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ABSTRACT 

 
Shaikh, A., Muhammad, Masters, March: 2022, Applied Statistics  

Title: Parametric and Nonparametric Portmanteau Tests for Lack of Fit in Time Series 

Models: A Comparative Study 

Supervisor of Thesis: Esam Bashir Mahdi 

Several diagnostic tests for the lack of fit time series models have been introduced 

using parametric and nonparametric portmanteau tests. Some tests have been proposed 

based on the asymptotic distributions. Others are based on the Bootstrapping  and Monte-

Carlo significance techniques. It has been shown that the Bootstrapping  and Monte-Carlo 

tests are robust as they provide the correct size and tend to be more powerful than those 

based on the asymptotic distributions.  

In this thesis, I conducted a comparison study of the size and power of some 

portmanteau tests commonly used in linear and nonlinear time series models. In particular, 

I considered the cases where the residuals follow Gaussian and non-Gaussian distribution 

under Autoregressive Moving Average (ARMA) and Generalized Autoregressive 

Heteroskedasticity  (GARCH) models; where some parametric and nonparametric tests 

were applied based on the limiting distributions, Bootstrapping , and Monte-Carlo 

significance tests. The results show that the nonparametric Bootstrapping  and Monte-Carlo 

significance tests provide the best performance comparing with tests based on the 

parametric asymptotic distribution. I applied the tests on a real application using the Qatar 

National Bank returns. 

Keywords: ARMA models; Autocorrelation; Bootstrapping ; Cross-correlation; 

GARCH models; Monte-Carlo tests; Nonlinearity dependency; Portmanteau tests; Returns. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Testing for the lack of fit in time-series models is essential to get an accurate forecasting. 

If the model is accurate, then the residuals should show no dependence structure. Usually 

this can be done by using portmanteau tests. Several parametric and non-parametric 

portmanteau tests have been developed to test for linear and nonlinear dependency in time 

series models.  

Under the assumptions of ARMA models, Box and Pierce (1970) proposed the first 

portmanteau test to check the adequacy of ARMA model utilizing the square 

autocorrelations of the residuals obtained from a fitted model.  

Ljung and Box (1978) improved the Box and Pierce (1970) by proposing a modified 

portmanteau test and they showed that the modified test has the same limiting distribution 

of the Box and Pierce (1970) test but it estimates the type I error more successfully with a 

higher power. 

Monti (1994) proposed a portmanteau test based on the partial autocorrelations of the 

residuals. All the above three tests are asymptotically approximated by chi-square 

distribution. 

Peňa and Rodríguez (2002) introduced a test based on the 𝑚th root of the determinant of 

the 𝑚th residual autocorrelations matrix. Their test statistic can be seen as a linear 

combination of independent chi-squared distributions. They approximated the distribution 

of their test by a gamma distribution. Peňa and Rodríguez (2002) showed that their test 

statistic can improve the estimate of the significant levels if the autocorrelation coefficients 

in the auto-correlation matrix are replaced with their standardized values. They also 

showed that their test statistic is more powerful than the competitors Box-pierece, Ljung-

Box and Monti in detecting the inadequacy of ARMA models in many situations.     

Peňa and Rodríguez (2006) modified the Peňa and Rodríguez (2002) test statistic by 

proposing another portmanteau test based on the log of the determinant of the same 

previously mentioned autocorrelation matrix. Their test statistic can be written as a 
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weighted average based on partial autocorrelations. The larger weights were assigned to 

low order coefficients of their statistic test and smaller weights to high-order coefficients. 

Under the ARMA assumptions, Peňa and Rodríguez (2006) showed that the asymptotic 

distribution of the their test statistic can, also, be seen as a linear combination of 

independent chi-squared distributions, and they approximated it with gamma distribution 

as well as with normal distribution.  

One problem pointed out by Lin and McLeod (2006) is that the sequence of the 

standardized residual autocorrelation is not always non-negative definite; hence, the test 

statistics proposed by Peňa and Rodríguez (2002, 2006) may not exist in many cases. To 

overcome this problem, Lin and McLeod (2006) proposed by using a Monte-Carlo 

significance test. They showed that the Monte-Carlo significance test provides a 

portmanteau test with the correct estimate of size and is almost always more powerful than 

the competitors statistics appearing in the literature.    

Fisher and Gallagher (2012) introduced two weighted tests based on the trace of the 

autocorrelation matrix defined in Peňa and Rodríguez (2002, 2006). The first one can be 

considered as a weighted version of the Ljung-Box test, whereas, the second can be seen 

as a weighted version of the Monti test. They approximated the distribution of their 

statistics by Gamma. Their simulation study showed that the weighted test statistics have 

more powers than the competitors statistics appearing in the literature in many cases.  

Anderson (1993) and Hong (1996a, 1996b) showed that the normalized spectral density of 

the stationary process of residuals can be used to obtain a kernal portmanteau test without 

knowing the distribution of the innovation series. The only assumption is the 𝑖𝑖𝑑 with mean 

zero and finite fourth moment. Hong (1996a, 1996b) showed that the distribution of their 

statistics can be asymptotically approximated by Gaussian and the power of the proposed 

tests are usually better than Ljung and Box (1978).  

Gallagher and Fisher (2015) proposed three tests based on the kernel test idea of Hong 

(1996a, 1996b) by considering three different weighting schemes.  

Mahdi (2017) used the idea of Hong (1996a, 1996b) to propose a kernel-based portmanteau 

test based on the autocorrelation matrix defined from Peňa and Rodríguez (2002). He 

showed that his test is asymptotically the same as the test statistic given by Peňa and 
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Rodríguez (2006).  

All the above tests can be used to test for linearity in ARMA model and not designed to 

test for nonlinearity in other time series models including ARCH structure.  

To detect nonlinearity dependency in time series models (including an ARCH structure), 

McLeod and Li (1983) introduced a portmanteau test based on the squared-residuals 

autocorrelations under the assumptions of the ARMA model. They showed that their test 

is asymptotically distributed as chi-squared.  

Li and Mak (1994) proposed a portmanteau statistic based on the Autoregressive 

Heteroskedasticity (ARCH) assumptions. Their test statistic was proposed based on the 

standardized squared-residual autocorrelation obtained from a fitted ARCH model.  

Peňa and Rodríguez (2002, 2006) replaced the residual autocorrelations in the Toplitz 

matrix by the squared-residual autocorrelations and used it to derive new portmanteau tests 

that can be used to detect nonlinearity in several time series. 

Rodriguez and Ruiz (2005) proposed a portmanteau test for ARCH models using the 

information contained in the sample autocorrelations of nonlinear transformations of the 

underlying process. Their test statistic can be used to test for whether the autocorrelations 

of the residuals differ from zero and at the same time it can be used to test for possible 

relationship among successive autocorrelation coefficients.  

Fisher and Gallagher (2012) showed that the proposed weighted test can be seen as a 

modified version of Li and Mak (1994) statistic that can be used to detect the nonlinearity 

presence in GARCH time series models.  

Recently, Psaradakis and Vávra (2019) used the Lawrance and Lewis (1985, 1987) idea, 

which was based on using the generalized correlation of the residuals to detect nonlinear 

dependency in time series, and proposed four different statistics from stationary linear 

models to test for linearity. The generalized correlation of the residuals is used to measure 

the correlation between the residuals at different powers. 

More recently, Mahdi and Fisher (2021) proposed a portmanteau test using the block 

matrix of autocorrelations and cross-correlations of residuals and squared-residual. Under 

the assumptions of ARMA(𝑝, 𝑞) model, Mahdi and Fisher (2021) approximated the 
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asymptotic distribution of 𝐶𝑚 by Gamma. They showed that their 𝐶𝑚 test can be seen as a 

linear combination of four weighted tests. Essentially, their test statistic generalized the 

test statistics proposed by Mahdi (2020b). The first and the second components of Mahdi 

and Fisher (2021) tests elaborate the partial autocorrelation of the residuals and the 

squared-residuals, respectively. The third and the fourth components elaborate the cross-

correlation between the residuals and their squares and vice-versa, respectively. Hence, the 

𝐶𝑚 test can be used to detect, simultaneously, the linear and nonlinear dependency in 

stationary time series data. Their simulation study demonstrated that the 𝐶𝑚 statistic tends 

to have higher power than the competitors’ statistics appearing in the literature, particularly 

in detecting ARMA with  GARCH errors and other nonlinear models. Mahdi and Fisher 

(2021) utilized the Randomly Weighted Bootstrap (RWB) approach which was proposed 

by Zhu (2016) to improve the size and the power of their statistic. 

1.2 Thesis Layout 

The thesis is divided into seven chapters.  

The first chapter is Introduction which discusses a brief literature review about 

portmanteau tests commonly used in linear and nonlinear time series based on parametric 

and non parametric tests.  

The second chapter discusses the test for adequacy of linear models. In this chapter, the 

Autoregressive Moving Average (ARMA) model is discussed followed by classical 

portmanteau tests, Kernel-based normalized spectral density portmanteau tests, Randomly 

Weighted Bootstrap (RWB), and Monte-Carlo portmanteau tests including the procedural 

details. 

Chapter three focusses on test for nonlinearity. In this chapter the nonlinear models 

including Autoregressive Conditional Heteroskedasticity (ARCH) Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models are discussed. 

In Chapter four, I conducted a simulation study to evaluate emperical sizes and power of 

portmanteau tests under the Gaussian and non-Gaussian erros distributions. 

An application is given in Chapter five and Chapter six I drew some conclusions and 
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suggestion for the future work.  

1.3 Research Objectives 

The main objectives of this thesis are to: 

 Review the most common portmanteau tests that are used in linear and nonlinear time 

series, 

 perform a Monte-Carlo simulation to evaluate the portmanteau tests based on the 

asymptotic distribution and the bootstrap technique, 

 follow up with the recent developments in the area of diagnostic checking of time 

series, 

 implement the portmanteau tests on some real financial data. 
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CHAPTER 2: TEST FOR ADEQUACY OF ARMA MODEL 

In this chapter I will study the common portmanteau tests that are used to test for linearity 

in ARMA models.  

Definition 1  The Autoregressive Moving Average ( ARMA ) model of order (𝑝, 𝑞) for 𝑛 

observations 𝑧1, 𝑧2, ⋯ , 𝑧𝑛 of a stationary mean 𝜇 time series can be written  

𝜙𝑝(𝐵)(𝑧𝑡 − 𝜇) = 𝜃𝑞(𝐵)𝜀𝑡, (1)  

where  

 

𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯− 𝜙𝑝𝐵

𝑝,

𝜃𝑝(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵
2 +⋯+ 𝜃𝑞𝐵

𝑞 ,  

where 𝐵 is the backshift operator in 𝑡, so that 𝐵𝑗(𝑧𝑡) = 𝑧𝑡−𝑗. The polynomials 𝜙𝑝(𝐵) and 

𝜃𝑝(𝐵) are assumed to have no common roots and all roots outside the unit circle. The 

innovation series {𝜀𝑡} are assumed to be independent and identically distributed (i.i.d.) 

where E(𝜀𝑡) < ∞ and Var(𝜀𝑡) = 𝜎
2. 

Under the i.i.d. innovation assumption, the following null hypothesis should not be 

rejected:  

 ℋ0: 𝜌11(±1) = 𝜌11(±2) = ⋯ = 𝜌11(±𝑚) = 0, 

where 𝑚 is the maximum lag considered for significant autocorrelation and 𝜌11(𝑘) is the 

correlation coefficient at lag k. Therefore, after fitting an ARMA (𝑝, 𝑞) model to a series, 

we can estimate the residuals, 𝜀𝑡̂, by calculating the difference between the true value of 𝑧𝑡 

and the predicted one 𝑧̂𝑡, for 𝑡 = 1,2,⋯ , 𝑛. If the model in (1) is correctly identified, then 

these residuals should, approximately, behave as the innovations behave i.e., the sample 

autocorrelation coefficients of the residuals, for all 𝑘 ≠ 0, should approximately equal to 

zero.  

Definition 2  The population generalized correlation coefficient at lag time 𝑘 between the 

error term raised to the power 𝑟 (𝜀𝑡
𝑟) and the error term raised to the power 𝑠 (𝜀𝑡+𝑘

𝑠 ), where 

𝑟 and 𝑠 are natural numbers is given by  
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𝜌𝑟𝑠(𝑘) =
𝛾𝑟𝑠(𝑘)

√𝛾𝑟𝑟(0)√𝛾𝑠𝑠(0)
,    𝑘 = 0,±1,±2,⋯ ,±𝑚, 

(2)  

where 𝛾𝑟𝑠(𝑘) is the generalized covariance between 𝜀𝑡
𝑟 and 𝜀𝑡+𝑘

𝑠  that is given by  

𝛾𝑟𝑠(𝑘) = 𝑛
−1∑

𝑛−𝑘

𝑡=1

𝑓𝑟(𝜀𝑡)𝑓𝑠(𝜀𝑡+𝑘), 
(3)  

and 𝑓ℎ(𝑥𝑡) = 𝑥𝑡
ℎ − 𝑛−1∑𝑛𝑡=1 𝑥𝑡

ℎ, for ℎ = 1, 2. 

Remarks:  

 When 𝑟 = 𝑠 = 1, we have 𝛾11(𝑘) = 𝛾11(−𝑘); hence, 𝜌11(𝑘) = 𝜌11(−𝑘) where 

𝜌11(𝑘) is the traditional linear correlation coefficient between the error terms.  

 When 𝑟 = 𝑠 = 2, we also have 𝛾22(𝑘) = 𝛾22(−𝑘); hence, 𝜌22(𝑘) = 𝜌22(−𝑘) 

where 𝜌11(𝑘) is the correlation coefficient between the square values of the error 

terms.  

 When 𝑟 > 1 and 𝑠 ∈ ℕ or 𝑠 > 1 and 𝑟 ∈ ℕ, where ℕ is the set of natural numbers, 

we obtain the generalized correlation coefficient used by Lawrance and Lewis 

(1985,1987). In this case, we have 𝛾𝑟𝑠(𝑘) ≠ 𝛾𝑟𝑠(−𝑘) but 𝛾𝑟𝑠(𝑘) = 𝛾𝑠𝑟(−𝑘); hence, 

𝜌𝑟𝑠(𝑘) = 𝜌𝑠𝑟(−𝑘).  

 𝑟̂𝑟𝑠(𝑘) denotes the generalized sample correlation coefficient.  

2.1 Classical portmanteau tests 

Box and Pierce (1970) proposed to literature the first portmanteau statistic to test the 

adequacy of  ARMA (𝑝, 𝑞) model. Their test statistic utilized the square autocorrelations 

of the residuals obtained from a fitted mode which is given by  

𝑄𝐵𝑃 = 𝑛∑
𝑚
𝑘=1 𝑟̂11

2 (𝑘),  (4)  

where 𝑚 is the maximum lag considered for significant autocorrelation. They showed that 

the limiting distribution of the 𝑄𝐵𝑃 statistic is chi-square with 𝑚 − 𝑝 − 𝑞 degrees of 

freedom. It is worth noting that there is no specific rule to select 𝑚, but it is commonly 

used select it as a value between zero and 𝑛/2 using 𝑎𝑑 ℎ𝑜𝑐 or using 𝑚 = ⌊√𝑛⌋, where ⌊𝑥⌋ 
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denotes the largest integer not exceeding 𝑥 or 𝑚 = log(𝑛). 

Ljung and Box (1978) improved 𝑄𝐵𝑃 by proposing another portmanteau test 

𝑄11 = 𝑛(𝑛 + 2)∑

𝑚

𝑘=1

(𝑛 − 𝑘)−1𝑟̂11
2 (𝑘), 

(5)  

and they showed that the modified test has the same limiting distribution of the Box and 

Pierce (1970) test but it estimates the type I error more successfully than 𝑄𝐵𝑃 with a higher 

power. 

