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ABSTRACT 

ISMAIL, RADWA, M., Masters : June : [2022:], Applied Statistics 

Title: On Variable Selection with the Presence of Missing Data in Longitudinal Panel 

Studies 

Supervisor of Thesis: Abdel-Salam, G, Abdel-Salam. 

Longitudinal data are valuable in various disciplines because they provide 

helpful developmental patterns over time. However, frequently, it is challenging to have 

a high dimension of covariates and ubiquitous missing values in longitudinal data due 

to individual nonresponse and drop out.  

Response measurements in longitudinal studies are correlated within-subjects, 

where this challenge needs to be adequately handled using the linear mixed model 

(LMM) to get valid inferences and standard errors. LMMs provide an effective and 

flexible way to accommodate two types of parameters for between-subject correlation 

and within-subject variation. The powerful two-stage adaptive LASSO method for 

variable selection adopted provided promising results in LMMs. The joint modeling 

multiple imputations for handling missingness provided a consistent estimation of 

parameters and variance components. 

Several researchers discussed the variable selection criteria and missing data 

handling in longitudinal studies separately.  Hence, the thesis proposed a 

computationally efficient combining algorithm of multiple imputations and penalized 

variable selection using the stacked (homogeneous) approach. The homogeneous 

algorithm showed better estimation and selection properties. 
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CHAPTER 1: INTRODUCTION 

Motivation of Thesis 

High instability and unbiasedness may result when the estimation model 

includes all the candidate variables, especially those highly correlated (Greenland, 

1989). In multivariable analysis, redundant or irrelevant predictors add noise to other 

quantities that the model is interested in estimating, cause multicollinearity, and 

increase the cost and time for measuring trivial predictors. Based on the principle of 

parsimony, having fewer variables in a simple model is preferred over complex models 

in terms of computational time, cost, and interpretation (Chowdhury & Turin, 2020). 

Hence, it can be valuable to select a limited subset of the most relevant predictors (i.e., 

covariates) to the response variable to include it in the statistical model. The 

terminology “variable selection” is a special case of “model selection” and is often used 

when the competing models agree on the mathematical form of predictors but differ on 

which predictor should be included. The variable selection also includes choosing the 

product terms (i.e., the interaction between regressors) to enter the model. Historically, 

variable selection has occurred directly on linear models because 1) analytic tractability 

facilitates great insight, and 2) many problems can be represented as linear models. 

However, the development of computer technology allowed the implementation of 

richer treatments of the variable selection problem in the general model selection 

framework (George, 2000).  

Stepwise algorithms are the most widely applied techniques that work on two 

classes of variables. One class of variables enters the initial model and is not subject to 

deletion (i.e., forced-in variables). At the same time, the other class of variables enters 

a repeated cycle of selection-deletion by the stepwise regression algorithm (i.e., non-

forced variables). The two conventional stepwise strategies are Forward-selection and 



 

2 

Backward-deletion. Any variable selection algorithm must be evaluated for a) validity 

of the estimates, b) sensitivity of selecting the candidate variables, and c) specificity of 

screening out the inappropriate candidate variables. Greenland (1989) indicated that 

conventional stepwise variable selection tools are impaired by poor sensitivity (low 

power) and may lead to the nonnormality of coefficient estimates. An alternative 

selection strategy to these conventional algorithms is to keep the outcome variable 

forced in every fitted model, and the predictor variables are selected based on the 

changes they impose on the estimated outcome. This algorithm is called change-in-

estimate and is implemented in a stepwise fashion. Evidence tends to favor the change-

in-estimate algorithm to control the nonnormality in a way that produces the most valid 

coefficient estimate and standard error. 

 On the other hand, it is worthwhile to use the prior information concerning the 

effects of the variables that are not forced to be in the model. This information helps in 

the construction of the coefficient estimates. Mitchell and Beauchamp (1988) proposed 

a hybrid Bayesian variable selection approach. It is assumed that during the analysis, 

some predictors may be deleted from the model, concluding several possible sub-

models (2𝑝), where p is the given predictor variables in the data. A sequence of prior 

distributions is used for the regression coefficient (𝛽) and the random error term (𝜀). 

The distribution of the regression coefficient is uniformly diffused, covering the region 

of non-eligible likelihood, except for a bit of probability mass concentrated at 0 if the 

predictor variable is to be deleted. Hence, the selection of the candidate variables is 

based on a nontrivial limiting set of posterior distributions obtained by Bayes’ theorem. 

However, the difficulties associated with prior and posterior computation arise when 

the set of variables and candidate models are large. 

Moreover, prior distribution requires significant effort. Therefore, Markov 
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chain Monte Carlo (MCMC) implementation for prior specification has been proposed 

to develop the Bayesian variable selection approach. MCMC implementation is more 

versatile and offers improved performance (George, 2000). Other regularization 

approaches proposed include the ridge regression, least absolute shrinkage, and 

selection operator (LASSO), Bridge (Fu, 1998), and elastic net (Zou & Hastie, 2005). 

These methods can handle datasets even when the number of predictor variables is 

much larger than the number of observations. In this regard, Fan and Lv (2010) 

reviewed the methods that cope with high and ultra-high dimensionality.  

Tibshirani (1996) introduced the LASSO, which does not focus on subsets but 

it improves the overall prediction accuracy of the ordinary least squares (OLS) 

estimates by shrinking some regression coefficients and setting others to exactly 0. 

Also, it facilitates the interpretation of the model by determining a small model that 

exhibits the strongest effect. Another method proposed by Breiman (1995) is called 

nonnegative (nn) garotte for doing subset regression. This method eliminates some 

variables and shrinks others. Unlike subset and ridge regression, nn-garotte is relatively 

stable and scale-invariant. 

On the other hand, subset selection is unstable because small changes in the data 

can result in a drastic change in the selected model and reduce the prediction accuracy. 

Ridge regression is more stable in comparison to subset selection. However, ridge 

regression is not scale-invariant, and the recipe is to standardize the predictor variables 

before applying ridge. Furthermore, Ridge regression does not set any coefficient to 

zero, which gives an easily interpretable model. LASSO and nn-garotte are prime 

competitors to subset and ridge regression. However, LASSO retains the good features 

of both subset and ridge regression. In the presence of highly correlated variables, 

LASSO estimators cannot be consistent. Hence, adaptive LASSO was introduced 
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earlier by Zou (2006) to amend the deficiencies of LASSO (Epprecht et al., 2021).  

 In statistical practices, datasets are often incomplete, while most variable 

selection techniques require complete datasets. Missing data is in various settings, 

including surveys, clinical trials, and longitudinal studies. This complication is 

commonly encountered while selecting important variables due to nonresponse or 

individual withdrawal from a study. Liu et al. (2016) stated that the default practice for 

dealing with missing data with the variable selection approach is listwise deletion. 

Listwise deletion or complete-case strategy excludes individuals if they are missing any 

of the variables included in the analysis. However, listwise deletion can introduce bias 

when the missing completely at random (MCAR) assumption is not satisfied. 

Performing variable selection with complex missing data patterns and mechanisms 

raises several new challenges, underscoring the need for adequate statistical models. 

Zhao and Long (2017) provided a review for all the methods of imputation-based 

variable selection in datasets prone to MCAR or missing at random (MAR) missingness 

in linear regression models when the number of predictors (𝑝) is allowed to be smaller 

or more significant than the sample size (𝑛). The authors illustrated three strategies that 

combine the variable selection techniques with the imputation methods, which 

overcome the formerly stated challenges. The first strategy combines the variable 

selection techniques applied to each imputed dataset. For instance, conduct variable 

selection on each imputed dataset separately, then choose the final set of the selected 

variables based on a pre-specified threshold 𝜋. The variable selection methodologies 

that can be conducted under this strategy include: 1) Forward, backward, or stepwise 

Wald test selection method; 2) likelihood ratio test; 3) Akaike information criteria 

(AIC); 4) Regularization method (e.g., lasso, ridge, or elastic net); 5) Bayesian variable 

selection method.  
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The second strategy applies the variable selection technique on stacked imputed 

datasets. Variable selection techniques, like backward variable selection and the 

penalization elastic net, are applied on the multiply imputed m datasets stacked to form 

one large dataset. However, this strategy is prone to standard error underestimation 

because the sample size is artificially increased. Therefore, one approach is conducted 

by introducing a fixed weight for all observations, and then a classical variable selection 

technique is implemented.  

The third strategy applies variable selection on imputed datasets combined with 

resampling techniques. Resampling techniques (e.g., bootstrapping) have several 

advantages because they are similar to multiple imputations in analyzing each dataset 

independently, combining the individual analysis results into one final result, and 

generating multiple datasets that preserve the variations in the data. The proposed 

variable selection techniques that provide superior performance when applied to the 

bootstrapping are the different versions of the randomized lasso. The growing literature 

about combining resampling techniques and multiple imputations into the variable 

selection process is summarized. Two approaches that demonstrated a good 

performance compared to all other techniques in this context are the stability selection 

within bootstrap imputation (BI-SS) and multiple imputation random LASSO (MIRL). 

In BI-SS, bootstrapping samples are first generated from the incomplete dataset, and 

multiple imputations are implemented on each bootstrap dataset. Then, a randomized 

lasso is used on each multiply imputed bootstrap dataset to estimate the unknown 

parameter, and the final set of variables is determined by stability selection determined 

by a threshold 𝜋. MIRL is the multiple imputation random lasso method that can 

accommodate the high proportion of missingness and the collinearity between 

covariates. Bootstrap samples are generated from the multiply imputed datasets, then 
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lasso-OLS estimates are obtained. Variable selection in MIRL is based on the stability 

selection determined by the ranks of importance measure. 

Yang et al. (2005) introduced two Bayesian variable selection approaches on 

multiply imputed datasets when the covariates have ignorable missing data through the 

stochastic search variable selection procedure (an MCMC algorithm). First, “Impute, 

then Select” (ITS) and the embedded methodology to a single combined imputation and 

selection processes, “Simultaneously Impute and Select” (SIAS). ITS refers to 

generating multiply imputed datasets and applying the variable selection to each of the 

imputed datasets. On the other hand, SIAS refers to a single combined Gibbs sampling 

process of imputation and the variable selection steps. Findings indicated that SIAS 

provided smaller Monte Carlo standard errors, better than the ITS in performance. 

Collinearity between covariates and higher rates of missing data worsens selecting the 

right variables in ITS and SIAS. ITS is slightly worse but easier in implementation. 

Both Bayesian strategies showed outstanding performance compared with the case-

deletion stepwise regression. 

In another study by Chen and Wang (2013), multiple imputation-LASSO 

variable selection approaches are presented to overcome the difficulty of interpreting 

the final model and inferences when LASSO is applied on each imputed dataset. The 

authors chose to base their study on sequential regression multiple imputation 

framework to handle the ignorable missingness with a haphazard pattern in both the 

response variable and the covariates. Multiple imputations are generally more 

appealing than the maximum likelihood estimates calculated from the incomplete data. 

The novel methodology considers that the regression coefficient estimates are treated 

through the different imputed datasets associated with the same variable. The group 

LASSO penalty is applied to select the whole group or remove the whole group when 
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all estimated coefficients are zero. This determines the uncertainty among imputed 

datasets caused by the missing information and performs consistent variable selection. 

Chang and Wang’s research showed that their proposed approach outperforms the CC-

LASSO method performed on complete observations ignoring missingness when data 

is generated from multivariate normal with compound symmetry covariance structure, 

and missingness is MAR. On the other hand, the RR-stepwise method applied to 

multiply imputed datasets showed poor performance, especially with multicollinearity 

and small sample size with many covariates. 

Recently, Pitchiah et al. (2021) introduced an approach that gives a minimum 

error and good conclusions when dealing with insufficient data that has missingness in 

critical parameters. The authors considered a thorough analysis of missing data which 

depends on the form, the cause, and the trend of missingness. Adaptive multiple 

imputation LASSO (MIAL) is the novel approach proposed by the authors to perform 

variable selection in settings of data multidimensionality and incorporates issues like 

nonresponse, mistakes, and system malfunction. The adaptive LASSO algorithm has 

additional capabilities because of the incorporation of multiple imputations. Under the 

four major stages of the proposed MIAL method, random missing data under the MAR 

assumption can be managed, the high-dimensionality case (p > n) is considered, and 

variable selection and predictions are of high precision due to the stability selection 

criteria used in MIAL. Liu et al. (2016) used the LASSO-OLS on imputed dataset 

combined with resampling technique (e.g., bootstrap). Alternatively, Pitchiah and 

others introduced the adaptive LASSO to the resampled imputed datasets.  

There is substantial literature where variable selection received attention, 

especially with the increase of applications and the massive data structure. Investigators 

have the desire to construct an economic predictive model from thousands of candidate 
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variables. When the set of candidate variables gets larger, the efficiency of the model 

decreases. Therefore, selecting the appropriate variables of interest in the model is 

considered the most crucial and challenging aspect to avoid model underfitting and 

overfitting. Model misspecification can result when the model is simplistic, where key 

variables are excluded, or extraneous variables are included. Each additional variable 

adds to the variance of the model, and using too few variables leads to increased bias. 

Over the years, the development of variable selection also incorporated variable 

selection of correlated data due to repeated measurements on the same individual over 

a specific time interval. One popular aspect of repeated measurements is that missing 

data are ubiquitous, which is caused by missing items or questionnaires due to 

individual nonresponse and withdrawal. To select the best variables for correctly 

analyzing data in longitudinal settings the correlation and missing data need to be 

acknowledged and considered to provide the best fit for having accurate predictions. 

Missing observations impose challenges in model fitting and variable selection. 

There are three types of assumptions/mechanisms of missing data: missing completely 

at random (MCAR), missing at random (MAR), and not missing at random (NMAR) 

depending on the factors related to missing probability, whether observed or not. 

Assumptions about missing data are substantial for choosing the needed handling 

method, which has considerable advantages in implementing a particular study. 

Bhaskaran and Smeeth (2014) elucidated the confusion between the two standard 

missingness mechanisms for implementing the novel missing data handling 

methodologies, namely, MCAR and MAR. In short, the distribution of missing data is 

systematically similar to the distribution of observed data when the MCAR mechanism 

is satisfied. Alternatively, both will have the exact similar pattern/shape of the 

histogram using the imaginary histogram. While in the MAR mechanism, there is a 
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systematic difference between the missing and observed data, explained by the 

differences among other variables in the dataset. 

On the other hand, the third well-known NMAR mechanism does not have the 

advantage of providing unbiased parameter estimates by handling missing data and is 

not statistically valid unless the missing data model is tailored with caution. Ignorability 

assumption of missing data exists when the MAR mechanism and other technical 

conditions are satisfied. However, MAR and ignorability are used interchangeably in 

real data applications since the technical conditions are most likely to be violated. 

Technical conditions specify that the parameters responsible for missing data 

mechanisms are distinct from the parameters in the estimated model.  

