑦𝑖 = 𝑓𝑖(𝑥1, 𝑥2,… , 𝑥𝑛).

The main purpose of this paper is providing a key-dependent algo-
rithm that generates a set of Boolean functions 𝑓1, 𝑓2,… , 𝑓𝑛, such that
the corresponding s-box is bijective, nonlinear, and fulfills SAC and BIC.
Before introducing this algorithm, let us first revise these four algebraic
properties.

2.1. Bijection

It ensures that all possible 2𝑛 𝑛-bit input vectors will map to distinct
output vectors (i.e., the s-box is a permutation of the integers from 0
to 2𝑛 − 1).

Proposition 2.1 ([32]). The necessary and sufficient condition for the s-
box S to be bijective is that any linear combination of the columns of S has
Hamming weight 2𝑛−1. (i.e., 𝑤𝑡(𝑎1𝐟1 ⊕ 𝑎2𝐟2 ⊕⋯⊕ 𝑎𝑛𝐟𝑛) = 2𝑛−1, where the
𝑎𝑖 ∈ {0, 1} and the 𝑎𝑖 are not all simultaneously zero).

2.2. Nonlinearity

It ensures that the s-box is not a linear mapping from input vectors
to output vectors (since this would render the entire cryptosystem
easily breakable).

The nonlinearity 𝑁𝑓 of a function 𝑓 is defined [33] as the minimum
Hamming distance between that function and every linear function.
(i.e., 𝑁𝑓 = 𝑚𝑖𝑛𝑙∈𝐿𝑛𝑑𝐻 (𝑓, 𝑙), where 𝐿𝑛 is a set of the whole linear and
affine functions and 𝑑𝐻 (𝑓, 𝑙) denotes the Hamming distance between 𝑓
and 𝑙)

Remark 2.2. Pieprzyk and Finkelstein [34] claim that the highest
nonlinearity achievable with 0-1 balanced functions can be calculated
by the following equation

𝑁𝑓 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

1
2 (𝑛−3)≤𝑖≤𝑛−3

2𝑖+1 𝑓𝑜𝑟 𝑛 = 3, 5, 7,… ,

∑

1
2 (𝑛−4)≤𝑖≤𝑛−4

2𝑖+2 𝑓𝑜𝑟 𝑛 = 4, 6, 8,… .
(2.1)

Remark 2.3. Carlisle Adams and Stafford Tavares [32] stated that
if the 𝑛 Boolean functions of an s-box 𝑆 are nonlinear, then 𝑆 is
guaranteed to be nonlinear at the bit level and at the integer level.

Lemma 2.4 ([35]). Let 𝑓 be a Boolean function over {0, 1}𝑛, 𝐵 be an 𝑛×𝑛
nonsingular matrix, and 𝛽 a constant vector from {0, 1}𝑛. Then the function
𝑔(𝑥) = 𝑓 (𝑥𝐵⊕𝛽) has the same nonlinearity as the function 𝑓 so 𝑁𝑔 = 𝑁𝑓 .

2.3. Strict avalanche criterion

SAC was introduced by Webster and Tavares [36]. Informally, an
s-box satisfies SAC if a single bit change on the input results in changes
on a half of output bits. More formally, a function 𝑓 ∶ {0, 1}𝑛 → 𝐺𝐹 (2)
atisfies the SAC if 𝑓 (𝑥)⊕ 𝑓 (𝑥 ⊕ 𝛾) is balanced for all 𝛾 whose weight
s 1, (i.e., 𝑤𝑡(𝛾) = 1). In other words, the SAC characterizes the output
hen there is a single bit change on the input.
3

Theorem 2.5 ([35]). Let 𝑓 ∶ {0, 1}𝑛 → 𝐺𝐹 (2) be a Boolean function and
𝐴 be an 𝑛×𝑛 nonsingular matrix with entries from 𝐺𝐹 (2). If 𝑓 (𝑥)⊕𝑓 (𝑥⊕𝛾)
is balanced for each row 𝛾 of 𝐴, then the function 𝜓(𝑥) = 𝑓 (𝑥𝐴) satisfies
he SAC.

