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ABSTRACT

Saadat, Hassan, A., Masters : June : 2022, Masters of Science in Computing

Title: Energy-efficient user-edge association and resource allocation in IoT-based hier-

archical federated learning

Supervisor of Thesis: Prof. Amr Mahmoud Salem Mohamed.

The proliferation of data as part of the Internet of Things (IoT) systems needs to be

efficiently utilized while respecting data privacy and scalability. Edge computing is

an emerging paradigm that mandates efficient processing of local data, close to where

data is being collected. Such paradigm has motivated enormous research that merges

computation and communication resources to explore many trade-offs that address het-

erogeneity of the IoT devices, while taking care of both scalability and data privacy.

Federated learning (FL) is a distributed learning paradigm combining edge computing

with artificial intelligence techniques. FL, compared to centralized learning (CL), pre-

serves the data privacy of, and reduces the communication energy consumption by IoT

devices, by requiring them to share locally trained machine learning models with the

cloud rather than their private raw data. Hierarchical federated learning (HFL) improves

FL by deploying a layer of edges that are responsible for multiple intermediate model

aggregation rounds before the global aggregation is performed on the cloud. The HFL

configuration alongside efficient user-edge association and resource allocation ensure

more energy and communication efficient, and skewed-data robust learning scheme

compared to FL. In this thesis, we assess the learning performance of the HFL frame-

work while respecting IoT devices’ limitations, such as energy budget, computational

power, and storage space. First, HFL is evaluated in terms of learning performance and

non-identically and independently distributed (non-iid) data handling by implementing
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an intrusion detection system (IDS) using the NSL-KDD dataset. Then, we formu-

late and solve a communication energy minimization problem that performs optimal

client-edge association and resource allocation. We also implement an alternative less

complex solution leveraging reinforcement learning (RL) that provides a fast user-edge

association and resource allocation response in highly dynamic HFL networks. The

proposed solutions are compared with several state-of-the-art client-edge association

techniques, leveraging MNIST dataset. Moreover, we study the trade-off between min-

imizing the per-round energy consumption and Kullback-Leibler divergence (KLD) of

the data distribution, and its effect on the total energy consumption.
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CHAPTER 1: INTRODUCTION

The massive advancements of embedded computing power, wireless communi-

cation technologies, and wireless sensor networks, have led to the rise of the sun of the

Internet-of-Things (IoT) era in the last few decades. The recent tendency towards au-

tomating surrounding environment sensing, gathered data processing, device-to-device

and device-to-network communication, and the current and future orientation towards

building smart houses, cities, grids, etc., have all magnified the need and the deployment

of IoT devices, leading to a projection of 500 billion IoT devices to be used worldwide

by 2025 [1]. IoT today can be defined as the network of connected heterogeneous

devices that interactively collaborate in accomplishing complex tasks with high level of

intelligence and minimum human intervention [2]. This definition widens the range of

the forms that an IoT device can take. For example, an IoT device can be thought of

as a smart house device, such as a smart air conditioner or fridge, a wearable device

like a smartwatch, an embedded device in a bigger system, such as a camera in a radar

technology in smart vehicles, or a medical device implanted inside a patient human’s

body. This heterogeneity means that IoT devices are found in highly disparate domains

[3][4], such as smart households, smart cities, transportation systems, agriculture, and

healthcare. Despite the fanciness behind the term IoT and how IoT networks are meant

to reduce humans’ efforts, save their time, and raise the quality of their lives, many

challenges arise with the huge growth of the reliance on IoT systems. These challenges

have grabbed lots of researches’ attention who tried to study and propose solutions to the

issues related to IoT, such as IoT’s limited resources management [2], security concerns

[5][6], and big data handling and training [7].

The environments that IoT devices are deployed in are highly demanding and
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continuously requiring for IoT devices’ services. For example, a camera in a surveillance

system must be continuously recording and sending the scenes to the deployer’s device

or monitor, also, an air conditioner in a smart house has to be always sensing the room’s

temperature and always connected to the network to receive the deployer’s commands.

Moreover, we still have not mentioned that distributed learning is dominant nowadays,

so these devices are expected to be performing machine learning tasks locally. We

can come up to the result that IoT devices, in general, need to be highly interactive,

interoperable, easily mobile, and always connected to the network [2]. However, that

comes with the cost of IoT devices having constraints related to resources like power

supply, storage space, communication capabilities, and processing and computational

power. To address these limitations, one of the possible solutions is to use the concept

of cloud computing, with a central cloud processing and providing any required services

by the IoT devices. However, the data privacy of IoT devices may be threatened, and

high delays and energy consumption are expected due to the unsecure public internet

path and the long distance between the IoT devices and the cloud server. Therefore,

the concept of edge computing has significantly emerged [8], where the IoT devices’

computations are pushed to a physically near edge node, providing a more end-to-end

data privacy-aware, delay-immune, and energy-efficient service center compared to the

cloud. The merge of edge computing with artificial intelligence (AI) results in having

powerful distributed learning paradigms, such as Federated learning (FL) [9], which

will be explained in details in the next chapter.

The vastly emerging growth of IoT systems introduces severe security threats and

more complicated challenges compared to normal information technology (IT) devices

[10] and to any other computing systems [6]. That hinders the goal of protecting the
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confidentiality, integrity, authentication, authorization, availability, and non-repudiation

in IoT systems [6], and makes the three IoT layers, namely, perception, network, and

application layers vulnerable to various types of attacks [11]. For example, in the per-

ception layer, where sensors and actuators are usually deployed in outdoor environments,

a physical attack can take place by the attacker gaining unauthorized access and tam-

pering the physical components of the IoT device, which threatens 1) the confidentiality

of this layer by the attacker performing a replay attack or a timing attack to extract

useful information or the encryption key, 2) the integrity by the attacker introducing

an IoT node to the network and using it to send useless or malicious data, and 3) the

availability of the IoT device by the attacker continuously sending malicious data that

drains out the device’s energy, which is known as denial-of-service attack (DoS). In

the network layer, where the data transmission between the different components of the