Under the assumptions of ARMA models, Monti (1994) proposed another portmanteau test 

based on the partial autocorrelations of the residuals and showed that his limiting 

distribution can also be approximated by 𝜒𝑚−(𝑝+𝑞)
2 :  

𝑀11 = 𝑛(𝑛 + 2)∑

𝑚

𝑘=1

(𝑛 − 𝑘)−1𝜋̂1,𝑘
2  

(6)  

where 𝜋̂1,𝑘 is the partial autocorrelations of the residuals that is given by  

𝜋̂1,𝑘 =
𝑟̂11(𝑘) − 𝐫(𝑘−1)

′ 𝐑̂11
−1(𝑘 − 1)𝐫(𝑘−1)

⋆

1 − 𝐫(𝑘−1)
′ 𝐑̂11

−1(𝑘 − 1)𝐫(𝑘−1)
, 𝑘 = 1,⋯ ,𝑚, 

(7)  

where 𝐑̂11(𝑚) is the 𝑚th residual autocorrelations matrix defined by  

𝐑̂11(𝑚) =

(

 
 

1 𝑟̂11(1) … 𝑟̂11(𝑚)

𝑟̂11(1) 1 … 𝑟̂11(𝑚 − 1)
⋮ … ⋮ ⋮
𝑟̂11(𝑚) 𝑟̂11(𝑚 − 1) … 1

)

 
 
, 

(8)  

and 𝐫(𝑚) = (𝑟̂11(1), 𝑟̂11(2),⋯ , 𝑟̂11(𝑚))
′ and 𝐫(𝑘)

⋆ = (𝑟̂11(𝑘), 𝑟̂11(𝑘 − 1),⋯ , 𝑟̂11(1))
′. 

Peňa and Rodríguez (2002) introduced a powerful portmanteau test based on the 𝑚th root 

of the determinant of the 𝑚th residual autocorrelations matrix given by (8). Their test 

statistic is given by  
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𝐷11 = 𝑛[1 − |𝐑̂11(𝑚)|
1/𝑚],  

where | ⋅ | denotes the determinant of a matrix. Peňa and Rodríguez (2002) showed that 

asymptotic distribution of the 𝐷11 statistic can seen as a linear combination of independent 

chi-squared distributions 𝑎𝜒𝑏
2. They approximated the distribution of their test by a gamma 

distribution Γ(𝛼 = 𝑏/2, 𝛽 = 1/2𝑎) with mean 𝛼/𝛽 = (𝑚 + 1)/2 − (𝑝 + 𝑞) and variance 

𝛼/𝛽2 = (𝑚 + 1)(2𝑚 + 1)/3𝑚 − 2(𝑝 + 𝑞), where the shape and scale parameters are 

given by 

𝛼 =
3𝑚[(𝑚 + 1) − 2(𝑝 + 𝑞)]2

2[2(𝑚 + 1)(2𝑚 + 1) − 12𝑚(𝑝 + 𝑞)]
, 

 

and  

𝛽 =
3𝑚[(𝑚 + 1) − 2(𝑝 + 𝑞)]

2(𝑚 + 1)(2𝑚 + 1) − 12𝑚(𝑝 + 𝑞)
. 

(9)  

Peňa and Rodríguez (2002) showed that the 𝐷11 test statistic can be improved in estimating the 

significant levels if the autocorrelation coefficients in (8) are replaced with their standardized 

values  

𝑟̃11(𝑘) = √
𝑛 + 2

𝑛 − 𝑘
𝑟̂11(𝑘), 𝑘 = 1,⋯ ,𝑚. 

(10)  

Peňa and Rodríguez (2002) also showed that their test statistic is more powerful than its 

competitors 𝑄𝐵𝑃, 𝑄11 and 𝑀11 in detecting the inadequacy of twenty four different ARMA 

models. 

Peňa and Rodríguez (2006) modified the 𝐷11 test statistic by proposing another 

portmanteau test based on the log of |𝐑̃11(𝑚)|, where 𝐑̃11(𝑚) is defined by (8), replacing 

𝑟̂11(𝑘) by 𝑟̃11(𝑘) defined by (12). Their test statistic is given by  

𝐷̃11 = −
𝑛

𝑚 + 1
log|𝐑̃11(𝑚)|, 

(11)  

which can be written in a form that is proportional to a weighted average of the squared 

partial autocorrelation coefficients 
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𝐷̃11 = −𝑛∑

𝑚

𝑘=1

(𝑚 + 1 − 𝑘)

(𝑚 + 1)
log(1 − 𝜋̂1,𝑘

2 ). 
(12)  

As clearly seen, the larger weights in (14) will be given to low order coefficients of 𝐷̃11 

test and smaller weights will be given to high-order coefficients. 

Under the ARMA (𝑝, 𝑞) assumptions, Peňa and Rodríguez (2006) showed that asymptotic 

distribution of the 𝐷̃11 statistic can also be seen as a linear combination of independent chi-

squared distributions 𝑎𝜒𝑏
2. Therefore, they approximated the distribution of their test by a 

Gamma distribution Γ(𝛼 = 𝑏/2, 𝛽 = 1/2𝑎) with mean 𝛼/𝛽 = 𝑚/2 − (𝑝 + 𝑞) and 

variance 𝛼/𝛽2 = 𝑚(2𝑚 + 1)/(3(𝑚 + 1)) − 2(𝑝 + 𝑞), where the parameters are given 

by 

𝛼 =
3(𝑚 + 1)[𝑚 − 2(𝑝 + 𝑞)]2

2[2𝑚(2𝑚 + 1) − 12(𝑚 + 1)(𝑝 + 𝑞)]
, 

(13)  

and  

𝛽 =
3(𝑚 + 1)[𝑚 − 2(𝑝 + 𝑞)]

2𝑚(2𝑚 + 1) − 12(𝑚 + 1)(𝑝 + 𝑞)
. 

(14)  

They also approximated 𝐷̃11 by a Normal distribution: 

𝐷11
⋆ = (𝛼/𝛽)−1/𝜆(𝜆/√𝛼)[(𝐷̃11)

1/𝜆 − (𝛼/𝛽)1/𝜆{1 −
1

𝛼
(
𝜆 − 1

𝜆2
)}], 

(15)  

where  

𝜆 = {1 −
2(𝑚/2 − (𝑝 + 𝑞))(𝑚2/(4(𝑚 + 1)) − (𝑝 + 𝑞))

3(𝑚(2𝑚 + 1)/(6(𝑚 + 1)) − (𝑝 + 𝑞))2
}−1 

(16)  

They showed 𝐷11
⋆  is asymptotically distributed as standard Normal when 𝑚 is moderately 

large 𝜆 ≈ 4 and the values of 𝛼 and 𝛽 are obtained in (15) and (16), respectively. 

Fisher and Gallagher (2012) introduced two weighted portmanteau tests based on the trace 

of the square of the autocorrelation matrices 𝐑̂11
2 (𝑚) defined in (8). The first one can be 
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considered as a weighted version of the Ljung-Box 𝑄11 and it is given by  

𝑄11
𝑤 = 𝑛(𝑛 + 2)∑

𝑚

𝑘=1

(𝑚 − 𝑘 + 1)

𝑚

𝑟̂11
2 (𝑘)

𝑛 − 𝑘
, 

(17)  

whereas the second can be seen as a weighted version of the Monti 𝑀11 and it is given by 

𝑀11
𝑤 = 𝑛(𝑛 + 2)∑

𝑚

𝑘=1

(𝑚 − 𝑘 + 1)

𝑚

𝜋̂1,𝑘
2

𝑛 − 𝑘
. 

(18)  

Fisher and Gallagher (2012) showed that the distribution of both statistics can 

asymptotically distributed as ∑𝑚𝑘=1 𝜆𝑘𝜒𝑘
2, where {𝜒𝑘

2} are independent chi-squared random 

variables with one degree of freedom and {𝜆𝑘} are the eigenvalues of the matrix (𝐈 − 𝐐)𝐖, 

where 𝐖 is a weighted diagonal matrix with elements 𝑤𝑘𝑘 = (𝑚 + 1 − 𝑘)/𝑚, 𝑘 =

1,2,⋯ ,𝑚 (Box, 1954). They approximated the distribution of their statistics by gamma 

distribution, Γ(𝛼 = 𝐾1
2/𝐾2, 𝛽 = 𝐾2/𝐾1), where  

𝐾1 = (𝑚 + 1)/2, (19)  

and  

𝐾2 =
(𝑚 + 1)(2𝑚 + 1)

3𝑚
− 2(𝑝 + 𝑞). 

(20)  

Their simulation study showed that the weighted test statistics have more powers than the 

competitors statistics appearing in the literature in many cases. 

2.2 Kernel-based normalized spectral density portmanteau test 

Anderson (1993); Hong (1996a, b) showed that the normalized spectral density of the 

stationary process {𝜀𝑡} can be written in the following form  

𝑓(𝜔) = (2𝜋)−1∑

ℓ∈ℤ

𝜌ℓcos(ℓ𝜔),   𝑤ℎ𝑒𝑟𝑒  𝜔 ∈ [−𝜋, 𝜋]. 
(21)  
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In this case, the null hypothesis, ℋ0, equals to the null normalized spectral density 𝑓(𝜔) =

𝑓0(𝜔) = 1/2𝜋. Based on this, Hong (1996a, b) used the kernel-based normalized spectral 

density estimators of 𝑓(𝜔) to propose three classes of portmanteau tests without knowing 

the distribution of the innovation series. The only assumption is the 𝑖𝑖𝑑 with mean zero and  

finite fourth moment. His tests measure the distance, based on Hellinger metric, quadratic 

norm, and Kullback-Leibler information criterion, between a kernel-based normalized 

spectral density estimator and null normalized spectral density. The tests are based on  

𝑓𝑛(𝜔) =
1

2𝜋
∑

𝑛−1

ℓ=−𝑛+1

𝑘 (
ℓ

𝑚𝑛
) 𝑟̂ℓcos(ℓ𝜔), 𝜔 ∈ [−𝜋, 𝜋], 

(22)  

where 𝑘(. ) > 0 is a symmetric kernel function which satisfies the following conditions:   

1. The kernel function 𝑘:ℝ → [−1,1] is symmetric differentiable except at a finite 

number of points, with 𝑘(0) = 1 and ∫
∞

−∞
𝑘2(𝑢)𝑑𝑢 < ∞.  

2. ∫
𝜋

−𝜋
|𝑘(𝑢)|𝑑𝑢 < ∞ and for 𝜔 ∈ (−∞,∞), the Fourier transform 𝐾(𝜔) for 𝑘(𝑢) exist 

and defined as  

 𝐾(𝜔) = (2𝜋)−1 ∫
∞

−∞
𝑘(𝑢)𝑒−𝑖𝑢𝜔𝑑𝑢 ≥ 0. 

3. {𝜀𝑡} is a mean zero fourth order stationary process with ∑∞ℓ=−∞ 𝛾ℓ
2 < ∞ and  

∑

𝑖

∑

𝑗

∑

𝑙

|𝑘4(𝑖, 𝑗, 𝑙)| < ∞, 

where 𝑘4(𝑖, 𝑗, 𝑙) is the fourth joint cumulant of the distribution of {𝜀𝑡, 𝜀𝑡+𝑖, 𝜀𝑡+𝑗, 𝜀𝑡+𝑙} and 

defined as  

 𝑘4(𝑖, 𝑗, 𝑙) = 𝑒(𝜀𝑡𝜀𝑡+𝑖𝜀𝑡+𝑗𝜀𝑡+𝑙) − 𝑒(𝜀𝑡̃𝜀𝑡̃+𝑖𝜀𝑡̃+𝑗𝜀𝑡̃+𝑙), 

where {𝜀𝑡̃} is a Gaussian sequence with the same mean and covariance as {𝜀𝑡}.  

Note that 𝑚𝑛 → ∞ where 𝑚𝑛/𝑛 → 0 is the bandwidth which is depending on the sample 

size. Hong (1996a,b) showed that the distribution of their statistics can be asymptotically 

approximated by Gaussian and and the power of the proposed tests are usually better than 

Ljung and Box (1978). 
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Recently, Gallagher and Fisher (2015) proposed three tests modifying the Fisher and 

Gallagher (2012) test in (20) by considering three different weighting schemes: the squared 

Daniell kernel-based weights proposed by Hong (1996a,b) 

 𝑤ℓ = (𝑛 + 2)(𝑛 − ℓ)
−1𝐾2 (

ℓ

𝑚
), 

the geometrically decaying weights,  

 𝑤ℓ = (𝑝 + 𝑞)𝑎
ℓ−1, 𝑓𝑜𝑟  𝑠𝑜𝑚𝑒  0 < 𝑎 < 1, 

and the data-adaptive weights which gives the data-adaptive weights test  

𝑄𝐷 = 𝑛(𝑛 + 2)∑

𝑚0

ℓ=1

(𝑛 − ℓ)−1𝑟̂ℓ
2 + 𝑛 ∑

𝑚

ℓ=𝑚0+1

𝑤ℓ𝑟̂ℓ
2, 

(23)  

where the first 𝑚0 terms obtain the standardizing weight (𝑛 + 2)/(𝑛 − ℓ) from the Ljung-

Box statistic, and the remaining weights (from 𝑚0 + 1 to 𝑚) selected from the data to be 

summable 𝑤ℓ = −log(1 − |𝜋̂ℓ|). It is worth noting that 𝑚0 ≥ 𝑚 in (26) will give the 

Ljung-Box test. 

More recently, Mahdi (2017) proposed a kernel-based portmanteau test based on the 

Toeplitz autocorrelation matrix defined from Peňa and Rodríguez (2002). He showed that 

his test is asymptotically the same as the test statistic given by Peňa and Rodríguez (2006) 

and might be seen as a Kullback-Leibler discrimination information test proposed by Hong 

(1996a). His test statistic is 

𝐾𝑚
⋆ =

−𝑛(𝑚 + 1)−1log|𝐑̂11(𝑚)| − 𝐶𝑛(𝑘)

√2𝐷𝑛(𝑘)
 ⟶
𝑑
 𝒩(0,1), 

(24)  

where 𝐶𝑛(𝑘) = ∑
𝑚−1
ℓ=1 (1 − ℓ/𝑛)𝑘

2(ℓ/𝑚), 𝐷𝑛(𝑘) = ∑
𝑚−2
ℓ=1 (1 − ℓ/𝑛)(1 − (ℓ + 1)/

𝑛)𝑘4(ℓ/𝑚), and 𝑘(. ) is the estimated kernel which can be computed from the Daniell 

kernel  

𝑘(𝑢) = sin(𝜋𝑢)/𝜋𝑢   𝑓𝑜𝑟  𝑢 ∈ (−∞,∞). (25)  
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2.3 Monte-Carlo (MC) portmanteau tests  

One problem pointed by Lin and McLeod (2006) is that the sequence of the standardized 

residual autocorrelation defined in (12) is not always non-negative definite; hence, the test 

statistics proposed by Peňa and Rodríguez (2002, 2006) may not exist in many cases. To 

overcome this problem, Lin and McLeod (2006) proposed the using a Monte-Carlo 

significance test. They showed that the Monte-Carlo significance test provides a 

portmanteau test with the correct estimate of size and is almost always more powerful than 

the competitors statistics appearing in the literature. The p-value for the portmanteau test 

statistics using the Monte-Carlo test can be computed by the algorithm outlined below (see 

Lin and McLeod (2006), Mahdi (2011), and Mahdi and McLeod (2012)). Alok (2020) also 

worked on crosscorrelation of square of residualsused using the Monte-Carlo approach 

unlike Mahdi who used the asymptotic distribution approach. 

The following are the steps taken to calculate the p-value using Monte-Carlo technique. 

Step 1: Simulate a time series from a given model (say ARMA (p,q)).  

Step 2: Fit a suitable model to this simulated data and obtain the residuals (say AR (𝑝)).  

Step 3: Use the residuals and compute the observed value of the portmanteau test statistic 

for a set of lags 𝑚 (say 𝔇𝑚
(𝑜)

).  

Step 4: Use the residuals from Step 3 and simulate a time series data using estimated 

parameters obtained in Step 2. This step is replicated 𝐵 times (say 𝐵 = 1000).   

 In each replicate, fit the model AR(𝑝) to the simulated data and obtain the residuals.  

 Use the residuals and calculate the corresponding test value of the portmanteau test 

statistic (say 𝔇𝑚
(𝑖)
, 𝑖 = 1,2,⋯ , 𝐵).  