Missingness is ubiquitously available in multiple patterns across the real-world 

experiments or surveys: data are missing on all variables for a single observation (i.e., 

subject), data are missing on a variable for all observations, and data are missing for 

some variables and some observations. Unlike the MAR-based methods, the ad-hoc 

methods for handling missing data, for instance, the Listwise Deletion, are insufficient 

in attempting one or more of the three specified goodness criteria and lack strong 

"mathematical foundations" (Allison, 2009).  He (2010) indicated that complete-case 

analysis could produce biased point estimates when the missingness mechanism is not 

MCAR, and conventional imputation methods (e.g., mean imputation) underestimate 

the standard errors. On the other hand, the superior method of multiple imputations 

(MI) relies on the weak assumption for missing data mechanism (i.e., ignorability) and 

follows two well-known approaches for imputing multivariate datasets. Buuren (2007) 

stated the two imputing approaches; the Joint Modeling (JM) approach, which is, based 

on "parametric statistical theory," and the more flexible alternative Sequential 

Regression Multiple Imputation (i.e., Fully Conditional Specification FCS), which is, 
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based on "semi-parametric statistical theory." To get correct imputation results and 

unbiased estimates, the imputation model must be compatible with the analysis model, 

and this may lead to the necessity of generating different imputed datasets compatible 

with each different analysis model. It is also recommended to use models that impose 

no structure for the covariance matrix among the repeated measurements to overcome 

the exchangeability resulting from random intercept mixed models and the 

complications encountered for getting the right covariance matrix structure (Allison, 

2012).  

Objectives of Thesis and Outline 

Commonly in longitudinal studies, where subjects are measured repeatedly over 

time, subjects may miss some scheduled visits or drop out before observing a given 

follow-up endpoint for some reason. Longitudinal studies have an important role in 

health sciences in understanding the development and persistence of a certain malady. 

As shown in Figure 1, the literature covered three mechanisms of missingness, three 

missing data patterns, and three common variable selection classes of techniques in 

longitudinal settings. Classical methods for variable selection are intensive and 

computationally unstable with many longitudinal data, for instance, high-dimensional 

data (Zheng et al., 2018). When the number of candidate variables of interest gets 

larger, the number of candidate models to be selected in a certain classical model 

selection strategy increases causing an infeasible computation process. Therefore, the 

novel variable selection strategies (i.e., penalized and Bayesian variable selection 

techniques), especially within linear-mixed modeling, are attractive for various 

longitudinal settings because the coefficients of unrelated covariates are shrunken to 

zero, and parameters are estimated simultaneously. These algorithms apply to 

longitudinal data prone to both dropouts (i.e., monotone) and intermittent missing 
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values under the ignorable assumption. Monotone missingness assumes that there 

“exists a permutation of the measurement components” (Verbeke & Molenberghs, 

2009, p. 215). Therefore, it is necessary to have a balanced study structure (i.e., 

balanced panel data) to make the pattern of missingness meaningful.  

 

 

Figure 1. Flowchart of Missing Data and Variable Selection in Longitudinal Studies. 
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The common assumption for missing data in the real world is missing at random 

(MAR). However, MAR is a considerably weaker assumption than MCAR. In other 

words, if the missing data mechanism is assumed to be MCAR, then the missing data 

is MAR (Allison, 2001). In general, modern missing data handling approaches start 

from the MAR assumption. Multiple imputation-based statistical inferences are widely 

studied, but few can effectively perform variable selection with multiply imputed 

datasets (Shen & Chen, 2013). In longitudinal settings, subjects may have missing 

observations at once but have observations after a sparse structure of the data 

(intermittent), or subjects drop out permanently before the study completes (monotone). 

The third pattern of missingness is the mixing between both intermittent patterns 

followed by permanent dropouts. MI is one of the modern techniques developed under 

the assumption that the data are MAR or possess the ignorability mechanism. The 

correct implementation of the MI approach demands the central feature that MI adopts; 

the compatibility between the model of interest and the imputation model for preserving 

the multilevel data structure (Lüdtke, Robitzsch & Grund, 2017).   

Multiple imputations with substantive-model-compatible joint modeling (JM-

SMC) and substantive-model-compatible joint modeling with random covariance 

matrix (JM-SMC-het) approaches are recommended when both the covariates and 

response variable contain missing values (Huque et al., 2020; Goldstein et al., 2014). 

He (2010) explained that the JM approach partitions the observations based on their 

missing data patterns then specify a parametric multivariate density suitable to the type 

of data given using the appropriate prior distribution for the parameters. Imputations 

are drawn from these multivariate density sub-models. Simulation results in Huque et 

al. (2020) showed that JM-SMC-het outperforms the other methods, like the FCS 
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approach, concerning the regression estimation coefficients and variance components. 

Also, it is observed that JM-SMC-het better estimate subject-specific associations 

under the random covariance matrices than the JM-SMC. Buuren et al. (2010) stated 

that FCS is an alternative to JM when no reasonable multivariate distribution of the 

missing data is provided. However, Quartagno and Carpenter’s (2019) results showed 

that JM performs better than FCS when the latent normal variables are used with the 

JM as an extension to impute categorically or count data (i.e., non-normal data). 

Moreover, imputation using FCS cannot handle variables measured at higher levels in 

multilevel data structures.  

In longitudinal studies, Geronimi and Saporta (2017) presented a novel 

methodology for variable selection with missing data that outperforms the single 

imputation (i.e., mean imputation) when the missing data rate is small and accepts any 

correlation structure. However, higher rates of missing data, for example, 60% 

missingness, can lead to acceptable imputation, but predictors selection is insufficient. 

Another limitation is that the variable selection interferes when the study suffers from 

dropouts because the distribution of missing data is not examined under the penalized 

generalized estimating equations (GEE) approach. Both Marino et al. (2017) and Li et 

al. (2019) proposed methodologies that showed promising results in multilevel data, 

but the variable selection focuses only on fixed effects. Also, the methods need to be 

improved for higher rates of missing data.  

Very limited literature jointly addresses variable selection in single-level 

longitudinal data (i.e., panel data) with missing values in both covariates and response 

using a mixed-effects model. However, many existing works of literature studied these 

challenges individually. The main objective of this thesis is to provide a sufficient 

variable selection methodology that jointly handles missingness and selects the 
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significant covariates, where the selection of variables is applied to both the random 

and fixed effects. More specifically, the thesis tends to provide an extension for the 

sophisticated variable selection technique developed by Pan and Shang (2018) by 

tailoring it to accommodate missing data assumptions and imputations in longitudinal 

studies. This sophisticated direction overcame the challenges in the literature while 

analyzing the longitudinal data hindered by missingness in both covariates and the 

response variable and by introducing the random effects. The proposed approach is also 

applicable to high-dimensional settings since the technique is a shrinkage-based 

method.  

The adaptive LASSO regularization technique by Pan and Shang (2018) can be 

tailored to multiply imputed datasets 1) to accommodate missing data in both covariates 

and response variables and 2) to select variables from both fixed and random effects 

when the linear mixed model is employed, implementing profile log-likelihood and 

Newton-Raphson algorithm. Applications of adaptive LASSO on missing data can be 

particularly challenging, and methods that combine both complexities are not widely 

applied for mixed models in longitudinal data. Zou (2006) stated that the LASSO is a 

regularization approach that uses the tuning parameter 𝜆 in the ℓ1 penalty to perform 

variable selection and parameter estimation simultaneously. When the tuning parameter 

of prediction is optimal (i.e., sufficiently large), some coefficients are shrunk to exact 

zero, indicating that the non-zero coefficients are selected to be in the model. However, 

the LASSO shrinkage produces biased estimates for large coefficients due to the many 

noise features included in the predictive model. The Adaptive LASSO is an enhanced 

version when the LASSO is an inconsistent variable selection technique in specific 

scenarios. Adaptive LASSO assigns different (data-dependent) adaptive weights for 

penalizing different coefficients in the ℓ1 penalty. LASSO and Adaptive LASSO both 
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are ℓ1 penalization methods that pose a similar algorithm to compute the estimates.  

The remainder of the thesis is organized around six chapters. Chapter 2 

discusses the widely known modeling techniques of longitudinal studies.  An overview 

of the variable selection methods that are used for incomplete longitudinal studies is 

given in Chapter 3.  In Chapter 4, we first define the notations of linear mixed models 

for longitudinal data that will be used in the remaining sections of the thesis. Then we 

employ the multiple imputations using joint modeling to handle the missingness. 

Finally, the two-stage adaptive LASSO approach needs adaptation when applied to 

multiply imputed longitudinal data. In this stage, we combine multiple imputations and 

adaptive LASSO by the stacking (homogeneous) approach. In fact, the way of 

combining multiple imputation and variable selection techniques provided a challenge 

in the literature and there is a lack of tools to address this challenge in a principled way 

(Zhao & Long, 2017; De et al., 2020). 

 In Chapter 5, we present simulation studies and comparisons that illustrate the 

effectiveness of the proposed algorithms.  As a motivating example, we consider a study 

of the association between country-level food security and economic growth. Global 

food security issues consider multiple aspects: affordability, availability, quality and 

safety, and natural resources. According to the Rome Declaration on the 1996 World 

Food Summit, “Food security exists when all people, at all times, have physical and 

economic access to sufficient, safe and nutritious food to meet their dietary needs and 

food preferences for an active and healthy life.” Food security and resilience 

significantly benefit human beings and are also essential in achieving sustainable 

economic growth. Thus, food security is more than a single sector issue; it requires 

combined coordination between the actions in finance, agriculture, health, and other 

sectors (Torero, 2014).  Further details of this data and the associated indicators that 
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measure the drivers of food security across selected developed countries are described 

in Chapter 6. Finally, we conclude the thesis and offer some additional remarks in 

Chapter 7. Future research recommendations are also provided in this chapter. Figure 

1 summarizes the gap in literature, research objectives and the structure of the 

manuscript. 

 

 

Figure 2. Gap in literature, objectives, and structure of the thesis. 
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CHAPTER 2: MODELING TECHNIQUES IN LONGITUDINAL DATA STUDIES 

Overview 

 Longitudinal data is mainly concerned with directly assessing the heterogeneity 

among individual characteristics and differences in the response variable by repeatedly 

measuring the individuals throughout the study. In most cases, a fixed number of 

repeated measurements are observed on all study individuals on a set of occasions. The 

longitudinal analysis proceeds in two distinct stages; to describe trends in the within-

individual changes in the response and to relate these changes to inter-individual 

differences in selected factors. Also, longitudinal studies can predict how a particular 

individual changes over time by borrowing information from other individuals to make 

reliable predictions. One inescapable feature of the longitudinal analysis is obtaining 

great precision estimates. Any extraneous factors (i.e., not of substantive interest and 

its influence remain stable throughout the study) that impact the response are blocked 

when an individual’s response variables are compared over time. These noise factors 

may include gender, genetic factors, and socioeconomic status.  

Participants being studied under longitudinal analysis are individuals (e.g., 

human subjects, animals, regions). Occasions of repeated measurements are either 

distributed equally or unequally throughout the study. Balanced longitudinal designs 

occur when all study units have an exact number of observations measured at a common 

set of time points. In contrast, unbalanced designs are when the sequence of observation 

times or the repeated measures are not common to all individuals because of mistimed 

measurements. In other words, balanced longitudinal data is when the timing of 

observations is defined in terms of one origin and unbalanced when measurement time 

is defined based on different origins. With repeated observations in longitudinal studies, 

past observations very likely predict future observations of the same individual. Hence, 
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the fundamental assumption of many statistical techniques that require random 

variables independent of one another is no more invalid. As a result, longitudinal studies 

are positively correlated, and the correlation strength is a decreasing function of time 

separation. Between-subject heterogeneity, within-subject heterogeneity, and 

measurement error are the three sources of variability that impact the correlation among 

repeated measurements on the same individual. The between-subject heterogeneity is 

the one important source of positive correlation among repeated measures due to the 

variability in the response variable between individuals in the population or the 

individuals’ underlying propensity to respond. An individual responding with a low 

value for the response on one occasion is expected to have a low value on the 

subsequent occasion, so repeated measures from the same individual are expected to be 

more similar than measurements from randomly selected individuals. As a result, this 

accounts for the positive correlation among repeated measurements. The other two 

sources of variability are discussed thoroughly in Fitzmaurice et al. (2012) book. 

 There are three types of longitudinal study designs: panel, cohort, and 

retrospective. Panel data, sometimes referred to as longitudinal data, measure two or 

more variables on the same individuals collected at a regular frequency of occasions 

and ordered chronologically (i.e., same individuals are measured at every wave). Panel 

data intends to 1) explain a pattern of change described by the chronological time; and 

2) establish the sign, direction, and magnitude of a causal relationship. For instance, 

longitudinal panel data can be used to examine an individual’s historical or 

developmental characteristic changes over time and age.  

For longitudinal analysis, a wide range of techniques is available that is 

statistically adjusted because the observations are not mutually independent. The choice 

of a specific analytical approach depends on multiple aspects, for example, the design 
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of the study, the scientific question of interest, and other statistical considerations. The 

lack of understanding concerning the appropriate analysis technique leads to inefficient 

analysis, inaccurate results, and wrong interpretation. A simple regression of the 

dependent variable on time, repeated-measure analysis of covariance (ANCOVA), and 

generalized linear models (GLM) with fixed-subject effects are examples of traditional 

analytical methods used to analyze longitudinal data. However, these methods are 

disadvantages because they are restricted to balanced data without missingness and few 

time points. Therefore, these methods are not recommended unless for quick 

exploratory respects. On the other hand, random-coefficient models (i.e., random-effect 

modeling), generalized estimating equation (GEE) models, and latent growth curve 

models are more advanced and leading methods. Some of the most common and 

developed topics of different modeling techniques in literature are discussed below.     

Random-effect Modeling 

In random-effect models, some subset of the model parameters varies randomly 

from one individual to another, accounting for the heterogeneity across the population. 

The linear mixed-effects model (LMM) assumes that the response variable depends on 

a combination of population characteristics (i.e., fixed effects) and subject-specific 

effects (i.e., random effects). Because of this explicit modeling of fixed and random 

effects, LMMs can analyze both between-subject and within-subject variations in 

longitudinal study designs. In other words, prediction of individual growth over time is 

also possible besides predicting response change in population level. Furthermore, 

LMMs are flexible in terms of dealing with any degree of imbalanced longitudinal data. 

It is not required to have the same number of individuals observed or take the 

measurements simultaneously. Cnaan et al. (1997) used a general linear mixed model 

(GLMM) in their tutorial to illustrate the design in which subjects are allowed to have 
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an unequal number of observations. An epidemiologic application in the Cnaan et al. 

(1997) study of pulmonary function growth in children ages six to eighteen indicated 

different ages at study entry, forming highly unbalanced data.  

