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ABSTRACT 

SEWAILEM, MAISOUN, F., Masters: June : Master of Science in Applied Statistics 

Title: Improved Inference for the Scale Parameter in the Lomax Distribution Based on 

Adjusted Profile Likelihood Functions. 

Supervisor of Thesis: Ayman, Suleiman, Baklizi. 

In this thesis, we consider improving maximum likelihood inference for the 

scale parameter of the Lomax distribution. The improvement is based on using 

modification to the maximum likelihood estimator based on Barndorff-Nielsen’s 

modified profile likelihood function. We apply this modification to obtain improved 

estimator for the scale parameter of the Lomax distribution in the presence of a nuisance 

shape parameter. Due to its complicated expressions, several approximations to 

Barndorff-Nielsen’s modified profile log-likelihood function are used, including the 

modification based on the empirical covariances and the modification based on an 

ancillary statistic approximation. We consider complete as well as type I and type II 

censored data. Comparison between maximum profile likelihood estimator and 

modified profile likelihood estimators in terms of their biases and mean squared errors 

were carried out using simulation technique. We found that according to the criteria 

used, the point estimate of the Lomax scale parameter using the modified profile 

likelihood function based on empirical covariances approximation have the best 

performance under type I and type II censoring data. Examples based on real data are 

given to illustrate the methods considered in this thesis.  

 

Keywords: Modified maximum profile likelihood method, Lomax distribution, 

Barndorff-Nielsen’s adjustment method, Censoring, Approximate ancillary statistic.  
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CHAPTER 1: INTODUCTION 

 

1.1  Fundamental concepts in lifetime data analysis  

The term lifetime data analysis includes two main branches, survival analysis and 

reliability theory. It represents a set of statistical techniques for describing and 

quantifying time to event data. The term 'failure' is used in survival analysis to describe 

the presence of the event of interest, even if the event is a ‘success'. Furthermore, the 

period of time necessary for failure to occur is referred to as 'survival time' (Stevenson 

et al [38]). Survival analysis methods rely on the survival distribution, which can be 

specified in two ways: the survival function and the hazard function (Moore [31]). The 

survival function expresses the likelihood of survival up to a point t. Specifically 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡),   0 < 𝑡 < ∞ 

(1) 

 

At time 0, this function has a value of 1 and diminishes (or stays unchanged) through 

time. 

 The hazard function, which represents the failure rate at any given time, is 

frequently used to define the survival function. It's the probability of a subject failing 

in the next little period of time divided by the length of that period, given that he or she 

has survived up to time t (Moore [31]). Explicitly, this could be stated as  

ℎ(𝑡) = 𝑙𝑖𝑚𝛿→0

𝑃(𝑡 < 𝑇 < 𝑡 + 𝛿|𝑇 > 𝑡)

𝛿
 

(2) 

 

There are three types of survival time models: parametric, semi-parametric, and non-

parametric. Non-negative distributions, such as exponential, Weibull, gamma, and 

lognormal distributions, are frequently required in parametric survival analysis models. 

The shape of the model's hazard function will be affected by the distribution we choose. 
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So, we must select the one that best matches the hazard (Stevenson [37]), or we can 

compare different parametric models and select the best one using a criterion such as 

AIC function (Moore [31]). As a result, the most difficult task in running parametric 

models is finding an acceptable distribution. When using data to estimate the hazard 

function, this method is known as semi-parametric. It makes no assumptions about the 

distribution of failure times, but does make assumptions about how covariates affect 

survival experience (Stevenson [37]). Usually, it is difficult to know which parametric 

family to use when modeling human or animal survival, and, in many cases, none of 

the existing families have enough adaptability to model the distribution's true shape. As 

a result, the Cox proportional hazard regression model (Cox [12]) is far more common 

than parametric regression, because the nonparametric estimation of the hazard 

function provides far more flexibility than most parametric techniques (Moore [31]).  

 It is important to note that the presence of censorship in its data is the most 

important feature that distinguishes survival analysis from other statistical analyses. 

Censorship occurs when only a portion of an individual's survival time is known (Klein 

and Moeschberger[24]). 

 

1.2 Lifetime data and Censoring  

The response variable in survival data is a non-negative discrete or continuous 

random variable that describes the time from a well-defined origin to a well-defined 

event. Censoring occurs when the starting or ending events are not precisely observed 

(Moore [31]). Right, left, and interval censoring are all examples of censoring (Klein 

and Moeschberger [24]). 

Right censoring is the most frequent and easiest to deal with in the analysis, and it 

is classified into three types: Type I, Type II, and random. It is so named because the 
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times of failure to the right (i.e., greater than t) are missing (Lawless [25]). 

In Type I censoring, the censoring time t is pre-specified. We observe 𝑟 failures 

during the t hours of testing (where r can be any number from 0 to n). The (exact) failure 

times are 𝑡1, 𝑡2, …… . . 𝑡𝑟, and there are (𝑛 − 𝑟) units that passed the entire t-hour test. 𝑡 

is fixed ahead of time and r is random because we don't know how many failures will 

occur until the test is performed. Also, we assume that when there are failures, the 

precise times of failure are registered. (Lee and Wang [26]). 

In Type II censoring, the number of failure times 𝑟 is pre-specified in advance, and 

the study continues until the first 𝑟 failure objects occur. For example, you could test 

100 units and decide that you want at least half of them to fail. Then 𝑟 = 50, but 𝑡 is 

unknown until the 50th failure occurs (Klein and Moeschberger [24]). 

Each unit in random censoring has a possible censoring time 𝐶𝑖   and a possible 

lifetime 𝑡𝑖, which are assumed to be statistically independent random variables. We 

look at  𝑦𝑖 = min (𝐶𝑖, 𝑡𝑖) which is the lowest of the censoring and life times, as well as 

an indicator variable called 𝑑𝑖 , which indicates whether the observation ended due to 

death or censoring (Lawless [25]). 

It is worth noting that Type I censoring is most commonly used in survival analysis, 

whereas Type II censoring is most commonly used in reliability studies. 

 

1.3 The Lomax distribution  

The Lomax distribution was developed to model business failure data (Lomax 

[29]). It is commonly referred to as the "Pareto type II" distribution (Arnold [2]). The 

Lomax model belongs to the declining failure rate family in the lifetime distribution 

context, see Chahkandi and Ganjali [8]. It has been proposed as a heavy tailed 

distribution by Bryson [7] to replace the Exponential, Weibull, and Gamma 
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distributions. The Lomax distribution was designed to model business failure data, but 

it's also been used for life testing and reliability modeling. The Lomax distribution is 

critical for analyzing lifetime data sets in a variety of fields, including business, 

medicine, and engineering (Johnson et al. [23]). Corbellini et al. [9], Ghitany et al. [17], 

and Holland et al. [21] provide additional examples. Arnold [3] also includes 

applications and some properties of this distribution. 

Suppose T is the Lomax random variable, then the pdf and cdf of the underlying 

Lomax lifetime distribution with two parameters 𝛽 and 𝜃 are given respectively by 

𝑓(𝑡, 𝜃, 𝛽) =
𝛽𝜃

(1 + 𝛽𝑡)𝜃+1
      ,     𝑡 > 0, 𝛽 > 0, 𝜃 > 0  

(3) 

𝐹(𝑡, 𝜃, 𝛽) = 1 −
1

(1 + 𝛽𝑡)𝜃
    , 𝑡 > 0, 𝛽 > 0, 𝜃 > 0     

      (4) 

 

where 𝜃 and 𝛽 are the shape parameter and the scale parameter, respectively. The scale 

and shape of the distribution are controlled by these parameters, as shown in the 

diagram below. 
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Figure 1.Graph of the pdf and cdf with a=1 and different values of b 

 

 

In Figure 1 above, “a” represent the scale parameter and “b” represent the shape 

parameter. It is clear that the shape of the Lomax distribution is declining for any value 

of the shape parameter (b). In addition, as the value of the shape parameter “b” decrease, 

the shape of the distribution sharply decreases. 

The Lomax distribution's survival function is as follows: 

 

𝑆(𝑡) =
1

(1 + 𝛽𝑡)𝜃
    , 𝑡 > 0, 𝛽 > 0, 𝜃 > 0     

(5) 

The hazard function of the Lomax distribution is linked to the pdf and survival function 

by 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝛽𝜃

(1 + 𝛽𝑡)𝜃+1
∙ (1 + 𝛽𝑡)𝜃 =

𝛽𝜃

(1 + 𝛽𝑡)
 

(6) 

Figure 2 bellow illustrate the hazard function of the Lomax distribution. 
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Figure 2.Graph of hazard function of the Lomax distribtion with a=1 and different 

values of b 

 

The hazard function's shape is continually decreasing, as shown in Figure 2, 

demonstrating that the Lomax model is part of a family of models with decreasing 

failure rates (hazard rate). 

 

1.4 Censoring and the likelihood functions 

The likelihood function is central to a wide range of standard model-based statistical 

theory. It is known that the inferential practices derived from it have asymptotically 

ideal properties under very general regularity conditions (Lehmann and Casella [27]). 

1.4.1 Complete Data    

Suppose that lifetimes for individuals in some population following a specific 

distribution with probability function 𝑓(𝑡, 𝜽) ,and that the lifetimes   𝑡1, …… , 𝑡𝑛 for 

a random sample of 𝑛 individuals are observed. Then the likelihood function 
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according to Lawless [25] is given by  

𝐿(𝜽) =∏𝑓(𝑡𝑖, 𝜽)

𝑛

𝑖=1

 

(7) 

Which can be maximized to give an estimate 𝜽̂ . 

 

1.4.2 Type I censoring   

 

Assume that 𝑡𝑗 , (𝑗 = 1,… . , 𝑛) is a random sample from a mathematical model with 

probability density function given by 𝑓(𝑡𝑗 , 𝜽)   , and survival function specified by 

𝑆(𝑡𝑗 , 𝜽) where 𝜽 = (𝜃1, …… , 𝜃𝑘)
`  .Let T is a censoring constant. Lawless [25] claim 

that, data can be denoted by 𝑛 independent pairs of random variables in the form 

(𝑥𝑗 , 𝛿𝑗), 𝑗 = 1,… , 𝑛 , where  

𝑥𝑗 = 𝑚𝑖𝑛(𝑡𝑗 , 𝑇) 

and, 

𝛿𝑗 = {
1   , 𝑡𝑗 < 𝑇

0  , 𝑡𝑗 > 𝑇
 

  

The resulting likelihood function will be specified by  

𝐿(𝜃, 𝛽) =∏𝑓(𝑡𝑗; 𝜃, 𝛽)
𝛿𝑗𝑆(𝑡𝑗; 𝜃, 𝛽)

1−𝛿𝑗

𝑛

𝑗=1

 

(8) 

1.4.3 Type II censoring 

Let  𝑡(𝑗), (𝑗 = 1,… . , 𝑟) be the smallest 𝑟  order statistic from a sample of size 𝑛   

following a parametric distribution with pdf given by 𝑓(𝑡(𝑗), 𝜽)   and survival function 

specified by 𝑆(𝑡(𝑗), 𝜽) ,  where 𝜽 = (𝜃1, …… , 𝜃𝑘)
` . Here, the number of failure time 
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(say r) is static and prespecified and the time of study T is random. Therefore, 

Observations stopped after the 𝑟𝑡ℎ failure (𝑟˂ 𝑛). According to Lawless [25], the 

likelihood function will be given by  

𝐿(Ѳ, 𝛽) =∏𝑓(𝑡(𝑗); Ѳ, 𝛽) ∏ 𝑆(𝑡(𝑟); Ѳ, 𝛽)

𝑛

𝑗=𝑟+1

𝑟

𝑗=1

 

(9) 

1.5 Literature review  

1.5.1 Lomax distribution  

 

The Lomax distribution is critical for analyzing data collected over a lifetime in 

business, computer science, medical and biological sciences, engineering, economics, 

income and wealth inequality, and Internet traffic and dependability analysis (see 

Johnson et al. [ 23]). Harris [ 19], for example, employs the Lomax distribution to 

examine income and wealth data. Furthermore, Corbellini et al. [ 9] used it to analyze 

company size and queuing statistics. According to Ghitany et al. [ 17], it can be used to 

create a lifetime distribution. It can also be used in biosciences and estimating the size 

distribution of computer data on servers, according to Holland et al [21]. 