 Count the average number of times that the test values of the portmanteau test 

statistic greater than or equal to the observed statistic.  

 The estimated p-value is given by,  

𝑝̂𝑗 =
#{𝔇𝑚

(𝑖)
≥ 𝔇𝑚

(𝑜)
, 𝑖 = 1,2, … , 𝐵} + 1

𝐵 + 1
. 

(26)  
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The larger the 𝐵 number, the more accurate estimate of the p-value. The approximate 

95% margin of error for the p-value computed using the normal approximation for the 

binomial is ±1.96√p̂𝑗(1 − p̂𝑗)/𝐵.  

 Step 5: Repeat Steps 1-4 for 𝑁 times, whEre 𝑁 is the number of simulations (Usually, 𝑁 ≥

              1000) and each time, calculate p̂𝑗, 𝑗 = 1,2,⋯ ,𝑁.  

 Step 6: Calculate the average of the p-values obtained in the previous step. This will gives 

the estimated p-value based Monte-Carlo test using 𝑁 simulations with 𝐵 

replications:  

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =∑

𝑁

𝑗=1

p̂𝑗/𝑁. 

2.4 Random Weighted Bootstrap (RWB) tests  

Recently, Lee (2016) proposed using the Wild bootstrap of the Ljung-Box portmanteau test 

in time series when ARCH is presented. Zhu (2016) proposed a Randomly Weighted 

Bootstrap (RWB) which can be seen as a variant of the Wild bootstrap approach.  A 

bootstrapping  method is a nonparatmetric way shown to be robust when distributional 

assumptions are violated. The Randomly Weighted Bootstrap algorithm is as follows: 

Step 1: Estimate the model from (1) and calculate the correlation coefficients based on the 

fitted residuals. 

Step 2: Generate a sequence of iid random variables, say 𝒘∗ = {𝑤1, 𝑤2, … , 𝑤𝑛} 

independent of the data from a common distribution satisfies 𝑝(𝑤𝑖 ≥ 0) = 1 with mean 

and variance both equal to 1. 

Step 3: Calculate 𝛿 = 𝒘∗{√𝑛(𝒓̂𝑚
∗ − 𝒓̂𝑚)} . 

Step 4: Repeat steps 2 and 3 B times (say 𝐵 = 1000), to obtain {𝛿1, 𝛿2, … , 𝛿𝐵} and compute 

its covariance matrix and its associated eigenvalues. 

Step 5: Generate 𝑁 (say 1000) iid random data {𝑧1
(𝑗)
, 𝑧2
(𝑗)
, … , 𝑧𝑚

(𝑗)
}𝑗=1
𝑁  from multivariate 

normal distribution with identity matrix and compute the sequence {𝐺(𝑗)}𝑗=1
𝑁  by  
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𝐺(𝑗) = ∑𝜆𝑖
∗ (𝑧𝑖

(𝑗)
)2. 

Step 6: The sequence {𝐺(𝑗)}𝑗=1
𝑁  is the bootstrap sampling of the portmanteau distribution 

and the critical p-value can be calculated in the same maner of Equation (28). 
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CHAPTER 3: TEST FOR NONLINEARITY 

One problem pointed by Granger and Anderson (1978) and Tong and Lim (1980) was that 

the squared residuals of many of Box and Jenkins (1970) ARMA models are significantly 

autocorrelated even though the residual autocorrelations are not. This suggests that these 

models are not adequate and the innovation of these models might be uncorrelated but not 

independent. Granger and Anderson (1978) and Tong and Lim (1980) suggested of using 

the autocorrelation function of the squared values of the residuals to detect the nonlinear 

dependency. 

Engle (1982) showed that the Box and Pierce (1970) and Ljung and Box (1978) test, based 

on the autocorrelation function of the residuals, might fail to detect the presence of the 

ARCH in many financial time series. In this respect, he proposed a Lagrange multiplier 

test based on the autocorrelations of the squared-residuals and used it to test for ARCH 

structure. 

The errors {𝜀𝑡} in (1) follows an Autoregressive Conditional Heteroskedasticity (ARCH) 

model with order 𝑏 model if it can be written as follows: 

𝜀𝑡 = 𝜉𝑡𝜎𝑡,         𝜎𝑡
2 = 𝜔 + ∑𝑏𝑖=1 𝛼𝑖𝜀𝑡−𝑖

2 ,  (27)  

where {𝜉𝑡} is a sequence of i.i.d. random variables with a mean value of 0 and variance 

value of 1, 𝜔 > 0, 𝛼𝑖 ≥ 0. 

The ARCH model has been generalized by Bollerslev (1986) to the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model. The innovation {𝜀𝑡} in 

(29) follows a GARCH  (𝑏, 𝑎) model given by  

𝜀𝑡 = 𝜉𝑡𝜎𝑡,         𝜎𝑡
2 = 𝜔 +∑

𝑏

𝑖=1

𝛼𝑖𝜀𝑡−𝑖
2 +∑

𝑎

𝑗=1

𝛽𝑗𝜎𝑡−𝑗
2 , 

(28)  

where {𝜉𝑡} is a sequence of iid random variables with a mean value of 0 and variance value 

of 1, 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, and ∑
 𝑚𝑎𝑥 (𝑏,𝑎)
𝑖=1 (𝛼𝑖 + 𝛽𝑖) < 1. 
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Since then, the ARCH and GARCH models become essential statistical tools for modeling 

financial time series and modern option pricing theory and practice. In literature, there are 

several types of GARCH models that can be used to model the dynamic behavior of 

conditional  ARCH  in time series applications (more details are provided in Tsay (2005) 

and Carmona (2014)). The most commonly used models are:   

• The Exponential Generalized Autoregressive Conditional Heteroskedastic ( EGARCH 

(𝑝, 𝑞)) model of Nelson (1991) assumes the form  

log𝜎𝑡
2 = 𝜔 +∑

𝑏

𝑖=1

𝛼𝑖𝑓(𝑍𝑡−𝑖) +∑

𝑎

𝑗=1

𝛽𝑗log𝜎𝑡−𝑗
2 , 

(29)  

where 𝑓(𝑍𝑡) = 𝜃𝑍𝑡 + 𝜆(|𝑍𝑡| − 𝐸|𝑍𝑡|) is a function allows the sign and the magnitude of 

the 𝑍𝑡 ∼ 𝒩(0,1) (or 𝑍𝑡 ∼a generalized error distribution) to have separate effects on the 

volatility, 𝜃 and 𝜆 are coefficients. The EGARCH(𝑏, 𝑎) can be rewritten in the as  

𝜀𝑡 = 𝜉𝑡𝜎𝑡, log𝜎𝑡
2 = 𝜔 +

1 + ∑𝑎−1𝑖=1 𝛽𝑖𝐁
𝑖

1 − ∑𝑏−1𝑗=1 𝛼𝑗𝐁
𝑗
𝑓(𝜀𝑡−1), 

(30)  

where 𝐁 is the back-shift (or lag) operator such that 𝐁𝑓(𝜀𝑡) = 𝑓(𝜀𝑡−1), ∑
𝑎−1
𝑖=1 𝛽𝑖𝐁

𝑖 (𝑖 =

1,2,⋯ , 𝑎 − 1) and ∑𝑏−1𝑗=1 𝛼𝑗𝐁
𝑗 (𝑗 = 1,2,⋯ , 𝑏 − 1) are polynomials with zeros outside the 

unit circle and have no common factors.   

• The GARCH-in-mean ( GARCH-M(𝑏, 𝑎)) model proposed by Engle et al. (1987), where 

"M" denotes the GARCH in the mean. The GARCH-M adds a Heteroskedasticity term into 

the mean equation that can be interpreted as a risk premium.  

𝑧𝑡 = 𝜇 + 𝜆𝜎𝑡
2 + 𝜀𝑡,    𝜀𝑡 = 𝜉𝑡𝜎𝑡,    (31)  

𝜎𝑡
2 = 𝜔 + ∑𝑏𝑖=1 𝛼𝑖𝜀𝑡−𝑖

2 + ∑𝑎𝑗=1 𝛽𝑗𝜎𝑡−𝑗
2 ,  (32)  

where 𝜇 and 𝜆 are constants. The parameter 𝜆 denotes the risk premium parameter. When 

𝜆 > 0 then 𝑧𝑡 is positively related to its volatility. There are many other formulation for  

GARCH  -M(𝑝, 𝑞) including 𝑧𝑡 = 𝜇 + 𝜆𝜎𝑡 + 𝜀𝑡 and 𝑧𝑡 = 𝜇 + 𝜆log𝜎𝑡
2 + 𝜀𝑡.   
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• The Threshold GARCH ( TGARCH(𝑏, 𝑎)) model by Glosten et al. (1993) and Zakoian 

(1994) is commonly used to handle leverage effects is the threshold  GARCH  defined by  

𝜎𝑡
2 = 𝜔 +∑

𝑏

𝑖=1

(𝛼𝑖 + 𝛾𝑖𝐼𝑡−𝑖)𝜀𝑡−𝑖
2 +∑

𝑎

𝑗=1

𝛽𝑗𝜎𝑡−𝑗
2 , 

(33)  

where 𝐼𝑡−𝑖 is an indicator for negative 𝜀𝑡−𝑖; that is  

𝐼𝑡−𝑖 = {
1 if 𝜀𝑡−𝑖 ≤ 𝑠,
0 if 𝜀𝑡−𝑖 ≥ 𝑠,

 

 where 𝑠 is the threshold is used to separate the impacts of past shocks. When 𝑠 = 0, then 

it can clearly be seen that 𝜀𝑡−𝑖 > 0 contributes 𝛼𝑖𝜀𝑡−𝑖
2  to 𝜎𝑡−𝑗

2 , whereas 𝜀𝑡−𝑖 < 0 has a larger 

impact (𝛼𝑖 + 𝛾𝑖)𝜀𝑡−𝑖
2  with 𝛾𝑖 > 0.   

McLeod and Li (1983) introduced a portmanteau test to detect the presence of  ARCH  

based on the squared-residuals autocorrelations. Their test statistic is given by  

𝑄22 = 𝑛(𝑛 + 2)∑

𝑚

𝑘=1

(𝑛 − 𝑘)−1𝑟̂22
2 (𝑘). 

(34)  

It is worth noting that the McLeod and Li (1983) test was derived under the assumptions 

of the  ARMA model but it asymptotically distributed as 𝜒𝑚
2  which does not depend on the 

order of the fitted ARMA model, (𝑝, 𝑞). Note also that the 𝑄22 is widely used to detect 

nonlinearity dependency in several time series including GARCH models. 

Li and Mak (1994) proposed a portmanteau test statistic based on the  ARCH  assumptions. 

Their test statistic is given by  

𝐿𝑏 = 𝑛∑

𝑚

𝑘=1

𝑟̂22
⋆2(𝑘), 

 

where 𝑟̂22
⋆ (𝑘)is the standardized squared-residual autocorrelation obtained from a fitted  

GARCH model that is defined by  

 𝑟̂22
⋆ (𝑘) =

∑𝑛𝑡=𝑘+1 (𝜀̂𝑡
2/𝜎̂𝑡−𝜀̅)(𝜀̂𝑡−𝑘

2 /𝜎̂𝑡−𝑘−𝜀̅)

∑𝑛𝑡=1 (𝜀̂𝑡
2/𝜎̂𝑡−𝜀̅)2

, 
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 where 𝜀̅ = 𝑛−1∑ 𝜀𝑡̂
2/𝜎̂𝑡 and 𝜎̂𝑡 are the estimated sample conditional variances of the  

GARCH  (𝑏, 𝑎) model defined in (31). 

Peňa and Rodríguez (2002) and Peňa and Rodríguez (2006) replaced the residual 

autocorrelations in the matrix defined in (8) by the squared-residual autocorrelations and 

used it to derive new portmanteau tests that can be used to detect nonlinearity in several 

time series. The Peňa and Rodríguez (2002) test for nonlinearity is given by 

𝐷22 = 𝑛[1 − |𝐑̂22(𝑚)|
1/𝑚], (35)  

and the Peňa and Rodríguez (2006) test is  

𝐷̃22 = −
𝑛

𝑚 + 1
log|𝐑̃22(𝑚)|, 

(36)  

where 𝐑̂22(𝑚) is the matrix of 𝑚th order of squared-residual autocorrelation:  

𝐑̂22(𝑚) =

(

 
 

1 𝑟̂22(1) … 𝑟̂22(𝑚)

𝑟̂22(1) 1 … 𝑟̂22(𝑚 − 1)
⋮ … ⋮ ⋮
𝑟̂22(𝑚) 𝑟̂22(𝑚 − 1) … 1

)

 
 
. 

(37)  

The asymptotic distribution of 𝐷22 is gamma Γ(𝛼, 𝛽), where 𝛼 and 𝛽 are the same as those 

defined in (10) and (11), respectively, where 𝑝 + 𝑞 = 0. Also, the asymptotic distribution 

of 𝐷̃22 has two approximations by using the Gamma and the Normal distributions. For the 

gamma, Γ(𝛼, 𝛽) distribution, the shape and the scale 𝛼 and 𝛽 are the same as those defined 

in (15) and (16) , respectively, where 𝑝 + 𝑞 = 0. For the normal distribution, Peňa and 

Rodríguez (2006) showed that 𝐷̃22 has the same normal distribution of 𝐷̃11 defined in (17), 

where 𝜆 is given in (18) where 𝑝 + 𝑞 = 0. 

Rodriguez and Ruiz (2005) proposed a portmanteau test for ARCH models using the 

information contained in the sample autocorrelations of non-linear transformations of the 

underlying process. Their test statistic can be used to test for whether the autocorrelations 

of the residuals differ from zero and at the same time it can be used to test for possible 

relationship among successive autocorrelation coefficients. Their test is  
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𝑄𝑖
⋆(𝑀) = 𝑛∑

𝑀−𝑖

𝑘=1

[∑

𝑖

ℓ=0

𝑟̃11(𝑘 + ℓ)]
2, 𝑖 = 0,1,⋯ ,𝑀 − 1, 

(38)  

where 𝑟̃11(𝑘 + ℓ) is the standardized sample autocorrelation of order 𝑘 + ℓ. 

For the different value of i for M we can have different collection of statistics all these have 

different informations on the possible sample correlation pattern. If one wants to have 

McLeod-Li statistic in (36) then choose 𝑖 = 0. For this scenario, the statistic is obtained by 

adding up the squared estimated autocorrelations. In case if all of these autocorrelations 

are small, the statistic will be small and hence we will reject the null hypothesis . But when 

𝑖 = 1  the statistics obtained will be a correlation between sample auto correlation one leg 

apart. If they are strongly correlated then the null hypothesis can be rejected even if the 

coefficient 𝑟11(𝑗) are very small.  

Rodriguez and Ruiz (2005) showed that 𝑄𝑖
⋆(𝑀) behaves asymptotically as a linear 

combination of independent chi-squared variables with one degree of freedom that can be 

approximated by a gamma distribution Γ(𝛼 = 𝑎2/2𝑏, 𝛽 = 𝑎/2𝑏), where 

𝑎 = (𝑖 + 1)(𝑀 − 𝑖), (39)  

and  

𝑏 = (𝑀 − 𝑖)(𝑖 + 1)2 + 2∑

𝑖+1

𝑗=1

(𝑀 − 𝑖 − 𝑗)(𝑖 + 1 − 𝑗)2. 
(40)  

Lin and McLeod (2006) also showed that the Peňa and Rodríguez (2002, 2006) can distort 

the size of the test; hence, they suggested to use the Monte-Carlo significance test to test 

for nonlinearity. They also showed that the Monte-Carlo significance test provides a 

portmanteau test with the correct estimate of size and is almost always more powerful than 

the competitors statistics appearing in the literature. 