Generally speaking, studies based on LMMs assume that the data follows a 

normal distribution. However, the usual assumption of normal random effects is often 

unrealistic in real data applications. Parzen et al. (2011) considered using a developed 

approach of GLMM that modifies the random effects to follow a bridge distribution to 

fit longitudinal data with binary outcomes.  The proposed method used correlated 

random intercepts that led to a marginal logistic regression model. It is comparable to 

probit-normal marginal models. Parzen et al.’s (2011) method can be 1) generalized to 

be used with any link function with appropriate bridge distribution, 2) easily 

implemented using the existing software packages, and 3) used in the wide applications 

of social and behavioral sciences. Li et al. (2004) proposed a semi-parametric approach 

that requires no assumption on the random effects distribution. However, the normality 

of within-subject longitudinal data is assumed and often reasonable to explore. The 

proposed joint modeling approach assumed that longitudinal data follows LMM, whose 

random effects are covariates in a GLM. This approach can be applied to any 

generalized linear model formulation. 

Moreover, Arnau et al.  (2012) examined the robustness of LMM when the data 

is showing slight skewness and extreme kurtosis. Distributions that involve absolute 

values of 1.0 or more in skewness and kurtosis are closer to that data found in real life, 

that is, the log-normal distributions. The non-normality of the data affects the business 

of the estimation methods. LMM, in combination with Kenward and Roger (KR) 

method, is used to control the bias of fixed effects estimation. Recently, Wu and Jones 

(2021) introduced the proportional likelihood interpretation to the mixed-effects model 
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(PLRMM) to fit the finite ordinal (discrete) outcomes in clinical rating scale 

applications. 

Incorporating the random effects in the linear predictive model require full 

distributional assumption for the response variable. In contrast, GEE depends on the 

correct specification of the first and second moments of the response variable. In the 

next subsection, GEE is discussed because it is one of the predominantly used methods 

in longitudinal studies for providing population average (i.e., population-level) 

inferences.  

Marginal Modeling 

The marginal model, known as a generalized estimating equation, is a 

convenient method with no distributional assumption about the observations. Based on 

the concept of “estimating equations,” GEE provides a unified approach for estimating 

correlated discrete or continuous response variables. In contrast to LMMs, the mean 

response of GEE depends only on the covariates of interest and accounts for within-

subject correlation among the repeated measures.   

Due to the challenges presented by the correlation among longitudinal data, 

Liang and Zeger (1986) introduced the GEE, a class of GLMs that considers more 

efficiency. Zeger et al. (1988) used the GEE approach to fit subject-specific and 

population-averaged models with discrete and continuous response variables. Subject-

specific models explicitly model the heterogeneity across individuals, while 

population-averaged models use a function of covariates without explicitly specifying 

the individual-to-individual heterogeneity. Another study by Miller et al. (1993) 

extended the marginal modeling approach to accommodate categorical (polytomous) 

response variables. In addition, a connection between GEE and weighted least squares 

(WLS) was developed. Both latter studies used a longitudinal clinical trial of respiratory 
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disease.  

GEE approach has an issue with the theory that supports the consistency of the 

joint distribution of the estimates of regression coefficients 𝛽 and the nuisance variable 

𝛼 in the working correlation matrix, especially if the correlation structure is 

misspecified. Thus, the whole estimation procedure is ruined. Chaganty (1997) 

provided a new method that obtained unique and feasible estimates for the correlation 

(i.e., nuisance) parameter. Chaganty’s approach is an extension of generalized least 

squares where the covariance matrix elements are functions of the regression parameter. 

In this study, a balanced longitudinal application is employed.  

Various real data applications employ GEE to conduct the longitudinal data 

analysis. For instance, in a prospective study design, Carlier et al. (2013) assessed the 

relationship between re-employment among unemployed people in the Netherlands and 

their general health and quality of life. Whereas, in a retrospective cohort longitudinal 

study, Noda et al. (2015), patient-based GEE is employed to evaluate patients’ risk 

factors for dental implants failures. The smoking habit factor is identified as an impact 

on the early implant failures. At the same time, some risk factors that affected the late 

implant failures are the number of remaining teeth, maxillary implant, and having a 

removable superstructure type. 
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CHAPTER 3: VARIABLE SELECTION METHODS IN INCOMPLETE 

LONGITUDINAL STUDIES  

Many covariates often need to be minimized in longitudinal studies to determine 

the most predictive variables to the response. Variable selection methods fall within 

one of the three categories: 1) classical approaches, 2) penalized shrinkage methods, 

and 3) Bayesian variable selection. For example, Ni, Zhang, and Zhang (2010) 

proposed a double-penalized likelihood approach for simultaneous model selection and 

parameter estimation, which considers the dependent nature of longitudinal data and 

guard against the data missingness. 

Gokalp Yavuz and Arslan (2019) focused on the selection of variables in 

elliptical LMM with “shrinkage penalty function (SPF).” SPFs simultaneously select 

variables and estimate the parameters. Several studies implement the full LMM 

definition with elliptical distributions to help overcome outliers and heavy tailedness 

within the data. In addition to robust estimation, one of the LMM’s severe topics is 

variable selection. Shrinkage methods have recently emerged as an efficient procedure 

for the selection of the model. For instance, ridge selection is better than subset 

regression considering its variance reduction and accuracy as one of the most common 

shrinkage methods. However, the ridge regression method has its disadvantages, and 

the subset procedures are not stable when a minor data change may result in a different 

selection model. Shrinkage methods performing variable selection like LASSO 

overcome such obstacles. Two different methods for making comparisons are used to 

conduct simulation studies. These are the ECM algorithm for t-distributed LMM and 

ECM algorithm for the classical LMM. Using the smoothly clipped absolute deviation 

(SCAD) approach to expand the ECM algorithm in elliptical LMM enables one to select 

fixed effects effectively. The simulation results show that the proposed method is better 
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than classical ECM-SCAD, especially with longer-tailed data. Pan and Shang (2018) 

have proposed a procedure for variable selection to simultaneously select the random 

and fixed effects in linear mixed models. They employed an adaptive LASSO penalty 

and a profile log-likelihood for selecting and estimating variables. Newton-Raphson 

(NR) optimization algorithm is used to estimate the parameter.  

Lee and Chen (2019) looked at the corresponding selection of variables in 

models with many parameters (p). Their research uses the Bayesian variable selection 

approach instead of the penalized approaches. The Bayesian method is for variable 

selection for “finite mixture of linear mixed-effects models (FMLMEMs)” fitting. Their 

corresponding algorithm can also determine the model’s variable importance and 

classify the observation. The article presented a unified approach for FMLMEMs to 

predict the component membership and identify the essential fixed and random effects. 

In the simulation study, the approach outperforms selecting variables and classification, 

including 𝑝 > 𝑛 and multicollinearity problems. Yang et al. (2020) proposed a novel 

Bayesian approach with a penalized shrinkage distribution for a joint selection of 

random and fixed effects simultaneously in LMM. The shrinkage effect improves the 

accuracy and efficiency of the technique. Simulation results provided outperformance 

of the proposed shrinkage approach. 

Recently, Chen and Yin (2022) proposed a method for selecting variables in 

high-dimensional longitudinal settings when the data is following non-Gaussian 

distribution, especially ordinal data. the selection of variables is handled using 

penalized GEE where the penalty function is the nonconvex SCAD. Another study by 

Taavoni and Arashi (2022) handled longitudinal data with multiple response variables 

using multivariate linear mixed models. Multivariate linear mixed model is extended in 

their study to give robust inference against the potential outlying observations 
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considering joint multivariate-t distribution for the random effects and the within-

subject errors. SCAD penalty function is used to select variables and the 

computationally flexible expectation conditional maximization (ECM) is used for 

parameter estimation.  

The longitudinal data is modeled using two extended popular classes of GLMs: 

generalized estimating equations and linear mixed-effects model. The GEE includes a 

semi-parametric design as a particular case to address the MAR missing data 

mechanism. It relies on estimating equations to address the correlated repeated 

measurements, while LMM uses random effects. These two classes of models employ 

different aspects to capture both the between-individual differences and within-subject 

dynamics. The following subsections present a review for these two model classes (i.e., 

GEE and LMM) in the context of variable selection for incomplete longitudinal data, 

constraining the search covering the years 2010 through 2022. The search is conducted 

using the Advanced Search function in Google Scholar with the following terms: 

variable selection, missing, missing data, dropout, incomplete, longitudinal. All the 

articles mentioned down are published within Wiley, SAGE, Springer, Taylor & 

Francis, and Elsevier databases. The sources identified are then manually examined and 

checked in the references section of each article for additional relevant resources. 

Figure 3 lists a summary of the algorithms extracted from the reviewed articles.  

GEE Based Methods 

This section reviews the recent studies that combine the missing data handling 

and variable selection in a longitudinal setting with the GEE approach. GEE is a semi-

parametric, marginal extension of the GLMs that models the mean response instead of 

the within-subject covariance matrix in longitudinal data. For parameter estimation, 

GEE uses quasi-likelihood estimation instead of the maximum likelihood. These 
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estimators are consistent even if the covariance structure is mis-specified because GEE 

depends on the first moment (i.e., mean) (Slavkovic, 2018).  

The validity of estimation methods in longitudinal studies often relies on 

complete data and precisely measured covariates. In 2015, Yi et al. proposed a 

simultaneous variable selection and estimation algorithm that address the features of 

missing data and covariates measurement error at the same time. Their method extended 

the ordinary simulation-extrapolation (SIMEX) procedure that accommodates the 

covariate measurement error by including additional steps for missingness and variable 

selection. The inverse probability-weighted GEE is developed to accommodate the 

effects of missingness in the response variable. For variable selection, a penalized 

quadratic loss function using LASSO type and SCAD type penalty functions is used 

with the optimal tuning parameter selected based on the smallest 𝐵𝐼𝐶(𝜆) value. As 

mentioned before, using a marginal generalized linear model is attractive because the 

minimal distribution assumptions are required for the response process. Simulation 

results showed that the measurement error and sample size affect the variable selection 

performance. The sensitivity, specificity, and correct fit rate decrease as the 

measurement error increases when the sample size increases. However, missing data 

have a more considerable impact on variable selection performance than measurement 

error.  

Geronimi and Saporta (2017) extended Chen and Wang’s (2013) methodology 

(MI-LASSO) to deal with longitudinal studies. Penalized generalized estimation 

equations (PGEE) is a penalized regression introduced to the GEE to select the most 

influential variables when the model has many covariates. The new method, MI-PGEE, 

has the advantage of accommodating missing values scattered haphazardly through the 

data using multiple imputations by chained equation (i.e., FCS). Also, it integrates the 
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intra-subject correlation into the variable selection framework. Common ridge penalties 

and adaptive weights are introduced to the group of estimated regression coefficients 

in the GEE estimation equation across multiply imputed datasets, and the tuning 

parameter is selected using the BIC-like criterion. As a result, a unique selection across 

all imputed datasets is obtained. In this manner, the coefficients are all zero or non-zero 

over the m imputed datasets. Simulation studies indicated that the proposed MI-PGEE 

method produced lower values of mean square error (MSE) and relative mean square 

error (RMSE) and higher sensitivity and specificity values in the MAR case with 

missingness covariates and response as soon as the covariates are correlated. The higher 

specificity of MI-PGEE means that the method can delete the unimportant covariates. 

However, as the correlation between covariates increases, the MI-PGEE can not select 

the important covariates. Therefore, an increase in the missing value rate across the 

dataset leads to similar results from the MI-PGEE.  

 In another study by Kowalski et al. (2018), SCAD is integrated with the 

weighted generalized estimating equation (WGEE) to provide a flexible selection of 

variables from the main and missing data modules to improve the fit validity of 

inferences. The WGEE consists of two modules: 1) the main module that models the 

relationship that involves the response variable, and 2) the missing data module that 

focuses on the MAR mechanism of missingness. The missing data module assumes that 

the covariate and the response are missing together. The authors’ contribution is the 

penalized modern variable selection technique with the semi-parametric or distribution-

free model (PWGEE). Also, they introduced a new formulation of the WGEE model to 

enable the joint inference for parameters in the two modules. As a result, WGEE 

provides a robust and efficient approach that analyzes the response variable when no 

possible parametric distribution is specified. Also, SCAD is more reliable and selects a 



 

28 

more robust subset of variables than the classical counterparts. Simulation results 

indicated that this new approach works well with moderate sample size and continuous 

and count response variables. For binary response, increasing the magnitude of the 

coefficients will improve the performance. This means that the strength of the 

relationship between the response and covariates in the main module will determine the 

performance of penalized weighted generalized estimating equation (PWGEE).  

Ignorable dropouts are discussed frequently in the literature, and GEE is 

developed when the missingness is MAR. However, Wang and Ma (2021) proposed a 

novel methodology that accommodates the challenge of developing statistical analysis 

for non-ignorable dropouts, especially in the response variable. The longitudinal data 

is assumed to be balanced with the same cluster size. The authors’ contribution in 

variable selection is by proposing the penalized empirical likelihood (PEL), where the 

profile EL is combined with SCAD to incorporate the possible dependence in 

longitudinal data. The tuning parameter is identified based on three BIC-type 

information criteria. Simulation findings showed that the PEL efficiently selected the 

significant variables and estimated parameters simultaneously. The developed 

methodology is based on quadratic inference function (QIF) and hybrid GEE methods 

for the non-ignorable monotone missing data pattern. Simulation results implied that 

the proposed variable selection method is satisfactory, and the selected models are very 

close to the true model, utilizing the extended BIC of Chen and Chen (2008) for 

selecting the tuning parameter. This algorithm can be implemented with the unbalanced 

longitudinal setting, where the data are measured with unequal cluster sizes. 

Recently, Chen and Shen (2022) proposed a method under the semi-parametric 

weighted GEE framework for parameter estimation, called zero-inflated count 

information criterion (ZICIC). The proposed approach handles longitudinal count data 



 

29 

with an exceptional high percentage of zeros (i.e., zero-inflated) in the response. ZICIC 

accommodate longitudinal zero-inflated count data with nonmonotone or intermittent 

missing values in both response and covariates. The authors extended the weighted 

GEE framework to estimate the model parameters and the missing data model. ZICIC 

is a developed criterion to select an appropriate subset of covariates and the GEE mean 

model for the zero-inflated negative binomial models. However, numerical studies 

showed that when the zero proportion of responses and the missing data proportion 

increase, the ZICIC criterion select the true model with only 40% proportion. This result 

is expected due to the much loss of information for the cases under study. In fact, ZICIC 

criterion showed a robust performance when the missing data model is mis-specified.  

LMM Based Methods 

Regarding the variable selection with the missing data approach based on the 

linear mixed-effects models, Marino et al. (2017) indicated that complete case analysis 

is only applicable when the missing values are in the MCAR case; otherwise, biased 

results will arise. Hence, the authors proposed a method that fills the gap in the previous 

literature that performs variable selection when the missing data are multiply imputed. 

There is also a lack of clear and correct applying guidelines of variable selection on 

multiply imputed datasets in the two-levels linear mixed model (i.e., multilevel model). 

The methodology starts by performing m imputations to produce complete datasets; 

then, the m imputed datasets are stacked into a single wide complete dataset where m 

imputed variables present each covariate. For fully observed variables where no 

imputation is required to be performed, the stacked dataset should consist of m imputed 

columns, and the fully observed covariate is represented by only one column. Then a 

penalized likelihood method is utilized to perform variable selection on multiply 

imputed datasets via group LASSO. The simulation declared that the proposed 
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approach performed the best compared to only complete cases and ad hoc procedures. 