IoT network occurs, the privacy and confidentiality can be endangered, and the com-

munication channel can be exposed to the attacker using different types of attacks, such

as eavesdropping. Depending on the capabilities of the hardware components built-in

inside IoT devices, some of them use Sigfox or cellular networks, which are suitable

for long ranges, while others communicate using communication protocols of shorter

ranges, such as ZigBee, 6LoWPAN, and RFID, with each protocol having trade-offs

between performance metrics, such as energy consumption, communication range, data

rate, and security measures [12]. Such inconsistency of the networking protocols used

in IoT devices, the heterogeneity of IoT networks’ components, alongside the weak

infrastructure, and the low computational capabilities introduce broad vulnerability sur-

faces in the network layer [5]. Finally, in the application layer, the lack of standardized

policies in IoT systems results in each application applying its own authorization and
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authentication techniques, which complicates the identity authentication of the user,

and the need to reveal highly sensitive and private data, such as personal, financial,

biometric, and medical information of the user to an edge node or to the cloud to acquire

more advanced services, or to contribute to the training of a global learning model are

all factors that threaten the privacy and confidentiality of the users’ data. This brief

introduction to the ocean of security issues in IoT systems shows that it is extremely nec-

essary to adopt integrated security measures to overcome these vulnerabilities, however,

as discussed above, complex security measures are not compatible with IoT devices’

limited resources, therefore, having lightweight and efficient security solutions in IoT

networks has been and still is a hot and open research field.

Another major challenge that is faced in IoT networks is how to store, process, and

communicate the huge amounts of data that are generated from IoT devices, and use them

in training artificially intelligent learning models for predicting future events, making

efficient decisions, and detecting threatening attacks. Focusing on the AI part, the

authors in [7] provide detailed explanation on different techniques for efficient distributed

AI in IoT applications. The focus in this thesis will be on the three main collaborative

learning schemes, where IoT devices collaborate in training a global machine learning

model, namely, centralized learning (CL), federated learning (FL), and edge-assisted

FL or hierarchical FL (HFL). Each of which has its own advantages and disadvantages

in terms of learning performance, data privacy preservation, communication efficiency,

and energy consumption. A detailed discussion is provided in the following chapters.

Based on the discussion given, the introduction can be summarized in three

major points: 1) IoT devices are resource-constrained in terms of computation and

communication capabilities, power supply, and storage space, 2) major security issues
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arise with the emergence of IoT networks and they require comprehensive and efficient

solutions, and 3) the extremely huge amounts of data collected in IoT environments

need to be handled and processed properly to deploy powerful, yet efficient, machine

learning models for better future decision making. This leads us to the following research

questions:

• How efficient is it to use distributed machine learning in applying security mea-

sures such as an intrusion detection system (IDS)?

• How do different distributed learning schemes improve learning performance and

reduce the non-identically and independently distributed (non-iid) data effect?

• How to efficiently associate users with edges and use the available network re-

sources, Channel State Information (CSI), and data distribution on the users in

HFL, such that the energy consumption by the power-limited IoT devices is mini-

mum?

• What possible techniques can handle the mobility nature of IoT devices and

dynamically perform user-edge association and resource allocation?

In light of these research questions, we highlight the objectives of this thesis as

follows:

1. Evaluate and compare the learning performance and skewed-data robustness of

distributed learning scenarios such as FL, and HFL in implementing a distributed

IDS.

2. Model the HFL in IoT systems as an energy minimization framework that takes

into consideration the class distribution on the edges and the communication

latency on the client-edge level.
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3. Propose efficient solutions for the NP-hard mixed-integer nonlinear programming

problem (MINLP) by dividing it into two subproblems to facilitate decentraliza-

tion.

4. Deploy a reinforcement learning (RL) agent as a less complex online alternative

solution to the optimization problem, that performs very fast user-edge association

and resource allocation in highly dynamic IoT networks.

5. Conduct a comparative study between the relaxation-based, RL-based, and other

state-of-the-art client-edge association methods.
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CHAPTER 2: BACKGROUND & RELATED WORK

Centralized, Federated, and Hierarchical Federated Learning

Centralized learning (CL), Figure 2.1.(a), is one of the learning schemes in

which a main cloud applies a learning algorithm, such as a convolutional neural network

(CNN), on the data that are gathered from the IoT devices connected to it i.e., its clients.

This method, usually, ensures high learning accuracy and fast convergence because of

the large amount and the wide diversity of the data samples that it receives from the

clients. However, several disadvantages can be noticed in this process [13]. A crucial

drawback of CL is that the private data of the clients, such as the personal, medical,

and financial information of their owners must be shared with and exposed to the main

cloud. Also, a large amount of communication energy gets consumed by the power-

limited IoT devices during the recurrent process of transmitting their data to the main

cloud. Moreover, the physical configuration and the long distance between the main

cloud and the connected clients may cause high communication latency and connection

inconsistency.

Figure 2.1. High-level view of (a) Centralized Learning, (b) Federated Learning, and
(c) Hierarchical Federated Learning.

A communication-efficient learning technique on distributed data known as FL
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was proposed by Google in 2016 [9]. In FL [13], Figure 2.1.(b), first, the main cloud

initiates a learning model and sends its weights to the clients. Then, each client uses

its own local data to update its local model i.e., the model it received from the main

cloud. Once all clients have finished updating their respective models for a specific

number of local training epochs, they send them to the main cloud to get aggregated.

Finally, the global/aggregated model is sent back to the clients, and that process is

repeated until convergence is reached. FL is thought to be more useful when the data

distribution is non-iid compared to iid, where the clients make use of the previously

unseen knowledge of other clients, which actually is the dominant case in IoT networks

due to the heterogeneity of the IoT devices and the environments they are deployed

in. Although, from the learning problem point of view, CL may face an easier time

reaching a high accuracy and fast convergence compared to FL because the whole data is

present at one place, FL tends to overcome the other issues related to CL. For example,

the privacy of clients’ data is preserved because they never have to leave the IoT end-

device. Also, FL is more communication-efficient compared to CL due to the fact that

only the model weights are communicated between the cloud and the clients instead

of the large amounts of raw data, which results in less network bandwidth wasted and

less communication energy consumed by the IoT devices in FL compared to CL. The

communication energy consumption of the IoT devices and the learning convergence

speed can be further controlled by varying the communication frequency between the

cloud and the clients i.e., varying the number of learning epochs that clients should

do before sending their models to the cloud. The study in [14] shows that the more

frequently the models are exchanged, the faster the convergence is reached, however, the

more communication energy is consumed by the IoT devices.
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In FL, there are different optimization algorithms or aggregation methods that

can be used. Federated Stochastic Gradient Decent (FedSGD) is the baseline aggre-

gation technique in which the clients send their models to the cloud after one epoch

of learning. In [9], Google introduced the concept of Federated Averaging (FedAVG)

and compared it with FedSGD on thorough experiments on different visual datasets.