Fisher and Gallagher (2012) modified their weighted test defined in (20) to detect the 

nonlinearity presence in time series models. Their modified test is given by  
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𝑄22
𝑤 = 𝑛(𝑛 + 2)∑

𝑚

𝑘=1

(𝑚 − 𝑘 + 1)

𝑚

𝑟̂22
2 (𝑘)

𝑛 − 𝑘
, 

(41)  

which asymptotically distributed as gamma Γ(𝛼 = 𝐾1
2/𝐾2, 𝛽 = 𝐾2/𝐾1), where  

𝐾1 = (𝑚 + 1)/2 (42)  

and  

𝐾2 = (𝑚 + 1)(2𝑚 + 1)/3𝑚 (43)  

In addition, Fisher and Gallagher (2012) proposed a weighted test that can be seen as a 

modified version of Li and Mak (1994) statistic. The modified Li and Mak (1994) weighted 

test is given by  

𝐿𝑏
𝑤 = 𝑛∑𝑚𝑘=1

𝑚−𝑘+(𝑏+1)

𝑚
𝑟̂22
⋆2(𝑘),  (44)  

where 𝐿𝑏
𝑤 statistic is asymptotically distributed as 𝜒𝑚−(𝑏+𝑎)

2 , where (𝑎, 𝑏) are the order of 

the fitted GARCH model. 

The problem with the aforementioned statistics that they respond well to ARMA and 

GARCH  models but they tend to have a lack of power compared to other types of time 

series models, especially when the residuals to different powers might be correlated. 

Recently, Psaradakis and Vávra (2019) used the Lawrance and Lewis (1985, 1987) idea, 

which was based on using the generalized correlation of the residuals to detect nonlinear 

dependency in time series, and proposed four different statistics from stationary linear 

models to test for linearity. Their test statistics are given by  

𝑄̃𝑟𝑠 = 𝑛∑
𝑚
𝑘=1 𝑟̂𝑟𝑠

2 (𝑘),           (𝑟 ≠ 𝑠 ∈ ℕ).  (45)  

and  

𝑄𝑟𝑠 = 𝑛(𝑛 + 2)∑
𝑚
𝑘=1 (𝑛 − 𝑘)

−1𝑟̂𝑟𝑠
2 (𝑘),           (𝑟 ≠ 𝑠 ∈ ℕ).  (46)  

where 𝑟̂𝑟𝑠(𝑘) is the generalized correlation coefficient between the residuals to the power 
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𝑟 and the residuals to the power 𝑠. 

Psaradakis and Vávra (2019) preliminary analysis suggested that the 𝑄𝑟𝑠 tests control the 

Type I error probability somewhat more successfully than the 𝑄̃𝑟𝑠 tests; hence, they 

restricted their simulation study focusing on the test statistics 𝑄𝑟𝑠. The authors reported 

that 𝑄̃𝑟𝑠 and 𝑄𝑟𝑠 are asymptotically distributed as 𝜒𝑚
2  and tend to have more power in 

detecting nonlinearity in time series models comparing to the McLeod and Li (1983) test 

statistic. Motivated by the ideas of Lawrance and Lewis (1985, 1987), and Psaradakis and 

Vávra (2019), I proposed in the next section new test statistics that can be used to detect 

nonlinearity in time series models. 

The 𝑄̃𝑟𝑠 and 𝑄̃𝑠𝑟 statistics are similar in spirit to Box and Pierce (1970) defined in (4) but 

the authors replaced the autocorrelations of the residuals defined in (4) by the generalized 

correlations at different powers getting the two tests: 𝑄̃𝑟𝑠 which is based on the cross-

correlations between 𝜀𝑡
𝑟 and 𝜀𝑡+𝑘

𝑠 ; and 𝑄̃𝑠𝑟 which is based on the cross-correlations between 

𝜀𝑡
𝑠 and 𝜀𝑡+𝑘

𝑟 . Similarly, 𝑄𝑟𝑠 and 𝑄𝑠𝑟 statistics can be seen as modify tests similar in spirit to 

McLeod and Li (1983) defined in (36) obtained by replacing the autocorrelations of the 

squared-residuals defined by (36) by the cross-correlations between 𝜀𝑡
𝑟 and 𝜀𝑡+𝑘

𝑠  and the 

cross-correlations between 𝜀𝑡
𝑠 and 𝜀𝑡+𝑘

𝑟 , respectively. 

More recently, Mahdi and Fisher (2021) proposed a portmanteau test using the block 

matrix of autocorrelations and cross-correlations of residuals and squared-residual, 𝐑̂(𝑚), 

defined by  

𝐑̂(𝑚) = [
𝐑̂11(𝑚) 𝐑̂12(𝑚)

𝐑̂12
′ (𝑚) 𝐑̂22(𝑚)

]
2(𝑚+1)×2(𝑚+1)

, 
(47)  

where 𝐑̂11(𝑚) and 𝐑̂22(𝑚) are defined by (8) and (40), respectively, and 𝐑̂12(𝑚) is the 

matrix of cross-correlations between residuals and their squares which is given by  

𝐑̂12(𝑚) =

(

 
 

𝑟̂12(0) 𝑟̂12(1) … 𝑟̂12(𝑚)
𝑟̂12(−1) 𝑟̂12(0) … 𝑟̂12(𝑚 − 1)
⋮ … ⋮ ⋮
𝑟̂12(−𝑚) 𝑟̂12(−𝑚 + 1) … 𝑟̂12(0)

)

 
 
. 

(48)  
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The test statistic proposed by Mahdi and Fisher (2021) is given by  

𝐶𝑚 = −
𝑛

𝑚 + 1
log|𝐑̂(𝑚)|, (49)  

where | ⋅ | denotes the determinant of a matrix. 

Under the assumptions of  ARMA  (𝑝, 𝑞) model, Mahdi and Fisher (2021) proposed 

approximated the asymptotic distribution of 𝐶𝑚 by gamma and showed that the distribution 

has a mean of 𝛼𝛽 = 2𝑚 + 5 − (𝑝 + 𝑞). They showed that the 𝐶𝑚 test can be seen as a 

linear combination of four weighted tests. The first and the second components elaborate 

the partial autocorrelation of the residuals and the squared-residuals, respectively. The third 

and the fourth components elaborate the cross-correlation between the residuals and their 

squares and vice-versa, respectively. Hence, the 𝐶𝑚 test can be used to detect, 

simultaneously, the linear and nonlinear dependency in stationary time series data. Their 

simulation study demonstrated that the 𝐶𝑚 statistic tends to have higher power than the 

competitors statistics appearing in the literature, particularly in detecting ARMA with 

GARCH errors and other nonlinear models. They utilized the Randomly Weighted 

Bootstrap (RWB) approach which was proposed by Zhu (2016) to improve the size and the 

power of their statistic and showed that the RWB be robust and give the correct size and 

tend to be more powerful than the one based on the asymptotic distributions. 
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CHAPTER 4: SIMULATION STUDY 

In this section, I presented the simulation results regarding the finite-sample size and power 

properties of the aforementioned tests. I invistigated the effects of Gaussian and non-

Gaussian1 noise on performance of the protmanteau tests. First, I calculated the significant 

level based on 5% nominal levels using the limiting distributions, random weighted 

Bootstrapping  (RWB), and Monte-Carlo (MC) significance tests. After that, I studied the 

power of the portmanteau tests based on the three different technques. For brevity, I 

considered the test at lags 𝑚 = 5, and 10. Monte-Carlo simulation was based on 1000 

simulations, where each simulation has used 500 replications. In my numerical study, I 

used the R package portes in a parallel framework (Mahdi, 2020a). 

4.1 Empirical sizes  

In this section, I tested the adequacy of fitted ARMA and GARCH models. First, I 

generated the data from the following four linear models: 

𝑨𝟏: AR(1): 𝑧𝑡 = −0.8𝑧𝑡−1 + 𝜀𝑡; 

𝑨𝟐: AR(2): 𝑧𝑡 = 0.5𝑧𝑡−1 − 0.4𝑧𝑡−2 + 𝜀𝑡; 

𝑨𝟑: MA(1): 𝑧𝑡 = 0.9𝜀𝑡−1 + 𝜀𝑡; 

𝑨𝟒: ARMA(1,1): 𝑧𝑡 = 0.7𝑧𝑡−1 + 0.3𝜀𝑡−1 + 𝜀𝑡; 

In each case, I fitted the true model and calculated the Type-I error at lags 𝑚 =  5 and 10 

with sample sizes 𝑛 = 100, 300, and 500 to cover small, moderate and large sample sizes 

based on Gaussian and non-Gaussian. For non-Gaussian case, I considered the t-

distribution with degrees of freedoms of 3, 6, 9, and 12, a range of values which are 

sufficiently representative of mild asymmetry and heavy tailed leptokurtosis distributions 

in many finnancial time series. For brevity, I averaged the relative rejection frequncies 

across the non-Gaussian cases. In my simulation study, I considered the test statistics 

                                                 

1 The results based on Skewed Normal and Skewed Students' t-distributions with skewness parameters 

skewness {−2,−1.5, −0.5, 0.5,1, 1.5, 2} and degress of freedom {3,6,9,12} are given in the Appendix.   
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Ljung-Box (1978), 𝑄11, Fisher and Gallagher (2012), 𝑄11
𝑤 , and Mahdi and Fisher (2021), 

Cm. 

Tables 1-3 shows the results. The results show that the asymptotic distribution of the test 

statistics can distort the size, especially for skewed data with small sizes. On the other hand, 

the MC and RWB approaches provided accuartae results for estimating the type I error for 

both Gaussian and non-Gaussian cases and regardless of the sample size.  

Table 1: Empirical sizes, for 5% nominal tests, based on models 𝐴1 − 𝐴4, n=100 

Model Lags 

Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

Gaussian distribution 

𝑨𝟏 
5 5.5 5.8 5.7 3.4 6.7 3.1 6.0 6.5 6.0 

10 5.3 4.4 4.3 3.6 6.3 3.2 5.6 6.3 5.8 

𝑨𝟐 
5 5.3 3.6 5.7 6.4 3.6 6.7 6.0 6.2 3.8 

10 3.5 2.2 3.9 6.1 3.8 6.4 5.6 6.0 3.9 

𝑨𝟑 
5 9.4 9.0 6.5 3.6 3.2 6.1 6.1 5.9 3.9 

10 6.5 6.6 5.2 3.9 3.4 5.9 5.9 5.7 4.0 

𝑨𝟒 
5 6.5 5.3 4.6 3.3 3.6 3.4 3.4 3.8 6.4 

10 4.8 3.2 3.7 3.5 3.7 3.5 3.6 3.9 6.0 
   Student-t distribution 

𝑨𝟏 
5 3.9 3.4 8.1 2.8 7.3 2.8 3.4 6.4 3.5 

10 5.2 3.1 7.4 2.9 6.8 2.9 3.6 6.1 3.7 

𝑨𝟐 
5 3.5 2.6 9.0 8.2 8.1 2.9 3.2 3.3 6.3 

10 4.2 2.4 8.1 7.9 7.6 3.0 3.3 3.4 6.0 

𝑨𝟑 
5 6.5 5.2 10.0 7.8 8.7 8.4 3.5 6.0 3.5 

10 6.2 5.5 9.3 7.4 8.1 7.9 3.7 5.7 3.6 

𝑨𝟒 
5 3.7 3.6 8.1 3.0 8.3 6.5 6.4 6.6 3.4 

10 4.2 2.2 7.7 3.2 7.9 6.2 6.0 6.3 3.6 

 

Table 2: Empirical sizes, for 5% nominal tests, based on models 𝐴1 − 𝐴4, n=300. 

Model Lags 

Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

Gaussian distribution 

𝑨𝟏 
5 5.2 3.6 5.3 3.8 5.7 3.4 6.2 4.1 6.1 

10 5.4 3.3 4.6 4.0 5.3 3.6 6.0 4.2 5.9 

𝑨𝟐 
5 4.2 3.6 5.4 6.5 6.1 5.7 5.5 3.9 3.7 

10 5.1 2.1 3.9 6.0 5.8 5.4 5.3 4.0 3.8 

𝑨𝟑 
5 5.5 5.9 6.0 3.5 6.1 3.4 4.0 5.9 3.9 

10 5.5 4.5 4.7 3.6 5.9 3.5 4.3 5.7 4.2 
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𝑨𝟒 
5 5.0 5.5 4.8 5.9 3.9 6.4 5.6 4.0 5.5 

10 5.9 2.9 3.9 5.5 4.0 6.2 5.2 4.2 5.3 
   Student-t distribution 

𝑨𝟏 
5 3.6 2.8 6.6 6.4 3.3 3.3 3.6 3.5 5.7 

10 5.3 2.9 6.0 6.1 3.4 3.5 3.7 3.6 5.4 

𝑨𝟐 
5 4.6 3.2 7.7 6.5 6.3 6.4 6.3 6.2 3.4 

10 3.9 2.9 6.2 6.2 6.0 6.1 6.1 6.0 3.6 

𝑨𝟑 
5 4.2 4.9 8.3 6.7 3.3 3.3 5.8 3.8 5.7 

10 5.8 4.1 6.7 6.3 3.4 3.5 5.6 4.0 5.4 

𝑨𝟒 
5 5.3 3.6 7.4 3.1 3.4 6.5 5.7 6.2 6.0 

10 4.4 2.4 6.7 3.3 3.6 6.2 5.5 5.8 5.6 

Table 3: Empirical sizes, for 5% nominal tests, based on models 𝐴1 − 𝐴4, n=500. 

Model Lags 

Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

Gaussian distribution 

𝑨𝟏 
5 5.2 4.7 5.2 3.9 4.4 4.4 5.0 4.3 5.6 

10 5.1 4.0 4.9 4.1 4.5 4.7 5.2 4.4 5.3 

𝑨𝟐 
5 5.7 4.2 5.8 3.8 5.8 6.2 5.5 5.2 4.9 

10 4.2 2.6 4.1 4.0 5.5 6.0 5.2 4.8 5.0 

𝑨𝟑 
5 5.0 5.3 5.6 6.3 4.4 3.9 5.4 5.4 5.7 

10 5.3 4.7 4.2 6.0 4.6 4.1 5.1 5.0 5.3 

𝑨𝟒 
5 4.0 3.9 5.4 4.1 4.2 4.1 5.3 4.1 5.3 

10 4.4 2.7 3.7 4.4 4.3 4.3 4.9 4.2 5.0 
   Student-t distribution 

𝑨𝟏 
5 5.3 4.5 5.8 3.9 5.9 6.1 4.4 4.1 6.1 

10 5.5 4.5 5.6 4.1 5.5 5.7 4.5 4.3 5.8 

𝑨𝟐 
5 5.4 3.8 6.8 6.4 5.9 6.3 4.4 5.6 3.7 

10 5.5 3.4 6.2 6.2 5.7 6.0 4.7 5.4 3.8 

𝑨𝟑 
5 5.7 6.3 6.1 6.4 3.5 3.5 4.2 5.9 4.4 

10 5.7 4.8 6.0 6.2 3.7 3.6 4.3 5.6 4.7 

𝑨𝟒 
5 4.6 4.6 6.9 6.2 5.8 6.1 5.9 4.2 4.4 

10 5.0 2.4 6.6 5.8 5.6 5.9 5.5 4.4 4.7 

Tables 1, 2, and 3, show that the asymptotic distribution approach can distort the size of 

the portmanteau test, especially for small sample sizes. Results indicate that as the sample 

size is increased, the test values get closer to the respective significant level. Similarly, for 

the same sample sizes, the observed sizes approached the nominal size as lags increased 

from 𝑚 = 5 to 𝑚 = 10. Results showed that the test statistics based on Monte-Carlo (MC) 

technique provide better approximate to the significant levels than based on the asymptotic 

approach. Moreover, the Randomly Weighted Bootstrap (RWB) were more improved and 
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closer to the significant value as compared to both Monte-Carlo (MC) and asymptotic 

approaches. In all the cases, it’s also observed that the Gaussian results were closer to the 

empirical size than using student-t distribution. 