As the number of imputations increases, the smaller the model is produced. This 

methodology depicted the missingness in covariates, and the selection technique is on 

fixed effects only. It can also be adapted to panel data as a special case of multilevel 

data with only one level of clustering.  

Incorporating incompleteness in the modeling process requires a good 

consideration of the nature of the missing data mechanism and its implications on the 

statistical inferences. The previously reviewed article assumed that the missing data 

were missing by design. Therefore, authors in this aspect presented powerful algorithms 

and data imputation combined with computing resources, providing a solution to the 

ignorable missing data mechanisms. The missing data mechanism can also be NMAR 

when the unobserved outcomes are the cause of describing the missing data process. A 

valid analysis is obtained by ignoring the missingness mechanism in the ignorable 

missing data. However, the missing value process in the NMAR case should explicitly 

be considered in the analysis for valid inferences.  

Li et al. (2019) proposed a variable selection technique when missing data is in 

covariates and response variables with the NMAR mechanism and intermittent 

pattern—estimating a large set of nuisance parameters yields non-identifiability and 

model misspecification, which may lead to invalid inferences under the mixed model 

with the NMAR mechanism and a complicated missing data pattern. Therefore, a 

penalized composite likelihood (CL) method is utilized via SCAD, simultaneously 

estimating the parameters and selecting predictive covariates. The proposed 

methodology handles multilevel longitudinal data fitted using a GLMM. The developed 

composite likelihood framework can handle flexible missing data patterns, whether 

monotone or intermittent. Also, it accommodates missingness in covariates, response 
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variables, or both. Numerical results in simulation showed that CL yields little biases 

and has good computation efficiency under a 30% missingness rate. 

 

 

Figure 3. Variable Selection algorithms with incomplete longitudinal data in the 

literature. 
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CHAPTER 4: ADAPTIVE LASSO FOR VARIABLE SELECTION WITH 

MULTIPLY IMPUTED INCOMPLETE LONGITUDINAL DATA 

Patients within hospitals, students within schools, or repeated observations on 

each individual over time arise correlation in analysis modeling. In general, 

repeated measurements per individual result in correlated errors that violate the 

assumption of classical regression models. Linear mixed models provide a general 

and flexible approach for analyzing data in these situations because the correlation 

patterns are widely varied and explicitly modeled through the utilization of random 

effects.  

The mixed models' term refers to the utilization of both random and fixed effects 

in the same model of analysis. The variability of the population between a set of 

treatments in an experiment is explained by the fixed effects, while the random 

effects represent the variability among study individuals. The levels under the 

random effects are not of primary interest (in comparison to those under the fixed 

effects) but are thought to be the random selection from a larger set of levels. In 

other words, random effects are associated with subjects that are drawn randomly 

from a population. In some situations, mixed models are very close to hierarchical 

linear models where the hierarchy arises when individuals are at one level (upper-

level units), and the measurements within these individuals are on another level 

(lower-level units). This multilevel situation can get more complicated as the 

number of levels becomes more than two. In fact, there is a correlation between 

lower-level units within the same upper-level unit. Also, these lower-level units 

have a variety of variance-covariance structures, for instance, diagonal, compound 

symmetry, Auto-Regressive, Toeplitz, and unstructured.  

In other aspects, mixed models are called the model for repeated measurements 
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when it is used to analyze panel or longitudinal data. In longitudinal data, each time 

series form an individual cluster, which has two sources of variability: within and 

between clusters. Measurements on different clusters are not correlated, while 

measurements on the same cluster (i.e., within a cluster) are correlated with  𝜌 =

𝑣𝑎𝑟(𝑏𝑖)

𝑣𝑎𝑟(𝑏𝑖+𝜀𝑖𝑗)
. 𝑣𝑎𝑟(𝑏𝑖) is the source of variation between clusters (inter), and 𝑣𝑎𝑟(𝜀𝑖𝑗) 

is within-cluster (intra) variation. The correlation coefficient stated before indicates 

that the higher inter variation, the larger the correlation within each cluster. 

Generally speaking, ignoring the hierarchical or cluster structure can lead to false 

interpretations. Therefore, linear mixed models are well fitted for modeling 

repeated (clustered) data with multiple sources of variation (NCSS Statistical 

Software, 2020a; Demidenko, 2013).  

Variable selection in linear mixed models is challenging due to the added 

random effects. The complexity of the model increases as the mean structure, and 

the covariance structure should be correctly identified.  This challenge increases as 

the dimension of fixed and random effects increase. Zou (2006) stated that the 

LASSO  

 

 �̂�(𝐿𝐴𝑆𝑆𝑂) =  arg𝑚𝑖𝑛𝛽 ||𝒚 −∑𝒙𝒋𝛽𝑗||
2

𝑝

𝑗=1

+ 𝜆∑|𝛽𝑗|

𝑝

𝑗=1⏟      
ℓ1penalty

 (1) 

 

is a regularization approach that uses the tuning parameter 𝜆 in the ℓ1 penalty to 

perform variable selection and parameter estimation simultaneously. When the 

tuning parameter of prediction is optimal (i.e., sufficiently large), some coefficients 

are shrunk to exact zero, indicating that the non-zero coefficients are selected to be 
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in the model. However, the LASSO shrinkage produces biased estimates for large 

coefficients due to the many noise features included in the predictive model. The 

Adaptive LASSO is an enhanced version when the LASSO is an inconsistent 

variable selection technique in specific scenarios. Adaptive LASSO assigns 

different adaptive (data-dependent) weights for penalizing different coefficients in 

the ℓ1 penalty. 
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 (2) 

 

LASSO and Adaptive LASSO both are ℓ1 penalization methods that pose a similar 

algorithm to compute the estimates.  

 The adaptive LASSO algorithm proposed by Pan and Shang (2018) outperforms 

other model selection methodologies, such as the Akaike Information Criterion, 

Generalized Information Criterion, and Mallows’ Cp, because it is a 

computationally feasible and large dimension of parameters is involved.  

 In addition to the oracle properties possessed by the results generated from Pan 

and Shang (2018) adaptive LASSO method, this method is outperforming because 

of the separate selection of random and fixed effects that accommodate the distinct 

properties between random and fixed effects. The estimators used in the proposed 

approach are more robust to outliers (i.e., penalized restricted log-likelihood). Also, 

the selection of variables criteria 1) catch primary information, 2) require fewer 

iterations, 3) have simpler derivatives, and 4) convergence is computationally 

feasible and accurate.   
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Linear-Mixed Effects Model for Longitudinal Panel Data 

In this part, the basic notations for linear mixed models that will be used for the 

subsequent sections will be provided. Response measurements in longitudinal 

studies are correlated within-subjects, where this challenge needs to be handled 

properly to get valid inferences and standard errors. Standard regression models 

assume independent observations that produce invalid parameter estimates in 

longitudinal settings. However, a complete model that includes the intra-subject 

correlation assumption should be adopted. The linear mixed model is a natural 

extension of the general linear models (GLMs) by the added random effects. Mixed 

models have several advantages in dealing with longitudinal data over the general 

linear models. 

First, this approach can fit intricate covariance patterns by specifying the 

residual component's best variance-covariance structure and random effects, 

providing precise fixed effects estimates and standard errors. Moreover, LMMs 

assume that the variation in observations is caused by 1) variation within a subject 

and 2) variation between subjects. The within-subject variation measures the 

distance between repeated measurements taken on the same subject over time. On 

the other hand, the between-subject variation is the distance between measurements 

on different subjects. It is assumed that the between-subject variation is greater than 

the within-subject variation.  

Let 

 𝒚𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝒃𝒊 + 𝜺𝒊 (3) 

 

represents the general expression of the linear mixed-effects model with an 

unknown 𝑝-dimensional vector of fixed effects 𝜷, and an unknown 𝑞-dimensional 
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vector of random (subject-specific) effects 𝒃𝒊 following 𝑁(𝟎, 𝜎2𝑫). Where 𝑫 

denotes the (𝑞 × 𝑞) general covariance matrix. The random variable 𝒚𝒊  denotes the 

𝑛𝑖-repeated-measurements vector of the continuous response for subject 𝑖 ∈

(1,… , 𝑛) measured at fixed time points 𝑡𝑖 = (𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛𝑖)
′, that is 𝒚𝒊 =

(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑛𝑖)
′. The total number of observations is 𝑁 = ∑ 𝑛𝑖

𝑛
𝑖=1 . The residual 

component 𝑛𝑖-dimensional vector 𝜺𝒊 follows independent 𝑁(𝟎, 𝜎2𝑰𝑛𝑖). The LMM 

assumes that the residual components 𝜺𝒊 and the random effects 𝒃𝒊 are independent 

of each other; 𝐶𝑜𝑣(𝒃𝒊, 𝜺𝒊) = 0. The 𝑿𝒊 is a (𝑛𝑖 × 𝑝) design matrix of fixed effects 

and  𝒁𝒊 is a (𝑛𝑖 × 𝑞) design matrix of random effects for subject 𝑖. Generally, 𝒁𝒊 is 

chosen to be a sub-vector of 𝑿𝒊, thus 𝑞 < 𝑝. Conditional on the random effect, the 

response 𝒚𝒊 follows 𝑁(𝑿𝒊𝜷 + 𝒁𝒊𝒃𝒊, 𝜎
2𝑰𝑛𝑖). Furthermore, the response 𝒚𝒊 has a 

marginal distribution that follows multivariate 𝑁(𝑿𝒊𝜷, 𝜎
2𝑽𝒊(𝜃)), where 𝑽𝒊(𝜃) =

 𝒁𝒊𝑫𝒁𝒊
′ + 𝑰𝑛𝑖. Linear mixed models utilized for the longitudinal situation have two 

subtypes, which depend on modeling the longitudinal data; the Covariance Pattern 

Model and the Random Coefficients Model. The following expression is the  

Random Coefficients model 

 

 
𝒚𝒊 = 𝛽0 + 𝛽1𝒙𝒊 + 𝛽2𝒕𝒊 + 𝑏0𝑖 + 𝑏1𝑖𝒕𝒊⏟      

𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑠𝑢𝑏𝑗𝑒𝑐𝑡

+ 𝜺𝒊⏟
𝑤𝑖𝑡ℎ𝑖𝑛−𝑠𝑢𝑏𝑗𝑒𝑐𝑡

  
(4) 

 

where the measurement time is included in the LMM as a covariate with a 

corresponding slope, the slope will change with subjects; therefore, the model 

should fit each subject's separate intercept and slope. The subject intercept and slope 

are not independent and included as random effects in the model; that is 𝒃𝒊 =

(𝒃𝟎𝒊, 𝒃𝟏𝒊) = (
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖

(𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ×  𝑡𝑖𝑚𝑒)𝑖
). The Random Coefficient models are usually 
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utilized when the relationship with time is of interest (Van Belle et al., 2004; 

Molenberghs & Verbeke, 2000; NCSS Statistical Software, 2020a; NCSS 

Statistical Software, 2020b; Huque et al., 2020). 

Multiple Imputation 

Frequently, longitudinal studies are riddled with missing data. However, 

statistical power, analytical options, confidence in results, and generalizability of the 

linear mixed model findings and variable selection may be compromised if longitudinal 

studies have missing values. Determining the appropriate method to address missing 

data depends on the missing data rate and assumption. Methods that address missing 

data in longitudinal studies are either non-stochastic or stochastic. Non-stochastic 

methods, like mean replacement, last value carried forward, regression imputation, and 

hot-deck assume the missing data pattern follows MCAR or MAR. While stochastic 

methods involve multiple imputation, creating new datasets where missingness is 

imputed with plausible values (Roberts et al., 2017).  

In longitudinal settings, subjects may have missing observations at one time but 

have observations subsequent to a sparse structure of the data (intermittent), or subjects 

dropout permanently before the study completes (dropouts or attrition). The third 

pattern of missingness is mixing both the intermittent pattern followed by the 

permanent dropouts. MI is one of the modern techniques developed under the 

assumption that the data are missing at random (MAR) or possess the ignorability 

mechanism. The correct implementation of the MI approach demands the central 

feature that MI adopts; the compatibility between the model of interest and the 

imputation model for preserving the multilevel data structure (Lüdtke, Robitzsch & 

Grund, 2017).   

The methodology starts by adopting the MI based on the newly available joint 
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modeling (JM) approach for incomplete multilevel data presented in Huque et al. 

(2020), which is extensively discussed by Goldstein et al. (2014). In specific, 

substantive-model-compatible joint modeling (JM-SMC) approach is adopted when 

both the covariates and response variable contain missing values. He (2010) explained 

that the joint modeling approach partition the observations based on their missing data 

patterns then specify a parametric multivariate density suitable to the type of data given 

using the appropriate prior distribution for the parameters. Imputations are drawn from 

these multivariate density sub-models. Simulation results in Huque et al. (2020) showed 

that the JM-SMC provides consistent estimates of the random intercepts and consistent 

estimates of random slopes when both the covariates and response variable have 

missingness under the assumption of normality; Gaussian random effects. Buuren et al. 

(2010) stated that FCS is an alternative to JM when no reasonable multivariate 

distribution of the missing data is provided. However, Quartagno and Carpenter's 

(2019) results showed that JM performs better than FCS when the latent normal 

variables are used with the JM as an extension to impute categorically or count data 

(i.e., non-normal data). Moreover, imputation using FCS cannot handle variables 

measured at higher levels in multilevel data structures.  

Goldstein et al. (2014) extended a more efficient and easy parametric approach 

of multiple imputation; the joint modeling (JM) using Gibbs sampling through the 

Markov Chain Monte Carlo (MCMC) methods. The MI by joint modeling is carried 

out for any covariate with missing values by setting up an imputation model where the 

covariate is treated as a response. JM uses the joint posterior distribution for all the 

variables that have missingness and assumes the normality of variables. Non-normal 

variables can be handled using the latent normal approach through MCMC that links 

the different data types through a multivariate normal distribution or transformed into 
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normality before the imputation occurs. The original non-normal variables' imputed 

values will then be obtained on their original scale before the analysis. Therefore, 

Huque et al. (2020) used the JM approach to preserve congeniality. The JM-SMC joint 

imputation model is given by 

 

 (
𝒙𝒊
𝒚𝒊
 |𝒕𝒊) = (𝒚𝒊|𝒙𝒊, 𝒕𝒊) × (𝒙𝒊|𝒕𝒊) (5) 

 

which is compatible with the analysis model in (4), where (𝒙𝒊|𝒕𝒊) =  𝛽0(𝑥) + 𝛽(𝑥)𝒕𝒊 +

𝒃0(𝑥)𝑖 +  𝒃1(𝑥)𝑖𝒕𝒊 + 𝜺(𝒙)𝒊 is the marginal distribution of the covariates. 