FedAVG strongly outperformed FedSGD in terms of training loss, testing accuracy, and

speed of convergence. The implementation difference in FedAVG compared to FedSGD

is that, in FedAVG, the clients perform a common multiple number of local learning

epochs before sending their models to the aggregator, which significantly enhanced the

learning process. FedPROX [15] is a general form of FedAVG in which clients are as-

signed different number of learning epochs and can use a local solver of their choosing

based on each client’s local resources, such as computation capabilities and battery size.

FedPROX provides a better handling of the heterogeneity of IoT device and discrepancy

in their characteristics. In our work, FedSGD is implemented in the client-edge level,

and FedAVG is applied in the edge-cloud level.

An advancement of FL was recently developed and studied, which is known as

edge-assisted or Hierarchical Federated Learning (HFL), which is achieved by adding a

layer of edge nodes between the main cloud and the clients. The architecture of HFL,

Figure 2.1.(c), consists of multiple smaller FL instances, where each edge node and its

connected clients form an FL instance, and the main cloud along with the edge nodes

form a bigger FL instance. The collaborative learning process is very similar to FL,

where initial models are sent from the main cloud to the clients passing through the edge

nodes. After a specific number of learning epochs, edge-level models are aggregated

by each edge retrieving the models from its respective clients. After a specific number
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of client-edge models’ exchange rounds, the edge-level models are aggregated on the

main cloud to form a global model and this model is sent back to the clients to continue

the learning process. Despite its infrastructure overhead and complexity of assigning

clients to edges arbitrarily, one of the main advantages of HFL over FL is that the

distance between the edge and its clients is always shorter than the distance between the

main cloud and the clients, which results in better communication efficiency, unlike FL,

where the probabilities of delay and communication disconnection are higher. Also,

HFL preserves the other benefits of FL, such as the clients’ data privacy. Moreover,

the comparison study cases done in our previous work [16] on three different data

distributions show that HFL can handle more efficiently and reduce the effect of non-iid

data compared to FL in terms of the testing accuracy and speed of convergence.

Distributed Intrusion Detection System

The security discussion provided in the introduction chapter confirms that the

IoT network layer is vulnerable to different types of intrusion attacks. Those attacks

may compromise the confidentiality and integrity of data, and the availability of devices

and services in highly sensitive environments, which can result in disastrous conse-

quences. Therefore, adopting security countermeasures such as IDS in IoT applications

is of extreme necessity. However, due to the resource limitations found in IoT devices,

implementing an IDS on each IoT device is a challenging task. Therefore, IDS im-

plementation techniques that use machine and deep learning algorithms and take into

consideration the issues related to energy consumption, data privacy, and non-iid data

have been a major research field in IoT systems recently. Moreover, the deployment of

distributed learning schemes, such as FL, in training an IDS, makes each IoT device
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benefit from the previously unseen attack types that are present on the neighboring IoT

devices’ datasets.

There are different datasets that can be used for intelligent machine learning-

based IDS implementation. Some examples include: 1) CIC-IDS2017 [17], 2) CSE-

CIC-IDS2018 [18], and 3) NSL-KDD [19]. The CIC-IDS2017 [20] dataset was devel-

oped by researchers in the Canadian Institute of Cybersecurity (CIC) in 2017 to overcome

the shortages related to the available IDS datasets at that time, such as artificial injection

of attacks, data redundancy, data corruption, and lack of attacks’ comprehensiveness.

The dataset contains nearly 3 million samples consisting of a normal class and 14 differ-

ent types of the most common networks attacks, where each sample has 84 features. The

CIC in collaboration with the Communications Security Establishment (CSE) proposed

CSE-CIC-IDS2018 [21] as an enhancement of CIC-IDS2017. The major advancement

in the 2018 version is that they managed to reduce the attacks’ imbalance ratio in

the dataset by applying Synthetic Minority Oversampling TEchnique (SMOTE). Both

datasets proved their efficiency and they have been used by scholars since the day they

were published. The reason behind selecting the NSL-KDD dataset in our work is

because of the extensive reliance and number of times it has been used in the literature

by researchers and experts is unmatched compared to other IDS datasets. The details

of the NSL-KDD and discussion about its efficiency and reliability are provided as we

move forward in this thesis.

Many researchers have attempted implementing IDS using machine and deep

learning techniques. A comparison between the performance of K-Means and fuzzy

C-Mean clustering on NSL-KDD dataset was done in [22]. A comprehensive study

on the implementation of IDS over different imbalanced datasets, such as KDDCup
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99, NSL-KDD, UNSW-NB15, and WSN-DS was conducted in [23]. A variety of

other machine and deep learning techniques were applied for IDS on NSL-KDD and

other datasets [6], [24], [25]. Most of the previously mentioned approaches tackled

the problem from a single node’s point of view that sees the whole data, not as FL or

HFL. DeepFed [26] implemented an FL approach for IDS for cyber-physical systems

(CPS) using industrial CPS datasets. In [27], a comparison between centralized, self,

and federated learning on NSL-KDD using real implementation on raspberry pi was

conducted. An enhanced FL algorithm for intrusion detection was developed by [28],

and it was tested on a dataset that is a combination of KDDCUP 99, CICIDS2017, and

WSN-DS datasets. The authors in [16] used the HFL framework in implementing an

IDS using the NSL-KDD dataset.

Reinforcement Learning

Besides supervised learning in which machine learning models are trained on

labeled datasets, and unsupervised learning paradigms that try to find the implicit

correlation between the data samples in an unlabeled dataset, a third AI technique called

reinforcement learning (RL) arise [29]. RL is a machine learning framework that tries to

learn the pattern of the sequential states in highly dynamic environments. RL sequential

training does not rely on labeled or unlabeled collected datasets, but, it observes the

states of the environment it is deployed in, and tries to make optimal decisions (actions)

that maximize the environment’s benefit (reward). For example, as in chapter 4, an RL

agent can be deployed in a HFL environment to find the mobility pattern of IoT devices

by observing their locations and CSI (state), associate IoT devices with edge nodes and

allocate bandwidths (action), such that the energy consumed by IoT devices during HFL
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training is minimized (maximum reward). During RL training, when the state of the

environment changes, the RL agent has two options to consider while attempting taking

the action that yields the maximum reward, it can either exploit its previous experience

and act upon it, or it can explore new decision-making policies which might lead to

even higher rewards compared to its previous policy. Therefore, the trade-off between

exploitation and exploration steps must be considered. Another benefit of RL is that,

after a good enough number of episodes, i.e. iterations, it can be deployed for decision-

making and it can keep learning from the environment at the same time. By learning the

sequence pattern, RL can predict the behavior of the environment in the future several

states and take actions that maximize the reward of a number of future states, rather than

taking a greedy action that only maximizes the reward of the very next state.