1.5.2   Inferences from the Lomax model 

 

In the literature, many authors have addressed Lomax model inferences from   

Bayesian, E-Bayesian, and maximum likelihood estimation perspectives. For instance, 

Okasha [32] computed estimates of the unidentified parameters in the Lomax 

distribution under type II censored data using E-Bayesian estimation, which is the 

expectation of bayes estimate, as well as estimating related survival time characteristics 

(hazard and reliability functions). The new technique (E-Bayesian) is compared to the 

equivalent Bayes and maximum likelihood procedures using Monte Carlo simulation. 
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The results show that the E-Bayes estimates (based on balanced squared error loss 

function (BSEL) ) outperform the Bayes estimates when comparing the estimated risks 

of the estimates. Baklizi et al. [4] estimated parameters in this model with progressively 

censored data using likelihood and Bayesian inference. They considered point and 

interval estimation for the Lomax distribution's parameters. Numerical results show that 

point estimation appears similar between the MLE and the Bayesian estimators, while 

Bayesian intervals are considered better than the corresponding likelihood intervals 

(Wald intervals). Using the methods of Lindley [28] and Tierney and Kadane [38], 

Howlader and Hossain [22] investigated Bayesian survival estimation of the Pareto II 

distribution (Lomax distribution) based on failure censored data. Comparisons of these 

two methods, as well as its competitor, the maximum likelihood method, are done using 

Monte Carlo simulation. They conclude that the Lindley method should be used for a 

few samples and for big samples, any of the three approaches. Cramer and Schmiedt 

[13] used type-II censored competing risks data from Lomax distribution to calculate 

maximum likelihood estimates for the distribution parameters. The results show that 

the estimation that one-step censoring plans (0, …… ,0, 𝑛 − 𝑚, 0, … .0) are ideal in 

many situations. AL-Zahrani and Al-Sobhi [1] used Bayesian and maximum likelihood 

estimation to estimate the parameters according to general progressive censored data. 

The results reveal that in small samples, bayes estimators beat ML estimators, whereas 

in big samples, the estimators are nearly equal. Moreover, Abdul Wahab et al. [30] 

compared the maximum likelihood approach to the Bayes-approach with respect to the 

lifetime performance index using progressively Type-II censored competing risks data 

from Lomax distributions. The results show that the Bayes estimator performs slightly 

better than the maximum likelihood estimator. However, the change is slight, and it is 

debatable if the Bayes technique is genuinely advantageous in the circumstance at hand. 
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1.5.3 Modified profile likelihood function  

 

 Numerous modifications to the profile likelihood function have been proposed 

in the literature for a variety of distributions. For example, under type II data 

censoring, Barreto et al. [6] developed adjusted profile likelihood inference (point 

estimation, interval estimation, and hypothesis test) for the Birnbaum–Saunders 

distribution shape parameter. They considered the profile likelihood function 

modifications proposed by Barndorff-Nielsen [5], Cox and Reid [11], Fraser and 

Reid [15], Fraser et al. [16], and Severini [33]. Also, take into account bootstrap-

based inference (hypothesis testing & Interval estimation). According to the results, 

the best performing point estimator was obtained by maximizing Barndorff-

Nielsen's adjusted profile log-likelihood function. It usually had the smallest 

relative bias. Specifically, an approximation based on an ancillary statistic proposed 

by Fraser and Reid [15] and Fraser et al. [16]. The bootstrap test outperforms tests 

based on altered profile likelihood functions by a significant margin. The numerical 

findings show that the bootstrap-t confidence interval is the best method for 

estimating intervals. In addition, For the Weibull shape parameter, Ferrari et al. [14] 

give a number of possible adjusted profile likelihoods. They employ Barndorff-

modified Nielsen's profile likelihood. An approximation based on population 

covariances, an approximation based on empirical covariances, an approximation 

based on an ancillary statistic, and an approximation based on orthogonal 

parameters. Point estimation and hypothesis testing are both taken into account. 

Estimation using the Cox and Reid likelihood function was significantly more 

precise, both without and with (types I and II) censoring, and inference based on 

Cox and Reid's adjusted profile likelihood outpaces not only conventional profile 

likelihood inference, as proposed by Yang and Xie [39], but also inference based 
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on alternative adjusted profile likelihoods. 

Overall, the available literature reviews present inference (point estimation, 

interval estimation, and hypothesis test) on the Lomax distribution from the 

perspectives of Bayesian, E-Bayesian, and maximum likelihood estimation. In 

addition, several modifications to the profile likelihood function for distributions 

other than the Lomax distribution have been proposed in the literature. As a result 

of the literature, we can conclude that there is a limit to inference on the Lomax 

distribution when using modifications to the profile likelihood function. 

 

1.6 Problem statement  

One of the most significant distributions in dependability theory is the Lomax 

distribution. It is a massive probability distribution utilized in business, economics, 

actuarial science, queueing theory, and Web traffic modeling.  

There is a difficulty in conducting statistical inference for a model with a nuisance 

parameter, which is a common occurrence. Furthermore, the larger the nuisance 

parameter's dimension, the higher its potential impact on the results for the parameter 

of interest. Replacing the nuisance parameter with its partial maximum likelihood 

estimator is a simple way to eliminate the nuisance parameter's impact on inference. 

The likelihood function that result is then denoted to as the profile likelihood function. 

However, because the profile likelihood function does not approximate a genuine 

conditional or marginal likelihood function, the profile likelihood function is not a 

genuine likelihood function, which means that it is not a real likelihood function. 

Hence, it will not always give us accurate inference (Severini [35]). Therefore, 

adjustments to the profile likelihood function are needed.  

In the literature, several variations to the profile likelihood function have been 
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presented for a variety of distributions by approximating a marginal or conditional 

likelihood function; they're all trying to diminish the effect of the nuisance parameter 

on inferences about the parameter of interest. For example, Barreto et al. [6] use 

Barndorff-Nielsen's modified profile likelihood function and some approximation to it 

that approximates the marginal or conditional likelihood function for the parameter of 

interest, if one exists, to get adjusted profile maximum likelihood estimators for the 

Birnbaum-Saunders distribution shape parameter under Type II data censoring. In 

addition, using the Cox and Reid method of orthogonal parameters, they got a modified 

profile log-likelihood function that approximates the conditional density function of 

observation given the nuisance parameter. Ferrari et al. [14] present different 

adjustment profile likelihoods for the Weibull shape parameter with and without 

censoring (types I and II). 

Therefore, due to the significance of the Lomax distribution in reliability problems 

and lifetime analysis, particularly in business failure, and the scarcity of studies on the 

statistical inference of Lomax scale parameter (interest parameter) in the existence of 

nuisance shape parameter based on adjusted profile likelihood function, this study is 

designed to address this gap in the literature. 

 

1.7 Objectives and significant of the study  

The thesis's goal is to improve inference for the scale parameter of the Lomax 

distribution in the presence of a nuisance shape parameter. The improvement is 

through the use of the Barndorff-Nielsen adjustment of the profile likelihood 

function. This adjustment is quite complicated and cannot be obtained exactly for 

the case of the Lomax distribution. Several approximations were derived and 

investigated. We apply these approximations to both complete and type I and type 



 

13 

II censored data. We obtained the maximum modified profile likelihood estimators. 

We investigated and compared the performance of the various approximations 

using their biases and mean squared errors using a simulation study. 

 

1.7.1 Specified research goals   

1. Find the maximum profile likelihood estimator (MPLE) for the scale 

parameter under different sampling schemes (complete sample & Type 

I and Type II censoring). 

2. Find the maximum modified profile likelihood estimators (adjusted 

MPLE) for the scale parameter under different sampling schemes using 

different approximations to Brandorff-Nielsen’s modified profile 

likelihood function. 

3. Using simulation, examine the performance and properties of the 

MPLE, and adjusted MPLE in terms of bias and MSE under various 

sampling strategies.  

4. Use real data examples to illustrate the inference methods that we 

proposed in this thesis. 

 

1.8 Overview  

The following is an overview of how this thesis is organized. The profile likelihood 

function and its properties are covered in Chapter 2. This chapter also includes several 

approximations to Barndorff-Nielsen's adjustment. Additionally, adjustments for point 

estimation on the Lomax scale parameter are derived using various approximations to 

Brandorff Nielson's method with and without censoring (type I and type II) data. The 

numerical findings of a simulation research aiming to evaluate and compare the 

performance of estimators derived from profile likelihood functions and adjusted 
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profile likelihood functions under various sample types are given in Chapter 3. In 

Chapter 4, numerical examples based on real-world data are provided. The thesis is 

concluded in Chapter 5 with a summary, recommendations, and suggestions for future 

research. 
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CHAPTER 2: PROFILE LIKELIHOOD FUNCTION FOR THE LOMAX 

DISTRIBUTION AND ITS MODIFICATIONS  

 

2.1 Profile likelihood function  

 We consider a model parametrized by a parameter (𝜃, 𝛽), where β denotes the 

parameter of concern and θ is a nuisance parameter. Replacing θ with the restricted 

maximum likelihood estimator 𝜃𝛽 is a simple approach of removing the effect of the 

nuisance parameter on inference. Let 𝐿(𝜃, 𝛽) be the likelihood function and let 

𝑙(𝜃, 𝛽) = 𝑙𝑜𝑔(𝐿(𝜃, 𝛽)), where 𝑙𝑜𝑔 is the natural logarithm, then 𝑙𝑝(𝛽) =

𝑙(𝜃, 𝛽)|𝜃=𝜃̂𝛽 = 𝑙(𝜃𝛽 , 𝛽) is called the profile log-likelihood function  and the maximum 

profile likelihood estimator of 𝛽 , under this approach , is represented as 𝛽̂𝑝. However, 

because 𝑙𝑝(𝛽) does not attempt to approximate a true conditional or marginal likelihood 

function, the profile likelihood function isn't a real likelihood function and thus lacks 

some of the favorable characteristics of a true likelihood function. This is because, by 

keeping the nuisance parameter at its point estimate, we are ignoring the uncertainty 

that comes with such estimation to some extent (Severini [35]). 

 

2.2 Modified profile likelihood function    

 There are numerous adjustments to the profile likelihood function proposed in 

the literature. They're all meant to mitigate the influence of the nuisance parameter on 

inference about the parameter of interest. We will discuss some of them in the following 

subsections. 

2.2.1 Barndorff-Nielsen’s modified profile likelihood function 
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 Barndorff-Nielsen [5] developed a modification that, if it exists, approximates 

the marginal or conditional likelihood function for the parameter of interest. He 

proposed a formula for calculating the approximate conditional density of the maximum 

likelihood method given an ancillary statistic 𝑎. He called this formula the p* equation. 

Several authors have utilized modified profile likelihood functions for inference 

including Yang and Xie [39], Barreto et al. [6], and Ferrari et al. [14]. The approach 

used in this thesis follows closely the approach of Ferrari et al. [14] for the Weibull 

shape parameters. The modified profile log-likelihood function of Barndorff-Nielsen is 

𝑙𝐵𝑁(𝛽) = 𝑙𝑝(𝛽) − log |
𝜕𝜃𝛽

𝜕𝜃
| −

1

2
log|𝑗𝜃𝜃(𝜃𝛽 , 𝛽)| , 

(10) 

where 𝑗𝜃𝜃(𝜃𝛽 , 𝛽) = −
𝜕2𝑙(𝜃̂𝛽,𝛽)

𝜕𝜃2
   and 

𝜕 𝜃̂𝛽

𝜕𝜃̂
 is a partial derivatives matrix of 𝜃𝛽 with 

respect to 𝜃. The most challenging part of computing the 𝑙𝐵𝑁(𝛽) is in finding |
𝜕𝜃̂𝛽

𝜕𝜃̂
|. 

There is another equivalent modification for 𝑙𝐵𝑁(𝛽) that avoid this term. It requires a 

sample space derivative of the log-likelihood function, as well as an ancillary statistic 

𝑎 such that (𝜃, 𝛽,̂ 𝑎) is a minimal sufficient statistic, see [5].  

The next three approximation approaches avoid the difficulties of evaluating the 

sample space derivatives emanating from this Barndorff-Nielsen’s approach. 