The Selection of Random Effects in the Linear-Mixed Models 

The methodology here uses Adaptive LASSO for variable selection in the linear 

mixed model in a separate two-stage procedure, implementing profile log-likelihood 

and Newton-Raphson algorithm in each stage. Formulas in the following steps are 

based on the assumption that the random effects 𝒃𝒊~𝑁(0, 𝜎
2𝑫), error term 

𝜺𝒊~𝑁(0, 𝜎
2𝑰𝒏𝒊) and the response variable 𝒚𝒊~𝑁(𝑿𝒊𝜷, 𝜎

2𝑽𝑖(𝜽)), where 𝑽𝑖(𝜽) = 𝑰𝒏𝒊 +

𝒁𝒊𝑫𝒁𝒊
′. It is further assumed that 𝜽 is the vector of 𝑞(𝑞 + 1)/2 unique variance 

components in the covariance matrix 𝑫. 

The restricted log-likelihood is utilized in selecting the random effects because 

it is preferable when the variance components' estimates are of interest. Generally, the 

restricted maximum likelihood (REML) estimators are less biased than the maximum 

likelihood (ML) estimators. Therefore, the restricted log-likelihood is given by 

 

 ℓ𝑅(𝜽, 𝜎𝑅𝐸𝑀𝐿
2 ) =  ℓ𝐹(𝜷,̃ 𝜽, 𝜎𝑀𝐿

2 ) −
1

2
log |

1

𝜎𝑅𝐸𝑀𝐿
2 ∑𝑿𝑖

′𝑽𝑖
−1𝑿𝒊|

𝑛

𝑖=1

 (6) 
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Where ℓ𝐹(𝜷,̃ 𝜽, 𝜎𝑀𝐿
2 ) =  −

1

2
∑ log|𝜎𝑀𝐿

2 𝑽𝒊| −
1

2𝜎𝑀𝐿
2 ∑ (𝒚𝒊 − 𝑿𝒊�̃�)

′
𝑽𝑖
−1(𝒚𝒊 − 𝑿𝒊�̃�)

𝑛
𝑖=1

𝑛
𝑖=1  

is the log-likelihood function, �̃� =  (∑ 𝑿𝒊
′𝑽𝒊
−1𝑿𝒊

𝑛
𝑖=1 )−1(∑ 𝑿𝒊

′𝑽𝒊
−1𝒚𝒊

𝑛
𝑖 =1 ) is the ML 

estimator of 𝜷. Maximizing equation (6) will produce the REML estimator of 𝜽. By 

substituting the 𝜎𝑅𝐸𝑀𝐿
2  and 𝜎𝑀𝐿

2  in equation (6) by the estimators �̂�𝑅𝐸𝑀𝐿
2 =

 
1

𝑁−𝑝
∑ (𝒚𝒊 − 𝑿𝒊𝜷)

′𝑽𝑖
−1(𝒚𝒊 − 𝑿𝒊𝜷)

𝑛
𝑖=1  and �̂�𝑀𝐿

2 = 
1

𝑁
∑ (𝒚𝒊 − 𝑿𝒊𝜷)

′𝑽𝑖
−1(𝒚𝒊 −𝑿𝒊𝜷)

𝑛
𝑖=1 , 

the restricted profile log-likelihood is derived from the restricted log-likelihood as  

 

 

𝑃𝑅(𝜽) =  −
1

2
log |∑𝑿𝒊

′𝑽𝒊
−𝟏𝑿𝒊| −

1

2
∑log|𝑽𝑖|

𝑛

𝑖=1

𝑛

𝑖=1

−
1

2
(𝑁 − 𝑝)log [∑(𝒚𝒊 − 𝑿𝒊�̃�)

′
𝑽𝑖
−1

𝑛

𝑖=1

(𝒚𝒊 − 𝑿𝒊�̃�)] 

(7) 

 

𝑁 is the total number of observations, and 𝑝 is the total number of fixed parameters.   

Zou (2006) indicated that the adaptive LASSO asymptotically selects the true model. 

Hence, maximizing the penalized restricted profile log-likelihood and factorizing 𝜽 as 

(𝒅, 𝜶), the penalized restricted profile log-likelihood function is given below after the 

adaptive LASSO is employed. 𝒅 is the vector of the diagonal element of the covariance 

matrix D, and 𝜶 is the vector of upper off-diagonal elements of D. 

 

 𝑄𝑅(𝜽) = 𝑃𝑅(𝜽) − 𝜆1𝑛∑𝜔1𝑗|𝒅𝒋|

𝑞

𝑗 =1

  (8) 

 

𝜆1𝑛 is the tuning parameter which controls the model complexity, 𝒅𝒋 is the 𝑗th element 

in 𝒅 and the adaptive weights 𝒘𝟏 = (𝜔11, 𝜔12, … , 𝜔1𝑞)
′ = 1/|�̃�|. �̃� is the root-n 
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consistent estimator of 𝒅. The values of �̃� will reflect the relative importance of the 

random effects and penalize any 𝒅𝒋 to zero will control the inclusion and exclusion of 

the random effects. Newton-Raphson algorithm is then employed to maximize 𝑄𝑅(𝜽) 

in equation (8) until convergence. The �̂� is the penalized restricted profile log-

likelihood estimator where the estimator �̂� can be determined based on it.  

The selection of the optimal tuning parameter 𝜆 is carried out using the BIC 

selection criterion because BIC showed outperformance in simulation studies and 

consistency compared to other selection criteria. The 𝜆 that has the minimum BIC is 

chosen as the optimal. BIC-type criteria for selecting 𝜆1𝑛 is given by  

 

 𝐵𝐼𝐶𝑅 = −2 × 𝑃𝑅(�̂�) + log (𝑁) × 𝑑𝑓𝑅 (9) 

 

The Selection of Fixed Effects in the Linear-Mixed Models 

The correct selection of the random effects leads to the appropriate selection 

and estimation of the fixed effects. For this aim, the proper selection of the covariance 

structure of the random effects is critical. Fixed effects are selected with the utility of 

the penalized log-likelihood, then the final model is determined. For the general linear 

mixed model equation (1), the log-likelihood is given by  

 

 ℓ𝐹(𝜷, 𝜽, 𝜎
2) =  −

1

2
∑log|𝜎2𝑽𝒊| −

1

2𝜎2
∑(𝒚𝒊 −𝑿𝒊𝜷)

′𝑽𝑖
−1(𝒚𝒊 − 𝑿𝒊𝜷)

𝑛

𝑖=1

𝑛

𝑖=1

 (10) 

 

By substituting the ML estimator of 𝜎2, �̂�𝑀𝐿
2 = 

1

𝑁
∑ (𝒚𝒊 − 𝑿𝒊𝜷)

′𝑽𝑖
−1(𝒚𝒊 − 𝑿𝒊𝜷)

𝑛
𝑖=1 , in 

the log-likelihood, the profile log-likelihood can be obtained as 
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 𝑃𝐹(𝜷, 𝜽) =  ∑log|𝑽𝒊| −
𝑁

2
log {∑(𝒚𝒊 − 𝑿𝒊�̃�)

′
𝑽𝑖
−1

𝑛

𝑖=1

𝑛

𝑖=1

(𝒚𝒊 − 𝑿𝒊�̃�)} (11) 

 

where �̃� is the maximum likelihood estimator of 𝜷 as given earlier. Dropping the 

constant terms in (11) after estimating the covariance matrix of the random effects �̂�, 

the profile log-likelihood is as follows 

 

 𝑃𝐹(𝜷) = − 
𝑁

2
log {∑(𝒚𝒊 − 𝑿𝒊�̃�)

′
�̂�𝑖
−1(𝒚𝒊 − 𝑿𝒊�̃�)

𝑛

𝑖=1

} (12) 

 

Therefore, the penalized profile log-likelihood is given by  

 

 𝑄𝐹(𝜷) = 𝑃𝐹(𝜷) − 𝜆2𝑛∑𝜔2𝑗|𝛽𝑗|

𝑝

𝑗 =1

  (13) 

 

The weights vector is data-dependent and chosen to be 𝑤2 = 1/|�̃�| as it possesses 

optimal properties, where �̃� is the ML estimator of 𝜷 using the estimated covariance 

matrix �̂�, �̃� =  (∑ 𝑿𝒊
′�̂�𝒊
−1𝑿𝒊

𝑛
𝑖=1 )

−1
(∑ 𝑿𝒊

′�̂�𝒊
−1𝒚𝒊

𝑛
𝑖 =1 ). 𝜆2𝑛 is the tuning parameter for the 

fixed effects selection, and optimal tuning parameter is carried out using the BIC-type 

criteria 

 

 𝐵𝐼𝐶𝐹 = −2 × 𝑃𝐹(�̂�) + log (𝑁) × 𝑑𝑓𝐹 (14) 
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Large penalties are assigned for less important covariates and small penalties 

for the most important covariates. Newton-Raphson algorithm is used to maximize the 

penalized equation in (14) until the converged value �̂� is achieved, and the LMM can 

finally be identified. 

For further details of this methodology, the dissertation of Pan (2016) provided 

the derivatives and procedures for the two-stage variable selection method. 

Stacked (Homogeneous) Adaptive LASSO for Linear Mixed Model with 

Multiply Imputed Data 

When there is missing data, variable selection is performed only on the complete 

cases in most cases. However, this approach is insufficient as it may bias Type I error 

rates if the missingness assumption is rather than MCAR. Under the assumption of 

MAR and MCAR, a large number of variable selection techniques in the presence of 

missingness are developed based on the combination of variable selection with the 

inverse probability weighting (IPW) or augmented IPW to handle missing data. 

Another group of statistical techniques is based on combining variable selection 

methods with the observed data likelihood for handling missing data.  

This thesis adopts the combination of variable selection with imputation 

methods for handling missing data. Specifically, a combination of the joint modeling 

multiple imputation and the adaptive LASSO variable selection approach is introduced 

here in a longitudinal setting. Imputing missing data is attractive and straightforward 

because the process is separate from the subsequent variable selection analysis on 

imputed datasets. The performance of variable selection methods relies heavily on the 

choice of imputation methods and the careful construction of imputation models. 

Moreover, Zhao and Long (2017) declared that the literature encountered challenges of 

combining multiple imputation and variable selection techniques in a principled 
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framework to attain the final results of variable selection.  

  Hence, the aim is to adapt the existing adaptive LASSO via profile log-

likelihood proposed by Pan and Shang (2018) to accommodate multiply imputed data 

by joint modeling multiple imputations. Wood et al. (2008) discussed a variety of 

adaptation procedures for the variable selection methods when applied to multiply 

imputed data. One of the approaches that showed a good performance is to use variable 

selection on each imputed dataset separately, then select predictors that appear in at 

least half of the models and combine the parameter estimates across the selected 

predictors. Another approach is to stack the multiply imputed data sets yielding a single 

large dataset of length 𝑁 ×𝑚, where 𝑁 is the total sample size and 𝑚 is the number of 

imputed datasets. Fitting models or applying variable selection on the artificially 

enlarged dataset yields valid parameter estimates but small standard errors. A fixed 

weight 𝑜𝑖 is applied to all subjects in order to correct the standard errors. Therefore, the 

thesis here use weighted profile log-likelihood for the adaptive LASSO variable 

selection on the stacked imputed data sets. Du et al. (2022) highlighted that the 

approach of stacking imputed data set is appealing because no ad-hoc pooling is 

required to identify the final active set of selected variables. Also, stacking allows 

simultaneous variable selection, estimation, and generating of interpretable parameter 

estimates.  

Stacking is referred to as a homogenous pooled objective function (penalized 

profile log-likelihood in the proposed method). The optimization is equivalent to fitting 

the penalized procedure on stacked imputed datasets to enforce uniform estimation and 

variable selection across all the imputed data sets. The optimization is straightforward 

and can be implemented using existing software. Stacked methods are fast and have 

small MSE values. 
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 In the proposed combining approach, the equal weights (𝑜𝑖 = 
1

𝑚
) are introduced 

so the total weight for each subject in the stacked dataset sums up to 1. Wang (2001) 

and Xue et al. (2021) defined the weighted likelihood function as  

 

 𝐿(𝜷) =∏𝑓(𝑿𝑖; 𝜷)
𝑜𝑖

𝑛

𝑖=1

 (15) 

 

To be more specific, the weighted likelihood function for the linear mixed model given 

in equation (3) is given as  

 

 𝐿(𝛽) =∏(
1

√2𝜋
 × 

1

√|𝜎2𝑽𝑖|
× 𝑒

−
1
2𝜎2

(𝒚𝒊−𝑿𝒊𝜷)
′𝑽𝑖
−1(𝒚𝑖−𝑿𝒊𝜷))𝑜𝑖

𝑛

𝑖=1

 (16) 

 

Hence, the weighted restricted log-likelihood and weighted log-likelihood are derived 

as 

 ℓ𝑊𝑅(𝜽, 𝜎𝑅𝐸𝑀𝐿
2 ) =  ℓ𝑊𝐹(𝜷,̃ 𝜽, 𝜎𝑀𝐿

2 ) −
1

2
log |

1

𝜎𝑅𝐸𝑀𝐿
2 ∑𝑜𝑖𝑿𝑖

′𝑽𝑖
−1𝑿𝒊|

𝑛

𝑖=1

 (17) 

 

 

ℓ𝑊𝐹(𝜷, 𝜽, 𝜎
2) =  −

1

2
∑𝑜𝑖 log|𝜎

2𝑽𝒊|

𝑛

𝑖=1

−
1

2𝜎2
∑𝑜𝑖(𝒚𝒊 − 𝑿𝒊𝜷)

′𝑽𝑖
−1(𝒚𝒊 − 𝑿𝒊𝜷)

𝑛

𝑖=1

 

(18) 

 

The detailed algorithm for the homogeneous adaptive LASSO variable selection on 

imputed data is presented in Figure 4. 
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Figure 4. Stacked (homogeneuos) adaptive LASSO for linear mixed model on 

imputed dataset algorithm 
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CHAPTER 5: SIMULATION STUDIES 

The simulation parts provide a numerical examination of the relative 

performance of the proposed procedure described in Chapter 4 in the setting of 

longitudinal data following Pan and Shang (2018) and Huque et al. (2020) examples. 

The simulation studies performed are particularly interested in comparing the proposed 

methodology's merits and performance under different design structures. Also, the 

model performance will be assessed by comparing the simulation results with the gold 

standard example in the literature in terms of the selection rates of the true model, fixed 

effects, and random effects.    

Simulation 1: Model Performance under Different Scenarios 

The simulation study here is based on a true model with 𝑝 = 9 for fixed effects 

and 𝑞 = 2 for random effects forming longitudinal data collected at equal intervals, 

where 𝑝 is associated with the number of fixed effects and 𝑞 is the number of random 

effects. The selection of 𝑞 here is a special scenario drafted from the example given in 

Pan and Shange (2018). For this setting, the study consists of a large sample, where 

𝑛 = 60 independent subjects with 𝑛𝑖 = 10 (waves) observations per each subject. The 

true parameter vector is specified to be 𝜷 = (1, 1, 0, 0, 0, 0, 0, 0, 0)𝑇, the true covariance 

matrix is 𝑫 = (
9 4.8
4.8 4

), and the variance 𝜎2 is assumed to be 1. 𝑿𝑖 and 𝒁𝑖 are 

independently generated from a uniform (-2, 2) distribution, except the first column of 

𝒁𝑖 consisted of 𝟏′s for the subject-specific intercept. The reason behind choosing a large 

sample here is that joint modeling imputation runs into difficulties with a smaller 

sample size (Van Buuren, 2018). The following cases are considered here: 

Here, the aim is to evaluate the proposed procedure under different missing data 

proportions. missing values are induced on the fixed effects 𝑿𝑖 and outcome variable 

𝒚𝑖 at each wave under an MAR mechanism with two different proportions: 25% and 
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35%. The random effects are fully observed because the random slopes in longitudinal 

settings are only associated with the time variable, which is usually fully observed.  