Related Work

Many researchers have studied, deployed, and dealt with the variations of FL

and HFL, whether in the applications of security, healthcare, transportation, or any other

fields. Our focus in this section will not be on the type of application, rather it will

be on the more abstract objectives of the works, such as energy optimization, resource

allocation, and learning performance enhancement.

Federated Learning

Working on FL, the authors in [30] applied a partial client selection policy

with higher participation probability given to clients with bigger amount of data, also, a

flexible global model aggregation with communication time limit was performed to avoid

the effect of straggler clients, which all led to faster convergence and less communication
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cost. Energy-constrained client selection with model aggregation happening in analog

manner (signal averaging) was done in [31]. Decentralized FL was implemented by the

authors in [32] and FedMes [33], where FL took place in clusters with a selected client

or edge node as a cluster head aggregator without the need for a central cloud. In [32],

clients were clustered based on their social interaction with each other, and the aim of

the work was to minimize the computation and communication latency by performing

resource allocation while considering the computation energy consumption by the IoT

devices during learning. In FedMes, each client was connected to the physically nearest

edge, and the core idea of their work was that the clients residing in the overlapping

region between two edges should share their local model with both edges. That simple

idea led to knowledge exchange between two clusters without the need for a central

cloud. Faster learning convergence in terms of time, not communication rounds, was

achieved by FedMes compared to HFL because no long edge-cloud communication was

needed, however, no energy consumption evaluation or resource allocation was pointed.

FogFL [34] deployed a layer of fogs between the cloud and end devices [35], where

in each global aggregation round the cloud chooses the fog node with the least delay

and workload to act as an aggregator. That resulted in similar IoT energy consumption

compared to HFL, however, the communication delay was significantly reduced. In

[36], after a certain number of FL rounds, clients get clustered based on the similarity of

their local models, and extensive evaluation cases show that the learning performance

was significantly enhanced in terms of convergence speed and final accuracy compared

to FL, however, no energy or latency analysis or comparisons were provided.
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Hierarchical Federated Learning

In the HFL architecture, several works have come up with different solutions

to improve and speed up the learning experience by focusing on data distribution and

model characteristics while paying less attention to the physical aspects, such as the

energy, latency, bandwidth, and CPU resources. Heuristic user-edge assignment based

on statistical class distribution and network topology constraints successfully managed

to reduce the communication rounds required in HFL and resulted in a performance

that is very close to optimal in small-scaled HFL environments [37]. Mobility-Aware

Cluster FL (MACFL) [38] provided a solution for the mobility nature of IoT devices,

such that a device moving from the range of one edge to another participates in the

training of its new edge’s model with the level of contribution limited to the level of

similarity between its current model and the new edge’s previous model. In [39], 5% of

the global dataset is resident in all edge nodes, and that portion of data is used to further

train the aggregated edge model before sending it to the cloud, which enhanced the

learning performance compared to FL and conventional HFL. SHARE [40] proposed a

communication efficient user-edge association while considering the trade-off between

the communication cost, defined in terms of physical distance and model size, and the

Kullback-Leibler Divergence (KLD) which defines how far the class distribution of the

edge is from the desired (usually uniform) distribution.

Other authors concentrated on efficient resource allocation, such as bandwidth,

power, and CPU frequency, and minimization of the communication and computation

energy and latency as in [41]. The authors in [42] formulated and solved an optimization

problem that aims to minimize the cost of one global communication round by allocating

CPU frequency and transmission power that give the highest local accuracy. The cost
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in their work is defined in terms of the computation energy and latency of the IoT

device and edge, and the communication energy and latency of the IoT device, edge,

and cloud. In [43], each client’s model is given an importance indicator based on its

training loss, and in each communication round, a fraction of clients are selected and

CPU frequencies are allocated such that the positive difference between the selected

devices’ models’ importance and their communication and computation latencies is

maximum while considering the energy budget of the selected clients. An optimization

problem that minimizes the weighted sum of the communication and computation

energy and delay of one global round was formulated in [44]. They proposed a heuristic

algorithm to estimate the solution of this problem by firstly assigning IoT devices to their

nearest respective edges, then allocating bandwidths and CPU frequencies, and finally

exchanging and transferring the clients between the edges until finding the desired

solution.

There are other works that got taste from both approaches, like in [45], where

they perform user-edge association that minimizes the KLD of the data on the edges

to handle the problem of imbalanced data while performing bandwidth allocation and

meeting the physical constraints of the IoT devices, such as the communication energy

and latency of the clients. In [46], the learning model is partitioned into submodels,

and before every communication round, clients get allocated a specific submodel, CPU

frequency, and transmission rate based on their channel states, such that the ratio between

the sum of gradients information of the clients and the product of the communication and

computation energy and latency of the clients is maximum. The authors in [47] worked

on minimizing the weighted sum of the training loss and computation latency, with

the optimization parameters being the number of local iterations, allocated bandwidth,
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and the allowed maximum training time for each client. They also provide convergence

analysis to show how the number of local iterations is determined at each communication

round. An interesting work in [14] provides a convergence analysis of the HFL scheme

for both convex and non-convex loss functions. They also experiment the trade-off

between the client-edge and edge-cloud communication rounds frequencies in terms of

their effect on the learning accuracy, speed of convergence, and communication and

computation energy and latency on the architectures of FL, edge (clustered) FL, and

HFL. There are other works that are also worth mentioning, such as the communication-

efficient and privacy-preserved client-edge association policy implemented in [48], the

context aware client-selection and client-edge association [49], and the communication-

efficient semi-asynchronous model aggregation with gradient information maximization

in [50].