 

2.2.2 An approximation based on population covariances  

 

Severini [33] presented the following approximation for Barndorff- 

Nielsen's modified profile likelihood function: 

𝑙𝐵̅𝑁 (𝛽)=𝑙𝑝(𝛽) +
1

2
log |𝑗𝜃𝜃(𝜃𝛽 , 𝛽)| − log|I𝜃(𝜃𝛽 , 𝛽 ; 𝜃 ̂, 𝛽̂)|, 

(11) 
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where,   

I𝜃(𝜃, 𝛽 ; 𝜃0, 𝛽0) = 𝐸(𝜃0,𝛽0){𝑙𝜃(𝜃, 𝛽)𝑙𝜃(𝜃0, 𝛽0)
𝑇} 

(12) 

with 𝑙𝜃(𝜃, 𝛽) =
𝜕𝑙(𝜃,𝛽)

𝜕𝜃
. Here, 𝜃𝛽 is the restricted maximum likelihood estimator. The 

maximum likelihood estimators of 𝜃 and 𝛽, respectively, are 𝜃 and 𝛽̂. 𝐼𝜃(𝜃, 𝛽 ; 𝜃0, 𝛽0) 

is independent of the ancillary statistic "𝑎"  and 𝐼𝜃(𝜃, 𝛽 ; 𝜃0, 𝛽0) represents the 

covariance between 𝑙𝜃(𝜃, 𝛽) and 𝑙𝜃(𝜃0, 𝛽0) .The corresponding modified maximum 

profile likelihood estimator (MMPLE) is represented as 𝛽̂̅𝐵𝑁 . 

 

2.2.3 An approximation based on empirical covariances  

 

According to Severini [34], the empirical covariances approximation, 

presented below, is useful when calculating expected values of log likelihood 

derivative products is difficult. This approximation is as follows:  

𝑙𝐵𝑁(𝛽) = 𝑙𝑝(𝛽) +
1

2
log |𝑗𝜃𝜃(𝜃𝛽 , 𝛽)| − log |𝐼𝜃(𝜃̂𝛽, 𝛽;Ѳ̂, 𝛽̂)|, 

(13) 

where,  

Ĭθ (𝜃𝛽, 𝛽;Ѳ̂, 𝛽̂) = ∑ 𝑙𝜃
(𝑗)
(𝜃𝛽 ,

𝑛
𝑗=1 𝛽) 𝑙𝜃

(𝑗)
(Ѳ̂ , 𝛽̂ )𝑇 

(14) 

Here, 𝑙𝜃
(𝑗)

 is the score function of the 𝑗𝑡ℎ observation, and the equivalent modified 

maximum profile likelihood estimator (MMPLE) under this approximation is 

represented as 𝛽̂𝐵𝑁.  

  

2.2.4 An approximation based on an ancillary statistic  

 

An approximation was proposed by Fraser and Reid [15] and Fraser et al. [16], which 
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is given by 

𝑙𝐵𝑁 (𝛽)=𝑙𝑝(𝛽) +
1

2
log|𝑗𝜃𝜃(𝜃𝛽 , 𝛽)| − log|𝑙𝜃;𝑦(𝜃𝛽 , 𝛽)𝑉̂𝜃|, 

(15) 

where, 

𝑙𝜃;𝑦(𝜃, 𝛽) =
𝜕𝑙𝜃(𝜃, 𝛽)

𝜕𝒴𝑇
 

(16) 

Here, 
𝜕𝑙(𝜃,𝛽) 

𝜕𝜃
is the score function for, 𝒴𝑇 = (𝑦1, …… . , 𝑦𝑛) and   

𝑉̂Ѳ = (−
𝜕𝐹(𝑦1; Ѳ,̂  𝛽̂)/𝜕Ѳ̂

𝑓1(𝑦1; Ѳ̂, 𝛽̂)
 , ………… ,−

𝜕𝐹(𝑦𝑛; Ѳ,̂  𝛽̂)/𝜕Ѳ̂

𝑓𝑛(𝑦𝑛; Ѳ̂, 𝛽̂)
 ), 

(17) 

 

 𝑓𝑗(𝑦; 𝜃, 𝛽) and 𝐹𝑗(𝑦; 𝜃, 𝛽)  are the probability density and cumulative distribution 

functions of 𝑦𝑗 ,respectively, and where, 𝑉̂Ѳ is the approximate ancillary statistic. The 

corresponding modified maximum profile likelihood estimator (MMPLE) under this 

approximation ( 𝑙𝐵𝑁 (𝛽)) is represented as  𝛽̂𝐵𝑁 . 

 

2.3 Modified profile likelihoods for the Lomax scale parameter  

 2.3.1  Complete Data  

 

Let 𝑦1, …… . , 𝑦𝑛  be distributed independently and uniformly (i.i.d.) variables 

created by Lomax.  Using (7), the likelihood function for the (𝜃 , 𝛽) parameters is 

specified by 

𝐿(𝜃, 𝛽, 𝑦𝑖)  =∏𝛽𝜃(1 + 𝛽𝑦𝑖)
−(𝜃+1)

𝑛

𝑖=1

 = 𝛽𝑛𝜃𝑛∏(1+ 𝛽𝑦𝑖)
−(𝜃+1)

𝑛

𝑖=1

 

(18) 

Therefore, the log-likelihood function is defined as follows: 
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𝑙(𝜃, 𝛽) = 𝑛 log𝛽 + 𝑛 log 𝜃 − (𝜃 + 1)∑log(1 + 𝛽𝑦𝑖)

𝑛

𝑖=1

 

(19)  

The log-likelihood function's first derivative with respect to 𝜃 is given by 

 

𝜕𝑙(𝜃, 𝛽)

𝜕𝜃
= 𝑙𝜃(𝜃, 𝛽) =

𝑛

𝜃
−∑log(1 + 𝛽𝑦𝑖)

𝑛

𝑖=1

 

(20)  

 

The root of this equation in 𝜃 for a fixed value of 𝛽 is  

𝜃𝛽 =
𝑛

∑ log(1 + 𝛽𝑦𝑖)
𝑛
𝑖=1

 

(21) 

This root represents the constrained MLE of 𝜃 for a given 𝛽. We get the profile log-

likelihood function by substituting 𝜃𝛽  in the log-likelihood equation.   

𝑙𝑝(𝛽) = 𝑛 log𝛽 + 𝑛 log 𝜃𝛽 − (𝜃𝛽 + 1)∑log(1 + 𝛽𝑦𝑖)

𝑛

𝑖=1

 

(22) 

After substituting the value of Ѳ̂𝛽, it is become 

𝑙𝑝(𝛽) = 𝑛 log𝛽 + 𝑛 log
𝑛

∑ log(1 + 𝛽𝑦𝑖)
𝑛
𝑖=1

− (
𝑛

∑ log(1 + 𝛽𝑦𝑖)
𝑛
𝑖=1

+ 1)∑log(1 + 𝛽𝑦𝑖)

𝑛

𝑖=1

 

(23)  

 

The solution of the following equation yields the MLE of 𝛽, which is the maximum 

profile likelihood estimator of 𝛽. 

𝜕𝑙𝑝(𝛽)

𝜕𝛽
=
𝑛

𝛽
− 𝜃𝛽∑

𝑦𝑖
1 + 𝛽𝑦𝑖

−∑
𝑦𝑖

1 + 𝛽𝑦𝑖
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

(24)  
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Which is equivalent to the following equation,  

 

𝜕𝑙𝑝(𝛽)

𝜕𝛽
=
𝑛

𝛽
− [

𝑛

∑ log(1 + 𝛽𝑦𝑖)
𝑛
𝑖=1

]∑
𝑦𝑖

1 + 𝛽𝑦𝑖
−∑

𝑦𝑖
1 + 𝛽𝑦𝑖

= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

(25)   

The MLE β̂ can’t be obtained analytically and we need to find it numerically by 

applying some iterative methods like the Newton-Raphson method or direct 

optimization techniques.  

Calculating  𝑗𝜃𝜃(𝜃𝛽 , 𝛽) from the observed Fisher information matrix 𝑗(𝜃, 𝛽) = 

−(
𝜕2

𝜕𝜃2
𝑙(𝜃, 𝛽))

𝜃=𝜃̂𝛽
  which is obtained from the log-likelihood function for Lomax 

distribution evaluated at (𝜃𝛽  , 𝛽) we obtain  

 

𝑗𝜃𝜃(𝜃𝛽 , 𝛽)  = −(−
𝑛

(𝜃𝛽)
2
) =

𝑛

(
𝑛

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑖)
𝑛
𝑖=1

)2
 =

(∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑖))
𝑛
𝑖=1

2

𝑛
 

(26)  

Now, we will consider some approximations to the modified profile likelihood 

for Lomax parameter 𝛽 using Barndorff-Nielsen’s Method that are described in section 

3. 

From (20), we obtain  

𝑙𝜃(𝜃, 𝛽) =
𝑛

𝜃
−∑log(1 + 𝛽𝑦𝑖)

𝑛

𝑖=1

 

(27)  

and 

𝑙𝜃(𝜃0, 𝛽0) =
𝑛

𝜃0
−∑log(1 + 𝛽0𝑦𝑖)

𝑛

𝑖=1

 

(28)  
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Then, using (12) 

𝑙𝜃(𝜃, 𝛽)𝑙𝜃(𝜃0, 𝛽0) = (
𝑛

𝜃
−∑log(1 + 𝛽𝑦𝑗)

𝑛

𝑗=1

)(
𝑛

𝜃0
−∑log(1 + 𝛽0𝑦𝑗)

𝑛

𝑗=1

) 

=
𝑛2

𝜃𝜃0
−
𝑛

𝜃
∑log(1 + 𝛽0𝑦𝑖)

𝑛

𝑖=1

−
𝑛

𝜃0
∑log(1 + 𝛽𝑦𝑖)

𝑛

𝑖=1

+∑log(1 + 𝛽𝑦𝑖)

𝑛

𝑖=1

∑log(1 + 𝛽0𝑦𝑘)

𝑛

𝑘=1

 

= 
𝑛2

𝜃𝜃0
−
𝑛

𝜃
∑ 𝑙𝑜𝑔(1 + 𝛽0𝑦𝑖)
𝑛
𝑖=1 −

𝑛

𝜃0
∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑖)
𝑛
𝑖=1 + ∑ (log(1 + 𝛽𝑦𝑖))(log(1 +

𝑛
𝑖=1

𝛽0𝑦𝑖)) +∑ ∑ (𝑙𝑜𝑔(1 + 𝛽0𝑦𝑖) (𝑙𝑜𝑔(1 + 𝛽𝑦𝑘)))
𝑛
𝑘=1
𝑘≠𝑖

𝑛
𝑖=1  

(29)  

 

Thus,  

𝐸(𝜃0,𝛽0){𝑙𝜃(𝜃, 𝛽)𝑙𝜃(𝜃0, 𝛽0)} = 

=
𝑛2

𝜃𝜃0
−
𝑛

𝜃
∑𝐸(log(1 + 𝛽0𝑦𝑖))

𝑛

𝑖=1

−
𝑛

𝜃0
∑𝐸(log(1 + 𝛽𝑦𝑖))

𝑛

𝑖=1

+∑𝐸(log(1 + 𝛽𝑦𝑖))(log(1 + 𝛽0𝑦𝑖)) 

𝑛

𝑖=1

+∑∑𝐸(log(1 + 𝛽𝑦𝑖))𝐸(log(1 + 𝛽0𝑦𝑘))

𝑛

𝑘=1
𝑘≠𝑖

𝑛

𝑖=1

 

(30)  

These expectations are very difficult to find in closed form. Thus, we can’t find the 

Barndorff-Nielsen modified profile likelihood function based on population covariance 

approximation (equation 11). Therefore, we make use of the empirical covariances 

approximation. 

Using (14), it follows that  

𝑙𝜃
(𝑗)
(𝛽, 𝜃𝛽) =

𝑛

Ѳ̂𝛽
− log(1 + 𝛽𝑦𝑖) 

(31)  

 

𝑙𝜃
(𝑗)
(𝛽̂ , 𝜃) =

𝑛

𝜃
− log(1 + 𝛽̂𝑦𝑖) 

(32)  
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Then, 

𝐼𝜃 (𝛽, 𝜃𝛽; 𝛽̂, 𝜃) = ∑ [( 
𝑛

𝜃̂𝛽
−𝑛

𝑖=1 𝑙𝑜𝑔(1 + 𝛽𝑦𝑖)) (
𝑛

𝜃̂
− 𝑙𝑜𝑔(1 + 𝛽̂𝑦𝑖))]  

(33)  

 

From (13,14,23 & 26), we obtain 

𝑙𝐵𝑁  (𝛽)= 𝑛 𝑙𝑜𝑔 𝛽 + 𝑛 𝑙𝑜𝑔 𝜃𝛽 − (𝜃𝛽 + 1)∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗)
𝑛
𝑗=1 +

1

2
𝑙𝑜𝑔 |

𝑛

(𝜃̂𝛽)
2| −

𝑙𝑜𝑔 |∑ [(
𝑛

𝜃̂𝛽
−𝑛

𝑗=1 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗)) (
𝑛

𝜃̂
− 𝑙𝑜𝑔(1 + 𝛽̂𝑦𝑗))] | 

(34)  

 

where,  

𝜃𝛽 =
𝑛

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑖)
𝑛
𝑖=1

 

 

and where 𝜃 and 𝛽̂ are the maximum likelihood estimators of 𝜃 and 𝛽. The 

corresponding estimator is  𝛽̂𝐵𝑁. The MLE 𝛽̂𝐵𝑁 does not have a closed form expression 

and we need to find it numerically by applying some iterative methods to solve the 

likelihood equation and compute the estimate 𝛽̂𝐵𝑁 .  