Let 𝑅𝑖𝑗 indicate the missingness of 𝒙𝑖𝑗 and 𝑦𝑖𝑗, where 𝑅𝑖𝑗 = 1 when the 𝒙𝑖𝑗 or 

𝑦𝑖𝑗 is observed, and 0 if missing. The missing data indicator 𝑅𝑖𝑗 is selected from 

inverse-logistic regression with success probability given by the following models to 

induce the missing data in fixed effects and outcome variable, respectively, 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅1𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (19) 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅2𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (20) 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅3𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (21) 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅4𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (22) 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅5𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (23) 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅6𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (24) 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅7𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (25) 
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 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅8𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (26) 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅9𝑖𝑗 = 1)} = 𝜃1 + 𝜃2𝒛2,𝑖𝑗 + 𝜃3𝑦𝑖𝑗 (27) 

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑅10𝑖𝑗 = 1)} = 𝜃4 + 𝜃5𝒛1,𝑖𝑗 + 𝜃6𝒛2,𝑖𝑗 (28) 

 

The coefficients 𝜽 = (𝜃1, … , 𝜃6)
𝑇 are chosen to control the proportions of missingness 

for each corresponding variable. Missing data are induced in a dropout and intermittent 

pattern.  

Multiple imputation is applied for the constant covariance matrix described in 

Chapter 4. The R function jomo.lmer of the package jomo is used to multiply 

impute the missing data based on the joint posterior distribution of incomplete variables 

because it allows the mix of multilevel continuous and categorical variables 

(Quartagno, Grund, & Carpenter, 2019). Marino et al. (2017) results indicated that one 

imputation is not sufficient to get reliable results from the variable selection model. 

Hence, changes in the number of imputations is considered, where each simulated 

dataset is imputed 𝑚 = 5 and 𝑚 = 10 times before the proposed method is applied to 

perform variable selection and estimation. The number of between-imputation 

iterations is set to default, while the number of burn-in iterations is set to be 𝑛𝑏𝑢𝑟𝑛 =

5000. Because JM imputation uses the MCMC algorithm for model fitting and 

imputation, it is important to monitor and assess the convergence of the sampler before 

registering the imputations. The trace plot in Figure 5 shows that a burn-in of 5000 is 
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reasonable where the sampler clearly converges. The function 

jomo.lmer.MCMCchain captures the state of the sampler as a starting value and 

provides the sampler a mechanism for the second set of iterations. Before running the 

imputation model, this dry run is recommended to check the sensible number of burn-

in and the number of between imputations for the final imputation process. 

 

 

Figure 5. MCMC chain for 𝛽𝑒,0 to decide the number of burn-in and between-

imputation iterations 

 

The simulation studies here generated (simulated) 100 datasets and then reported 

the different measurements used to evaluate the variable selection performance. The 

performance of the proposed method is evaluated based on the different scenarios of 

missing data and number of imputed datasets. The measures “CR,” “CF,” and “C” are 

presented to evaluate the selection performance. For the selection of random effects, 

“CR” denotes the frequency (in percentage) that the correct random effects structure is 

selected. While “CF” shows the percentage that the correct fixed effects are selected, 

and “C” denotes the percentage that the correct true model is selected given that both 
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the random and fixed effects are identified correctly. The true values of the 

aforementioned measures are %CR = 100, %CF = 100, and %C = 100.  

The simulated results across the 100 simulated data sets are displayed in Table 1. 

For fixed effects selection, %CF is dominated by five imputations with 25% 

missingness in each variable, which has CF equals 80%. It’s observed that as the 

number of imputations increases, the sample size gets enlarged and the model 

performance rates are much smaller. Therefore, 𝑚 = 5 imputations is adequate in the 

case of 25% missingness to avoid introducing very large artificial sample size to the 

variable selection algorithm which may lead to model instability. The %CR is always 

100%, meaning the important random effects are always identified using the proposed 

selection method. The proposed method selects the true model with 78% in the case 

where the data is prone to 25% missingness in each variable and 10 imputations are 

generated.  

Regarding the higher proportion of missingness (i.e., 35%), results from Table 1 

remarked that the proposed variable selection method is performing better with a higher 

number of multiply imputed datasets. As the 𝑚 increases, the method selects the correct 

fixed effects and true model with 50% in comparison to 45% in 𝑚 = 5 scenario. 

 

Table 1. Simulation Results for Simulation 1 

Proportion of 

missingness (%) 

Number of 

imputations 

%CR %CF %C 

25 m = 5 100 80 80 

m = 10 100 78 78 

35 m = 5 100 45 45 

m = 10 100 50 50 
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Simulation 2: Proposed Model Comparison with Existing Literature 

In Simulation 2, the selection performance is compared between the proposed 

approach in Chapter 4 and the variable selection when performed on the full simulated 

dataset before missing data is induced. Applying variable selection on full dataset is 

similar to the numerical studies given in Pan and Shange (2018) and is considered the 

gold standard because the penalized variable selection is implemented on the complete 

data.  

 Table 2 indicates that missing values present in any dataset lower the 

ability of the method to select the correct fixed effects and true model as compared to 

the benchmark method (i.e., variable selection on full data). However, the thesis 

proposed algorithm performs well at recovering the correct true model with 𝑚 = 5 

imputations. 

 

Table 2. Simulation Results for Simulation 2 (missing data % = 25) 

Method %CR %CF %C 

Full data without 

missingness 

100 95 95 

The proposed 

method 

100 80 80 
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CHAPTER 6: DATA APPLICATION  

Tracking changes over time at regular intervals is very useful way to collect 

data on complex topics in various research areas. For example, longitudinal genetic 

studies are more appropriate than measuring a single measurement per individual. 

Large amount of useful information (e.g., gene-time interactions) in longitudinal gene 

studies are lost when the existing traditional methodologies are used (Chung & Cho, 

2022). As another example, Stamatis et al. (2022) declared that past studies 

investigating the potential factors for the development of psychological symptoms 

overtime in response to COVID-19 pandemic relied on cross-sectional designs. This 

makes it difficult to parse the timeline over which symptoms may unfold in relation to 

poorer mental health. Therefore, the study of Stamatis et al. (2022) examined the 

psychological impacts of COVID-19 among U.S. university students during the initial 

months of the pandemic using a novel variable selection method in longitudinal setting. 

Predictors used in their study included variables assessing the mental health symptoms, 

pandemic related experience, and sociodemographic characteristics. Dropouts 

following the MAR assumption in the data are handled using listwise deletion before 

implementing the variable selection analytic method, elastic net regression. 

In most reviewed literature, longitudinal studies employs variable selection with 

missing data in health and related epidemiological sciences. Real data applications 

where the study units are other than real people can be considered too on variable 

selection with incomplete longitudinal data. For example, similar approaches like in 

Chapter 3 can be introduced to sustainability and quality control applications where 

study subjects are regions or appliances. 

To further examine the effectiveness of the proposed procedure, the weighted 

adaptive LASSO penalization method is utilized in a demonstrative example of food 
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security and resilience (Singh, 2021). Premanandh (2011) stated that “Food is 

paramount to survival, growth, and reproduction of living organisms.” Food insecurity 

and hunger remain at unacceptable high levels despite the dramatic increase in 

production and availability. Under the shadow of the COVID-19 pandemic, world 

hunger increased in 2020, where between 720 and 811 million people are facing hunger. 

Of the global population, 12% is severely food insecure in 2020, representing 928 

million people (FAO, 2021). Consequently, this leads to a higher rate of child mortality 

and increased criminal activities in a desperate bid to acquire food. 

Food production, supply, and consumption represent one of the most profound 

environmental implications. In order to develop a sustainable policy, the world must 

incorporate the production of high-quality food with sufficient quantities that meet the 

current demand of the market and population.  

The idea of food security was found since the First World War, where it defines 

how each European country has the ability to produce its own food and is vulnerable to 

political or military boycotts. Because of the food shortage crisis of 1972-1974, food 

security and sustainable agreements and scientific discussions were made at the World 

Food Conference in 1974. However, the focus of the conference was on producing safe 

and adequate food, not as a right for every human to have access to healthy food. This 

results in hunger and malnutrition due to the access problem, not the production. The 

right to food has to be put in the context of the right to life. Hence, the Food and 

Agriculture Organization in 1983 presented the new concept of food security which 

ensures secure access to the food offered. Additionally, the World Bank in 1986 stated 

that food security is the realization that everyone has the right to regular and permanent 

access to quality and sufficient quantity of food (Panzarini et al., 2013). 

There is a strong correlation between food security and sustainability. The 



 

55 

projected population growth and the fundamental right for everyone to have sufficient 

and nutritious food will expand the production area or intensify the production 

practices. This additional pressure on agriculture delineates the direction of 

environmentally sustainable development, especially with regard to climate change, 

irrigation, and soil degradation. Hence, reducing the trade-off between food demand 

and the environment (Helms, 2004). 

Brooks (2016) indicated that the sustainable development goals include linked 

objectives related to food and environment, which promote food security and 

sustainable agriculture. To increase the supply of food sustainability, increased 

investment in agriculture is needed. Food availability, improved nutrition, and lower 

unit cost will benefit the consumers when there is a broad-based development in 

agricultural productivity. Premanandh (2011) provided a review of the promising 

solutions in order to achieve food sustainability. One of the technological solutions is 

to commercial production of transgenic crops to boost food security and poverty 

reduction by offering a better yield in a shorter time.  

In the State of Qatar, food security became a vital issue of national security. In 

the Food Systems Summit Dialogue of 2021, Qatar discussed its vision for sustainable 

food system by 2030. This dialogue shaped the actions and preparations of Qatar to 

fulfill this vision. 

Despite of the harsh climate conditions and scarcity of natural resources, Qatar 

implemented various initiatives achieving close to a 100% supply for the most critical 

and essential food items on a day-to-day basis, as well as in times of emergencies and 

crises. Every year Qatar funds innovative research and projects in Food Security 

facilitating innovations in local food production and storage. All these actions are aimed 

to make sure that the food system in Qatar is resilient, equitable, and safe, whilst 
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protecting and improving the natural resources (Food Systems Summit Dialogues, 

2021).  

Data Description: 2020 Global Food Security Index (GFSI) 

Measuring food security raises evidently the tool of composite indicators. Based 

on Jacobs (2004), Composite indicators are “useful tools for conveying summary 

performance information and signaling policy priorities.” Missing data in composite 

indicators should not be ignored, and the variables should be normalized to facilitate 

comparison. Mainly, food security is based on the pillars: availability, affordability 

(i.e., access), utilization (i.e., quality and safety), and stability. The Economist 

Intelligence Unit (EIU) defined a Global Food Security Index (GFSI), one of several 

measurements of food insecurity at the country level, which will be the focus in this 

chapter. Other food security measures are also available in the literature; for instance, 

the International Food Policy Research Institute (IFPRI) developed the Global Hunger 

Index (GHI) (Izraelov & Silber, 2019).  

GFSI is a composite indicator that is produced every year since 2012 to detect 

the progress towards food security at the national (i.e., country) level. The GFSI data 

set consists of 𝑛 =  110 countries that are supposed to have a larger population so that 

the composite indicator would cover as much of regional diversity and economic 

importance for the world population as possible. The EIU constructs the index on the 

basis of 59 indicators that measure the issues (i.e., categories) of food security: 

Availability, Affordability, Quality and Safety, and Natural Resources and Resilience. 

The Availability category (16 indicators) measures the factors that impact food supply 

and the ease of access to food. The Affordability category (11 indicators) assesses the 

capacity of people to pay for food in each country and the cost of food under normal 

circumstances and at-time of food-related shocks. The Quality and Safety category (12 
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indicators) measures each country's nutritional quality and food safety environment. 

Finally, the Natural Resources and Resilience category (20 indicators) explores the 

country’s exposure to the impacts of a changing climate and how the country is adapting 

to these risks. All the indicators under the four categories of food security are 

considered as covariates to fit the linear mixed model for the proposed method (𝑝 =

59).  Appendix A gives the list of indicators under each food security category. 

In what follows, an investigation of the proposed method on linear mixed model 

for the data when it is hindered by 25% missingness in each of the covariates and 

response, aiming to figure out the most appropriate mixed model for describing the 

factors that affect the continuous response variable of interest; GDP per capita (US$). 

The data set reported a cohort of 𝑛 = 110 countries measured over 𝑛𝑖 =  9 −time 

points, through 2012-2020, thus the total number of observations is 𝑁 = 990. 

Results 

To fit the linear mixed model, the indicators under each food security category 

(listed in Appendix A) are considered covariates. The findings generated from the 

model will be generalized to all countries, thus, country (i.e., subject) is considered as 

a random factor. The LMM model could be expressed as  
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𝐺𝐷𝑃 ~ 1 +  AFF1.1 + AFF1.2 + AFF1.3 + AFF1.4 + AFF1.5.1

+ AFF1.5.2 + AFF1.5.3 + AFF1.5.4 + AFF1.6.1

+ AFF1.6.2 + AFF1.6.3 + AV2.1.1 + AV2.1.2 + AV2.2.1

+ AV2.2.2 + AV2.3.1 + AV2.3.2 + AV2.3.3 + AV2.3.4

+ AV2.4 + AV2.5.1 + AV2.5.2 + AV2.5.3 + AV2.5.4

+ AV2.6 + AV2.7.1 + AV2.7.2 + QS3.1 + QS3.2.1

+ QS3.2.2 + QS3.2.3 + QS3.2.4 + QS3.3.1 + QS3.3.2

+ QS3.3.3 + QS3.4 + QS3.5.1 + QS3.5.2 + QS3.5.3

+ NRR4.1.1 + NRR4.1.2 + NRR4.1.3 + NRR4.1.4

+ NRR4.1.5 + NRR4.2.1 + NRR4.2.2 + NRR4.3.1

+ NRR4.3.2 + NRR4.3.3 + NRR4.4.1 + NRR4.4.2

+ NRR4.5.1 + NRR4.5.2 + NRR4.6.1 + NRR4.6.2

+ NRR4.6.3 + NRR4.6.4 + NRR4.7.1 + NRR4.7.2

+ Year + (1 + Year | Subject) 

(29) 

 

Where the subject is the country variable. The random term (1 + Year | Subject) 

include correlated intercept and slopes for the random intercept and Year. 