As will be shown in chapter 4, the main goal of this thesis is to perform user-

edge association and resource allocation that yields minimum communication energy

consumption by IoT devices during HFL iterations while maintaining good learning

performance. As was seen in the literature, there are three main paths to tackle this

problem: 1) enhance the training experience such that the learning converges faster, so

less communication rounds are needed and less total communication energy is consumed

by the IoT devices, 2) take a greedy approach by minimizing the communication energy

consumed per one communication round, however, that may lead to more communication

rounds required to reach convergence and more consumed energy, or 3) find a good

trade-off between the previous two solutions and merge them into one hybrid solution.
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CHAPTER 3: FL & HFL COMPARISON: INTRUSION DETECTION SYSTEM

In this chapter, a comparison between the performances of FL and HFL will be

conducted at different iid and non-iid data in terms of training loss, testing accuracy, and

their speed of convergence. A distributed IDS will be implemented using the NSL-KDD

dataset as a use case for this comparison. The work in this chapter was successfully

submitted and accepted as a conference paper [16].

System Model

The system model seen in Figure 3.1 shows the configurations of FL and HFL

that will be used to implement a distributed IDS. In the FL configuration, there are M

mobile (IoT) devices with each device containing a subset of a specific attack’s samples.

These IoT devices use their local data to train local models and send them to the cloud

after a specific number of training epochs. The cloud then aggregates the received

models and sends them back to the mobile users. As for the HFL architecture, a layer

of N edge nodes is added between the clients and the cloud, where these edges perform

intermediate edge-level aggregation for a certain number of client-edge communication

rounds before sending the edge-aggregated models to the cloud. As stated in the

beginning of this chapter, the goal here is to study how FL and HFL handle the effect of

non-iid data to reach high intrusion detection accuracy and fast convergence. Therefore,

we assign clients with edges based on their data distribution only and do not consider

any physical constraints such as the channel state, client-edge and client-cloud distances,

and available bandwidth. That is why we can see in Figure 3.1 that an IoT device from

far left can be associated with edge 2 and an IoT device from far right can be associated

with edge 1.
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Figure 3.1. System model, and (a) FL and (b) HFL architectures.

Training Loss Estimation

During the learning process, the objective will be to minimize the training loss

which shall result in maximizing the testing or intrusion detection accuracy. To estimate

the training loss, we will be using the widely adopted cross entropy loss function. Since

the NSL-KDD dataset consists of 5 classes, therefore, the loss function is calculated as

a categorical cross entropy loss function.

Centralized Learning

In the case of CL, the clients share their data samples with and the training takes

place at the main cloud. Therefore, the total loss is calculated as the summation of the

losses at each sample [9]:

fCL(w) =
1

|D|

|D|∑
s=1

fs(w) (3.1)
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fs(w) = −
C∑
c=1

yc · log (ŷc) + (1− yc) · log (1− ŷc) (3.2)

Where w represents the model weights, |D| is the total number of samples, C is

the number of classes, yc is the true probability of class c for sample s (0 or 1), ŷc is the

predicted probability of class c for sample s, and fs(w) is the loss at data sample s.

Federated Learning

In the case of FL, the loss at each client is calculated as in (3.1), and just like

the weights, the clients’ losses are summed and weight-averaged at the main cloud. The

loss function of FL can be mathematically represented as [9]:

At the cloud:

fFL(w) =
M∑
i=1

|Di|
|D|

Fi(w) (3.3)

At client i:

Fi(w) =
1

|Di|
∑
s∈Di

fs(w) (3.4)

Where M is the number of clients, |Di| is the number of samples given to client

i, Di is the set of the indexes of the samples given to client i, Fi is the loss at client i,

and fs is the same as (3.2).

Hierarchical Federated Learning

In the case of HFL, the loss at the cloud is just the weighted sum of the edges’

losses. The HFL training loss is represented as:

fHFL(w) =
N∑
j=1

|Dj|
|D|

Fj(w) (3.5)
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Where N is the number of edge nodes, |Dj| is the number of samples given to

edge j, and Fj(w) is the loss calculated at edge j in exactly the same way as (3).

IDS Settings

In this section, the characteristics of the dataset and neural network used are

presented.

NSL-KDD dataset

The NSL-KDD has been very widely used in IDS researches previously [24].

That is due to its sufficiency in terms of number of data records and attack types diversity.

It contains 125,973 training samples and 22,544 testing samples. Each of the 148,517

samples consist of 41 features. The dataset contains normal and abnormal classes. The

training dataset contains 39 attacks categorized to Denial of Service (DoS), User to Root

(U2R), Remote to Local (R2L) and Probe attacks. The testing set, besides the training

set attacks, contains 17 extra attacks to assess the flexibility of the model in detecting

unseen-before attacks. In order to understand the upcoming performance evaluation

study cases, it is important to highlight the percentage distribution of the classes in the

training and testing sets, which are shown in Figure 3.2.

Figure 3.2. Class distribution of the NSL-KDD (a) training and (b) testing sets
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Dataset Preprocessing and Neural Network

Since the neural network (NN) is a mathematical model, it can only be fed

with numbers. Therefore, one-hot encoding [51] is used to convert the non-numeric

features, which are protocol type, service, and flags, into numeric ones. The one-hot

encoding results in each data sample having 122 features. Then, the values of features

are normalized to be between 0 and 1 to avoid any inconsistency. Based on the number

of features, our NN, Figure 3.3, is composed of 122-neuron input layer, and two hidden

layers of 80 and 40 neurons, respectively, and 5-neuron output layer. It also performs

neuron-dropout of 30% after each of the hidden layers, and it uses ReLU as an activation

function.

Figure 3.3. The used neural network diagram
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Performance Evaluation

In this section, the FL and HFL systems will be evaluated. The number of

learning epochs per communication round is constant and set to 5 for the client-cloud

layer in FL and edge-cloud layer in HFL. However, in the client-edge layer in HFL,

FedSGD is implemented, which is equivalent to 1 learning epoch per communication

round, i.e., the clients send their local models to the edge following every single training

epoch. Different study cases of training data distribution will be evaluated as follows:

Study Case A: iid Client-Edge Association

In this case, the FL scenario consists of 8 clients, where every 2 clients share

one attack class samples in half, i.e., each one of client 1 and client 2 has one half of the

DoS attack samples, each one of client 3 and client 4 has one half of the Probe attack

samples, and so on. The normal samples are divided among the clients based on the

portion of attack samples that they have, e.g., client 1 has one half of the DoS attack

samples, which is around 39% of all the attack samples, therefore it gets 39% of the

normal samples. This strategy of the normal samples’ distribution applies to cases B.

and C.

In the HFL scenario, two edges are put in the middle, and each edge gets four

clients that have completely non-iid data. For example, edge1 gets client 1 (Dos attack),

client 3 (Probe attack), client 5 (R2L attack), and client 7 (U2R attack), and edge 2 gets

the other four clients. As a result, the two edges have iid data and can see all types of

attacks.