From (16) 

𝜕𝑙𝜃(𝜃𝛽 , 𝛽) =
𝑛

𝜃𝛽
−∑log(1 + 𝛽𝑦𝑖)

𝑛

𝑖=1

 

(35)  

 

Therefore, 

𝑙𝜃;𝑦(𝜃𝛽 , 𝛽) =
𝜕𝑙𝜃(𝜃𝛽 , 𝛽)

𝜕𝒴𝑇
= −

𝛽

1 + 𝛽𝑦𝑗
        , 𝑗 = 1,2… . , 𝑛 

         

(36)  
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From (17)  

𝜕𝐹(𝑦𝑖; Ѳ,̂  𝛽̂)

𝜕Ѳ̂
=
(1 + 𝛽 ̂ 𝑦𝑗)

Ѳ̂ log(1 + 𝛽̂ 𝑦𝑗)

(1 + 𝛽 ̂𝑦𝑗  )
2Ѳ̂

 

(37)  

 

𝑓𝑗(𝑦; 𝜃 ̂, 𝛽̂) =
𝛽̂𝜃̂

(1 + 𝛽̂𝑦𝑗)
𝜃̂+1

 

(38)  

 

Therefore,  

𝑉̂𝜃(𝑗) = −
(1 + 𝛽̂ 𝑦𝑗) log(1 + 𝛽 ̂ 𝑦𝑗)

 𝛽̂Ѳ̂
        ,   𝑗 = 1,2, … . 𝑛 

(39)  

 

Hence from (15) 

𝑙𝐵𝑁(𝛽)= 𝑛 log𝛽 + 𝑛 log 𝜃𝛽 − [ 𝜃𝛽 + 1]∑ log(1 + 𝛽𝑦𝑗) +
𝑛
𝑗=1

1

2
𝑙𝑜𝑔 |

(∑ 𝑙𝑜𝑔(1+𝛽𝑦𝑗))
𝑛
𝑗=1

2

𝑛
|− 𝑙𝑜𝑔 |(∑ (

𝛽

1+𝛽𝑦𝑗
·
(1+𝛽 ̂ 𝑦𝑗) 𝑙𝑜𝑔(1+𝛽 ̂𝑦𝑗

𝛽 ̂  Ѳ̂
)𝑛

𝑗=1 )| 

(40)  

 

where,  

𝜃𝛽 =
𝑛

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑖)
𝑛
𝑖=1

 

 

The corresponding estimator is  𝛽̂𝐵𝑁, which will be computed numerically. 

 

 2.3.2 Type II censored data     

   

It is worth to note that this data is used mostly in reliability theory. Here, the number 

of failure time (Say r) is static and prespecified and the time of study T is random. As 

a result, following the 𝑟𝑡ℎ failure(𝑟˂ 𝑛), observations stopped. Let 𝑦(1), ……… , 𝑦(𝑟) be 

the smallest order statistics from a Lomax distribution sample of size n. Using (9), the 
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likelihood function is 

𝐿(Ѳ, 𝛽) =∏𝑓(𝑦(𝑗); Ѳ, 𝛽) ∏ 𝑆(𝑦(𝑟); Ѳ, 𝛽)

𝑛

𝑗=𝑟+1

𝑟

𝑗=1

= [𝑆(𝑦(𝑟); Ѳ, 𝛽)]
𝑛−𝑟

∏𝑓(𝑦(𝑗); Ѳ, 𝛽)

𝑟

𝑗=1

 

= [(1 + 𝛽𝑦(𝑟))
−Ѳ]

𝑛−𝑟
∏[𝛽Ѳ(1 + 𝛽𝑦(𝑗))

−(Ѳ+1)
]

𝑟

𝑗=1

 

= [(1 + 𝛽𝑦(𝑟))
−Ѳ
]
𝑛−𝑟

· 𝛽𝑟Ѳ𝑟 ·∏(1 + 𝛽𝑦(𝑗))
−(Ѳ+1)

𝑟

𝑗=1

 

(41)  

The log-likelihood function for the (Ѳ, 𝛽) parameters is  

𝑙(Ѳ, 𝛽) = (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑟))
−Ѳ
+ 𝑙𝑜𝑔(𝛽𝑟Ѳ𝑟) +∑[−(Ѳ + 1) 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑗))]

𝑟

𝑗=1

 

                    = −Ѳ(𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑟)) + 𝑟 𝑙𝑜𝑔 𝛽 + 𝑟 𝑙𝑜𝑔 Ѳ − (Ѳ + 1)∑𝑙𝑜𝑔(1 + 𝛽𝑦(𝑗))

𝑟

𝑗=1

 

= −Ѳ(𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑟)) + 𝑟 𝑙𝑜𝑔𝛽 + 𝑟 𝑙𝑜𝑔 Ѳ  

− Ѳ∑𝑙𝑜𝑔(1 + 𝛽𝑦(𝑗)) −∑𝑙𝑜𝑔(1 + 𝛽𝑦(𝑗))

𝑟

𝑗=1

𝑟

𝑗=1

 

(42)  

Hence,  

𝑙(Ѳ, 𝛽) = 𝑟 log𝛽 + 𝑟 logѲ

−∑ log(1 + 𝛽𝑦(𝑗)) − Ѳ [∑log(1 + 𝛽𝑦(𝑗)) + (𝑛 −  𝑟) log(1 + 𝛽𝑦(𝑟))

𝑟

𝑗=1

]
𝑟

𝑗=1
 

(43) 

For fixed 𝛽 (parameter of interest), the constrained maximum likelihood estimator of 𝜃 

can be derived as follow  

 

𝜕𝑙

𝜕Ѳ
=
𝑟

Ѳ
− [∑log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))

𝑟

𝑗=1

] = 0 
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𝑟

Ѳ
=∑log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))

𝑟

𝑗=1

 

Ѳ

𝑟
=

1

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1

 

 

       Hence, the constrained maximum likelihood estimator of 𝜃 is  

Ѳ̂𝛽 =
𝑟

∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1

 

(44) 

This root represents the restricted MLE of 𝜃 for a given 𝛽. This estimate reduces to the 

one given previously in Uncensored data when there is no censoring(𝑟 = 𝑛). We get 

the profile log-likelihood function by substituting 𝜃𝛽 in the log-likelihood equation.  

𝑙𝑝(𝛽) = 𝑙(Ѳ̂𝛽 , 𝛽)

= 𝑟 𝑙𝑜𝑔𝛽 + 𝑟 𝑙𝑜𝑔(Ѳ̂𝛽)  

−∑𝑙𝑜𝑔(1 + 𝛽𝑦(𝑗)) − (Ѳ̂𝛽)

𝑟

𝑗=1

· [∑𝑙𝑜𝑔(1 + 𝛽𝑦(𝑗)) + (𝑛 −  𝑟) 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑟))

𝑟

𝑗=1

] 

(45) 

After substituting the value of Ѳ̂𝛽, it is become 



 

26 

𝑙𝑝(𝛽) = 𝑙(Ѳ̂𝛽 , 𝛽)

= 𝑟 log 𝛽 + 𝑟 log (
𝑟

∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1

)

−∑log(1 + 𝛽𝑦(𝑗))

𝑟

𝑗=1

− (
𝑟

∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1

)

∙ [∑log(1 + 𝛽𝑦(𝑗)) + (𝑛 −  𝑟) log(1 + 𝛽𝑦(𝑟))

𝑟

𝑗=1

] 

(46)  

The MLE of 𝛽 is the root of the following equation, which is the maximum profile 

likelihood estimator of  

𝜕𝑙𝑝(𝛽)

𝜕𝛽
=
𝑟

𝛽
−∑

𝑦(𝑗)

1 + 𝛽𝑦(𝑗)
− 𝜃𝛽∑

𝑦(𝑗)

1 + 𝛽𝑦(𝑗)
−
𝜃𝛽(𝑛 − 𝑟)𝑦(𝑟)

1 + 𝛽𝑦(𝑟)
= 0

𝑟

𝑗=1

𝑟

𝑗=1

 

(47) 

 

Which is equivalent to the following equation,  

𝜕𝑙𝑝(𝛽)

𝜕𝛽
=
𝑟

𝛽
−∑

𝑦(𝑗)

1 + 𝛽𝑦(𝑗)

𝑟

𝑗=1

− (
𝑟

∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1

)∑
𝑦(𝑗)

1 + 𝛽𝑦(𝑗)

𝑟

𝑗=1

−

(
𝑟

∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1

)(𝑛 − 𝑟)𝑦(𝑟)

1 + 𝛽𝑦(𝑟)
= 0 

(48) 

The MLE β̂ can’t be obtained analytically and we need to find it numerically by 

applying some iterative methods like the Newton-Raphson method or direct 

optimization techniques.  
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Calculating  𝑗𝜃𝜃(𝜃𝛽 , 𝛽) from the observed Fisher information matrix 𝑗(𝜃, 𝛽) = 

−(
𝜕2

𝜕𝜃2
𝑙(𝜃, 𝛽))

𝜃=𝜃̂𝛽
  which is obtained from the log-likelihood function for Lomax 

distribution evaluated at (𝜃𝛽  , 𝛽) we obtain  

𝑗ѲѲ(Ѳ̂𝛽 , 𝛽) =
(∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))

𝑟
𝑗=1 )

2

𝑟
 

(49) 

Now, we will consider some approximations to the modified profile likelihood for 

Lomax parameter 𝛽 using Barndorff-Nielsen’s Method that are described in section 3. 

Equation (11) is not possible to derive in type II censoring because 𝑦𝑗  are order statistics 

(Not iid). Therefore, we make use of the empirical covariances. 

Using (14), it follows that  

𝑙𝜃
(𝑗)
(𝛽, 𝜃𝛽) =

𝑟

Ѳ̂𝛽
− 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑗)) − (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽𝑦(𝑟)) 

(50) 

𝑙𝜃
(𝑗)
(𝛽̂ , 𝜃) =

𝑟

Ѳ̂
− 𝑙𝑜𝑔(1 + 𝛽̂𝑦(𝑗)) − (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽̂𝑦(𝑟)) 

(51) 

Then, 

Ĭθ(𝛽, θ̂β; β̂, θ̂) = ∑ [(
r

Ѳ̂β
− log(1 + βy(j)) − (n − r) log(1 + βy(r))) (

r

Ѳ̂
− log(1 + β̂y(j)) −

r
j=1

(n − r) log(1 + β̂y(r)))] 

(52) 

 

From (13,14,46&49), we obtain 
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𝑙𝐵𝑁(𝛽) = 𝑟 log𝛽

+ 𝑟 log[Ѳ̂𝛽]−∑log(1 + 𝛽𝑦(𝑗))

𝑟

𝑗=1

− (Ѳ̂𝛽)

· [∑log(1 + 𝛽𝑦(𝑗)) + (𝑛 −  𝑟) log(1 + 𝛽𝑦(𝑟))

𝑟

𝑗=1

]

+
1

2
log [

(∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟)
𝑟
𝑗=1 ))

2

𝑟
]

− log [∑[(
𝑟

Ѳ̂𝛽
− log(1 + 𝛽𝑦(𝑗)) − (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))) (

𝑟

Ѳ̂

𝑟

𝑗=1

− log(1 + 𝛽̂𝑦(𝑗)) − (𝑛 − 𝑟) log(1 + 𝛽̂𝑦(𝑟)))]] 

(53) 

 

where,  

Ѳ̂𝛽 =
𝑟

∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1

 

 

Here, 𝜃 and 𝛽̂ are the maximum likelihood estimators of 𝜃 and 𝛽 under type II 

censoring. The corresponding estimator is  𝛽̂𝐵𝑁. There is no closed form expression for 

the MLE 𝛽̂𝐵𝑁  and we need to find it numerically by applying some iterative methods 

such as optimization techniques to solve the likelihood equation and compute the 

estimate 𝛽̂𝐵𝑁 .  