  Before doing the exploratory analysis and fitting the model, covariates in the 

data are with different measurement scales which needs a transformation to bring them 

to a comparable metric. Moeller (2015) reported that using standardized values in 

longitudinal studies is misleading. For example, z-standardization complicates 

interpretation of differences between groups.  Other problems listed in Moeller (2015) 

article often co-occur because of the complexity of longitudinal data and analysis. As 

an alternative that do not change the multivariate distribution and covariance matrix of 

the transformed variables, proportion of maximum scale (POMS) which is also referred 
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as normalization. The following equation transform each scale to a metric from 0 to 1, 

where the higher value of a covariate indicates better situation.  

 

 𝑧 =  
𝑥 − 𝑀𝑖𝑛(𝑥)

𝑀𝑎𝑥(𝑥) − 𝑀𝑖𝑛(𝑥)
 (30) 

 

In order to fit the data with linear mixed model and because the proposed 

method will be adopted to choose the best mixed model, then checking the (linearity, 

normality of residuals, and homoscedasticity of residual variance) assumptions is 

crucial to assure that the data is well-suited to the analysis. The model also assumes that 

response variable is normally distributed and shows homogeneous variance. It is 

observed in Figure 6 that the response variable, GDP, is highly skewed to the right. 

Therefore, the natural log transformation is used to attenuate this skewness (Figure 7) 

of GDP and is taken for the subsequent analysis rather than the raw GDP.  
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Figure 6. Q-Q plot of GDP 

 

 

Figure 7. Q-Q plot of log transformation of GDP 

   

To inspect the relationship between the GDP and the 59 covariates plus the time 

(i.e., year), first a simple mixed effects model is built to predict the GDP and control 

for the country level only, which is expressed by 
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 𝐺𝐷𝑃 ~  (1 | Subject) (31) 

 

Then, another model is fitted by adding the covariates and year as expressed in equation 

29. The log-likelihood ratio test used in Figure 8 to compare the two models (i.e., simple 

vs. Full) shows that the model with covariates improves on the simple model (𝑝 < .05). 

Also, to examine how these factors (i.e., covariates) help in explaining the variance in 

the response, the pseudo R-squared for the full model is equal to 0.998 (99.8%) 

revealing that the model is fitting well to the observed data. 

 

 

Figure 8. Log-likelihood ratio test for simple model (equation 31) vs. full model 

(equation 29) 

 

 For the model in equation 29, the density plot of the residuals is plotted in Figure 

9 and indicates that normality assumption approximately holds with slight remaining 

skewness in the residuals. Also, the linearity assumption and variance homoscedasticity 
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are satisfied as shown in Figure 10. 

 

 

Figure 9. Density plot for the normality assumption of residuals 

 

 

Figure 10. Residual plot against the fitted values for linearity assumption and variance 

homoscedasticity 
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The result for the proposed penalized method in Table 3 shows that the 

coefficients of 25 indicators are penalized to zero, meaning that these covariates are 

minor and thus excluded from the selected model. Based on the results in Table 3, the 

model can be shown as 

 

 

log(𝐺𝐷𝑃)~ 𝛽° + 𝛽1AFF1.2 + 𝛽2AFF1.3 + 𝛽3AFF1.4 + 𝛽4AFF1.5.3

+ 𝛽5AFF1.5.4 + 𝛽6AFF1.6.1 + 𝛽7AV2.1.1 + 𝛽8AV2.3.2

+ 𝛽9AV2.3.3 + 𝛽10AV2.5.4 + 𝛽11AV2.6 + 𝛽12QS3.1

+ 𝛽13QS3.3.1 + 𝛽14QS3.3.3 + +𝛽15QS3.5.2

+ 𝛽16QS3.5.3 + 𝛽17NRR4.1.1 + 𝛽18NRR4.1.2

+ 𝛽19NRR4.1.3 + 𝛽20NRR4.1.4 + 𝛽21NRR4.1.5

+ 𝛽22NRR4.2.1 + 𝛽23NRR4.2.2 + 𝛽24NRR4.3.1

+ 𝛽25NRR4.3.2 + 𝛽26NRR4.3.3 + 𝛽27NRR4.4.1

+ 𝛽28NRR4.4.2 + 𝛽29NRR4.5.1 + 𝛽30NRR4.5.2

+ 𝛽31NRR4.6.1 + 𝛽32NRR4.6.2 + 𝛽33NRR4.7.1

+ 𝛽34NRR4.7.2 + 𝛽35Year + 𝑏1 + 𝑏2𝑌𝑒𝑎𝑟 

(30) 

 

Table 3. Parameter estimates for indicator (fixed effect) coefficient using the proposed 

method 

Fixed Effects Coefficient Penalized (Yes/No)? 

AFF1.1 0.00 Yes 

AFF1.2 1.90 No 

AFF1.3 0.54 No 

AFF1.4 1.80 No 

AFF1.5.1 0.00 Yes 

AFF1.5.2 0.00 Yes 

AFF1.5.3 0.12 No 

AFF1.5.4 0.09 No 

AFF1.6.1 0.26 No 

AFF1.6.2 0.00 Yes 

AFF1.6.3 0.00 Yes 
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Fixed Effects Coefficient Penalized (Yes/No)? 

AV2.1.1 0.97 No 

AV2.1.2 0.00 Yes 

AV2.2.1 0.00 Yes 

AV2.2.2 0.00 Yes 

AV2.3.1 0.00 Yes 

AV2.3.2 0.02 No 

AV2.3.3 1.37 No 

AV2.3.4 0.00 Yes 

AV2.4 0.00 Yes 

AV2.5.1 0.00 Yes 

AV2.5.2 0.00 Yes 

AV2.5.3 0.00 Yes 

AV2.5.4 2.00 No 

AV2.6 0.45 No 

AV2.7.1 0.00 Yes 

AV2.7.2 0.00 Yes 

QS3.1 3.05 No 

QS3.2.1 0.00 Yes 

QS3.2.2 0.00 Yes 

QS3.2.3 0.00 Yes 

QS3.2.4 0.00 Yes 

QS3.3.1 1.39 No 

QS3.3.2 0.00 Yes 

QS3.3.3 4.25 No 

QS3.4 0.00 Yes 

QS3.5.1 0.00 Yes 

QS3.5.2 2.27 No 

QS3.5.3 3.24 No 

NRR4.1.1 2.34 No 

NRR4.1.2 2.03 No 

NRR4.1.3 5.36 No 

NRR4.1.4 1.19 No 

NRR4.1.5 -0.44 No 

NRR4.2.1 2.81 No 

NRR4.2.2 2.32 No 

NRR4.3.1 0.99 No 

NRR4.3.2 2.13 No 

NRR4.4.1 -1.72 No 

NRR4.4.2 0.57 No 

NRR4.5.1 1.54 No 

NRR4.5.2 -0.45 No 

NRR4.6.1 0.38 No 

NRR4.6.2 0.45 No 

NRR4.6.3 0.00 Yes 

NRR4.6.4 0.00 Yes 

NRR4.7.1 1.51 No 

NRR4.7.2 0.90 No 
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CHAPTER 7: CONCLUDING REMARKS AND FUTURE DIRECTIONS 

Repeated measurements or longitudinal data are often correlated. This 

correlation needs to be accounted for in the analysis to produce unbiased parameter 

estimates. Marginal and conditional models are appropriate for addressing this temporal 

and spatial proximity. Conditional models include random effects for the within-subject 

dependency, while marginal methods require additional modeling steps to handle these 

dependencies. GEE is a population-average (marginal) approach that uses quasi-

likelihood equations for parameter estimation. GEE takes into account the dependency 

of measurements by specifying a “working” correlation structure. Khajeh-Kazemi et al. 

(2011) stated that the “working” correlation matrix should be identified to sufficiently 

fit the data; otherwise, the parameter estimates will be inefficient but consistent. The 

quasi-likelihood estimators are estimates of the GEE where no likelihood function is 

explicitly specified. Thus, the response’s joint distribution is not specified completely; 

GEE has limitations on the goodness-of-fit test and has complexity with comparing and 

choosing the best model.  

It is impossible to check the regression model’s adequacy without proper model 

checking, and the validity of inference cannot be assured. Therefore, GEE is not a 

modeling technique, but it is an estimating method. However, empirical parameter 

estimates and standard errors can be attained. Empirical estimators are more variable 

and smaller (in absolute value) than estimators from conditional methods. Moreover, 

empirical standard errors are underestimated unless there is a large sample size 

(Slavkovic, 2018). Another limitation of GEE is the sensitivity of the link function, 

which can affect the model fit.   

On the other hand, LMM is a subject-specific (conditional) framework. Assume 

a distribution of intercepts, and every subject intercept is a random variable to account 
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for the variability between subjects. This describes how the covariate affects the 

response within-cluster, holding all other covariates and random effects constant (Muff 

et al., 2016). A possible modification can be applied to the GLMM to ensure the 

method’s robustness when the assumptions are not satisfied. For example, empirical 

standard errors are introduced within the GLMM when the correlation structure is mis-

specified (Koper & Manseau, 2009). Unlike GEE, LMM can be extended to allow 

multiple levels (i.e., clusters) in the longitudinal data. Also, GLMMs rely on likelihood 

methods and can thus undergo model selection procedures. Mixed-effects models 

provide valid inferences when the missing data mechanism is ignorable, while GEE 

requires a stronger missing data assumption, MCAR. The interpretation of the 

conditional and marginal models is equivalent when the response variable is normally 

distributed. However, Lee and Nelder (2004) stated that the conditional model is 

fundamental where the marginal error can be made. They supported the use of robust 

procedures but with likelihood-based methods. All the robust procedures used in GEEs 

are also applicable for LMMs. Twisk (2004) and Locascio and Atri (2011) provided a 

concise overview of the two advanced analytical approaches; LMM and GEE. While 

Ballinger (2004) and Parzen et al. (2011) highlighted the cautions and drawbacks of 

using GEE in longitudinal settings.  

Classical regression or ANOVA models are not suited for repeated 

measurements because they ignore the analysis results when even a single measurement 

is missing. On the contrary, mixed models have the advantage of handling uneven 

spaces of repeated measurements as long as the missingness follows the MAR 

assumption. Another advantage of LMM is that it can be extended to the non-normal 

response variable (i.e., generalized linear mixed models). Hence, linear mixed models 

provide a flexible and general tool for correlated data analysis.  
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In longitudinal studies, it is far more common and challenging that study 

participant (i.e., units) do not always appear for a scheduled observation leading to 

missing observations. Therefore, the data is unbalanced over time as not all individuals 

have the same number of measurements in a given set of time points. The term 

“incomplete” is used to distinguish the missingness from another kind of unbalanced 

longitudinal design, meaning a particular intended measurement could not be obtained. 

It is always recommended to have balanced longitudinal designs since these designs 

can capture within-individual change. Missing data and panel attrition is one of the 

most frequently encountered issues in longitudinal panel designs, which also have more 

ways to address them. Results revealed that multiple imputations using the JM-SMC 

approach hold great promise for imputing longitudinal data.  

Due to the simpler form and concave optimization property of the Adaptive 

LASSO penalization method, the adopted method of variable selection is more robust 

to outliers and useful for simultaneous variable selection and parameter estimation.  

Variable selection algorithms can be easily implemented in any statistical 

software package. For handling missing data, the widely used multiple imputation, 

using the JM approach, are also flexible and easy to implement and available in multiple 

software packages (e.g., jomo in R). However, incorporating variable selection and 

missing data algorithms need to be compiled in a way in which to give substantive 

inferential conclusions and unbiased estimates. Du et al. (2022) stated that there is a 

lack of methods that address variable selection with the presence of missing data in the 

literature. Stacking (i.e., homogeneous) and grouping (i.e., heterogeneous) are two 

appealing combination algorithms because they can handle variable selection given 

imputed datasets obtained previously from imputation software. Simulation findings in 

Du et al. (2022) indicated that the imputation-stacking objective function approach 
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tends to be more efficient and has better estimation and variable selection properties. 

To investigate the behavior or performance of the proposed combination 

approach, the thesis conducted comparative simulation studies. Wood et al. (2008) 

indicated that applying variable selection on multiply imputed data sets may be 

computationally infeasible when there is a large data set (𝑁) and large imputed datasets 

(𝑚). Also, Roberts et al. (2017) declared that the acceptable rate of missing data in 

longitudinal studies varies from 5% to 20%. However, the thesis proposed method, 

which tested a longitudinal data of 𝑁 = 600 observations and hindered by 25% of 

missingness in each covariate and response variable performs quite efficaciously in 

selecting the correct true model (80%).  

As a subject for future research, one could use the Bayesian variable selection 

for linear mixed models when longitudinal data is hindered by missingness. Limited 

work has been done in this direction, especially with mixed models (Zhao & Long, 

2017). Bayesian variable selection provides a convenient approach when the covariates 

are large, as the standard selection methods are infeasible because they choose the 

preferred model by fitting all the possible models. Yang et al. (2005) proposed a fully 

Bayesian framework applied on multiply imputed data, and recent research by Beesley 

and Taylor (2021) proposed a shrinkage-based Bayesian variable selection technique. 