The FL scenario suffers from the non-iid distribution and the inconsistency in

clients’ training data. That fact, as seen in Figure 3.4, affected the training loss, testing
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accuracy, and the speed of convergence. Whereas in the HFL scenario, the iid client-

edge assignment enhanced the performance in terms of all of the three metrices. This is

highlighted through showing the loss which is almost negligible, the detection accuracy

which is better than FL with 3-4% difference, and the convergence state which is reached

around 19 rounds faster than FL as illustrated by the black line.

Figure 3.4. (a) Average loss and (b) testing accuracy for study case A.

Study case B: iid Client-Edge Association with Equal Number of Attacks’ Samples

In this case, the FL scenario also consists of 8 clients. Each one of client 1

and client 2 has 500 randomly chosen DoS samples and 500 randomly chosen normal

samples (each client has its own distinct set of samples). Each one of client 3 and client

4 has 500 randomly chosen Probe samples and 500 randomly chosen normal samples,

and so on for the other two attacks and four clients. Of course, as seen in Figure 3.2, U2R

has only 52 samples, therefore, its samples were naively duplicated until they reached a

total of 1000 samples. Although this approach is not efficient, but it was done only to

facilitate the FL comparison in this study case.

For the HFL scenario, same as study case A, two edges are put in the middle,

and each edge gets four clients that have completely non-iid data. As a result, each edge
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aggregates the model for all classes, which helps speed up the convergence.

Figure 3.5 shows that the FL scenario performed poorly in terms of maximum

testing accuracy with 6% drop compared to HFL, and in terms of the speed of conver-

gence which is around 14 rounds slower than HFL as illustrated by the black line. On

the other hand, the HFL scenario started with high testing accuracy and reached near

the convergence state from the first communication round. One thing to notice is that

the loss is almost equal in both scenarios.

Figure 3.5. (a) Average loss and (b) testing accuracy for study case B.

Study Case C: Non-iid Client-Edge Association

In this study case, the FL scenario consists of 4 clients, each having all the

samples corresponding to one specific attack and the corresponding portion of normal

samples. For example, client 1 has all the 45,927 samples of the DoS attack (78% of all

the attacks’ samples), therefore it has 78% of the normal samples.

Regarding the HFL scenario, two edges are added in the middle between the

clients and the cloud. The HFL scenario is repeated three times: i) where edge 1 has

DoS + Probe attacks and edge 2 has the others, ii) where edge 1 has DoS + R2L attacks

and edge 2 has the others, and iii) where edge 1 has DoS + U2R attacks and edge 2 has
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the other classes of attacks.

From Figure 3.6, it can be seen that even if the edges end up aggregating

models from clients with non-iid data, they can still perform better than FL with non-iid

data, whether in terms of training loss, testing accuracy (slightly better), or speed of

convergence. It seems like the edge layer tends to absorb some of the effect of the

non-iid distribution before it sends the aggregated model to the main cloud.

Figure 3.6. (a) Average loss and (b) testing accuracy for study case C.
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CHAPTER 4: RL-ASSISTED ENERGY-AWARE HFL USER-EDGE ASSOCIATION

In this chapter, different user-edge association policies in HFL are implemented

and compared. Also, the effect of the trade-off between minimizing the per-round

communication energy consumption and KLD of the data distribution on the total

energy consumption is studied. The work in this chapter was submitted and is got

accepted as a conference paper [52].

System model & Problem Formulation

In the system model highlighted in Figure 4.1, there are M mobile (IoT) devices

distributed in an area containing N edge nodes with a main cloud controlling the

network. To deploy HFL scheme in this case, before the learning process starts, the

cloud associates each edge j with |Mj| clients and distributes the available bandwidth

Bmax
j on each edge j on its corresponding clients. Then, the KLD of the virtual dataset

Dj on each edge j, which indicates how close the class distribution on each edge is

from the uniform distribution Q, is calculated as KLD(Pj||Q) =
∑C

c=1 Pj(c) log
Pj(c)

Q(c)
,

where Pj(c) is the probability distribution of class c samples in Dj , and C is the total

number of classes in the dataset. After a pre-determined number of local training

epochs, each client i uploads its local model weights to the associated edge j with

communication latency of tcomm
ij = W/ρij , where W is the size of the model weights

which is constant for all clients, and ρij is the upload transmission rate from client i to

edge j. The communication energy consumed during model uploading by each client i

in one communication round is calculated as [45]:

ecomm
ij =

W ·N0 ·Bij

ρij · gij
(2ρij/Bij − 1) (4.1)
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Figure 4.1. System model and HFL architecture.

With N0 being the noise spectral density, Bij the bandwidth allocated from edge

j to client i, and gij the channel gain between client i and edge j. Reaching to this end,

we formulate an optimization problem that tries to minimize the total communication

energy consumed by the IoT devices during model uploading, while respecting the

transmission time limit, and the KLD limit on all edges:

P1: min
λij ,Bij

k1k2

M∑
i=1

N∑
j=1

λijeij (4.2)

s.t. KLD(Pj||Q) < KLDmax, ∀j ∈ N (4.3)

N∑
j=1

λijt
comm
ij ≤ tmax, ∀i ∈ M (4.4)

M∑
i=1

λijBij ≤ Bmax
j , ∀j ∈ N (4.5)
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N∑
j=1

λij = 1, ∀i ∈ M (4.6)

λij = {0, 1}, ∀i ∈ M &∀j ∈ N (4.7)

Where λij being 1 means client i is associated with edge j and 0 otherwise, and

k1 and k2 are the number of client-edge communication rounds per one global round,

and the number of edge-cloud rounds before reaching convergence, respectively.

In P1, k1 and k2 are directly related to the speed of the learning convergence,

hence, they are not deterministic and their values cannot be known precisely before or

during the training. However, they can be reduced by balancing the distribution of data

classes over the edge nodes [53]. Therefore, constraint (4.3) makes sure that the client-

edge association will result in no edge having a KLD greater than KLDmax. Constraint

(4.4) ensures eliminating the effect of straggler clients i.e., guarantees that all clients

will transmit their models in a time interval not longer than tmax. Constraints (4.5) and

(4.6) make sure that the allocated bandwidths do not exceed the available bandwidths

on the edges, and each client is associated with one edge only, respectively.