I also evaluated the empirical type I error rates of the test statistics McLeod-Li (1983), 𝑄22, 

Fisher and Gallagher (2012), 𝑄22
𝑤 , Li-Mak (1994), 𝐿𝑏, and Mahdi and Fisher (2021), 𝐶𝑚, 

based on the four nonlinear 𝐴𝑅(𝑝) − 𝐺𝐴𝑅𝐶𝐻(𝑏, 𝑎) models studied by Carlos Velasco and 

Xuexin Wang (2014): 

𝑩𝟏:  𝐴𝑅(2) − 𝐴𝑅𝐶𝐻(1): 𝑧𝑡 = 0.5𝑧𝑡−1 + 0.2𝑧𝑡−2 + 𝜀𝑡,         𝜀𝑡 = 𝜎𝑡𝜀𝑡,       𝜎𝑡
2 = 0.1 +  0.4𝜀𝑡−1

2  

𝑩𝟐: 𝐴𝑅(1) − 𝐴𝑅𝐶𝐻(2): 𝑧𝑡 = 0.5𝑧𝑡−1 + 𝜀𝑡 ,       𝜀𝑡 = 𝜎𝑡𝜀𝑡 ,       𝜎𝑡
2 = 0.1 +  0.4𝜀𝑡−1

2 +  0.2𝜀𝑡−2
2   

𝑩𝟑: 𝐴𝑅(2) − 𝐴𝑅𝐶𝐻(2): 𝑧𝑡 = 0.5𝑧𝑡−1 + 0.2𝑧𝑡−2 + 𝜀𝑡 ,    𝜀𝑡 = 𝜎𝑡𝜀𝑡 , 𝜎𝑡
2 = 0.1 +  0.4𝜀𝑡−1

2 + 0.2𝜀𝑡−2
2  

𝑩𝟒: 𝐴𝑅(2) − 𝐺𝐴𝑅𝐶𝐻(1,1): 𝑧𝑡 = 0.5𝑧𝑡−1 + 0.2𝑧𝑡−2 + 𝜀𝑡,   𝜀𝑡 = 𝜎𝑡𝜀𝑡 ,   𝜎𝑡
2 = 0.1 +  0.4𝜀𝑡−1

2 + 0.5𝜎𝑡−1
2   

The results are shown in Tables 4-6.  

Table 4: Empirical sizes, for 5% nominal tests, based on models  𝐵1 − 𝐵4, n=100. 

Model Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏   𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏   𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏   𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 1.7 1.4 1.4 4 6.5 6.6 3.4 6.6 6.5 3.5 6.5 3.6 

10 2.1 1.6 1.7 2.9 6.2 6.2 3.6 6.3 6.3 3.7 6.0 3.8 

𝑩𝟐 
5 1.4 0.9 1.2 3.5 6.7 3.4 6.3 6.6 3.6 3.6 3.6 5.9 

10 2.3 1 1.8 2.2 6.4 3.6 6.0 6.4 3.8 3.8 3.7 5.5 

𝑩𝟑 
5 1.4 0.6 1.2 3.3 6.2 3.4 6.0 3.4 6.4 6.1 3.6 5.8 

10 2.2 1.1 1.8 2.2 5.8 3.5 5.6 3.5 6.0 5.9 3.9 5.5 

𝑩𝟒 
5 2.1 2.1 1.8 3.7 3.4 6.1 6.5 3.5 6.4 3.9 3.6 3.6 

10 2.7 1.9 2.2 3 3.6 5.8 6.0 3.7 6.1 4.1 3.8 3.8 

    Student-t distribution 

𝑩𝟏 
5 2.7 1.6 2.4 10.1 8.5 6.6 6.9 6.7 3.1 6.6 6.0 6.5 

10 2.7 2.6 2.1 8.8 7.9 6.1 6.4 6.3 3.2 6.2 5.7 6.2 

𝑩𝟐 
5 1.8 0.8 1.8 9.5 8.6 2.9 2.8 2.9 3.1 6.3 6.8 3.2 

10 2.1 1.8 1.7 7.8 8.3 3.1 2.9 3.1 3.2 5.9 6.4 3.4 

𝑩𝟑 
5 2.1 0.6 1.7 10.4 3.3 3.0 8.5 2.8 3.1 3.4 6.1 5.9 

10 2.5 1.6 1.7 9.4 3.5 3.2 8.0 3.0 3.3 3.6 5.9 5.5 

𝑩𝟒 
5 2.4 1.6 1.9 8.3 3.0 3.2 3.2 3.0 3.5 6.6 5.9 6.8 

10 2.9 1.9 2.2 7.4 3.2 3.3 3.4 3.2 3.6 6.4 5.5 6.5 
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Table 5: Empirical sizes, for 5% nominal tests, based on models  𝐵1 − 𝐵4, n=300. 

Model Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 2.7 1.9 2.3 5.1 6.3 6.4 3.6 3.5 4.4 3.7 4.1 4.4 

10 2.7 2.4 2.4 4.2 6.1 6.0 3.8 3.6 4.6 3.8 4.3 4.6 

𝑩𝟐 
5 1.7 1.0 1.6 4.4 3.9 5.8 3.8 3.4 5.9 6.1 4.3 6.2 

10 2.4 1.5 2.2 3.4 4.1 5.6 4.0 3.5 5.7 5.9 4.4 6.0 

𝑩𝟑 
5 1.7 0.7 1.6 4.7 6.0 3.6 3.5 6.4 6.0 4.1 5.7 6.3 

10 2.2 1.4 1.8 2.9 5.6 3.7 3.6 6.1 5.8 4.4 5.5 5.9 

𝑩𝟒 
5 3 2.4 2.9 4.9 3.6 5.8 6.1 3.8 5.7 4.2 3.7 5.6 

10 3.3 2.9 3.0 3.5 3.7 5.4 5.9 4.0 5.5 4.4 3.9 5.4 

    Student-t distribution 

𝑩𝟏 
5 4.1 2.8 3.7 8.1 3.5 6.1 6.8 3.5 6.3 5.7 6.1 6.1 

10 5.4 4.3 5.1 7.5 3.6 5.7 6.5 3.6 6.0 5.4 5.7 5.9 

𝑩𝟐 
5 2.8 1.9 2.9 7.5 6.4 3.5 3.6 3.3 6.2 6.2 3.6 6.5 

10 4.9 3.1 4.2 6.9 6.0 3.6 3.8 3.5 6.0 5.8 3.9 6.3 

𝑩𝟑 
5 2.9 1.8 2.7 8.6 3.3 6.0 3.1 3.2 6.5 5.8 3.5 6.3 

10 4.5 2.7 4 7.7 3.5 5.6 3.2 3.4 6.2 5.5 3.6 6.0 

𝑩𝟒 
5 3.8 2.4 3.3 7 3.5 6.7 3.4 3.3 3.5 3.4 3.5 3.5 

10 3.6 2.9 3.1 6.5 3.7 6.4 3.6 3.4 3.7 3.5 3.7 3.6 
 

Table 6: Empirical sizes, for 5% nominal tests, based on models  𝐵1 − 𝐵4, n=500. 

Model Lags 
Asymptotic distribution MC RWB 
 𝑄22  𝑄22

𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏  𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 2.6 1.4 2.6 5.7 3.7 4.4 3.7 3.8 4.6 5.4 5.1 4.7 

10 3.0 2.1 2.8 4.3 3.8 4.7 4.0 4.0 4.8 5.2 4.9 4.8 

𝑩𝟐 
5 2.0 1.2 2.0 4.6 4.4 5.7 5.6 4.5 4.3 4.8 5.1 5.0 

10 2.7 1.9 2.6 3.8 4.5 5.3 5.2 4.6 4.6 5.0 4.8 5.2 

𝑩𝟑 
5 2.0 0.9 1.9 4.6 5.6 5.9 5.9 3.7 4.2 4.5 5.5 5.9 

10 2.7 1.7 2.2 3.7 5.3 5.6 5.5 3.9 4.3 4.6 5.3 5.6 

𝑩𝟒 
5 2.4 1.8 2.5 5.2 5.9 4.0 3.8 6.0 5.7 4.2 4.4 4.3 

10 3.5 2.3 3.2 4.0 5.7 4.2 3.9 5.7 5.5 4.5 4.6 4.6 

    Student-t distribution 

𝑩𝟏 
5 5.4 3.6 5.3 6.5 3.7 3.8 6.1 6.2 4.3 5.9 3.8 6.1 

10 5.8 4.9 5.6 6.4 4.0 4.1 5.9 5.8 4.6 5.5 4.0 5.9 

𝑩𝟐 
5 3.9 2.3 3.7 6.6 3.9 5.7 6.1 6.0 4.3 5.8 5.8 4.5 

10 5.0 3.6 4.7 6.0 4.1 5.5 5.7 5.6 4.5 5.5 5.4 4.8 

𝑩𝟑 
5 3.9 2.5 3.8 7.1 5.8 6.2 3.5 3.4 4.2 5.8 3.9 5.6 

10 5.2 3.9 4.7 6.7 5.6 5.8 3.6 3.6 4.4 5.6 4.1 5.4 

𝑩𝟒 
5 3.3 2.1 3.3 6.5 3.9 3.9 6.0 6.3 3.8 5.9 3.8 6.2 

10 3.8 3.0 3.5 5.9 4.2 4.2 5.7 6.1 3.9 5.5 4.0 5.8 
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Tables 4-6 show a similar results as in Tables 1-3. I noticed that as the sample size increases 

the test results approach to the respective significant level in both Gaussian and non-

Gaussian (t-distribution) cases. Similarly, for the same sample sizes, the observed sizes 

approached the nominal size as lags increased from 𝑚 = 5 to 𝑚 = 10. The non-Gaussian 

(t distribution) test results were farther away from the respective significant values 

compared to the Gaussian test results. The test results showed that auto and cross-

correlation were closer to the significant levels as compared to both McLeod-Li, weighted 

McLeod-Li, and Mak-Li test statistics. Mak-Li test results provides more closer results 

compared to McLeod-Li results. Results show that the test statistics based on Monte-Carlo 

(MC) technique provide better approximate to the significant levels than based on the 

asymptotic approach. Moreover, the Randomly Weighted Bootstrap (RWB) were more 

improved and closer to the significant value as compared to both Monte-Carlo (MC) and 

asymptotic approaches. 

4.2 Power study  

In this section, I compared the power of aforthmentioned tests for detecting nonlinearity in 

fitted linear ARMA models. In my simulation study, I generated data from Gauusian 

distribution, skewed normal distribution with skewness parameters 

{−2,−1.5, −1,−0.5, 0.5,1, 1.5, 2} and student’s t-distribution with  {3, 6, 9, 12} degrees of 

freedom. The power of the tests are calculated based on the 5% significance level at lags 

𝑚 = 5, 10, and different sample sizes. For the skewed normal and student’s t distributions, 

I caculated the power by averaging the relative rejection frequncies across the different 

parameters used in the corresponding models.  

Testing linearity in linear time series models 

For testing nonlinearity, I simulate data according to the following nonlinear models 𝑪1 −

𝑪4 (see Models 15-18 in Psaradakis and Vávra (2019)):  

𝑪1: Bilinear 𝑧𝑡 = 0.4𝜀𝑡−1 − 0.3𝑧𝑡−1 + (0.8 + 0.5𝑧𝑡−1)𝜀𝑡−1 + 𝜀𝑡 

𝑪2: Bilinear 𝑧𝑡 = 0.5𝜀𝑡 − (0.4 − 0.4𝜀𝑡−1 )𝑧𝑡−1 

𝑪3: Nonlinear 𝑧𝑡 = 0.8𝜀𝑡−2
2 + 𝜀𝑡 
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𝑪4: Nonlinear 𝑧𝑡 = −0.3𝜀𝑡−1 + (0.2 + 0.4𝜀𝑡−1 − 0.25𝜀𝑡−2)𝜀𝑡−2 + 𝜀𝑡 

The powers of the portmanteau test (𝑄11, 𝑄11
𝑤 , 𝐶𝑚) are calculated based on the three 

techniques (asymptotic distribution, Monte-Carlo significance test, and random weighted 

Bootstrapping ) when false models AR(𝑝) are fitted to these models, where the order 𝑝 is 

selected based on the Bayesian information criterion (BIC) from the set of orders 

{0, 1, … , ⌊8√𝑛/100
4 ⌋}, where ⌊𝑥⌋ denotes the largest intgeger less than or equal to 𝑥.   

The results are shown in Tables 7-8.  

Table 7: Empirical power (for 5% significant level) for testing the neglected nonlinearity 

in AR(p) models fitted to data generated based on the models 𝐶1 − 𝐶4, n=100. 

Model Lags 

Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

Gaussian distribution 

𝑪𝟏 
5 97.4 98.5 98.0 92.0 93.0 94.0 93.0 94.0 95.0 

10 92.5 97.0 97.8 90.2 91.1 93.1 90.2 93.1 93.1 

𝑪𝟐 
5 54.8 58.7 72.0 92.0 94.0 95.0 95.0 94.0 97.0 

10 56.3 55.2 68.3 91.1 92.1 93.1 94.1 91.2 94.1 

𝑪𝟑 
5 19.5 24.1 84.5 92.0 92.0 95.0 97.0 95.0 95.0 

10 16.1 20.4 80.7 89.2 91.1 93.1 94.1 93.1 93.1 

𝑪𝟒 
5 31.2 38.3 38.0 91.0 94.0 96.0 96.0 95.0 97.0 

10 23.7 33.0 36.0 88.3 91.2 95.0 95.0 93.1 96.0 

 

Model Lags 
Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

  

    Skewed normal distribution 

𝑪𝟏 
5 96.8 98.0 95.9 89.0 91.0 94.0 91.0 94.0 92.0 

10 90.3 96.0 94.6 87.2 88.3 92.1 89.2 91.2 91.1 

𝑪𝟐 
5 54.2 60.9 84.5 85.0 90.0 92.0 90.0 94.0 93.0 

10 44.6 57.7 80.7 83.3 88.2 89.2 88.2 91.2 91.1 

𝑪𝟑 
5 25.0 30.4 87.1 86.0 92.0 92.0 90.0 92.0 94.0 

10 16.4 25.6 87.0 84.3 90.2 89.2 87.3 91.1 92.1 

𝑪𝟒 
5 33.5 40.2 85.0 88.0 90.0 92.0 92.0 92.0 92.0 

10 22.7 34.5 81.4 86.2 87.3 91.1 89.2 89.2 89.2 
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Table 8: Empirical power (for 5% significant level) for testing the neglected nonlinearity 

in AR(p) models fitted to data generated based on the models 𝐶1 − 𝐶4, n=300. 

Model Lags 

Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

Gaussian distribution 

𝑪𝟏 
5 100.0 100.0 100.0 93.0 95.0 96.0 96.0 95.0 98.0 

10 100.0 100.0 100.0 91.1 94.1 94.1 94.1 92.2 95.1 

𝑪𝟐 
5 67.1 76.0 99.9 93.0 94.0 95.0 95.0 96.0 100.0 

10 64.3 76.2 100.0 91.1 93.1 94.1 93.1 93.1 99.0 

𝑪𝟑 
5 59.2 67.7 100.0 94.0 94.0 96.0 94.0 95.0 99.0 

10 45.3 59.9 100.0 92.1 92.1 94.1 92.1 94.1 98.0 

𝑪𝟒 
5 74.1 80.5 76.5 92.0 95.0 95.0 96.0 95.0 98.0 

10 63.7 75.9 76.5 91.1 94.1 92.2 94.1 93.1 96.0 

    Skewed normal distribution 

𝑪𝟏 
5 100.0 100.0 100.0 90.0 94.0 94.0 93.0 95.0 97.0 

10 100.0 100.0 100.0 87.3 91.2 92.1 91.1 92.2 95.1 

𝑪𝟐 
5 97.1 98.6 100.0 92.0 92.0 94.0 96.0 94.0 96.0 

10 95.0 97.5 100.0 91.1 91.1 93.1 93.1 91.2 94.1 

𝑪𝟑 
5 66.7 74.3 100.0 92.0 94.0 95.0 97.0 94.0 97.0 

10 52.6 67.1 100.0 91.1 92.1 94.1 94.1 91.2 95.1 

𝑪𝟒 
5 84.1 87.6 100.0 91.0 94.0 94.0 97.0 96.0 95.0 

10 75.1 84.7 100.0 89.2 93.1 93.1 95.1 95.0 92.2 

  

    Student t-distribution 

𝑪𝟏 
5 94.7 96.9 98.0 80.0 88.0 92.0 88.0 90.0 92.0 

10 88.9 93.7 96.9 79.2 87.1 91.1 85.4 89.1 89.2 

𝑪𝟐 
5 60.3 74.3 81.2 80.0 88.0 90.0 89.0 91.0 92.0 

10 46.1 65.2 78.9 77.6 85.4 88.2 86.3 90.1 90.2 

𝑪𝟑 
5 16.2 21.4 94.3 77.0 88.0 90.0 89.0 92.0 93.0 

10 12.6 16.5 93.0 76.2 87.1 87.3 86.3 89.2 91.1 

𝑪𝟒 
5 37.9 44.0 47.4 83.0 86.0 92.0 87.0 91.0 93.0 

10 24.4 37.8 46.0 82.2 83.4 90.2 86.1 89.2 90.2 
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Model Lags 
Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

 

Tables 7 and 8 show that the Fisher and Gallagher (2012), 𝑄11
𝑤 ,  test statistic almost with a 

power that is higher than Ljung-Box (1978), 𝑄11, and Mahdi and Fisher (2021), Cm. I have 

also found that for the same sample size, as the lags value increase from 𝑚 = 5 to 𝑚 = 10, 

the power gets lesser. Results also show that as the sample size increases from 𝑛 = 100 to 

300 the power value is also improved. In addition, the powers achieved by the Monte-Carlo 

appoach are higher than those achieved by the asymptotic method. Moreover, the 

nonparametric Randomly Weighted Bootstrap provided higher power in comparision with 

the other two methods. 