The former research study used linear regression, and the latter used a multistate 

modeling approach. However, another direction indicates an extension of the 

methodology proposed by Yang et al. (2020) to accommodate missing values handled 

by multiple imputation. 
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APPENDIX A: LIST OF VARIABLES TAKEN INTO ACCOUNT BY THE 

DATASET OF GFSI 

A complete description if the data can be found on The Economist Impact website: 

https://impact.economist.com/sustainability/project/food-security-index/. The data 

used here is a subset consisting of 990 observations from 110 countries from 2012 to 

2020. Here is a list describing the indicators used as covariates in the model.  

Affordability Category 

𝑥1 

𝑥2 

𝑥3 

𝑥4 

𝑥5 

𝑥6 

𝑥7 

𝑥8 

𝑥9 

𝑥10 

𝑥11 

1.1 Change in average food costs (AFF1.1) 

1.2 Proportion of population under global poverty line (AFF1.2) 

1.3 Inequality-adjusted income index (AFF1.3) 

1.4 Agricultural import tariffs  (AFF1.4) 

1.5.1 Presence of food safety net programmes (AFF1.5.1) 

1.5.2 Funding for food safety net programmes (AFF1.5.2)  

1.5.3 Coverage of food safety net programmes (AFF1.5.3) 

1.5.4 Operation of food safety net program (AFF1.5.4) 

1.6.1 Access to finance and financial products for farmers (AFF1.6.1) 

1.6.2 Access to diversified financial products (AFF1.6.2) 

1.6.3 Access to market data and mobile banking (AFF1.6.3) 

Availability Category 

𝑥12 

𝑥13 

𝑥14 

𝑥15 

𝑥16 

𝑥17 

𝑥18 

𝑥19 

𝑥20 

𝑥21 

𝑥22 

𝑥23 

𝑥24 

𝑥25 

𝑥26 

𝑥27 

2.1.1 Food supply adequacy (AV2.1.1) 

2.1.2 Dependency on chronic food aid (AV2.1.2) 

2.2.1 Public expenditure on agricultural research and development (AV2.2.1) 

2.2.2 Access to agricultural technology, education and resources (AV2.2.2) 

2.3.1 Crop storage facilities (AV2.3.1) 

2.3.2 Road infrastructure (AV2.3.2) 

2.3.3 Air, port and rail infrastructure (AV2.3.3) 

2.3.4 Irrigation infrastructure (AV2.3.4) 

2.4 Volatility of agricultural production (AV2.4) 

2.5.1 Armed conflict (AV2.5.1) 

2.5.2 Political stability risk (AV2.5.2) 

2.5.3 Corruption (AV2.5.3) 

2.5.4 Gender inequality (AV2.5.4) 

2.6 Food loss (AV2.6) 

2.7.1 Food security strategy (AV2.7.1) 

2.7.2 Food security agency (AV2.7.2) 

Quality and Safety Category 

𝑥28 

𝑥29 

𝑥30 

𝑥31 

𝑥32 

𝑥33 

𝑥34 

3.1 Dietary diversity (QS3.1) 

3.2.1 National dietary guidelines (QS3.2.1) 

3.2.2 National nutrition plan or strategy (QS3.2.2) 

3.2.3 Nutrition labeling (QS3.2.3) 

3.2.4 Nutrition monitoring and surveillance (QS3.2.4) 

3.3.1 Dietary availability of vitamin A (QS3.3.1) 

3.3.2 Dietary availability of iron (QS3.3.2) 

https://impact.economist.com/sustainability/project/food-security-index/
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𝑥35 

𝑥36 

𝑥37 

𝑥38 

𝑥39 

3.3.3 Dietary availability of zinc (QS3.3.3) 

3.4 Protein quality (QS3.4) 

3.5.1 Food safety mechanisms (QS3.5.1) 

3.5.2 Access to drinking water (QS3.5.2) 

3.5.3 Ability to store food safely (QS3.5.3) 

Natural Resources and Resilience Category 

𝑥40 

𝑥41 

𝑥42 

𝑥43 

𝑥44 

𝑥45 

𝑥46 

𝑥47 

𝑥48 

𝑥49 

𝑥50 

𝑥51 

𝑥52 

𝑥53 

𝑥54 

𝑥55 

𝑥56 

𝑥57 

𝑥58 

𝑥59 

4.1.1 Temperature rise (NRR4.1.1)  

4.1.2 Drought (NRR4.1.2) 

4.1.3 Flooding  (NRR4.1.3) 

4.1.4 Storm severity (annual average loss) (NRR4.1.4) 

4.1.5 Sea level rise (NRR4.1.5) 

4.2.1 Agricultural water risk – quantity (NRR4.2.1) 

4.2.2 Agricultural water risk – quality (NRR4.2.2) 

4.3.1 Land degradation (NRR4.3.1) 

4.3.2 Grassland (NRR4.3.2) 

4.3.3 Forest change (NRR4.3.3) 

4.4.1 Eutrophication (NRR4.4.1) 

4.4.2 Marine biodiversity (NRR4.4.2) 

4.5.1 Food import dependency (NRR4.5.1)  

4.5.2 Dependence on natural capital (NRR4.5.2) 

4.6.1 Early-warning measures / climate-smart Agriculture (NRR4.6.1) 

4.6.2 Commitment to managing exposure (NRR4.6.2) 

4.6.3 National agricultural adaptation policy (NRR4.6.3) 

4.6.4 Disaster risk management (NRR4.6.4) 

4.7.1 Projected population growth (NRR4.7.1) 

4.7.2 Urban absorption capacity (NRR4.7.2) 
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APPENDIX B: R PROGRAM FOR THE PROPOSED METHODOLOGY 

Generating data from uniform (-2, 2) distribution using the code in Pan (2016) 

p = 9; q = 2 

sig <- 1; ni<- 10; n <- 60  

y <- NULL 

x <- NULL 

z <- NULL 

   

subject <- kronecker(1:n, rep(1, ni))   # ID 

   

true.beta <- c(1,1,0,0,0,0,0,0,0) 

Dt <- matrix(c(9,4.8, 

                 4.8,4), nrow = q, ncol = q, byrow = TRUE)     

   

for(i in 1:n){ 

    x[[i]] <- matrix(runif(ni*p, -2, 2), nrow = ni, ncol = p, 

byrow = T) 

    z[[i]] <- matrix(c(1,1,1,1,1,1,1,1,1,1, runif(ni, -2, 2)), 

nrow = ni, ncol = q) 

    V <- z[[i]] %*% Dt %*% t(z[[i]]) + diag(ni) 

    y.temp <- t(rmvnorm(1, mean = x[[i]] %*% true.beta, sigma 

= sig*V)) 

    y[[i]] <- y.temp 

} 

   

n <- length(y) 

y1 <- y[[1]] 

x1 <- x[[1]] 

z1 <- z[[1]] 

for(i in 2:n){ 

    y1 <- rbind(y1, y[[i]]) 

    x1 <- rbind(x1, x[[i]]) 

    z1 <- rbind(z1, z[[i]]) 

} 

 

Inducing missing values in x and y after reshaping the data in wide format 

dataWM$x11.1[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x11.2[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.2 - 0.1 * dataW$y11.2)] = NA  

  dataWM$x11.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 0.2 * dataW$y11.3)] = NA  

  dataWM$x11.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 

  dataWM$x11.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y11.5)] = NA 
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  dataWM$x11.6[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x11.7[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.7 - 0.1 * dataW$y11.7)] = NA  

  dataWM$x11.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 0.2 * dataW$y11.8)] = NA  

  dataWM$x11.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x11.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y11.10)] = NA   

   

   

  dataWM$x22.1[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x22.2[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.2 - 0.1 * dataW$y11.2)] = NA  

  dataWM$x22.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 0.2 * dataW$y11.3)] = NA  

  dataWM$x22.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 

  dataWM$x22.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y11.5)] = NA  

  dataWM$x22.6[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x22.7[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.7 - 0.1 * dataW$y11.7)] = NA  

  dataWM$x22.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 0.2 * dataW$y11.8)] = NA  

  dataWM$x22.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x22.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y11.10)] = NA  

   

   

  dataWM$x33.1[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x33.2[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.2 - 0.1 * dataW$y11.2)] = NA  

  dataWM$x33.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 0.2 * dataW$y11.3)] = NA  

  dataWM$x33.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 

  dataWM$x33.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y11.5)] = NA  

  dataWM$x33.6[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x33.7[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.7 - 0.1 * dataW$y11.7)] = NA  

  dataWM$x33.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 0.2 * dataW$y11.8)] = NA  
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  dataWM$x33.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x33.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y11.10)] = NA  

   

   

  dataWM$x44.1[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x44.2[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.2 - 0.1 * dataW$y11.2)] = NA  

  dataWM$x44.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 0.2 * dataW$y11.3)] = NA  

  dataWM$x44.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 

  dataWM$x44.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y11.5)] = NA   

  dataWM$x44.6[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x44.7[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.7 - 0.1 * dataW$y11.7)] = NA  

  dataWM$x44.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 0.2 * dataW$y11.8)] = NA  

  dataWM$x44.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x44.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y11.10)] = NA   

   

   

   

  dataWM$x55.1[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x55.2[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.2 - 0.1 * dataW$y11.2)] = NA  

  dataWM$x55.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 0.2 * dataW$y11.3)] = NA  

  dataWM$x55.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 

  dataWM$x55.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y11.5)] = NA  

  dataWM$x55.6[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x55.7[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.7 - 0.1 * dataW$y11.7)] = NA  

  dataWM$x55.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 0.2 * dataW$y11.8)] = NA  

  dataWM$x55.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x55.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y11.10)] = NA  
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  dataWM$x66.1[runif(nrow(dataW)) < invlogit(-0.1 + 2.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x66.2[runif(nrow(dataW)) < invlogit(-2.3 + 1.5 * 

dataW$z22.2 - 0.15 * dataW$y11.2)] = NA  

  dataWM$x66.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 2.2 * dataW$y11.3)] = NA  

  dataWM$x66.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 

  dataWM$x66.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y.5)] = NA  

  dataWM$x66.6[runif(nrow(dataW)) < invlogit(-0.1 + 2.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x66.7[runif(nrow(dataW)) < invlogit(-2.3 + 1.5 * 

dataW$z22.7 - 0.15 * dataW$y11.7)] = NA  

  dataWM$x66.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 2.2 * dataW$y11.8)] = NA  

  dataWM$x66.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x66.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y.10)] = NA  

   

   

  dataWM$x77.1[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x77.2[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.2 - 0.1 * dataW$y11.2)] = NA  

  dataWM$x77.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 0.2 * dataW$y11.3)] = NA  

  dataWM$x77.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 

  dataWM$x77.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y11.5)] = NA   

  dataWM$x77.6[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x77.7[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.7 - 0.1 * dataW$y11.7)] = NA  

  dataWM$x77.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 0.2 * dataW$y11.8)] = NA  

  dataWM$x77.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x77.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y11.10)] = NA   

   

  dataWM$x88.1[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x88.2[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.2 - 0.1 * dataW$y11.2)] = NA  

  dataWM$x88.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3  - 0.2 * dataW$y11.3)] = NA  

  dataWM$x88.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 
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  dataWM$x88.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y11.5)] = NA   

  dataWM$x88.6[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x88.7[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.7 - 0.1 * dataW$y11.7)] = NA  

  dataWM$x88.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8  - 0.2 * dataW$y11.8)] = NA  

  dataWM$x88.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x88.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y11.10)] = NA   

  

   

  dataWM$x99.1[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.1 - 1.2 * dataW$y11.1)] = NA 

  dataWM$x99.2[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.2 - 0.1 * dataW$y11.2)] = NA  

  dataWM$x99.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 0.2 * dataW$y11.3)] = NA  

  dataWM$x99.4[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.4 - 0.2 * dataW$y11.4)] = NA 

  dataWM$x99.5[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.5 - 0.3 * dataW$y11.5)] = NA 

  dataWM$x99.6[runif(nrow(dataW)) < invlogit(-0.1 + 1.5 * 

dataW$z22.6 - 1.2 * dataW$y11.6)] = NA 

  dataWM$x99.7[runif(nrow(dataW)) < invlogit(-2.3 + 0.5 * 

dataW$z22.7 - 0.1 * dataW$y11.7)] = NA  

  dataWM$x99.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 0.2 * dataW$y11.8)] = NA  

  dataWM$x99.9[runif(nrow(dataW)) < invlogit(-2.2 + 0.10 * 

dataW$z22.9 - 0.2 * dataW$y11.9)] = NA 

  dataWM$x99.10[runif(nrow(dataW)) < invlogit(-3 + 2.5 * 

dataW$z22.10 - 0.3 * dataW$y11.10)] = NA 

   

   

  # Impose missing data in y 

  dataWM$y11.1[runif(nrow(dataW)) < invlogit(-0.1 + 4.5 * 

dataW$z22.1 - 2.98 * dataW$z11.1)] = NA 

  dataWM$y11.2[runif(nrow(dataW)) < invlogit(-2.3 + 4.5 * 

dataW$z22.2 - 3.61 * dataW$z11.2)] = NA  

  dataWM$y11.3[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.3 - 1.2 * dataW$z11.3)] = NA  

  dataWM$y11.4[runif(nrow(dataW)) < invlogit(-2.2 + 5.10 * 

dataW$z22.4 - 0.8 * dataW$z11.4)] = NA 

  dataWM$y11.5[runif(nrow(dataW)) < invlogit(-2 + 2.5 * 

dataW$z22.5 - 0.6 * dataW$z11.5)] = NA  

  dataWM$y11.6[runif(nrow(dataW)) < invlogit(-0.1 + 4.5 * 

dataW$z22.6 - 2.98 * dataW$z11.6)] = NA 

  dataWM$y11.7[runif(nrow(dataW)) < invlogit(-2.3 + 4.5 * 

dataW$z22.7 - 3.61 * dataW$z11.7)] = NA  
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  dataWM$y11.8[runif(nrow(dataW)) < invlogit(-2.2 + 3.5 * 

dataW$z22.8 - 1.2 * dataW$z11.8)] = NA  

  dataWM$y11.9[runif(nrow(dataW)) < invlogit(-2.2 + 5.10 * 

dataW$z22.9 - 0.8 * dataW$z11.9)] = NA 

  dataWM$y11.10[runif(nrow(dataW)) < invlogit(-2 + 2.5 * 

dataW$z22.10 - 0.6 * dataW$z11.10)] = NA   

 

JM-SMC multiple imputation following the approach of Huque et al. (2020) after 

reshaping the data in long format  

formula <- as.formula(y11 ~ 1 + x11 + x22 + x33 + x44 + x55 + 

x66 + x77 + x88 + x99 + z22 + (1 + z22 | ID)) 

 

MCMC.dry = jomo.lmer.MCMCchain(formula, data = dataLM, nburn = 

2, output = 2)   # check the convergence of the MCMC sampler 

MCMC.check = jomo.lmer.MCMCchain(formula, data = dataLM, nburn 

= 5000, output = 2)  

plot(MCMC.check$collectbeta[1,1,1:5000], type = "l", ylab = 

expression(beta["e,0"]), xlab = "Iteration numb") 

   

 

JM.imp <- jomo.lmer(formula, data = dataLM, nimp = 10, output 

= 2, nburn = 5000) 

 

Stack the imputed data sets 

xx.list <- NULL 

yy.list <- NULL 

zz.list <- NULL 

clus.list <- NULL 

   

for(i in 1:10){ 

    xx.list[[i]] <- as.matrix(impList[[i]][, paste0("x", 

c(11,22,33,44,55,66,77,88,99))]) 

    yy.list[[i]] <- impList[[i]]$y11 

    zz.list[[i]] <- as.matrix(impList[[i]][, paste0("z", 

c(11,22))]) 

    clus.list[[i]] <- impList[[i]]$clus 

} 

   

# stacking - converting to vectors 

xx1 <- do.call("rbind", xx.list) 

zz1 <- do.call("rbind", zz.list) 

yy1 <-  do.call("c", yy.list) 

clus1 <- do.call("c", clus.list) 
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Introduce the subject weights then use adaptive LASSO for variable selection (stacked 

adaptive LASSO) 

e_weights <- 1/10 

 

# Random effects 

aa = rand.lam.sel(xxx, yyy, zzz, D.init, eps = 1e-5, lam, 

e_weights) 

bestBIC.R = aa$bic 

lambdaBIC.R = lam[which.min(bestBIC.R)] 

estr.bic = rand.sel(lambdaBIC.R, xxx, yyy, zzz, D.init, eps = 

1e-5, e_weights) 

 

 

# Fixed effects 

bb = fix.lam.sel(xxx, yyy, zzz, estr.bic$beta, estr.bic$D, eps 

= 1e-5, lam, e_weights) 

bestBIC.F = bb$bic 

lambdaBIC.F = lam[which.min(bestBIC.F)] 

estf.bic = fix.sel(xxx, yyy, zzz, estr.bic$beta, estr.bic$D, 

lambdaBIC.F, eps = 1e-5, e_weights) 

 