We also obtain, an approximation based on ancillary statistics. Using (16) it follows 

that 

𝜕𝑙𝜃(𝜃𝛽 , 𝛽) =
𝑟

𝜃𝛽
− (∑log [1 + 𝛽𝑦(𝑗)] + (𝑛 − 𝑟)log [1 + 𝛽𝑦(𝑟)]

𝑟

𝑗=1

) 
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(54) 

 

Thus, 

 

𝑙𝜃;𝑦(𝜃𝛽 , 𝛽) =
𝜕𝑙𝜃(𝜃𝛽 , 𝛽)

𝜕𝒴𝑇
=

{
 
 

 
 − [

𝛽

1 + 𝛽𝑦(𝑗)
]     , 𝑗 = 1,2… . , 𝑟 − 1

− [
𝛽

1 + 𝛽𝑦(𝑟)
+
(𝑛 − 𝑟)𝛽

1 + 𝛽𝑦(𝑟)
]     , 𝑗 = 𝑟

 

(55) 

 Using (17), 

𝜕𝐹(𝑦𝑖; Ѳ,̂  𝛽̂)

𝜕Ѳ̂
=
(1 + 𝛽 ̂ 𝑦(𝑗))

Ѳ̂ 𝑙𝑜𝑔(1 + 𝛽̂ 𝑦(𝑗))

(1 + 𝛽 ̂𝑦(𝑗) )
2Ѳ̂

       , 𝑗 = 1,2… . , 𝑟 

(56) 

Now,  

𝑉̂𝜃(𝑗) = −
(1 + 𝛽 ̂ 𝑦(𝑗))

Ѳ̂
log(1 + 𝛽̂ 𝑦(𝑗))

(1 + 𝛽 ̂𝑦(𝑗) )
2Ѳ̂

·
(1 + 𝛽̂ 𝑦(𝑗))

𝜃̂+1

𝛽 ̂𝜃
     

=
(1 + 𝛽 ̂ 𝑦(𝑗))

2𝜃̂+1
log(1 + 𝛽̂ 𝑦(𝑗))

(1 + 𝛽 ̂𝑦(𝑗) )
2Ѳ̂
𝛽̂𝜃̂

= −
(1 + 𝛽̂ 𝑦(𝑗)) log(1 + 𝛽 ̂ 𝑦(𝑗))

 𝛽̂Ѳ̂
        ,   𝑗 = 1,2, … . 𝑟 − 1

= −
(1 + 𝛽̂ 𝑦(𝑟)) log(1 + 𝛽 ̂ 𝑦(𝑟))

 𝛽̂Ѳ̂
        ,   𝑗 = 𝑟 

(57) 

 

From (15), 
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𝑙𝐵𝑁(𝛽) = 𝑟 log𝛽 + 𝑟 log(Ѳ̂𝛽)

−∑log(1 + 𝛽𝑦(𝑗)) − (Ѳ̂𝛽)

𝑟

𝑗=1

· [∑log(1 + 𝛽𝑦(𝑗)) + (𝑛 −  𝑟) log(1 + 𝛽𝑦(𝑟))

𝑟

𝑗=1

]

+
1

2
log [

(∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1 )

2

𝑟
]

− log [(∑((
𝛽

1 + 𝛽𝑦(𝑗)
)(
(1 + 𝛽̂𝑦(𝑗))log (1 + 𝛽̂𝑦(𝑗)

𝛽̂Ѳ̂
))

𝑟−1

𝑗=1

)

+ ((
𝛽

1 + 𝛽𝑦(𝑟)
+
(𝑛 − 𝑟)𝛽

1 + 𝛽𝑦(𝑟)
) ·
(1 + 𝛽̂𝑦(𝑟)) log(1 + 𝛽̂𝑦(𝑟)

𝛽̂Ѳ̂
)] 

(58) 

where,  

Ѳ̂𝛽 =
𝑟

∑ log(1 + 𝛽𝑦(𝑗)) + (𝑛 − 𝑟) log(1 + 𝛽𝑦(𝑟))
𝑟
𝑗=1

 

 

Here,  𝜃 and 𝛽̂ are the maximum likelihood estimators of 𝜃 and 𝛽 under type II 

censoring. The corresponding estimator is  𝛽̂𝐵𝑁  . The MLE 𝛽̂𝐵𝑁  does not have a closed 

form expression, so we must find it numerically by solving the likelihood equation and 

computing the estimate 𝛽̂𝐵𝑁 using iterative methods such as optimization techniques.  

  

3.2.3   Type I censored data    

    

We'll now consider a scenario in which type I censoring is present, which is 

commonly utilized in survival analysis. The number of failure times (Say r) is random 

(unlike type II censoring, where r is fixed and predetermined), whereas the time of study 
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(𝑡) is fixed and predetermined (unlike type II censoring, T is random). Let 𝑥1, …… . , 𝑥𝑛  

be Lomax random variables that are independently and identically distributed (i.i.d.). 

Using (8), we have 

𝐿(𝜃, 𝛽) =∏𝑓(𝑥𝑗; 𝜃, 𝛽)
𝛿𝑗𝑆(𝑥𝑗; 𝜃, 𝛽)

1−𝛿𝑗

𝑛

𝑗=1

= (∏𝑓(𝑦𝑗; 𝜃, 𝛽)

𝑟

𝑗=1

)(𝑆(𝑇; 𝜃, 𝛽))
𝑛−𝑟

 

(59) 

  where,  𝑦𝑗 = 𝑥(𝑗) is the 𝑗𝑡ℎ order statistics, and  𝑟 = ∑ 𝛿𝑗
𝑛
𝑗=1  is the number of complete 

observations in the sample. 

  Now, the likelihood function for the 𝐿(Ѳ, 𝛽)  is  

𝐿(𝜃, 𝛽) =∏𝑓(𝑥𝑗, 𝜃, 𝛽)
𝛿𝑗𝑆(𝑥𝑗)

1−𝛿𝑗

𝑛

𝑗=1

= (∏𝑓(𝑦𝑗 , 𝜃, 𝛽)

𝑟

𝑗=1

)(𝑆(𝑇))
𝑛−𝑟

 

= [(1 + 𝛽 𝑇)−Ѳ]
𝑛−𝑟

∏ [𝛽Ѳ(1 + 𝛽𝑦𝑗)
−(Ѳ+1)

]𝑟
𝑗=1          

     = [(1 + 𝛽𝑇)−Ѳ]
𝑛−𝑟

· 𝛽𝑟Ѳ𝑟 · ∏ (1 + 𝛽𝑦𝑗)
−(Ѳ+1)𝑟

𝑗=1  

(60) 

Then, the log likelihood function for is 

𝑙(Ѳ, 𝛽) = (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽 𝑇)−Ѳ + 𝑙𝑜𝑔(𝛽𝑟Ѳ𝑟) +∑[−(Ѳ + 1) 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗)]

𝑟

𝑗=1

 

                     = −Ѳ(𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽 𝑇) + 𝑟 𝑙𝑜𝑔 𝛽 + 𝑟 𝑙𝑜𝑔 Ѳ − (Ѳ + 1)∑𝑙𝑜𝑔(1 + 𝛽𝑦𝑗)

𝑟

𝑗=1

 

 = −Ѳ(𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽 𝑇) + 𝑟 𝑙𝑜𝑔 𝛽 + 𝑟 𝑙𝑜𝑔 Ѳ  

− Ѳ∑𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) − ∑𝑙𝑜𝑔(1 + 𝛽𝑦𝑗)

𝑟

𝑗=1

𝑟

𝑗=1

 

(61) 

After simplifying,  
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𝑙(Ѳ, 𝛽) = 𝑟 𝑙𝑜𝑔 𝛽 + 𝑟 𝑙𝑜𝑔 Ѳ

−∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) − Ѳ [∑𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) + (𝑛 −  𝑟) 𝑙𝑜𝑔(1 + 𝛽 𝑇)

𝑟

𝑗=1

]
𝑟

𝑗=1
 

(62) 

For fixed (parameter of interest), the constrained maximum likelihood estimator of 𝜃 

can be stated as 

𝜕𝑙

𝜕Ѳ
=
𝑟

Ѳ
− [∑log(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) log(1 + 𝛽 𝑇)

𝑟

𝑗=1

] = 0 

𝑟

Ѳ
=∑log(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) log(1 + 𝛽 𝑇)

𝑟

𝑗=1

 

Ѳ

𝑟
=

1

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽 𝑇)
𝑟
𝑗=1

 

Hence, 

Ѳ̂𝛽 =
𝑟

∑ log(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) log(1 + 𝛽 𝑇)
𝑟
𝑗=1

 

(63) 

 

This estimator corresponds to the one given previously in uncensored data when there 

is no censoring (𝑟 = 𝑛). As a result, we get   

𝑙𝑝(𝛽) = 𝑙(Ѳ̂𝛽 , 𝛽)

= 𝑟 log𝛽 + 𝑟 log(Ѳ̂𝛽)  

−∑log(1 + 𝛽𝑦𝑗) − (Ѳ̂𝛽) · [∑log(1 + 𝛽𝑦𝑗) + (𝑛 −  𝑟) log(1 + 𝛽 𝑇)

𝑟

𝑗=1

]

𝑟

𝑗=1

 

(64) 

After substituting the value of Ѳ̂𝛽, it is become 
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𝑙𝑝(𝛽) = 𝑙(Ѳ̂𝛽 , 𝛽)

= 𝑟 log𝛽 + 𝑟 log (
𝑟

∑ log(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) log(1 + 𝛽 𝑇)
𝑟
𝑗=1

)

−∑log(1 + 𝛽𝑦𝑗) − (
𝑟

∑ log(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) ln(1 + 𝛽 𝑇)
𝑟
𝑗=1

)

𝑟

𝑗=1

· [∑log(1 + 𝛽𝑦𝑗 + (𝑛 −  𝑟) log(1 + 𝛽 𝑇)

𝑟

𝑗=1

] 

(65) 

The MLE of 𝛽 is the solution to the following problem equation   

𝜕𝑙𝑝(𝛽)

𝜕𝛽
=
𝑟

𝛽
−∑

𝑦𝑗

1 + 𝛽𝑦𝑗
− 𝜃𝛽∑

𝑦𝑗

1 + 𝛽𝑦𝑗
−
𝜃𝛽(𝑛 − 𝑟)𝑇

1 + 𝛽𝑇
= 0

𝑟

𝑗=1

𝑟

𝑗=1

 

(66) 

Which is equivalent to the following equation,  

𝜕𝑙𝑝(𝛽)

𝜕𝛽
=
𝑟

𝛽
−∑

𝑦𝑗

1 + 𝛽𝑦𝑗

𝑟

𝑗=1

− (
𝑟

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽𝑇)
𝑟
𝑗=1

)∑
𝑦𝑗

1 + 𝛽𝑦𝑗

𝑟

𝑗=1

−

(
𝑟

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽𝑇)
𝑟
𝑗=1

) (𝑛 − 𝑟)𝑇

1 + 𝛽𝑇
= 0 

(67) 

The MLE β̂ can’t be obtained analytically and we need to find it numerically by 

applying some iterative methods like the Newton-Raphson method or direct 

optimization techniques.  