In general, the power of the Mahdi and Fisher (2021) statistic based on the asymptotic 

distribution is the least compared with the other tests. On the other hand, the power based 

on Fisher and Gallagher (2012) is better than Ljung-Box (1978). In almost all cases, the 

Mahdi and Fisher statistic based on the Randomly Weighted Bootstrap approach attains a 

better results compared with the other test statistics. 

Testing the AR-ARCH models 

I examine the power of the 𝑄22, 𝑄22
𝑤 , 𝐿𝑏 , and 𝐶𝑚 portmanteau test statistics for 

discriminating the mean and conditional variance parts.  

The powers of these test statistics are calculated based on the three techniques (asymptotic 

distribution, Monte-Carlo significance test, and random weighted Bootstrapping ) when 

false models 𝐴𝑅(𝑝1) − 𝐴𝑅𝐶𝐻(𝑝2) are fitted to the models 𝑩1 − 𝑩4:  

𝑩𝟏:  𝐴𝑅(2) − 𝐴𝑅𝐶𝐻(1): 𝑧𝑡 = 0.5𝑧𝑡−1 + 0.2𝑧𝑡−2 + 𝜀𝑡 ,         𝜀𝑡 = 𝜎𝑡𝜀𝑡,       𝜎𝑡
2 = 0.1 +  0.4𝜀𝑡−1

2 , 

    Student t-distribution 

𝑪𝟏 
5 100.0 100.0 100.0 85.0 90.0 94.0 92.0 92.0 94.0 

10 100.0 100.0 100.0 84.2 89.1 93.1 90.2 89.2 93.1 

𝑪𝟐 
5 98.8 99.4 99.9 86.0 90.0 93.0 90.0 92.0 94.0 

10 96.8 99.9 99.9 85.1 87.3 92.1 89.1 90.2 91.2 

𝑪𝟑 
5 33.0 39.1 100.0 86.0 91.0 94.0 92.0 92.0 92.0 

10 27.1 34.4 100.0 85.1 88.3 92.1 90.2 91.1 90.2 

𝑪𝟒 
5 87.4 89.8 89.9 88.0 90.0 92.0 91.0 94.0 93.0 

10 79.7 88.1 90.0 85.4 87.3 91.1 89.2 93.1 91.1 
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𝑩𝟐: 𝐴𝑅(1) − 𝐴𝑅𝐶𝐻(2): 𝑧𝑡 = 0.5𝑧𝑡−1 + 𝜀𝑡 ,       𝜀𝑡 = 𝜎𝑡𝜀𝑡,       𝜎𝑡
2 = 0.1 +  0.4𝜀𝑡−1

2 +  0.2𝜀𝑡−2
2  , 

𝑩𝟑: 𝐴𝑅(2) − 𝐴𝑅𝐶𝐻(2): 𝑧𝑡 = 0.5𝑧𝑡−1 + 0.2𝑧𝑡−2 + 𝜀𝑡 ,    𝜀𝑡 = 𝜎𝑡𝜀𝑡 , 𝜎𝑡
2 = 0.1 +  0.4𝜀𝑡−1

2 + 0.2𝜀𝑡−2
2 , 

𝑩𝟒: 𝐴𝑅(2) − 𝐺𝐴𝑅𝐶𝐻(1,1): 𝑧𝑡 = 0.5𝑧𝑡−1 + 0.2𝑧𝑡−2 + 𝜀𝑡 ,  𝜀𝑡 = 𝜎𝑡𝜀𝑡,   𝜎𝑡
2 = 0.1 +  0.4𝜀𝑡−1

2 + 0.5𝜎𝑡−1
2 ,  

where the orders 𝑝1 and 𝑝2 are selected based on the Bayesian information criterion (BIC).  

These are the models studied by Carlos Velasco and Xuexin Wang (2014) that I also 

include in my simulation study for estimating the empirical size of the portmanteau 

statistics. 

The results are shown in Tables 9 − 11.  

Table 9: Empirical power (for 5% significant level) for testing the adequacy of fitted model 

under linear models (𝐵1 − 𝐵4), n=100. 

Model Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 9.2 10.1 18.8 22.3 16.7 10.3 26.4 25.9 26.0 19.6 32.1 30.1 

10 8.4 9.5 16.7 20.1 11.0 11.1 19.3 28.6 13.6 19.8 20.1 36.3 

𝑩𝟐 
5 8.0 11.8 18.0 20.0 11.1 19.2 21.7 21.4 18.2 22.4 23.4 23.9 

10 8.9 13.3 10.7 22.9 13.0 19.2 11.3 32.2 18.0 27.7 18.1 33.1 

𝑩𝟑 
5 39.6 40.0 48.1 52.3 48.9 47.3 52.3 55.5 54.7 48.5 56.8 58.4 

10 38.0 39.8 40.2 50.0 40.4 48.9 49.3 51.5 49.9 51.5 57.4 59.1 

𝑩𝟒 
5 10.9 14.4 18.2 16.2 11.7 22.2 20.5 23.1 14.3 27.0 29.7 32.0 

10 9.9 10.0 15.5 17.1 11.6 16.5 24.9 18.7 13.0 19.3 27.1 28.1 
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    Skewed normal distribution 

𝑩𝟏 
5 18.7 10.2 18.0 27.0 24.1 12.1 26.0 33.0 27.6 21.1 35.6 42.8 

10 16.6 16.6 15.4 23.2 20.7 20.2 21.9 26.0 29.6 29.5 24.6 27.7 

𝑩𝟐 
5 10.3 18.2 23.7 37.3 11.4 20.3 31.7 37.7 11.9 25.4 34.1 40.7 

10 10.0 20.4 25.5 33.8 20.0 24.9 33.2 43.4 24.2 25.4 41.2 47.5 

𝑩𝟑 
5 65.7 70.3 68.6 77.7 66.3 76.1 74.2 87.5 67.5 81.4 77.8 88.8 

10 60.5 66.1 65.9 73.1 68.5 74.4 72.6 76.8 74.7 79.9 80.1 85.5 

𝑩𝟒 
5 13.6 16.3 19.0 18.8 15.3 20.0 22.7 27.4 17.1 26.5 24.2 33.9 

10 11.5 14.9 17.2 19.3 13.0 15.2 19.8 27.3 21.6 20.4 29.4 34.4 

  Student t-distribution 

𝑩𝟏 
5 16.2 17.0 16.9 27.7 21.1 24.9 25.8 31.4 29.9 29.7 32.5 33.3 

10 14.6 17.7 13.5 24.0 18.1 25.8 20.2 32.5 25.8 30.1 27.1 42.2 

𝑩𝟐 
5 38.2 25.8 26.6 37.4 43.9 26.0 26.8 44.9 45.5 26.6 31.2 48.3 

10 34.4 27.9 23.9 34.9 41.6 30.4 30.4 36.3 47.6 32.5 34.8 37.2 

𝑩𝟑 
5 56.1 67.0 56.1 77.8 63.3 76.8 56.4 80.3 67.1 85.7 65.7 84.1 

10 44.3 60.8 53.6 74.9 46.7 69.1 61.9 79.5 50.6 73.8 66.1 83.0 

𝑩𝟒 
5 15.7 19.9 21.0 20.2 17.1 24.9 30.9 28.7 20.2 29.7 35.8 34.6 

10 13.7 18.5 22.3 22.0 15.4 26.1 28.4 23.4 15.4 31.6 33.0 25.6 

 

Table 10: Empirical power (for 5% significant level) for testing the adequacy of fitted 

model under linear models (𝐵1 − 𝐵4), n=300. 

Model Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 22.9 29.4 20.1 45.1 32.6 31.2 26.2 49.8 41.5 39.6 34.2 52.5 

10 19.2 23.4 15.9 47.4 21.1 28.7 15.9 49.4 23.2 30.4 21.1 56.6 

𝑩𝟐 
5 20.1 22.8 19.1 25.5 24.6 28.1 24.9 35.1 31.7 37.3 28.8 36.7 

10 16.3 21.9 14.7 27.3 23.7 31.7 23.1 31.5 28.6 36.2 31.6 33.1 

𝑩𝟑 
5 56.6 51.2 68.1 72.3 64.4 57.0 74.1 80.5 65.2 66.0 77.4 86.4 

10 58.6 48.8 63.3 77 67.7 53.9 71.8 80.2 73.1 63.9 81.3 80.7 

𝑩𝟒 
5 17.3 18.6 24.8 23.8 22.2 26.3 34.1 27.0 24.8 29.1 42.3 27.9 

10 16.2 19.2 27.3 24.7 24.1 21.9 34.6 34.3 33.0 26.1 36.3 40.9 
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    Skewed normal distribution 

𝑩𝟏 
5 37.6 25.6 25.5 53.9 43.0 26.2 29.8 58.6 44.8 30.2 30.2 63.6 

10 35.1 26 23.9 54.9 43.1 33.7 30.6 60.2 45.1 37.4 36.9 62.2 

𝑩𝟐 
5 32.3 20.2 24.7 50 40.3 21.7 34.7 55.4 46.3 21.7 44.4 56.6 

10 30.9 26.6 22.7 48.5 33.1 26.9 31.1 54.5 40.2 27.9 33.7 64.4 

𝑩𝟑 
5 85.3 80.3 78 87.3 89.9 86.5 80.5 95.2 95.1 94.8 87.1 104.7 

10 82.2 78.9 75.7 86.6 90.1 80.9 83.3 96.3 90.8 83.6 91.4 99.1 

𝑩𝟒 
5 25.3 27.7 30.7 31 34.5 29.3 37.4 35.1 36.3 29.7 40.5 39.0 

10 25.6 24.3 32.9 30.2 26.5 32.6 34.3 31.5 27.4 38.6 38.7 33.7 

  Student t-distribution 

𝑩𝟏 
5 28.2 30.2 30.8 59 29.9 31.9 33.3 65.7 34.8 33.5 38.3 66.2 

10 26.9 28 31.4 58.8 28.5 32.5 31.6 61.4 36.0 33.8 39.2 66.4 

𝑩𝟐 
5 78.2 65.8 66.6 77.4 79.5 70.8 76.0 84.2 80.1 80.2 85.4 93.9 

10 74.4 67.9 63.9 74.9 78.2 76.7 67.1 81.1 87.7 77.1 71.9 82.5 

𝑩𝟑 
5 60.1 67.6 76.9 88.8 68.1 74.1 77.6 98.2 69.6 79.7 82.2 101.8 

10 69.7 67.2 68.4 84 72.5 76.0 77.2 88.4 73.9 80.0 84.3 90.2 

𝑩𝟒 
5 28 29.6 36.4 33.9 35.5 37.3 45.7 43.5 36.8 43.8 51.3 51.7 

10 26.9 30.4 34.7 32.7 27.6 36.6 43.8 42.1 32.6 41.1 44.5 51.4 

 

Table 11: Empirical power (for 5% significant level) for testing the adequacy of fitted 

model under linear models (𝐵1 − 𝐵4), n=500. 

Model Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 33.3 39.6 39 55.9 33.8 45.2 46.2 56.5 43.5 51.0 47.1 62.7 

10 29.8 43 36.8 53.8 31.0 50.8 37.1 63.8 35.0 59.8 45.5 65.0 

𝑩𝟐 
5 33.3 39.6 39 55.9 33.5 49.6 39.0 58.7 37.0 52.9 44.5 63.8 

10 29.8 43 36.8 53.8 34.9 44.1 40.5 60.7 35.9 54.0 43.5 61.5 

𝑩𝟑 
5 38.1 35.9 33 87.8 44.0 42.3 40.1 94.7 48.6 48.9 50.0 100.0 

10 34 32.1 28.5 90.1 38.5 34.4 36.5 98.5 42.3 40.5 46.0 100.0 

𝑩𝟒 
5 28 29.6 35.4 34.5 29.3 30.3 38.5 39.8 37.8 40.1 46.0 40.6 

10 27.8 31.6 34.5 35.7 32.1 36.7 38.2 42.7 34.4 42.3 42.5 43.3 
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    Skewed normal distribution 

𝑩𝟏 
5 40.1 45.6 35.1 63.6 41.5 53.4 40.3 72.5 49.3 61.6 48.8 76.9 

10 46.3 42.1 33.3 64.2 47.7 52.0 35.4 68.3 56.6 58.4 43.2 77.4 

𝑩𝟐 
5 37.6 38.7 33.2 58.9 41.1 48.1 40.5 67.1 44.7 55.7 48.2 68.6 

10 36.9 39.9 30.8 61.1 46.9 44.6 32.9 70.1 48.0 51.1 42.7 71.8 

𝑩𝟑 
5 89.7 80.8 88.9 98.9 97.4 88.5 94.9 100.0 100.0 93.3 100.0 100.0 

10 86.7 88.8 85.9 95.9 90.3 89.8 95.5 100.0 98.6 91.0 100.0 100.0 

𝑩𝟒 
5 30 39.9 41.5 40.2 35.5 46.0 45.4 45.7 38.8 48.2 46.7 49.8 

10 29.9 40.9 38.3 41.7 30.3 44.5 45.8 49.5 40.1 50.2 46.2 58.4 

  Student t-distribution 

𝑩𝟏 
5 39.2 41.2 33.8 70.6 43.1 50.9 37.8 74.6 51.6 51.8 39.6 76.1 

10 36.9 48 31.4 70 42.2 53.7 37.7 77.5 51.9 56.3 44.9 82.0 

𝑩𝟐 
5 48.1 49.9 44.4 68.8 54.1 55.1 51.4 74.5 61.6 63.6 61.1 80.5 

10 43.9 53.3 47 69.9 52.7 62.2 53.6 73.0 56.4 70.1 58.8 76.1 

𝑩𝟑 
5 89.5 89.1 89.9 100 99.0 95.7 91.6 100.0 100.0 95.8 99.0 100.0 

10 91.1 80.9 88.9 100 92.7 88.3 90.1 100.0 94.9 98.1 92.5 100.0 

𝑩𝟒 
5 34.7 40 42.6 42.2 43.4 46.6 49.0 45.9 49.3 48.9 50.7 49.7 

10 33.9 38.2 41.7 40.5 41.3 44.9 45.1 42.8 48.9 51.1 45.7 45.8 

 

From the Tables 9, 10, and 11 it was observed that the in most of the cases Mahdi and 

Fisher (2021), Cm, results were higher than both Ljung-Box (1978), 𝑄11 and Li-Mak 

(1994), 𝐿𝑏. It’s also observed  that Random Weighted Bootstrap (RWB) tests results were 

higher than both, Asymptotic and Monte Carlo Technique results. Monte Carlo results were 

found out to be higher than Asymptotic results. All these observations were for all the 

sample sizes, i.e., n = 100, 300, and 500. Also it is noted that the higher sample sizes yielded 

the higher power whether using Asymptotic, Monte Carlo or Random Weighted Bootstrap 

(RWB) tests approach.  