.4. Bit independent criterion

Given two Boolean functions 𝑓𝑗 , 𝑓𝑘 in an s-box, if 𝑓𝑗 ⊕ 𝑓𝑘 is highly
nonlinear and meets the SAC, then the correlation coefficient of each
output bit pair may be close to 0 when one input bit is flipped. Thus,
we can check the BIC of the s-box by verifying whether 𝑓𝑗⊕𝑓𝑘 (𝑗 ≠ 𝑘) of
any two output bits of the s-box meets the nonlinearity and SAC [36].

3. The main theorem and proposed key-dependent dynamic s-box
algorithm

Definition 3.1. A permutation matrix is a matrix obtained by permut-
ing the rows of an 𝑛× 𝑛 identity matrix according to some permutation
of the numbers 0 to 𝑛 − 1. Every row and column therefore contains
precisely a single 1 with 0s everywhere else, and every permutation
corresponds to a unique permutation matrix.

Lemma 3.2. Let 𝑋 be the identity s-box with the 2𝑛 × 𝑛 bit matrix
[𝐱1, 𝐱2,… , 𝐱𝑛] and 𝑃1 be a permutation matrix of size 𝑛 × 𝑛. There exist
a permutation matrix 𝑄1 of size 2𝑛 × 2𝑛 such that 𝑄1𝑋 = 𝑋𝑃1.

Proof. The post-multiplying of the permutation matrix 𝑃1 with the
matrix 𝑋 to form the matrix 𝑊1 = 𝑋𝑃1 results in permuting columns of
the matrix 𝑋. Using Proposition 2.1, the 2𝑛×𝑛 bit matrix 𝑊1 is bijective
s-box. Therefore, converting the rows of the matrix 𝑊1 to the decimal
representation provides a permutation 𝑃3 of size 2𝑛.

Let 𝑄1 be the permutation matrix of size 2𝑛×2𝑛 corresponding to the
permutation 𝑃3. Since the pre-multiplying of the permutation matrix 𝑄1
with the matrix 𝑋 to form the matrix 𝑄1𝑋 results in permuting rows
of the matrix 𝑋, then 𝑄1𝑋 = 𝑋𝑃1. □

Theorem 3.3. Let 𝑋 be the identity s-box with the 2𝑛 × 𝑛 bit matrix
[𝐱1, 𝐱2,… , 𝐱𝑛], 𝑌 be an s-box with the 2𝑛×𝑛 bit matrix [𝐲1, 𝐲2,… , 𝐲𝑛], 𝑃1, 𝑃2
e permutation matrices of size 𝑛× 𝑛, and 𝑄1 be the permutation matrix of
ize 2𝑛 × 2𝑛 satisfying 𝑄1𝑋 = 𝑋𝑃1. The 2𝑛 × 𝑛 bit matrix 𝑄1𝑌 𝑃2 is new
-box with the same algebraic properties: bijection, nonlinearity, SAC, BIC
s the initial s-box 𝑌 .

roof. Let the 𝑛 Boolean functions 𝑓1, 𝑓2.....𝑓𝑛 correspond to the column
ectors 𝐲𝑖 = 𝐟𝑖 of the matrix 𝑌 .

Since, the post-multiplying of the permutation matrix 𝑃2 with the
atrix 𝑌 to form the matrix 𝑌 𝑃2 results in permuting columns of the
atrix 𝑌 = [𝐟1, 𝐟2,… , 𝐟𝑛], then it is clear that the 2𝑛×𝑛 bit matrix 𝑌 𝑃2 is
ew s-box with the same algebraic properties: bijection, nonlinearity,
AC, BIC as the initial s-box 𝑌 . Therefore, it is enough to prove that
he 2𝑛 × 𝑛 bit matrix 𝑄1𝑌 = [𝑄1𝐟1, 𝑄1𝐟2,… , 𝑄1𝐟𝑛] is new s-box with
he same algebraic properties: bijection, nonlinearity, SAC, BIC as the
nitial s-box 𝑌 .