Now, 

𝑗ѲѲ(Ѳ̂𝛽 , 𝛽) =
(∑ log(1 + 𝛽𝑦𝑗 + (𝑛 − 𝑟) log(1 + 𝛽 𝑇

𝑟
𝑗=1 )

2

𝑟
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(68) 

As with uncensored data and type II censoring, an approximation to Barndorff-

Nielsen’s modified profile log-likelihoods based on population covariance (𝑙𝐵̅𝑁(𝛽)) is 

not possible to derive since  𝑦𝑗 = 𝑥(𝑗) is the 𝑗𝑡ℎ order statistics (Not iid). However, we 

obtained the following two approximations to the modified profile log-likelihoods by 

Brandorff-Nielsen’s method. Using (14), it follows that  

 

𝑙𝜃
(𝑗)
(𝛽, 𝜃𝛽) =

𝑟

Ѳ̂𝛽
− log(1 + 𝛽𝑦𝑗) − (𝑛 − 𝑟) log(1 + 𝛽 𝑇) 

(69) 

𝑙𝜃
(𝑗)
(𝛽̂ , 𝜃) =

𝑟

Ѳ̂
− log(1 + 𝛽̂𝑦𝑗) − (𝑛 − 𝑟) log(1 + 𝛽̂ 𝑇) 

(70) 

Then, 

𝐼𝜃(𝛽, 𝜃𝛽; 𝛽̂, 𝜃) = ∑ [(
𝑟

Ѳ̂𝛽
− 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) − (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽 𝑇)) (

𝑟

Ѳ̂
−𝑟

𝑗=1

𝑙𝑜𝑔(1 + 𝛽̂𝑦𝑗) − (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽̂ 𝑇))] 

(71) 

 

From (13,14,65 & 68), we obtain 
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𝑙𝐵𝑁(𝛽) = 𝑟 ln 𝛽 + 𝑟 log[Ѳ̂𝛽]−∑log(1 + 𝛽𝑦𝑗)

𝑟

𝑗=1

− (Ѳ̂𝛽)

· [∑log(1 + 𝛽𝑦𝑗) + (𝑛 −  𝑟) log(1 + 𝛽 𝑇)

𝑟

𝑗=1

]

+
1

2
log [

(∑ log(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) log(1 + 𝛽 𝑇
𝑟
𝑗=1 )

2

𝑟
]

− log [∑[(
𝑟

Ѳ̂𝛽
− log(1 + 𝛽𝑦𝑗) − (𝑛 − 𝑟) log(1 + 𝛽 𝑇)) (

𝑟

Ѳ̂

𝑟

𝑗=1

− log(1 + 𝛽̂𝑦𝑗) − (𝑛 − 𝑟) log(1 + 𝛽̂ 𝑇))]] 

(72) 

 

where ,  

Ѳ̂𝛽 =
𝑟

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽 𝑇)
𝑟
𝑗=1

 

 

Here, 𝜃 and 𝛽̂ are the maximum likelihood estimators of 𝜃 and 𝛽 under type I censoring. 

The corresponding estimator is  𝛽̂𝐵𝑁. There is no closed form expression for the MLE 

𝛽̂𝐵𝑁  and we need to find it numerically by applying some iterative methods to solve 

the likelihood equation and compute the estimate 𝛽̂𝐵𝑁 . 

We also obtain, an approximation based on ancillary statistics. Using (16) it follows 

that 

𝜕𝑙𝜃(𝜃𝛽 , 𝛽) =
𝑟

𝜃𝛽
−(∑log (1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) log(1 + 𝛽𝑇)

𝑟

𝑗=1

) 

(73) 

 



 

36 

Thus, 

𝑙𝜃;𝑦(𝜃𝛽 , 𝛽) =
𝜕𝑙𝜃(𝜃𝛽 , 𝛽)

𝜕𝒴𝑇
= −[

𝛽

1 + 𝛽𝑦𝑗
]     , 𝑗 = 1,2,… . , 𝑟 

(74) 

And, using (17) 

𝜕𝐹(𝑦𝑗; Ѳ,̂  𝛽̂)

𝜕Ѳ̂
=
(1 + 𝛽 ̂ 𝑦𝑗)

Ѳ̂ log(1 + 𝛽̂ 𝑦𝑗)

(1 + 𝛽 ̂𝑦𝑗 )
2Ѳ̂

       , 𝑗 = 1,2… . , 𝑟 

(75) 

Now, 

𝑉̂𝜃(𝑗) = −
(1 + 𝛽 ̂ 𝑦𝑗)

Ѳ̂
log(1 + 𝛽̂ 𝑦𝑗)

(1 + 𝛽 ̂𝑦𝑗 )
2Ѳ̂

·
(1 + 𝛽̂ 𝑦𝑗)

𝜃̂+1

𝛽 ̂𝜃
=
(1 + 𝛽 ̂ 𝑦𝑗)

2𝜃̂+1
log(1 + 𝛽̂ 𝑦𝑗)

(1 + 𝛽 ̂𝑦𝑗  )
2Ѳ̂
𝛽̂𝜃̂

= −
(1 + 𝛽̂ 𝑦𝑗) log(1 + 𝛽 ̂ 𝑦𝑗)

 𝛽̂Ѳ̂
        ,   𝑗 = 1,2, … . 𝑟 

(76) 

From (15), 

𝑙𝐵𝑁(𝛽) = 𝑟 log𝛽 + 𝑟 log(Ѳ̂𝛽)

−∑log(1 + 𝛽𝑦𝑗) − (Ѳ̂𝛽) · [∑log(1 + 𝛽𝑦𝑗 + (𝑛 −  𝑟) log(1 + 𝛽𝑇)

𝑟

𝑗=1

]

𝑟

𝑗=1

+
1

2
log [

(∑ log(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) log(1 + 𝛽𝑇)
𝑟
𝑗=1 )

2

𝑟
]

− log [∑(
𝛽

1 + 𝛽𝑦𝑗
∙
(1 + 𝛽̂ 𝑦𝑗) log(1 + 𝛽 ̂ 𝑦𝑗)

 𝛽̂Ѳ̂
)

𝑟

𝑗=1

] 

(77) 

where,  

Ѳ̂𝛽 =
𝑟

∑ 𝑙𝑜𝑔(1 + 𝛽𝑦𝑗) + (𝑛 − 𝑟) 𝑙𝑜𝑔(1 + 𝛽 𝑇)
𝑟
𝑗=1

 

Here,  𝜃 and 𝛽̂ are the maximum likelihood estimators of 𝜃 and 𝛽 under type I censoring. 
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The corresponding estimator is  𝛽̂𝐵𝑁  . The MLE 𝛽̂𝐵𝑁 does not have a closed form 

expression, so we must find it numerically by solving the likelihood equation and 

computing the estimate 𝛽̂𝐵𝑁 using iterative methods such as optimization techniques.  
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CHAPTER 3: SIMULATION STUDY 

 

3.1 Simulations using Monte Carlo methods 

        Monte Carlo simulation using R programming on point estimation was performed 

to compare the performance of estimators of the Lomax scale parameter (the parameter 

of interest) discussed in chapter 2 according to the standard profile likelihood function 

and modified profile likelihood functions. The samples from Lomax distribution 

(complete, types I and II censoring) are generated using the inverse transformation 

technique (see Appendix A). The "optim" function in R is used to find numerically the 

maximum likelihood estimators of the scale parameter that maximizes the profile 

likelihood and modified profile likelihood functions. The maximum profile likelihood 

function using complete data was used to find the first starting point for the maximum 

profile likelihood function under types I and II censoring, whereas the initial starting 

point for the profile likelihood function using complete data is beta=1. The profile 

likelihood estimator found from the associated data is the initial starting point for the 

maximum modified profile likelihood functions under complete, types I, and II 

censoring. 

         Different sample sizes are considered under both complete data (no censoring) 

and (types I and II) censoring. The sample sizes considered for complete data are 

n=25,50,75, and 100. For type I censoring, we considered sample sizes n=50,75, and 

100 with censoring proportions 40% and 20% and for type II censoring we considered 

the same sample sizes as type I censoring (n=50,75, and 100), but with failure rates of 

60% and 80%. The true value of the parameter of interest is static at 1(𝛽 = 1) and the 

true values the nuisance parameter are  𝜃 = 0.8,1.0,1.2  . The simulation results are 

based on 5000 iterations. Bias and mean square errors (MSEs) are presented for all the 
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following point estimators:  𝛽̂𝑝  , 𝛽̂𝐵𝑁 and 𝛽̂̃𝐵𝑁 under both no and (types I and II) 

censoring. 𝛽̂𝑝 denotes the profile likelihood estimator. 𝛽̂𝐵𝑁 and  𝛽̂𝐵𝑁 are the modified 

profile likelihood estimators derived from Barndorff-Nielsen's modified profile 

likelihood function based on an empirical covariances and an ancillary statistic 

approximation, respectively. 

 

3.2  Results and comparisons  

  3.2.1   Complete data  

 

Tables 1 and 2 show the simulation results on point estimation for the Lomax scale 

parameter (parameter of interest) with no censoring (complete data). We reported the 

bias on Table 1 and mean squared errors (MSEs) on Table 2 of the following point 

estimators: 𝛽̂𝑝  , 𝛽̂𝐵𝑁 and 𝛽̂̃𝐵𝑁. The results show that the estimator with the least bias is 

the standard profile likelihood estimator (𝛽̂𝑝 ) even it is very close to the modified 

profile likelihood estimator based on empirical covariance (𝛽̂𝐵𝑁). This figure is true for 

all the sample sizes and the true parameters values that we considered(𝜃, 𝛽) =

(0.8.0,1.0), (1.0,1.0), (1.2,1.0).For instance, in Table 1, with 𝜃 = 1 and 𝑛 = 50 , the 

biases are 0.02639078(𝛽̂𝑝),  0.02641483(𝛽̂̆𝐵𝑁) , 0.09311917(𝛽̂𝐵𝑁) .  

 

 

Table 1.Bias of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes. 

 𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 

𝑛 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 25 0.06944827 0.06963663 0.2068714 
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𝑛 = 50 0.0319663 0.03198901 0.09369476 

𝑛 = 75 0.02012667 0.02013311 0.06004821 

𝑛 = 100 0.01905495 0.01905751 0.04856389 

 𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝑛 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 25  0.04492102 0.04511849 0.1909607 

𝑛 = 50 0.02639078 0.02641483 0.09311917 

𝑛 = 75 0.01152717 0.01153404 0.05426695 

𝑛 = 100 0.01011534 0.0101181 0.04145646 

 𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝑛 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 25 0.04872336 0.04893382 0.2069312 

𝑛 = 50 0.02849368 0.02851939  0.1002826 

𝑛 = 75 0.01684183 0.0168492  0.06267788 

𝑛 = 100 0.01415081 0.01415379 0.05300757 

 

 

 

From Table 2 below, we note that the estimator (𝛽̂𝑝) has also the smallest mean squared 

errors (MSEs) for all sample sizes and the true parameters values considered. It's also 

worth noting that the mean squared errors (MSEs) for all estimators drop as the sample 

size grows. Therefore, based on bias and MSEs, the best performing estimator under no 

censoring is the standard profile likelihood estimator (𝛽̂𝑝 ). 
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Table 2.Mean Squared Errors of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample 

Sizes. 

 𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 

𝑛 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 25 0.7516971 0.7519412 0.9696935 

𝑛 = 50 0.3049 0.3049131 0.3464013 

𝑛 = 75 0.1772604 0.1772627 0.1927288 
 

𝑛 = 100 0.1288766 0.1288773 0.1375648 

 𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝑛 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 25 0.7483676 0.7486032 0.971693 

𝑛 = 50 0.3125195 0.312533 0.3563715 

𝑛 = 75 0.1795949  0.1795972 0.1954329 

𝑛 = 100 0.1328643 0.132865 0.1413831 

 𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝑛 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 25 0.844925 0.8451934 1.099157 

𝑛 = 50 0.3416982 0.3417125 0.3881213 

𝑛 = 75 0.1940211 0.1940237 0.2118529 

𝑛 = 100 0.149568 0.1495689 0.1600617 

 

 

 

3.2.2 Type II censored data  

 

Tables 3-6 show the bias and mean squared errors (MSEs) for all estimators for the 

Lomax scale parameter under type II censoring data that we discussed earlier in the 
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complete data section (𝛽̂𝑝  , 𝛽̂𝐵𝑁 and 𝛽̂̃𝐵𝑁. ). In Table 3, We notice that ,the modified  

profile maximum likelihood estimator based on empirical covariance approximation 

(𝛽̂𝐵𝑁) has the smallest bias not only compared to the standard profile likelihood 

estimator (𝛽̂𝑝 ), but also to the modified profile maximum likelihood estimator based 

on ancillary statistics approximation (𝛽̂̃𝐵𝑁) when only the sample size is 50 and failure 

rate of 60% across all the values of the true parameters considered (𝜃, 𝛽) =

(0.8.0,1.0), (1.0,1.0), (1.2,1.0). For instance, in Table 3, with 𝜃 = 0.8  ,𝑛 = 50 , the 

biases are 0.04988537 (𝛽̂𝑝), -0.01721757 (𝛽̂𝐵𝑁), 0.2874958 (𝛽̂̃𝐵𝑁). When the sample is 

75 or 100 under the same failure rate (60%) and across all the true values of parameters 

considered  (𝜃, 𝛽) = (0.8.0,1.0), (1.0,1.0), (1.2,1.0), the standard profile likelihood 

estimator (𝛽̂𝑝 ) has the smallest bias than the modified profile likelihood estimators ( 

𝛽̂𝐵𝑁 , 𝛽̂̃𝐵𝑁 ). For example, in Table 3, with 𝜃 = 0.8  ,𝑛 = 100 , the biases are 

0.003011131(𝛽̂𝑝), -0.03104611 ( 𝛽̂𝐵𝑁) , 0.1159797(𝛽̂̃𝐵𝑁). Further that, we notice 

that, when the failure rate is 80% (censored observations is 20 %), the modified profile 

maximum likelihood estimator based on an empirical covariance approximation (𝛽̂𝐵𝑁) 

has the smallest bias always for sample sizes n=75 and n=100 and across all the true 

values of parameters considered (𝜃, 𝛽) = (0.8.0,1.0), (1.0,1.0), (1.2,1.0) . When the 

sample size is 50, this figure is not correct. This means that the biases of estimators her 

depend on the sample size and the censoring percentage. 