  



  

38 

 

 

CHAPTER 5: APPLICATION 

In the section I applied the aforementioned test statistics and on a real data. Real data 

represented the log  returns of the Qatar Ntional Bank (QNB) from January 2/2019 through 

December 30/2020 which involves data before and after Covid-19 pandemic. The log-

returns data, which was calculated as the difference of log natural of the current value and 

the log natural of the previous value. When we compare two different data then we can use 

either ratio or differences. In Time-series we use ratios. When the ratios of two quantities 

are calculated then it is either grater than 1, 1,  or between 0 and 1 (inclusive). So when the 

logs are calculated of the ratios then if the ratio is greater than 1 then its log value will be 

positive but can be very smaller than the actual ratio itself, if the ratio equals 1 then its log 

value will be 0 and negative otherwise. It is also convenient to plot the log ratios as 

compared to the actual values.  The data I used can be obtaimed from the online web source 

https://finance.yahoo.com/quote/QNBK.QA?p=QNBK.QA.  

Table 12: The Descriptive analysis of QNB log-returns 

Mean Median Var Std. Dev Min Max Range Skewness Kurtosis 

−0.00013 

 

0.0000 0.0002 0.0153 -0.1053 0.0607 0.1660 -0.6261 6.8611 

I first calculated the basic descriptive statistics of the log-returns data and results are given 

in Table 12 above. The log-returns values were negatively skewed with the value of 

skewness as -0.6261. Regarding the peakedness, the kurtosis score 6.8611 which is larger 

than 3. The graph also shows that the log returns are skewed to the left and it has an excess 

Kurtosis. There is an extreme negative spike in March 2020 which is the representation of 

the beginning Coronavirus pandemic (COVID-19). These results with the histogram graph 

shown in Figure 1 a suggests that the log-returns has a leptokurtic distribution (not 

Gausian). 

https://finance.yahoo.com/quote/QNBK.QA?p=QNBK.QA
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Figure 1: Qatar National Bank (QNB) log-returns distribution and long returns 

histogram.  
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The Kolmogorov-Smirnov and Shapiro-Wilk tests have significance values. In both cases 

the significance values are less than 0.05. The Shapiro-Wilk normality test for the log-

returns data is W = 0.9024 with a p-value almost zero. Also, the Q-Q plot of log-returns 

shows the values are deviated away from the normal line and I can conclude that the log-

returns were skewed (see Figure 2). 

Figure 2: Q-Q plot of Qatar national Bank (QNB) log-returns. 

I first fitted several ARIMA models and select the best model based on the Bayesian 

Information Criterion (BIC). I found the best model is the Moving Average of order 2, 

MA(2),  

𝑧𝑡 = 𝜀𝑡 − 0.0024𝜀𝑡−1 − 0.0972𝜀𝑡−2. 

I then tested the adequacy in the fitted model using the test statistics of Ljung-Box (𝑄11) 

and Fisher-Gallagher (𝑄11
𝑤 ), and Mahdi and Fisher (𝐶𝑚) based on the asymptotic 

distribution, Monte-Carlo, and Randomly Weighted Bootstrap approaches. The results are 

given in Table 13.  
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Lag
s 

Asymptotic distribution MC RWB  

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

 

5  0.84  1.00  8.19 × 10−8  0.98  0.99 
7.59 × 10−9  

 
 0.88 0.81  7.04 × 10−8  

10 0.08  0.66 
9.250378×
10−13 

 0.182
8 

0.58 
8.12 ×
10−12   

0.12   0.33 
5.11 ×
10−14  

Table 13: P-value – test adequacy of fitted MA(2) model by checking the dependency in 

the residuals 

 

I found that in asymptotic distribution using the 𝑄11 and 𝑄11
𝑤  suggest that the MA(2) model 

is good as all the p-values are high. On the other hand, when I tested using the 𝐶𝑚, the 

model is not good as the p-vales are approximately equal to zero. I found that the Monte-

Carlo and the Randomly Weighted Bootstrap still do not catch the inadequacy using the 

𝑄11 and 𝑄11
𝑤  as the p-values still are very high. On the other hand, the Randomly Weighted 

Bootstrap of the test statistic 𝐶𝑚 suggests that there is an inadequacy in the fitted model. 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) in Figure 

3 suggest that the log-returns might exhibit an autoregressive conditional 

heteroskedasticity (ARCH) and that MA(2) might not be a good model to fit the data. Thus, 

I applied the aforementioned tests on the squared residuals and test for ARCH effect. All 

tests suggest that the ARMA is not a good model to fit the data due to ARCH effect as all 

p-values less than 5%. 

 

 

 

 

 

 

Figure 3: Patrtial auto correlation function (PACF) and auto correlation function (ACF) 

of square residuals for Qatar National Bank (QNB) data log-returns. 
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After that, I fitted some ARMA − ARCH models and select that best based on the BIC 

criteria. The BIC suggest that the MA(1) − ARCH(1) model might be a good candidate to 

fit the data. The selected MA(1) − ARCH(1) is   

𝑧𝑡 = −0.00618𝜀𝑡,  

where  𝜀𝑡 = 𝜎𝑡𝜉𝑡,     𝜎𝑡
2 = 0.05𝜀𝑡−1

2 . 

I applied the test statistics McLeod-Li (1983), 𝑄22, Fisher and Gallagher (2012), 𝑄22
𝑤 , Li-

Mak (1994), 𝐿𝑏, and Mahdi and Fisher (2021), Cm on the squared residuals of the MA(1) −

ARCH(1) model.  

Table 14: P-value – test adequacy of fitted MA(1)-ARCH(1) model. 

Lag
s 

Asymptotic distribution MC RWB 

𝑄22 𝑄22
𝑤  𝐿𝑏 𝐶𝑚 𝑄22 𝑄22

𝑤  𝐿𝑏 𝐶𝑚 𝑄22 𝑄22
𝑤  𝐿𝑏 𝐶𝑚 

 

5 
0.
86 

 0.7
0 

0.9
7 

2.5 ×
10−6  

0.8
6 

 0.7
1 

0.8
6  

2.2 ×
10−6  

0.8
5  

0.7
1  

0.6
8  

1.9 ×
10−6  

10 
 0.
84 

0.9
1 

 0.8
9 

1.1 ×
10−6  

0.8
4 

0.9
2 

0.7
2  

9.1 ×
10−7  

0.8
2 

0.9
3  

0.6
2 

8.2 ×
10−7  

Table 14 shows that the portmanteau tests based on 𝑄22,𝑄22
𝑤 , 𝐿𝑏, and 𝐶𝑚 using both 

parametric and non parametric approaches. The test statistics of 𝑄22 , 𝑄22
𝑤 , and 𝐿𝑏based on 

the three approaches, the asymptotic distribution, Monte-Carlo, and Randomly Weighted 

Bootstrap methods suggest that the model is good, whereas the 𝐶𝑚suggests that the model 

is not a good fit.  

Lastly, I tried several models to improve the fit and obtained the final model as 

GARCH(3,3): 

𝜎𝑡
2 = 0.00004 + 0.14262𝜀𝑡−1

2 + 0.33143𝜀𝑡−2
2 + 0.03266𝜀𝑡−3

2 +  0.000001𝜎𝑡−1
2

+ 0.36862 𝜎𝑡−3
2  

I tested the adequacy of this fitted model using the 𝑄22,𝑄22
𝑤 , 𝐿𝑏, and 𝐶𝑚 based on the three 

parametric and non parametric methods.  

The results in Table 15, show that the protmanteau tests based on parametric and 

nonparametric approaches suggest that the fitted GARCH (3,3) model is found out to be 
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the best. 

Table 15: P-value – test adequacy of fitted GARCH(3,3) model. 

Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏  𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏  𝐶𝑚 

 

5 0.77 0.80 0.42 0.05 0.76 0.78 0.42 0.05 0.72 0.77 0.42 0.05 

10 0.94 0.90 0.85 0.07 0.92 0.87 0.84 0.07 0.91 0.83 0.81 0.07 
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CONCLUSION  

In this thesis, I conducted a comparison study between the parametric and nonparametric 

portmanteau tests that are used in linear and nonlinear time series models. The parametric 

portmanteau tests are used based on the asymptotic distributions, whereas the 

nonparametric portmanteau tests are used based on the Monte-Carlo and Randomly 

Weighted Bootstrap (RWB) approaches. 

To estimate the size of the test statistics, I generated data based on 1000 replications using 

different ARMA and GARCH models. For the Monte-Carlo case, I replicated each 

simulation 500 times. In each case, I fitted the true model and calculated the Type-I error 

at lags 5 and 10 with sample sizes n=100,300, and 500 to cover small, moderate, and large 

sample sizes based on Gaussian and non-Gaussian distributions. For the non Gaussian 

distribution, I considered the t-distribution for degrees of freedom {3,6,9,12}, the skewed 

normal for skewness {−2,−1.5, −1,−0.5, 0.5, 1, 1.5, 2}, and skewed t-distribution for 

skewness {−2,−1.5, −1,−0.5, 0.5, 1, 1.5, 2} and degrees of freedom {3,6,9,12}. The 

skewness and degrees of freedom parameters were used to cover a range of values that are 

sufficiently representative of mild asymmetry and heavy-tailed leptokurtosis distributions 

in several financial time series. 

I found that as the sample size increases (for samples sizes increases from 100 through 300 

to 500) the test values get closer to the respective significant level. Similarly, Similarly, for 

the same sample sizes, the observed sizes approached the nominal size as lags increased 

from 𝑚 = 5 to 𝑚 = 10.. As compared to Ljung and Box (1978), McLeod and Li (1983), 

Fisher and Gallagher (2012), Li and Mak (1994), and Mahdi and Fisher (2021), the 

nonparametric Monte-Carlo and Randomly Weighted Bootstrap approachs provide more 

accurate results compared with the parametric approach.  

I also compared the power of the aforementioned tests in detecting the absence of linearity 

and nonlinearity assumption as well as in testing for the adequacy in fitted ARMA and 

GARCH models. In each case, I fitted a false model and then I calculated the relative 

frequency of the number of rejections. In almost all scenarios, I found that the test statistics 

based on the asymptotic distribution (parametric approach) provided the least power 

compared with the nonparametric Monte-Carlo and Randomly Weighted Bootstrap 
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approaches. In all cases, my simulation results suggested that the Randomly Weighted 

Bootstrap approach provided the higher power, and Mahdi and Fisher test is almost always 

provided the higher power. Unlike the Emperical Size tests, for the same sample sizes, the 

observed power decreases as lags increased from 𝑚 = 5 to 𝑚 = 10. 

I finished this thesis by applying these techniques on real-world data using the log-returns 

of Qatar National Band, QNB, data, from January 2/2019 through December 30/2020 was 

used which involves data before and after the COVID-19 pandemic. I found that all tests 

based on all methods (asymptotic distribution, Monte-Carlo, and Randomly Weighted 

Bootstrap) reject the null hypothesis that the ARMA model can fit the data accurately.  

After that, I fitted some Garch models and found that the GARCH(3,3) model with a 

skewed t-distribution is a reasonable model that can fit the log-returns data well. My final 

model was:  

𝜎𝑡
2 = 0.00004 + 0.14262𝜀𝑡−1

2 + 0.33143𝜀𝑡−2
2 + 0.03266𝜀𝑡−3

2 +  0.000001𝜎𝑡−1
2

+ 0.36862 𝜎𝑡−3
2  

Then, I applied the McLeod-Li, Fisher-Gallagher, Li- Mak, and Mahdi-Fisher on the 

squared residuals of this fitted model using the parametric and nonparametric methods. I 

found all test statistics have failed to detect inadequacy of this fitted model, except the 

Mahdi-Fisher statistic based on the Randomly Weighted Bootstrap. This suggests that the 

GARCH(3,3) model might be inaccurate and need to be improved.  

I concluded that the nonparametric portmanteau tests based on Bootstrapping  and Monte-

Carlo techniques are recommended to be used in diagnosis checks of the time series model. 

I focused my attention on studying the portmanteau tests that can be used with 

ARMA/GARCH models, but one can extend this study to test for goodness-of-fit in 

seasonal ARMA/GARCH models (see Mahdi (2016)). I would suggest some studies to be 

done on observing how the power changes as emperical size changes from 1% to 5%. 
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Appendix 

Tables 16-21 below show thae results of the empirical Type I errors based on the models 

𝑨𝟏 − 𝑨𝟒 and 𝑩𝟏 − 𝑩𝟒 by averaging of the relative rejection frequncies across the Skewed 

Normal and Students' t distribution with skewness {−2,−1.5, −1,−0.5, 0.5,1, 1.5, 2} and 

degress of freedom {3,6,9,12}. In each case, I calculate the empirical size corresponding 

to a nominal size of 1%. 

Table 16: Empirical sizes, for 1% nominal tests, based on models 𝐴1 − 𝐴4, n=100. 

Model Lags 

Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

Gaussian distribution 

𝑨𝟏 
5 1.9 2.7 1.9 1.4 1.2 1.2 0.7 1.3 0.8 

10 1.7 1.9 1.2 1.3 1.1 1.2 0.8 1.2 0.8 

𝑨𝟐 
5 1.1 2.7 1.7 0.7 1.3 1.3 0.8 0.7 0.8 

10 0.8 0.6 0.9 0.7 1.2 1.2 0.8 0.7 0.8 

𝑨𝟑 
5 2.2 3.1 1.9 1.2 1.3 0.7 0.7 1.2 1.2 

10 2.3 2.2 1.4 1.2 1.2 0.7 0.8 1.1 1.2 

𝑨𝟒 
5 1.5 3.0 2.0 0.6 0.7 0.6 0.7 0.7 1.2 

10 0.8 0.6 1.1 0.6 0.7 0.6 0.8 0.8 1.2 
   Skewed normal distribution 

𝑨𝟏 
5 0.7 1.1 2.0 1.5 1.3 1.3 0.8 1.3 0.8 

10 3.2 2.8 2.8 1.4 1.2 1.3 0.8 1.3 0.8 

𝑨𝟐 
5 1.1 0.6 1.8 0.7 1.4 1.4 0.8 0.7 0.8 

10 1.3 1.5 2.2 0.8 1.3 1.3 0.8 0.8 0.9 

𝑨𝟑 
5 1.0 0.6 2.6 1.3 1.3 0.7 0.8 1.2 1.3 

10 1.6 1.4 1.8 1.3 1.3 0.8 0.8 1.2 1.2 

𝑨𝟒 
5 2.5 2.6 1.4 0.6 0.7 0.7 0.8 0.8 1.3 

10 2.5 2.5 1.4 0.7 0.7 0.7 0.8 0.8 1.2 

  Student t-distribution 

𝑨𝟏 
5 0.7 1.1 2.7 1.6 1.4 1.4 0.8 1.4 0.9 

10 3.3 2.2 3.4 1.5 1.3 1.3 0.9 1.4 0.9 

𝑨𝟐 
5 2.5 2.3 0.3 0.8 1.4 1.5 0.9 0.8 0.9 

10 1.1 2.2 1.9 0.9 1.4 1.5 0.9 0.9 0.9 

𝑨𝟑 
5 4.5 2.1 2.1 1.4 1.4 0.7 0.9 1.3 1.4 

10 4.7 1.1 2.4 1.4 1.4 0.8 0.9 1.3 1.3 

𝑨𝟒 
5 3.3 0.6 4.8 0.7 0.8 0.7 0.9 0.9 1.4 

10 2.4 3.3 2.1 0.7 0.8 0.7 0.9 0.9 1.3 
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Table 17: Empirical sizes, for 1% nominal tests, based on models 𝐴1 − 𝐴4, n=300. 