(a) Bijection:
The pre-multiplying of the permutation matrix 𝑄1 with the matrix

to form the matrix 𝑄1𝑌 results in permuting rows of the matrix 𝑌 .
sing Proposition 2.1, 𝑄1𝑌 is bijective s-box.

(b) Nonlinearity and SAC:
Introduce 𝑔1(𝑥), 𝑔2(𝑥),… , 𝑔𝑛(𝑥) to be the Boolean functions defined

y 𝑔𝑖(𝑥) = 𝑓𝑖(𝑥𝑃1) for 𝑖 = 1,… , 𝑛. Using Lemma 2.4, 𝑁𝑓𝑖 = 𝑁𝑔𝑖 for
= 1,… , 𝑛. Also, if the functions 𝑓𝑖(𝑥) satisfy the SAC for 𝑖 = 1,… , 𝑛,

hen 𝑓𝑖(𝑥)⊕ 𝑓𝑖(𝑥 ⊕ 𝛾) is balanced for each row 𝛾 of 𝑃1 for 𝑖 = 1,… , 𝑛.
herefore, using Theorem 2.5, the functions 𝑔𝑖(𝑥) satisfy the SAC for
= 1,… , 𝑛. Hence, the s-box [𝐠1, 𝐠2,… , 𝐠𝑛] satisfies the SAC and has

he same nonlinearity as the initial s-box 𝑌 = [𝐟 , 𝐟 ,… , 𝐟 ].
1 2 𝑛
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Finally, since 𝑌 = [𝐟1(𝑋), 𝐟2(𝑋),… , 𝐟𝑛(𝑋)] and 𝑄1𝑋 = 𝑋𝑃1, then the
s-box

[𝐠1(𝑋), 𝐠2(𝑋),… , 𝐠𝑛(𝑋)] = [𝐟1(𝑋𝑃1), 𝐟2(𝑋𝑃1),… , 𝐟𝑛(𝑋𝑃1)]
= [𝐟1(𝑄1𝑋), 𝐟2(𝑄1𝑋),… , 𝐟𝑛(𝑄1𝑋)]
= [𝑄1𝐟1(𝑋), 𝑄1𝐟2(𝑋),… , 𝑄1𝐟𝑛(𝑋)] = 𝑄1𝑌 .

(3.2)

(c) BIC:
Assume that the function ℎ𝑖𝑗 (𝑥) = 𝑓𝑗 (𝑥)⊕𝑓𝑘(𝑥) of any two different

output bits 𝑓𝑗 and 𝑓𝑘 of the s-box 𝑌 meets the nonlinearity and SAC.
Introduce 𝑘𝑖𝑗 (𝑥) to be the Boolean functions defined by the function
𝑘𝑖𝑗 (𝑥) = ℎ𝑖𝑗 (𝑥𝑃1). Using Lemma 2.4, 𝑁ℎ𝑖𝑗 = 𝑁𝑘𝑖𝑗 for 𝑖 ≠ 𝑗. Similarly,
using Theorem 2.5, the functions 𝑘𝑖𝑗 (𝑥) satisfy the SAC for 𝑖 ≠ 𝑗.
Therefore, the function 𝑘𝑖𝑗 (𝑥) = ℎ𝑖𝑗 (𝑥𝑃1) = 𝑓𝑗 (𝑥𝑃1)⊕ 𝑓𝑘(𝑥𝑃1) = 𝑔𝑗 (𝑥)⊕
𝑔𝑘(𝑥) meets the nonlinearity and SAC. Hence, the s-box [𝐠1, 𝐠2,… , 𝐠𝑛]
satisfies BIC. □

The proposed method for key-dependent dynamic s-boxes consists
of permutations of the inputs and outputs vectors of an initial s-
box. The following algorithm provides s-boxes with identical algebraic
properties. The steps are summarized as follows.