Proposed Solutions

In this section, we try to solve the optimization problem in P1 using two ap-

proaches, namely, 1) relaxation-based approach, and 2) reinforcement learning-based

approach.
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Relaxation-based Approach

As seen in (4.7) and in the objective function of the optimization problem, P1 is

a mixed-integer nonlinear programming problem (MINLP) which is NP-hard [54]. To

reduce its complexity, we relax the association variable λij as in (4.9) and split P1 into

two subproblems to facilitate the decentralization of the solution:

SP1: min
λij

k1k2

M∑
i=1

N∑
j=1

λijeij (4.8)

s.t. (4.3), (4.6), and

λij = [0, 1], ∀i ∈ M & ∀j ∈ N (4.9)

SP2: min
Bij

k1k2

M∑
i=1

N∑
j=1

λijeij (4.10)

s.t. (4.4) and (4.5).

Where SP1 is solved on the cloud, which is responsible for client-edge association

where the bandwidth is treated as a constant. Once SP1 is solved and λij is de-relaxed

i.e., the optimal associations are found, SP2 performs the bandwidth allocation on the

edge node.

Reinforcement Learning-based Approach

As pointed out earlier, P1 is a NP-hard MINLP problem with combinatorial

complexity. Although, SP1 and SP2 in the previous section can be solved using different
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optimization tools, however, if any change in the network happened during training, such

as if a client moved from the range of one edge to another, SP1 and SP2 will have to be re-

solved. Resolving SP1 and SP2 with every change in the IoT devices’ locations alongside

the NP-hardness and the combinatorial complexity of the optimization problem would be

highly non-practical, especially in highly dynamic environments. Therefore, to propose

a more complexity-efficient solution, we deploy an RL agent to solve P1 from another

perspective. The RL agent in our case will try to learn the mobility patterns of the IoT

devices systematically. Hence, in case of any movement of IoT devices, the RL agent,

using the pre-trained model, will instantly make the new client-edge association and

bandwidth allocation decisions, whilst the relaxation-based would have to resolve the

highly-complex SP1 and SP2 all over again.

State: In the RL environment, as seen in Figure 4.2, we assume that the channel

state information (CSI) between all the edges and clients are available all the time.

Hence, the state that is fed to the RL agent is a matrix representing the channel gain

values between all edges and clients.

Action: The RL agent returns the values of λij and Bij in the range [0,1] i.e.,

performs client-edge association and bandwidth allocation at the same instance.

Reward: The reward indicates how close the current action is from the optimal

action. To elaborate on how the reward is calculated, using the CSI and initial values

of the allocated bandwidths, a matrix of communication energies between each pair

of client i and edge j is generated. Then, we perform the association that yields the

best (least) possible total energy and that which yields the worst (highest) possible total

energy. Once the action is taken by the agent, we assess how good it is based on the
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Figure 4.2. RL-based solution overview.

following reward function:

r(action) =



−1 (4.3) or (4.4) is violated

−2 (4.3) and (4.4) are violated

1− action energy − best energy

worst energy − best energy

no constraint is violated

(4.11)

Where constraint (4.5) is always met by treating the bandwidth action as the

bandwidth fraction of each client and multiplying it by the maximum bandwidth of the

associated edge, constraint (4.6) is managed by the relaxation and de-relaxation steps,

and (4.9) is always true due to the fact that the RL agent always returns the action in the

range [0,1].

After clients are associated with edges and bandwidths are allocated, the HFL

process starts with the objective of minimizing (3.5).
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Performance Evaluation

In this section, we compare the performances of the relaxation-based, RL-based,

least-energy, distance-based, and best-KLD-below-distance-threshold (best-KLD) asso-

ciations. In the least-energy association, we generate the energy matrix and perform

the association that leads to the minimum communication energy per one round. The

distance-based policy associates each client with its nearest edge. Some clients may

exist in the region of two edge nodes, therefore, the best-KLD policy tries all the different

association possibilities of these clients and chooses the association that yields the min-

imum average KLDs of the edge nodes. Assuming a client can be in the region of one

or two edges only, the complexity of best-KLD algorithm is O(2No. of overlapping clients).

Simulation settings

We study two HFL environments, a small-scaled one with 10 clients and 3

edges, and a medium-scaled environment with 40 clients and 5 edges. The clients are

distributed such that for each client the closest edge to it ismindistance+2×mindistance×

uniform(0, 1)meters away, the second nearest edge is 2×mindistance+2×mindistance×

uniform(0, 1) meters away, the third edge is 3 × mindistance + 2 × mindistance ×

uniform(0, 1) meters away, and so on, where mindistance is a hyperparameter that we

vary throughout the experiments to control the size of the HFL environment. By this

distribution, if the distance threshold in the best-KLD algorithm is set as 2×mindistance,

which is actually the case in our experiments, then each client will have a probability of

0.5 being in the range of one edge only and 0.5 of being in the range of two different

edges.

The widely experimented handwritten digits classification dataset MNIST [55]
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is used to evaluate the HFL performance. It consists of 60000 training samples and

10000 testing samples distributed on 10 handwritten digits (labels). The data samples

are distributed among the clients in two different strategies, the first one is a non-iid

distribution strategy where each client is randomly assigned samples from two, three, or

four classes, and the second is iid distribution where all clients have the same portions

from all classes.

RL Training

The RL-based solution is only applied in this paper to the small-scaled problem

with the state matrix being of size 3x10, and the action matrix of size 2x3x10. If we

try to train the RL agent on the medium-scaled environment, the state matrix would

become of size 5x40 and the action matrix would contain 2x5x40 elements, which is

a relatively large problem that needs a very long time to converge, or it may never

converge unless deep actor and critic networks are used. One possible solution that can

reduce the size of the problem and make it feasible, is to perform the edge association

and bandwidth allocation row by row i.e., each client at time, as was done in [56].

The RL agent was trained on the small-scaled problem on different mindistance values

and on both iid and non-iid data distributions. The actor neural network used has an

input layer of size 30 neurons, hidden layer of 512 neurons, and output layer of size

60 units. The critic neural network has 30 neurons as input layer, three hidden layers

of size 128, 128, and 64, respectively, and 1 output neuron. RL training was run for

1500 episodes with 100 iteration per episode. The first 100 episodes were dedicated

for full policy exploration. Figure 4.3 shows the convergence of the average reward

per episode on selected mindistance values on the non-iid distribution case. The reward
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Figure 4.3. RL reward convergence for selected mindistance values on the non-iid
distribution.

functions are converging in the range of 0.85-0.93, so we expect from the RL agent to

give client-edge association that is near-optimal in terms of one round communication

energy consumption in most of the cases.