 

 

Table 3. Bias of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes, Failure 

Rates of 60%. 

  𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 
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𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 30 0.04988537 −0.01721757 0.2874958 

𝑛 = 75 𝑟 = 45 0.009476831 −0.03546534 0.1623593 

𝑛 = 100 𝑟 = 60 0.003011131 −0.03104611 0.1159797 

  𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 30 0.0520114 −0.02226076 0.3225419 

𝑛 = 75 𝑟 = 45 0.009669833 −0.04078877 0.1861122 

𝑛 = 100 𝑟 = 60 0.005528588 −0.03300539 0.1369028 

  𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 30 0.07264376 −0.007274964 0.3685922 

𝑛 = 75 𝑟 = 45 0.03799421 −0.0177692 0.2358413 

𝑛 = 100 𝑟 = 60 0.011129 −0.03164209 0.1605773 

 

 

 

Table 4.Bias of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes ,Failure Rates 

of 80%. 

  𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 40 0.01448543 −0.01418991 0.1325044 

𝑛 = 75 𝑟 = 60 0.0223255 0.002905222 0.09885229 

𝑛 = 100 𝑟 = 80 0.0021629 −0.01225346 0.05769923 

  𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 
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𝑛 = 50 𝑟 = 40 0.004189844 −0.02738142 0.1378329 

𝑛 = 75 𝑟 = 60 0.01804031 −0.003606574 0.1057426 

𝑛 = 100 𝑟 = 80 0.01135549 −0.004815155 0.0755752 

  𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 40 −0.002989626 −0.03752231 0.1447843 

𝑛 = 75 𝑟 = 60 0.01656271 −0.007219475 0.1143707 

𝑛 = 100 𝑟 = 80 0.01068609 −0.007226078 0.08313256 

 

 

 

 

Tables 5 and 6 contains the results of mean squared errors for all estimators under 

Failure Rates of 60% and 80 % ,respectively. We notice that the mean sequared errors 

is the least for the the modified profile maximum likelihood estimator based on 

empirical covariance approximation (𝛽̂𝐵𝑁) for all sample sizes whether the failure rate 

is 60% or 80%  and across all the true values of the parameters considerd (𝜃, 𝛽) =

(0.8.0,1.0), (1.0,1.0), (1.2,1.0). For example , in Table 5 , with 𝜃 = 0.8  , 𝑛 = 50 ,the 

mean squared errors (MSEs) are  1.192677(𝛽̂𝑝),1.088475(𝛽̂̆𝐵𝑁) , 1.611714 (𝛽̂𝐵𝑁) 

,and in Table 6 , with 𝜃 = 0.8  , 𝑛 = 50 ,the mean squared errors (MSEs) are  

0.5318778(𝛽̂𝑝),0.5097712(𝛽̂𝐵𝑁) , 0.6404126 (𝛽̂𝐵𝑁).Therfore , we  can conclude  that 

based on mean squared errors , the best performing estimator under type II censoring is 

𝛽̂𝐵𝑁 , then 𝛽̂𝑝 and finally 𝛽̂̃𝐵𝑁 . It is also worth noting that the mean squared errors 

(MSEs) for all estimators decrease as the sample size increases and the proportion of 

censored observations decreases. Furthermore, the values of estimator’s bias depend on 
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the true value of parameters, sample sizes, and the proportion of censored observations 

in the sample. 

 

 

Table 5.MSEs of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes ,Failure 

Rates of 60%. 

  𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 30 1.192677 1.088475 1.611714 

𝑛 = 75 𝑟 = 45 0.7161285 0.6757677 0.8769252 

𝑛 = 100 𝑟 = 60 0.5010118 0.4802361 0.5801214 

  𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 30 1.430854 1.301745 1.969685 

𝑛 = 75 𝑟 = 45 0.9000115 0.8466787 1.118009 

𝑛 = 100 𝑟 = 60 0.6702818 0.6407744 0.7857691 

  𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 30 1.637519 1.490294 2.27276 

𝑛 = 75 𝑟 = 45 1.095941 1.0286 1.374207 

𝑛 = 100 𝑟 = 60 0.7987492 0.7620716 0.9470012 

 

 

 

Table 6.MSEs of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes ,Failure 

Rates of 80%. 

  𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 
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𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 40 0.5318778 0.5097712 0.6404126 

𝑛 = 75 𝑟 = 60 0.338342 0.328273 0.3845593 

𝑛 = 100 𝑟 = 80 0.2252858 0.2206274 0.2461143 

  𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 40 0.6070636 0.5829056 0.7312216 

𝑛 = 75 𝑟 = 60 0.3907775 0.3791078 0.4466518 

𝑛 = 100 𝑟 = 80 0.2615879 0.2558273 0.2884857 

  𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝒏 𝒓 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 𝑟 = 40 0.7063077 0.6765366 0.8570163 

𝑛 = 75 𝑟 = 60 0.4472451 0.4336605 0.512278 

𝑛 = 100 𝑟 = 80 0.3153406 0.30831 0.3484352 

 

 

 

3.2.3 Type I censored data 

 

Tables 7 and 8 below shows the bias results for all estimators that we discussed 

earlier in this chapter, but her under type I censoring data. The modified profile 

maximum likelihood estimator based on an empirical covariances approximation (𝛽̂𝐵𝑁) 

present the smallest bias comparing to the standard profile likelihood estimator (𝛽̂𝑝 

),and  also, to the modified profile maximum likelihood estimator based on ancillary 

statistics approximation (𝛽̂̃𝐵𝑁).This figure is consistent across all the sample sizes, 
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proportion of censored observation, and the values of the true parameters considered 

(𝜃, 𝛽) = (0.8.0,1.0), (1.0,1.0), (1.2,1.0). In addition, the value of biases decreases 

when the sample size increase and proportion of censored observations decrease. For 

example, in Tabel 7, with 𝜃 = 0.8  ,𝑛 = 50 , the biases are 0.2973097(𝛽̂𝑝), 0.2148689 

( 𝛽̂𝐵𝑁) , 0.4389123(𝛽̂𝐵𝑁) ,and in Tabel 8 , with 𝜃 = 0.8  ,𝑛 = 50 , the biases are 

0.1264803(β̂p), 0.09293404( 𝛽̂𝐵𝑁) , 0.2088536(𝛽̂𝐵𝑁) . 

 

 

Table 7.Bias of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes ,40% 

Censored Data. 

 𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.2973097 0.2148689 0.4389123 

𝑛 = 75 0.1763403 0.124541 0.2627149 

𝑛 = 100 0.1359589 0.09820738 0.198376 

 𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.3226008 0.2305478 0.4798584 

𝑛 = 75 0.1864183 0.1282869 0.2839516 

𝑛 = 100 0.1497622 0.1066336 0.2208916 

 𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.4327258 0.3283987 0.608986 

𝑛 = 75 0.2495663 0.1840209 0.3591117 

𝑛 = 100 0.1886426 0.1401105 0.2686519 
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Table 8.Bias of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes ,20% 

Censored Data. 

 𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.1264803 0.09293404 0.2088536 

𝑛 = 75 0.08561933 0.06416345 0.1380114 

𝑛 = 100 0.06464137 0.04903077 0.1026434 

 𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.1749115 0.1365016 0.2680733 

𝑛 = 75 0.1025145 0.07856541 0.1603866 

𝑛 = 100 0.0633128 0.04597983 0.105016 

 𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.178889 0.1373527 0.2801677 

𝑛 = 75 0.1295151 0.102768 0.1935463 

𝑛 = 100 0.09464382 0.07508975 0.1411572 

 

 

 

Regarding the mean squared errors (MSEs), as shown blow in Table 9 and 10, 

like type II censoring, the modified profile maximum likelihood estimator based on 

empirical covariance approximation (𝛽̂𝐵𝑁) has the least mean squared errors among all 

the sample sizes considered whether the data have 40 % or 20 % censored observations 

and across all the true values of the parameters that we considered (𝜃, 𝛽) =

(0.8.0,1.0), (1.0,1.0), (1.2,1.0). Furthermore, as the sample size grows and the number 
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of censored data drops, the bias and mean squared errors (MSEs) for all estimators 

decrease. Therefore, we can conclude that, like the previous case in type II censoring, 

the best performing estimator based on biases and mean squared errors (MSEs) under 

type I censoring is also  𝛽̂𝐵𝑁 , then 𝛽̂𝑝 and finally 𝛽̂̃𝐵𝑁  . 

 

 

 

Table 9.MSEs of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes ,40% 

Censored Data. 

 𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 1.723507 1.535303 2.095795 

𝑛 = 75 0.8776371 0.8062395 1.011576 

𝑛 = 100 0.5918235 0.555391 0.6596562 

 𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 1.991764 1.769823 2.428213 

𝑛 = 75 1.050137 0.9645024 1.21562 

𝑛 = 100 0.7462274 0.6981894 0.8359341 

 𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 2.657058 2.356114 3.229395 

𝑛 = 75 1.492934 1.37348 1.719617 

𝑛 = 100 0.9819477 0.9162409 1.103524 

 

 



 

50 

Table 10.MSEs of 𝛽 for Different Values of 𝜃, 𝛽 and Different Sample Sizes ,20% 

Censored Data. 

 𝜽 = 𝟎. 𝟖 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.6092399 0.5685677 0.721311 

𝑛 = 75 0.3682551 0.3514674 0.4121435 

𝑛 = 100 0.2360463 0.2279355 0.2573829 

 𝜽 = 𝟏. 𝟎 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.769086 0.7150742 0.9132357 

𝑛 = 75 0.4463088 0.4252308 0.5001879 

𝑛 = 100 0.2867205 0.2769057 0.3119131 

 𝜽 = 𝟏. 𝟐 , 𝜷 = 𝟏. 𝟎 

𝒏 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

𝑛 = 50 0.9349742 0.8713125 1.104755 

𝑛 = 75 0.524831 0.4992046 0.590599 

𝑛 = 100 0.3715427 0.3577615 0.4066636 
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CHAPTER 4: NUMERICAL EXAMPLES WITH REAL DATA 

 

In this chapter, we utilize two real-world data sets to show how the suggested 

methods function and to validate how well our estimators perform in reality. For both 

examples, the initial guess used in the profile and modified profile maximum likelihood 

functions is based on the method of moments (See appendix B) for all sampling 

schemes (complete data, types I and II censoring). 

4.1 Meteorological study 

In this first numerical illustration, we consider a date set taken from a 

meteorological study by Simpson [26] and subsequently investigated by Giles et al. 

[18], Bryson [7], Helu et al. [20], and A. Baklizi et al. [4].  The Lomax distribution's 

applicability for this data was tested by Helu et al. [20] using The Kolmogrov– Smirnov 

(K–S) test, as well as the Anderson–Darling (A–D) and chi-square tests. The research 

was based on radar-evaluated rainfall from 52 south Florida cumulus clouds, 26 seeded 

clouds, and 26 control clouds. We obtained the profile and modified profile likelihood 

estimators for the Lomax scale parameter using the following measurements from the 

control group only:  

26.1,26.3,87,95,373.4,0,17.3,24.4,11.5,321.2,68.5,81.2,47.3,28.6,830.1,345.5,1202.6,

36.6,4.9,4.9,41.1,29,163,244.3,147.8,21. Here 𝑛 = 26  and there is no censoring. For 

type II censoring, we consider a subset of measurements of the control group and 

impose a failure rate of 80%. For type I censoring, we consider also a subset of 

measurements of the control group and impose 20% censored data. The values of the 

point estimates of the Lomax scale parameter gotten by maximizing the profile and the 

modified profile likelihoods under complete, type I and type II censoring are 

summarized in the following table (Tabel 11). 
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Table 11.Point estimation for the Lomax Scale Parameter Under Different Sampling 

Schems 

Data Schemes  𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

Complete data 0.01270243 0.01270243 0.01457947 

Type II censoring  0.01909989 0.018055 0.02299024 

Type I censoring 0.01377231 0.01274749 0.01612275 

 

 

 

From Tabel 11, under complete data, the standard profile maximum likelihood 

estimator (𝛽̂𝑝), and the modified profile maximum likelihood point estimate based on 

empirical covariances approximation (𝛽̂𝐵𝑁) are identical. Point estimate obtained using 

the modified profile likelihood based on an ancillary statistics approximation (𝛽̂̃𝐵𝑁), on 

the other hand, are numerically larger than the previous estimators.  We observed that 

the standard profile likelihood estimator (𝛽̂𝑝), is the best performing estimator based on 

bias and MSE in the simulation study with complete data. As a result, this estimator 

(𝛽̂𝑝)  is recommended to use for this type of data, sample size, and distribution based 

on the result of the corresponding simulation study. 