1. Express the initial 𝑛×𝑛 s-box as a vector 𝐼𝑆 consisting of different
2𝑛 values ranging between 0 and 2𝑛 − 1.

2. Compute the matrix 𝑌 of size 2𝑛 × 𝑛 by evaluating the binary
representation of the initial s-box. Similarly, compute the matrix 𝑋 of
size 2𝑛×𝑛 by evaluating the binary representation of the identity s-box.

3. Use the key to construct two permutations 𝜎1 and 𝜎2 of different
𝑛 values ranging between 0 and 𝑛 − 1.

4. Construct the corresponding permutation matrices 𝑃1 and 𝑃2 of
size 𝑛 × 𝑛 for the two permutations 𝜎1 and 𝜎2.

5. Compute the matrix 𝑊1 = 𝑋𝑃1 of size 2𝑛 × 𝑛.
6. Construct the corresponding permutation 𝑃3 of size 2𝑛 by getting

back the decimal representation of the matrix 𝑊1 as a vector.
7. Construct the permutation matrix 𝑄1 of size 2𝑛×2𝑛 corresponding

to the permutation 𝑃3.
8. Compute the matrix 𝑊2 = 𝑄1𝑌 𝑃2 of size 2𝑛 × 𝑛.
9. Construct the dynamic key-dependent s-box by getting back the

decimal representation of the matrix 𝑊2 as the vector 𝑁𝑆.
10. Detect the possible fixed point and reverse fixed point of the

constructed vector 𝑁𝑆.
11. In case there are fixed points or reverse fixed points, update the

initial permutations using 𝜎1 = 𝜎̄1𝜎1, 𝜎2 = 𝜎̄2𝜎2 such that 𝜎̄1, 𝜎̄2 ∈ 𝑆𝑛
where 𝑆𝑛 is the symmetric group and then return back to step 4.
Otherwise, end the algorithm and produce the vector 𝑁𝑆 as clone
dynamic key-dependent s-box (see Fig. 1).

An efficient Maple code implementation of the method described in
this section is presented in Appendix.

Remark 3.4. The two permutations 𝜎1 and 𝜎2 of size 𝑛 are extracted
from a key which can be of any bits size resistant to the used cryp-
tosystem. The two permutations could be extracted from the key by the
factorial number system and Lehmer code using 2 ⌈log2 (𝑛! − 1)⌉ bits of
the key where there is one to one correspondence between the set of all
permutations of size 𝑛 and the set of integers numbers {0, 1,… , 𝑛! − 1}.

4. Performance analysis

This section provides demonstration of how our algorithm can be
applied to construct clone copies for a given s-box while preserving
its cryptographic features and strength. The application is independent
of the method used for construction of the given s-box. In case of
the initial given s-box having fixed points or reverse fixed points, the
algorithm can be applied to obtain improved clone versions where
all the fixed points and reverse fixed points are removed but the
4

specifications like bijection, nonlinearity, SAC, and BIC are conserved
with same strength as the initial given s-box. This adds particular
significance and increases the scope of applications of the algorithm
in the context of the recent analysis [37] of the exploitable weakness
of fixed point and reverse fixed point contained in s-boxes.

The performance of our method is illustrated through the following
two examples:

Example 4.1. Demonstration of algorithm for 𝑛 = 4
We use the initial 4 × 4 s-box given as a vector 𝐼𝑆

𝐼𝑆 = [9, 13, 10, 15, 11, 14, 7, 3, 12, 8, 6, 2, 4, 1, 0, 5]𝑡 (4.3)

constructed by Carlisle Adams and Stafford Tavares [32]. Let us assume
that the key gives the two permutations 𝜎1 = (1, 2, 0, 3), 𝜎2 = (3, 2, 0, 1)
of size 4.