Model Lags 

Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

Gaussian distribution 

𝑨𝟏 
5 0.7 1.0 1.5 1.3 1.2 1.2 0.7 1.2 0.7 

10 1.2 0.8 1.6 1.3 1.1 1.1 0.7 1.2 0.8 

𝑨𝟐 
5 0.6 2.0 2.3 0.7 1.3 1.3 0.7 0.6 0.8 

10 1.5 0.6 1.7 0.7 1.1 1.2 0.8 0.7 0.8 

𝑨𝟑 
5 1.0 1.4 2.5 1.2 1.2 0.6 0.7 1.2 1.2 

10 1.5 1.1 1.8 1.1 1.2 0.7 0.8 1.1 1.1 

𝑨𝟒 
5 1.1 2.6 2.2 0.6 0.6 0.6 0.7 0.7 1.2 

10 1.9 1.0 1.8 0.6 0.7 0.6 0.8 0.7 1.2 
   Skewed normal distribution 

𝑨𝟏 
5 1.2 1.7 1.8 1.4 1.3 1.3 0.7 1.4 0.8 

10 3.0 2.6 2.6 1.4 1.2 1.2 0.8 1.3 0.9 

𝑨𝟐 
5 1.2 0.6 1.9 0.7 1.4 1.4 0.8 0.7 0.8 

10 1.3 1.5 2.3 0.8 1.2 1.3 0.8 0.8 0.8 

𝑨𝟑 
5 1.0 0.6 2.7 1.3 1.3 0.7 0.8 1.2 1.4 

10 1.6 1.5 1.8 1.2 1.2 0.7 0.8 1.2 1.2 

𝑨𝟒 
5 2.5 2.7 1.5 0.6 0.7 0.6 0.8 0.8 1.3 

10 2.6 2.6 1.5 0.7 0.7 0.7 0.8 0.8 1.3 

  Student t-distribution 

𝑨𝟏 
5 0.9 0.9 3.3 1.5 1.3 1.4 0.8 1.5 0.8 

10 4.1 2.4 4.2 1.5 1.2 1.3 0.8 1.4 0.9 

𝑨𝟐 
5 2.5 2.4 0.3 0.8 1.5 1.5 0.9 0.7 0.9 

10 1.1 2.2 2.0 0.8 1.3 1.4 0.9 0.8 0.9 

𝑨𝟑 
5 4.7 2.1 2.2 1.4 1.4 0.7 0.8 1.3 1.4 

10 4.9 1.0 2.4 1.3 1.3 0.8 0.9 1.3 1.3 

𝑨𝟒 
5 3.4 0.6 5.0 0.7 0.7 0.7 0.8 0.8 1.4 

10 2.4 3.4 2.1 0.7 0.8 0.7 0.9 0.8 1.4 

 

 

  



  

48 

 

Table 18: Empirical sizes, for 1% nominal tests, based on models 𝐴1 − 𝐴4, n=500. 

Model Lags 

Asymptotic distribution MC RWB 

𝑄11 𝑄11
𝑤  𝐶𝑚 𝑄11 𝑄11

𝑤  𝐶𝑚 𝑄11 𝑄11
𝑤  𝐶𝑚 

Gaussian distribution 

𝑨𝟏 
5 0.7 1.1 1.6 1.3 1.1 1.2 0.7 1.2 0.7 

10 1.2 0.8 1.4 1.3 1.1 1.1 0.7 1.2 0.8 

𝑨𝟐 
5 0.7 1 2 0.7 1.2 1.3 0.7 0.6 0.8 

10 1.2 0.8 1.6 0.7 1.1 1.2 0.8 0.7 0.8 

𝑨𝟑 
5 1.1 1.3 2.2 1.2 1.2 0.6 0.7 1.1 1.2 

10 1.5 1.1 1.6 1.1 1.1 0.7 0.7 1.1 1.1 

𝑨𝟒 
5 1.1 2.4 1.9 0.6 0.6 0.6 0.7 0.7 1.2 

10 1.8 1 1.5 0.6 0.7 0.6 0.7 0.7 1.1 
   Skewed normal distribution 

𝑨𝟏 
5 0.5 1.3 2.5 1.4 1.2 1.3 0.7 1.3 0.8 

10 3.2 3 3.4 1.3 1.2 1.2 0.8 1.3 0.8 

𝑨𝟐 
5 0.8 1.0 1.0 0.7 1.3 1.4 0.8 0.7 0.8 

10 1.7 1.8 1.1 0.8 1.2 1.3 0.8 0.7 0.8 

𝑨𝟑 
5 1.5 2.5 1.4 1.3 1.3 0.7 0.8 1.2 1.3 

10 1.5 1.6 1.3 1.2 1.3 0.7 0.8 1.2 1.2 

𝑨𝟒 
5 1.8 0.8 0.7 0.6 0.7 0.6 0.8 0.7 1.3 

10 1.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 1.2 

  Student t-distribution 

𝑨𝟏 
5 1 1.7 2.8 1.5 1.3 1.4 0.8 1.4 0.8 

10 3.6 3.7 4 1.4 1.3 1.3 0.8 1.4 0.9 

𝑨𝟐 
5 0.5 0.8 1.2 0.7 1.4 1.4 0.8 0.7 0.9 

10 2.0 1.2 1.3 0.8 1.3 1.3 0.9 0.8 0.9 

𝑨𝟑 
5 2.1 1.8 1.4 1.3 1.4 0.7 0.8 1.3 1.4 

10 1.4 1.6 1.4 1.3 1.3 0.8 0.8 1.3 1.3 

𝑨𝟒 
5 1.9 1.0 0.8 0.7 0.8 0.7 0.9 0.8 1.3 

10 2.2 1.9 0.8 0.7 0.7 0.7 0.9 0.8 1.3 
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Table 19: Empirical sizes, for 1% nominal tests, based on models  𝐵1 − 𝐵4, n=100. 

Model Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏   𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏   𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏   𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 0.6 0.1 0.3 1.0 1.2 0.7 1.3 1.3 1.3 0.8 1.2 0.7 

10 1.0 0.4 0.8 0.6 1.1 0.7 1.2 1.2 1.2 0.8 1.1 0.7 

𝑩𝟐 
5 0.5 0.2 0.4 0.9 1.3 1.3 0.6 1.3 1.1 0.7 0.7 0.7 

10 1.0 0.4 0.5 0.6 1.3 1.2 0.7 1.3 1.1 0.7 0.7 0.8 

𝑩𝟑 
5 0.6 0.2 0.4 0.7 0.6 1.2 1.3 1.3 1.1 0.7 0.8 0.7 

10 0.8 0.4 0.6 0.6 0.6 1.1 1.3 1.2 1.1 0.8 0.8 0.7 

𝑩𝟒 
5 0.5 0.5 0.5 1.0 1.2 0.7 1.2 0.6 1.2 0.7 0.7 0.8 

10 1.3 0.6 1.1 0.5 1.2 0.7 1.2 0.6 1.1 0.7 0.7 0.8 

    Skewed normal distribution 

𝑩𝟏 
5 0.4 0.3 0.4 1.8 1.0 0.5 1.5 1.5 1.4 0.9 1.0 0.6 

10 0.5 0.5 0.4 1.6 1.0 0.6 1.5 1.0 1.1 0.7 0.9 0.6 

𝑩𝟐 
5 0.3 0.1 0.3 1.8 1.1 1.5 0.7 1.5 1.3 0.6 0.6 0.6 

10 0.4 0.3 0.3 1.3 1.1 1.0 0.8 1.1 1.2 0.6 0.9 0.9 

𝑩𝟑 
5 0.3 0.1 0.3 1.7 0.7 1.1 1.1 1.0 1.3 0.8 0.6 0.6 

10 0.4 0.3 0.3 1.7 0.7 1.0 1.1 1.4 1.3 0.7 1.0 0.6 

𝑩𝟒 
5 0.4 0.3 0.3 1.4 1.4 0.6 1.4 0.5 1.4 0.6 0.6 0.9 

10 0.5 0.3 0.4 1.2 1.0 0.8 1.3 0.7 1.3 0.6 0.6 0.9 

  Student t-distribution 

𝑩𝟏 
5 0.5 0.2 0.5 2.2 1.1 0.4 1.2 1.7 1.2 1.0 1.2 0.5 

10 0.5 0.4 0.3 1.4 0.9 0.7 1.6 1.1 1.2 0.6 0.7 0.7 

𝑩𝟐 
5 0.4 0.2 0.4 2.0 1.2 1.7 0.8 1.3 1.2 0.5 0.7 0.7 

10 0.3 0.3 0.4 1.1 0.9 0.9 0.6 1.3 1.0 0.7 0.7 1.0 

𝑩𝟑 
5 0.3 0.1 0.3 1.9 0.8 1.3 1.3 1.2 1.1 0.7 0.5 0.7 

10 0.4 0.3 0.3 1.4 0.6 0.8 1.2 1.2 1.4 0.7 0.8 0.5 

𝑩𝟒 
5 0.4 0.2 0.4 1.5 1.2 0.5 1.5 0.4 1.2 0.7 0.5 1.1 

10 0.6 0.4 0.5 1.4 0.8 0.7 1.1 0.8 1.2 0.5 0.5 1.0 
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Table 20: Empirical sizes, for 1% nominal tests, based on models  𝐵1 − 𝐵4, n=300. 

Model Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏   𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏   𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏   𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 0.5 0.2 0.5 1.7 1.2 1.1 0.8 1.3 1.1 1.2 0.9 0.8 

10 0.4 0.5 0.3 1.1 1.1 1.1 0.8 1.2 1.1 1.1 0.9 0.9 

𝑩𝟐 
5 0.3 0.2 0.3 1.9 0.8 0.7 0.7 1.2 1.1 0.9 1.2 0.8 

10 0.2 0.2 0.2 1.1 0.8 0.7 0.8 1.2 1.1 0.9 1.1 0.8 

𝑩𝟑 
5 0.3 0.2 0.3 1.6 1.2 1.2 0.7 0.7 0.9 0.8 1.2 0.8 

10 0.2 0.3 0.4 1 1.2 1.1 0.7 0.7 0.9 0.8 1.2 0.8 

𝑩𝟒 
5 0.6 0.4 0.6 1.6 1.1 0.7 1.2 0.8 1.1 1.2 0.7 1.1 

10 0.4 0.3 0.4 1.2 1.1 0.7 1.2 0.8 1.0 1.1 0.8 1.0 

    Skewed normal distribution 

𝑩𝟏 
5 0.7 0.7 0.6 1.4 1.1 1.4 0.8 0.8 0.9 1.1 0.6 0.6 

10 1.3 0.7 0.9 1.8 1.4 0.9 0.8 0.6 0.9 0.9 0.9 0.9 

𝑩𝟐 
5 0.5 0.3 0.7 1.3 1.2 1.5 1.0 1.5 1.4 0.6 0.9 0.6 

10 0.8 0.5 0.9 1.6 1.0 1.4 1.4 1.4 1.2 0.9 0.7 0.6 

𝑩𝟑 
5 0.7 0.3 0.6 1.9 1.4 1.1 0.7 1.2 0.6 0.9 1.1 0.8 

10 1.0 0.6 0.9 1.3 1.2 1.4 0.5 1.1 0.9 0.7 1.4 0.8 

𝑩𝟒 
5 0.6 0.4 0.7 1.6 0.5 1.1 1.1 0.5 1.5 1.0 1.5 1.0 

10 0.6 0.5 0.5 1.5 0.6 1.3 1.4 0.8 1.4 1.0 1.4 1.3 

  Student t-distribution 

𝑩𝟏 
5 0.9 0.5 0.8 1.8 0.8 1.7 1.0 1.0 1.1 0.8 0.4 0.5 

10 1.6 0.5 0.6 1.3 1.8 0.7 1.0 0.8 1.1 1.1 1.1 0.7 

𝑩𝟐 
5 0.6 0.4 0.8 1.6 1.5 1.9 1.3 1.2 1.0 0.4 0.7 0.4 

10 1.0 0.6 1.2 1.1 0.8 1.9 1.0 1.1 0.9 1.1 0.6 0.4 

𝑩𝟑 
5 0.8 0.2 0.4 2.4 1.1 0.8 0.5 0.9 0.5 1.2 0.8 1.0 

10 1.2 0.5 0.7 1.6 0.9 1.0 0.7 1.4 0.6 0.9 1.1 1.1 

𝑩𝟒 
5 0.8 0.5 0.5 2.1 0.7 1.3 0.8 0.7 1.9 0.8 1.1 1.3 

10 0.8 0.6 0.7 1.2 0.7 1.5 1.7 0.9 1.0 1.2 1.1 1.0 
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Table 21: Empirical sizes, for 1% nominal tests, based on models  𝐵1 − 𝐵4, n=500. 

Model Lags 

Asymptotic distribution MC RWB 

 𝑄22  𝑄22
𝑤   𝐿𝑏   𝐶𝑚  𝑄22  𝑄22

𝑤   𝐿𝑏   𝐶𝑚  𝑄22  𝑄22
𝑤   𝐿𝑏   𝐶𝑚 

Gaussian distribution 

𝑩𝟏 
5 0.7 0.3 0.7 1.8 0.9 1.1 1.3 1.2 1.1 1.2 1.0 0.9 

10 1.0 0.6 0.7 1.2 0.9 1.1 1.2 1.1 1.1 1.2 1.0 0.9 

𝑩𝟐 
5 0.5 0.1 0.4 2.0 1.1 1.2 0.7 0.8 1.1 1.1 0.9 1.0 

10 0.5 0.3 0.5 1.0 1.1 1.0 0.8 0.9 1.0 1.0 1.0 1.0 

𝑩𝟑 
5 0.5 0.1 0.5 2.0 1.2 1.2 1.2 1.1 0.8 0.8 1.2 0.8 

10 0.4 0.3 0.4 1.3 1.1 1.2 1.2 1.0 0.9 0.8 1.1 0.9 

𝑩𝟒 
5 0.8 0.2 0.8 2.0 0.9 1.2 0.8 0.9 1.0 1.2 1.0 1.0 

10 0.5 0.4 0.5 1.3 0.9 1.2 0.9 0.9 1.0 1.1 1.0 1.1 

    Skewed normal distribution 

𝑩𝟏 
5 1.1 0.7 1.1 1.2 0.7 0.7 1.2 1.2 1.1 1.2 0.8 1.1 

10 1.1 1.0 1.1 1.3 0.7 0.8 1.2 1.2 1.1 1.1 0.8 1.1 

𝑩𝟐 
5 0.8 0.5 0.7 1.4 1.3 1.3 0.7 1.2 0.9 1.2 0.8 0.8 

10 1.0 0.7 1.0 1.2 1.1 1.2 0.8 1.2 0.9 1.1 0.9 0.8 

𝑩𝟑 
5 0.8 0.5 0.8 1.4 0.7 1.2 0.7 1.2 1.2 1.2 0.9 1.1 

10 1.1 0.8 0.9 1.4 0.8 1.1 0.7 1.1 1.1 1.2 0.8 1.1 

𝑩𝟒 
5 0.6 0.4 0.6 1.2 1.4 1.2 1.3 0.7 0.7 1.1 1.1 1.1 

10 0.7 0.6 0.7 1.1 1.2 1.2 1.1 0.8 0.8 1.1 1.1 1.0 

  Student t-distribution 

𝑩𝟏 
5 1.3 0.6 1.3 1.5 0.6 0.8 1.1 1.4 0.9 1.4 0.9 1.0 

10 1.3 1.1 1.3 1.1 0.8 0.7 1.3 1.4 0.9 1.3 1.0 1.3 

𝑩𝟐 
5 0.7 0.4 0.8 1.6 1.0 1.5 0.6 1.0 1.1 1.4 1.0 0.7 

10 0.9 0.8 0.9 1.0 1.2 1.0 0.9 1.0 1.0 0.9 0.8 0.7 

𝑩𝟑 
5 0.8 0.6 0.9 1.1 0.6 1.4 0.6 1.3 1.4 1.0 0.7 1.3 

10 1.3 0.6 1.1 1.1 0.7 1.3 0.6 0.9 1.2 1.4 0.7 0.9 

𝑩𝟒 
5 0.5 0.5 0.7 1.1 1.6 1.1 1.1 0.8 0.7 0.9 1.2 0.9 

10 0.8 0.7 0.9 1.3 1.0 1.0 1.3 0.9 1.0 0.9 1.2 0.9 
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