From Tabel 11, the point estimate obtained under type II censoring obtained 

from the modified profile likelihood function based on empirical covariances 

approximation (𝛽̂𝐵𝑁) is smaller than the standard profile likelihood estimator (𝛽̂𝑝), and 

also, to the modified profile maximum likelihood estimator based on an ancillary 

statistics approximation (𝛽̂̃𝐵𝑁). Based on a simulation study with type II censoring for 𝑛 =

50, 𝑟 = 30 (failure rate =80%) which has roughly the close number of failure observations as 

this example (𝑟 = 21), we found that the modified profile likelihood based on empirical 
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covariances (𝛽̂𝐵𝑁) is the best performing estimator based on bias and MSE. As a result, in this 

data set example and distribution, it is recommended that you utilize this estimator (𝛽̂𝐵𝑁).  

From Table 11, the point estimate under type I censoring resulting from the modified 

profile likelihood function based on empirical covariances approximation (𝛽̂𝐵𝑁 ) has the least 

value, as it does for type II censoring. When we have type I censoring in this example, we can 

recommend using the modified profile maximum likelihood point estimate based on empirical 

covariances approximation (𝛽̂𝐵𝑁) as the corresponding simulation study with type I censoring 

for n=50 and censoring of 20%, giving us 30 complete observations, which is roughly close to 

the number of complete observations as this example (21 complete observations under 20 

percent censoring proportion). Because this estimator had the best performance in the 

simulation research in terms of bias and MSE.  

4.2 Computer file sizes 

The data set in the second numerical example represents computer file sizes (in 

bytes) for all 269 files with the.ini extension on David Giles' PC (running Windows) on 

March 19, 2011 (see Giles et al. [18]). Previous work by Holland et al. [21] 

demonstrated the Lomax distribution's superiority against a number of other 

competitors for modeling such file sizes. We calculated the profile and modified profile 

likelihood estimators for the Lomax scale parameter using the following data: 

67,67,67,67,67,67,67,67,67,67,67,20,62,113,113,67,67,67,67,67,67,67,6850,320,1727

,66,66,1418,23,1192,175,8698,2470,1771,243,28529,141,685,51,197,60,248,11117,2

04,169,125,172,123,161,173,178,170,177,125,172,202,123,544,24684,485,294,1114,

266,266,3285,16504,9540,2204,70,51,51,51,84,72,70,165,88,88,88,88,88,88,88,88,88

,529,253,213,326,95,95,429,2730,3170,166,165,207,209,224,186,272708,182,6651,1

66,207,162,165,446,166,212,171,143,236,166,167,168,95,230,211,526,2452,1838,60

3,105,2281,124,69,98,148,70,807,223,79,6000,71,75,74,77,75,80,79,78,72,175,477,6
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2792,2515,278,143,3718,9073,5335,65,544,2885,4311,4586,4107,4728,4862,4101,46

32,4245,3803,4378,4418,4369,2939,1298,3718,9073,2,525,1405,376,4161,231,36,37,

762,513508,65,67,65,436724,513508,510714,2435152,240,53478,62,55070,9605,2,1

015477,10110,1931,2695,2891,1152,360124,2732,343,6877,3458,12082,53478,1322

3,62,62,113,113,67,67,67,67,67,67,184,181,62,206,482,348,84,84,4069,13804,11886,

5013,3865,16226,14416,3529,2142,18594,11865,5809,13610,3971,6735,2409,14450,

8389,4510,3203,6761,2078,5848,5171,3106,3068,6073,5832,4543,6085,5915,3951,2

4142,240,66,1698,65,145,67,67,67,67,67).  

Here 𝑛 = 269 and there is no censoring. For type II censoring, we consider a 

subset of computer file sizes and impose a failure rate of 60%. For type I censoring, we 

consider also a subset of computer file sizes and impose 40% censored proportion. The 

following table (Tabel 12) summarize the results of the point estimates for the Lomax 

scale parameter gotten by maximizing the profile and the modified profile likelihoods 

under complete, type I and type I censoring data. 

 

 

Table 12.Point estimation for the Lomax Scale Parameter Under Different Sampling 

Schems 

 𝜷̂𝒑 𝜷̂̆𝑩𝑵 𝜷̂̃𝑩𝑵 

Complete data 0.007858893 0.007858893 0.007914804 

Type II censoring  0.00502907 0.004980985 0.005151622 

Type I censoring 0.005047209 0.005057715 0.005080545 
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As illustrated in Tabel 12, under complete data, the point estimates from the 

conventional profile and modified profile maximum likelihood based on empirical 

covariances are equivalent, while the modified profile maximum likelihood based on 

an ancillary statistic is numerically less. We can recommend using the point estimate 

derived from the standard profile likelihood function (𝛽̂𝑝) based on the corresponding 

simulation study with simulation indices similar to this example , because it performs 

the best in terms of bias and MSE. 

 From Tabel 12, under type II censoring, the point estimates from the 

conventional profile and the modified profile maximum likelihood based on empirical 

covariances are similar and both less than the modified profile maximum likelihood 

based on ancillary statistics. All the point estimates resulting from the standard profile 

and modified profile maximum likelihoods are nearly identical for type I censoring. 

The modified profile maximum likelihood point estimate based on empirical 

covariances approximation (𝛽̂𝐵𝑁)  is recommended based on the corresponding 

simulation study for types I and II censoring with simulation indices similar to this 

example because it shows the best performance in terms of bias and MSE.  
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CHAPTER 5: CONCLUSION 

 

5.1 Summary and conclusion   

The Barndorff-Nielsen modified profile likelihood function, which is based on 

empirical covariances and an ancillary statistic approximation, is used to modify the 

standard maximum profile likelihood estimator for the Lomax scale parameter 

(parameter of interest) in the presence of the nuisance shape parameter. These 

estimators (standard profile likelihood estimator and modified profile likelihood 

estimators) are not available in simple closed forms, but can be obtained numerically 

as roots of some complicated likelihood equations. We used simulation techniques to 

compare the biases and mean squared errors of the maximum profile likelihood 

estimator and the modified profile likelihood estimator in order to find the best 

performing estimator for the Lomax scale parameter. 

According to the criteria used (bias and MSEs) in the simulation study, the 

numerical results show that under type I and II censored data, the modified profile 

maximum likelihood estimator based on empirical covariances approximation 

outperforms not only the standard maximum profile likelihood estimator, but also the 

modified profile maximum likelihood estimator based on an ancillary statistics 

approximation. It has almost lowest bias and always has the lowest mean squared errors 

for all sample sizes considered (𝑛 = 50,75,100), proportion of censored observations 

(40%,20%), and across all true values of the parameters that we considered (𝜃, 𝛽) =

(0.8.0,1.0), (1.0,1.0), (1.2,1.0). When there is no censoring, the best performing 

estimator is the standard profile maximum likelihood estimator because it has the 

smallest bias and mean squared errors for all sample sizes, proportion of censored 

observations, and across all the true values of parameters that we considered.  
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5.2 Recommendations  

Researchers should base their inferences about the Lomax scale parameter on 

the Barndorff-Nielsen's modified profile likelihood function, which is based on 

empirical covariances estimate. This is because more precise inferences regarding the 

scale parameter are possible. This is especially true if the data has been censored (Types 

I and II). 

5.3 Suggestions for further research  

In this thesis, we obtained adjusted profile maximum likelihood estimators for the 

Lomax scale parameter in the presence of a shape parameter under non-censored and 

censored (Types I and II) data. We considered profile likelihood function adjustments 

based on several approximations to Barndorff- Nielsen's modified profile log-

likelihood function.  

Researchers might utilize the same best estimator that we discovered in future 

research to find interval estimation and construct hypothesis testing procedures. They 

can also use other adjustments to the profile maximum likelihood function, such as Cox 

and Reid's [11] conditional profile likelihood or conditioning on complete and 

sufficient statistics, to get more precise point estimation if it is possible. Also, they 

could use the same profile maximum likelihood function modifications used in this 

thesis on other important lifetime distributions and/or using more general censoring 

patterns like progressive or hybrid censoring schemes. 

Bootstrap inference using simulation is also suggested to examine and validate 

the accuracy of the values of the point estimations that we obtained from the samples 

of real data examples based on bias and mean squared errors. Moreover, it is 

recommended to use bootstrap point estimation, interval estimation, and confidence 

interval estimation which may give us more accurate estimation for the Lomax scale 
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parameter. 

 Because prediction is such an essential topic in statistical inference, it is 

recommended that we use the cross-validation approach to see if the model fits the data 

and can be trusted in prediction. This can be done by dividing the given data into two 

parts and comparing part of the model prediction with real data. The first part (the 

largest part) is used to fit the proposed model, while the second part (the smallest part) 

is used to compare the predicted value from the fitted model to the real data. If the 

prediction and real data points are almost same, we can trust this model to predict. 
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APPENDIX A: THE INVERSE TRANSFORMATION TECHNIQUE 

  

Let U be a uniform random variable for obtaining a random sample from a 

Lomax distribution with complete data. To get random numbers like 𝑥 from the Lomax 

distribution, solve U=F(t), where F(t) is the cumulative distribution function of the 

Lomax distribution (see equation (4)). 

Now,  

𝑈 = 𝐹(𝑡) 

𝑈 = 1 −
1

(1 + 𝛽𝑡)𝜃
 

(1 + 𝛽𝑡)−𝜃 = 1 − 𝑈 

ln(1 + 𝛽𝑡) =
ln (1 − 𝑈)

−𝜃
 

𝑒ln (1+𝛽𝑡) = 𝑒
1
−𝜃

ln (1−𝑛)
 

(1 + 𝛽𝑡) = 𝑒−
1
𝜃
ln (1−𝑈)

 

𝛽𝑡 = 𝑒−
1
𝜃
ln (1−𝑈) − 1 

𝑡 =
1

𝛽
(𝑒−

1
𝜃
ln(1−𝑈) − 1) =

1

𝛽
(𝑒𝑙𝑛(1−𝑈)

−
1
𝜃 − 1) 

𝑡 =
1

𝛽
((1 − 𝑈)−

1

𝜃 − 1)      (*) 

 

Then we apply the equation (*) above to generate complete data from the Lomax 

distribution. 

Let T be the censoring constant from Lomax, then the type I censored sample 

from Lomax distribution is gotten as follow: 

𝑥𝑗 = 𝑚𝑖𝑛(𝑡𝑗 , 𝑇) 
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Let 𝑡(𝑗), (𝑗 = 1,… . , 𝑟) be the smallest 𝑟  order statistics from a sample of size 𝑛 

.Here 𝑟 be the 𝑟𝑡ℎ  failure (𝑟˂ 𝑛) , then 𝑡(𝑗), (𝑗 = 1, … . , 𝑟) represent sample from type 

II censoring.  
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APPENDIX B: METHODS OF MOMENTS 

 

 

  
1

𝛽(𝜃−1)
= 𝑥̅                     (1) 

𝜃

(𝛽(𝜃−1))
2
(𝜃−2)

= 𝑠2         (2) 

Dividing the second equation by the square of the first equation we obtain 

𝜃

(𝜃 − 2)
=
𝑠2

𝑥̅2
→ 𝜃

𝑠2

𝑥̅2
− 2

𝑠2

𝑥̅2
= 𝜃 → 𝜃 =

2
𝑠2

𝑥̅2

(
𝑠2

𝑥̅2
− 1)

=
2

1 −
𝑥̅2

𝑠2

 

Substituting in equation (1) we obtain 

𝛽̂ =
1

𝑥̅ (
2

1 −
𝑥̅2

𝑠2

− 1)

 

Use this as initial guess for 𝛽 

 

 

 

 

 

 

 

 