The corresponding 𝑋, 𝑌 , 𝑃1, 𝑃2,𝑊1, 𝑃3, 𝑄1,𝑊2 are found as

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤

⎥

⎥

⎥

⎥

⎦

𝑡

𝑌 =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1
0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0
0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1
1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

𝑡

𝑃1 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑃2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

𝑊1 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤

⎥

⎥

⎥

⎥

⎦

𝑡

𝑃3 = (0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15)

𝑄1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑊2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1
1 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0
0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 0
1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎦

𝑡

Finally, the vector 𝑁𝑆

𝑁𝑆 = [10, 6, 14, 13, 11, 15, 7, 12, 3, 5, 1, 0, 2, 4, 8, 9]𝑡 (4.4)

provides the dynamic key-dependent s-box, having the same four alge-
braic properties as the initial vector 𝐼𝑆 as shown in the following table
(see Table 1).

Remark 4.2. The algorithm was applied using the initial 4 × 4 s-box
2
and all the 4! permutations of size 4. As a result, (4!) = 576 different
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Fig. 1. Flowchart of constructing cloned key-dependent s-box.
Table 1
Comparison of the algebraic properties of the initial s-box IS (Eq. (4.3)) and its clone copy NS (Eq. (4.4)) resulting from applying the two permutations 𝜎1 = (1, 2, 0, 3), 𝜎2 = (3, 2, 0, 1)
on IS.

Nonlinearity SAC BIC of nonlinearity BIC of SAC

min max avg min max avg SD min max avg SD min max avg SD

Initial s-box IS 4 4 4 0 1 0.5 0.132583 4 4 4 0 0.4375 0.75 0.552083 0.104686
Clone copy s-box NS 4 4 4 0 1 0.5 0.132583 4 4 4 0 0.4375 0.75 0.552083 0.104686
s-boxes were generated and it was verified that all have the same four
algebraic properties as the initial s-box.

Example 4.3. Demonstration of algorithm for 𝑛 = 8
We use the initial 8 × 8 AES s-box constructed by Joan Daemen and

Vincent Rijmen [38] given in Table 2. Let us assume that the key gives
the two permutations 𝜎1 = (1, 2, 0, 6, 5, 7, 3, 4), 𝜎2 = (5, 7, 3, 4, 1, 2, 0, 6) of
size 8. Similarly, applying the new method provides new s-box given in
Table 3 with the same four algebraic properties as the initial AES s-box
(see Table 4).
5

5. Conclusion

This work investigates the question of generating key-dependent
dynamic 𝑛×𝑛 clone s-boxes having the same algebraic properties. Using
initial s-box, we provide an algorithmic approach to generate clone s-
boxes which have the same genetic traits like bijection, nonlinearity,
SAC, and BIC. Invariance of the bijection, nonlinearity, SAC, and BIC
for the generated clone copies is proved. The flow chart and Maple
code of the presented algorithm are also given. The efficiency of the
algorithm is tested through examples. In conclusion, instead of focusing
on finding ways to generate strong s-boxes, it may be enough to start
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Table 2
Presentation of AES s-box [38] in 16 × 16 matrix form.
R/C 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118
202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192
183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21
4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117
9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132
83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207
208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168
81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210
205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115
96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219
224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121
231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8
186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138
112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158
225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223
140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22
Table 3
Presentation of clone copy s-box as 16 × 16 matrix resulting from applying the two permutations 𝜎1 = (1, 2, 0, 6, 5, 7, 3, 4),
𝜎2 = (5, 7, 3, 4, 1, 2, 0, 6) on AES s-box shown in Table 2.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

165 175 199 189 31 183 181 105 48 28 178 147 224 146 157 68
238 226 142 239 127 140 190 89 67 212 161 166 253 247 57 104
121 162 187 9 24 93 234 170 214 44 26 78 23 156 204 201
69 150 49 12 134 144 136 27 101 82 53 216 87 34 115 74
6 173 223 244 32 180 235 143 131 203 52 188 182 230 229 72
14 109 39 38 108 103 83 42 41 128 3 250 119 191 30 84
73 159 13 50 236 62 59 167 85 15 177 240 123 186 126 208
193 92 98 77 227 133 106 55 242 232 217 20 154 117 43 251
209 113 215 169 192 63 51 71 163 0 4 102 99 125 95 179
8 164 18 40 233 225 202 210 35 1 194 22 228 248 122 111
5 185 132 66 96 91 148 80 7 110 17 207 158 141 160 152
237 174 120 153 81 61 107 116 88 112 254 129 100 56 205 21
124 196 90 135 75 252 76 65 149 222 145 19 241 54 25 249
168 64 245 198 130 197 172 47 94 211 2 231 206 36 255 195
137 86 219 176 221 10 155 243 37 171 200 58 46 118 97 218
29 79 45 220 139 213 151 16 33 60 70 246 114 184 11 138
Table 4
Comparison of the algebraic properties of AES s-box (Table 2) and its clone copy (Table 3).