Energy Consumption and HFL performance

In this subsection, we compare the performance of the five client-edge association

policies in terms of communication energy consumption per one round, the average

KLD of the edges, and the total communication energy consumption after convergence

is reached. Figure 4.4 and Figure 4.5 show that the relaxation-based and the least-

energy policies have very similar performance and yield the lowest energy consumption

per communication round, however, that comes with an average KLD that is relatively

high compared to the other policies. As its name states, the best-KLD policy has the

lowest average KLD, but it results in having the highest energy per round alongside

the RL-based. The distance-based seems to be the most balanced policy with a good

trade-off between the energy consumption and the average KLD, especially in the small-
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scaled environment. On the contrary, the RL-based is the most unstable policy with

its energy consumption per round and average KLD keeping fluctuating as the size of

the HFL environment increases. Figure 4.6 compares the five policies in the case of

iid clients’ data distribution, where no matter what client-edge association we have, the

average KLD will always be 0, which will lead to very similar testing accuracy and

convergence speed. Therefore, in the case of iid, it is best to deploy the relaxation-based

or the least-energy association policy. Also, we can notice that the best-KLD policy acts

exactly the same as the distance-based policy in the case of iid distribution.

To study the effect of the average KLD value, we fix mindistance to be 15 meters

and run the policies multiple times on different channel states. The evaluation is done on

the small-scaled environment with non-iid distribution. Figure 4.7 shows that the lower

the average KLD, the higher the final testing accuracy is and the faster the convergence

is reached. This can be clearly seen as the best-KLD with average KLD of 0.22 is

dominating the learning performance with a great competition against the distance-

based policy that has average KLD of 0.37. We can also see that the other policies

that have higher average KLD consumed more communication rounds to converge, and

they never exceeded 95% testing accuracy. Finally, Figure 4.8 illustrates the trade-off

between the communication energy consumption per round and the average KLD in

determining the amount of total communication energy consumed by the IoT devices to

reach convergence. The RL-based yielded an energy per round that is close to 21 µJ,

which is slightly less than the best-KLD and the distance-based policies, however, its

0.54 average KLD caused it to converge very slowly which made it consume significantly

more total energy compared to the other policies. The relaxation-based and the least-

energy policies have a per-round-energy consumption that is almost half of those in

36



Figure 4.4. (a) Total communication energy consumption per round, and (b) average
edge KLD of the small-scaled environment with non-iid client data.

Figure 4.5. (a) Total communication energy consumption per round, and (b) average
edge KLD of the medium-scaled environment with non-iid client data.

Figure 4.6. Total communication energy consumption per round for the (a)
small-scaled and (b) medium-scaled environments with iid client data.
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Figure 4.7. (a) The effect of average KLD value on the testing accuracy, and (b) the
number of communication rounds required to reach target accuracy.

Figure 4.8. (a) Communication energy consumption per one round, and (b) the total
communication energy consumed to reach target accuracy.

the best-KLD and distance-based policies, however, the low average KLDs of the latter

two guaranteed a very competitive total energy consumption against the former ones

until reaching 95% accuracy. The distance-based and best-KLD managed to reach an

accuracy of 96% and 97%, respectively, but, that came with burden of doubling the total

energy consumption, which is not worthy unless the application that they are deployed

in gives way higher importance to the testing accuracy over the energy consumption.
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CHAPTER 5: CONCLUSION

In this thesis, a thorough investigation of the characteristics of the HFL scheme

in the IoT networks was conducted. First, in chapter 1, an overview on the current and

future expected state of the IoT devices in terms of their general properties, applications,

deployment rates, and major challenges was provided. Then, lights were shed on the

big amounts of data being gathered and processed in IoT systems and how they can

be handled and used in training and building artificially intelligent event-detection and

decision-making models. For that, in chapter 2, a detailed theoretical study on CL,

FL, and HFL schemes and the discrepancies in their data privacy preservation ability,

communication and computation efficiency, energy consumption, and machine learning

performance was conducted.

In chapter 3, we point at the necessity of paying attention to and proactively

taking countermeasures towards the security vulnerabilities in IoT environments by

implementing an IDS using the NSL-KDD dataset. Also, a comparison based on

performance evaluation between FL and HFL in terms of training loss, testing accuracy,

and speed of convergence is conducted. HFL proved its efficiency over FL in two iid

client-edge association study cases and one non-iid client-edge study case.

In chapter 4, energy-efficient client-edge association and resource allocation

in HFL environment were performed. An IoT communication energy minimization

problem that takes into consideration the data distribution and model transmission

latency was formulated and solved using a relaxation technique. Another complexity-

efficient solution that uses reinforcement learning was implemented to provide a fast

client-edge association and bandwidth allocation response to the continuous movement

of the IoT devices. These solutions were compared to different state-of-the-art client-
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edge association policies. Moreover, the trade-off between minimizing the per-round

energy consumption and KLD of the data distribution on the total energy consumption

was studied.
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CHAPTER 6: FUTURE WORK

Several aspects in this thesis can be further improved in the future. Some of the

possible enhancements include:

• It can be clearly seen that the most challenging part in the IDS implementation

in chapter 3 was how to deal with highly-skewed non-iid NSL-KDD dataset.

Therefore, instead of naively duplicating the data samples to balance the dataset,

using generative adversarial networks (GAN) would be more convenient. Also, it

would be interesting to combine GAN models with the models at the node/edge

levels, and aggregate the GAN effect using federated averaging.

• The optimization problem in chapter 4 only considers the energy consumption and

latency caused by the model communication. However, the amount of processing

and computations performed by the IoT devices during model training is not

negligible and can consume long time and high energy. Therefore, adding the

computational latency and energy consumption to the optimization problem is

necessary for more efficient IoT devices’ energy minimization.

• Our optimization problem only performs user-edge association and bandwidth

allocation. However, there are other resources that can be efficiently allocated.

For example, the transmission power, and the CPU frequency (if the computational

energy is added to the optimization problem).

• Find efficient solutions that can leverage our RL framework to adapt with and

work in medium- and large-scaled HFL environments.

• In this work, we assumed that a client can be associated with only one edge at

a time. However, this is not the case in today’s advanced wireless technologies
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and 5G networks. Therefore, the concept of multi-homing can be studied and

deployed in future versions of this work, where a client can be associated with

more than one edge. Clients sharing their models with multiple edges can result

in better learning and faster convergence.
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