Nonlinearity SAC BIC of nonlinearity BIC of SAC

min max avg min max avg SD min max avg SD min max avg SD

AES s-box 112 112 112 0.453125 0.5625 0.504883 0.015678 112 112 112 0 0.480469 0.525391 0.504604 0.011271
Clone copy of AES s-box 112 112 112 0.453125 0.5625 0.504883 0.015678 112 112 112 0 0.480469 0.525391 0.504604 0.011271
with one strong s-box such as AES s-box, S8 AES s-box, APA s-box, and
Gray s-box and then get its clone copies.
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Appendix. Maple code for the proposed algorithm

Listing 1: Maple Procedure for converting a permutation 𝜎 to a
permutation matrix 𝑅

permatrix := proc ( sigma )
l o c a l R , i ;
R:= Matrix ( nops ( sigma ) , nops ( sigma ) , [ 0 ] ) ;
f o r i from 1 to nops ( sigma ) do R[ i , sigma [ i ]+1]:=1; end do ;
R ;
end proc :

Listing 2: Maple Procedure for evaluating the binary representation
of an s-box 𝑆 as a Boolean matrix 𝑀 of size 2𝑛 × 𝑛

BLmatrix := proc (S , n )
l o c a l M;
M:= Matrix ( [ seq ( convert ( [ S[ i ] ] , base ,10 ,2 ) , i =1. . nops ( S ) ) ] ) ;
end proc :
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𝜎

Listing 3: Maple Procedure for evaluating the decimal representation
of a Boolean matrix 𝑀 of size 2𝑛 × 𝑛 as an s-box 𝑆

Sbox := proc (M, n)
l o c a l S ;
S :=[ seq ( add ( convert (Row(M, i ) , l i s t ) [ j ]∗2^( j −1), j =1. .n ) , i =1. . RowDimension (M) ) ] ;
end proc :

Listing 4: Maple code for the proposed algorithm for constructing new
s-box 𝑁𝑆 using the initial s-box 𝐼𝑆 and the two permutations 𝜎1 and
2 which extracted from the key
NS := proc ( IS , sigma1 , sigma2 )
l o c a l n , Y , IDSBox , X , P1 , P2 ,W1, P3 ,Q1,W2,NS ;
n:= log [2]( nops ( IS ) ) ;
Y:= BLmatrix ( IS , n ) ;
IDSBox :=[ seq ( i , i =0 . .2 ^n−1)]; X:= BLmatrix ( IDSBox , n ) ;
P1:= permatrix ( sigma1 ) ; P2:= permatrix ( sigma2 ) ;
W1:=X . P1 ; P3:=Sbox (W1, n ) ; Q1:= permatrix (P3 ) ;
W2:=Q1. Y . P2 ;
NS:=Sbox (W2, n)
end proc :

Listing 5: Maple code for deduction of fixed point and reverse fixed
point for s-box 𝑆
FIXP := proc ( S )
l o c a l n , i , FPS , RFPS ;
n:=nops ( S ) ;
FPS :={} ;
RFPS :={} ;
fo r i from 1 to n do
i f S[ i ]=i−1 then
FPS:={S[ i ]} union FPS ;
e l i f S [ i ]=255−( i −1) then
RFPS:={S[ i ]} union RFPS ;
end i f ;
end do ;
[FPS , RFPS ] ;
end proc :
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