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ABSTRACT 

BASHENDY, MAY, S., Masters: June : 2022,  

Masters of Science in Computing 

Title: Intrusion Response for Cyber-Physical Systems: A Model-Free Deep Reinforcement 

Learning Approach 

Supervisor of Thesis: Abdelkarim, E, Erradi. 

Cyberattacks on Cyber-Physical Systems (CPSs) are on the rise due to CPS increased 

networked connectivity, which may cause costly environmental hazards as well as human and 

financial loss. Although the connectivity of CPSs has significantly improved production, it 

introduced new vulnerabilities, which necessitate designing and implementing proper 

automatic cybersecurity defensive mechanisms to protect CPSs from cyberattacks. This thesis 

presents the design, implementation, and evaluation of a dynamic Intrusion Response System 

(IRS) to automatically respond to false data injection attacks against a model-based CPS 

testbed. The proposed IRS was designed using two approaches: an optimization approach 

with Genetic algorithm and a model-free Deep Reinforcement Learning-based (DRL) 

approach using Double Deep Q Networks (DDQN) algorithm. The proposed solutions are 

evaluated on an online Continuous Stirred Tank Reactor (CSTR) testbed that mimics a real-

world CPS. Experimental results demonstrate the effectiveness of the proposed approaches in 

responding to false data injection attacks and minimize the impact on the system. Finally, the 

thesis highlights open research questions and sketches directions for future work.  
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CHAPTER 1: INTRODUCTION 

Cyber-Physical  Systems (CPSs) integrate a physical plant with different embedded 

computing, communication networks, and human interfacing to monitor and control a process 

[1]. CPSs domains include manufacturing, energy, transportation, and health care. Originally, 

these systems were not considered vulnerable since they were designed to operate at 

physically isolated locations that run on proprietary hardware and software. However, with 

the recent evolution in information and communication technology (ICT), these systems have 

been networked to integrate them with corporate systems and enable remote access 

capabilities. In addition, to enable communication and interoperability between the different 

CPS components, open standard industrial protocols such as Modbus, DNP3, and CIP are 

used. Unfortunately, these protocols lack sufficient security mechanisms, such as encryption 

and authentication [2]. Consequently, such vulnerabilities have exposed CPSs to new security 

threats and made them an easy prime target for cyberattacks that aim to gain unauthorized 

access to the control network and cause disturbances/hazards in the physical process. The 

work in [3], [4], [5], and [6] studies and summarizes the different cyberattacks against CPSs. 

According to [7],  Figure 1 illustrates the general basic operations of CPSs. The 

controller utilizes sensing and actuation components to control the process. The sensors and 

actuators are connected to one or more controllers, where the control algorithms are 

implemented. The controller receives and interprets the sensors' signals. Then, based on the 

control logic and the target set points, the controller sends the suitable values to the actuators 

to adjust the state of the process. The operator can use the HMI to monitor and configure the 

process. Further details on CPSs components, architecture, protocols, vulnerabilities, and 

testbeds are available in [8], [9], and [10]. 
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Figure 1. CPS operations [7]   

 

 Since CPSs are typically mission-critical systems, they are intolerant to errors or 

delays, which can cause catastrophic human, economic, and financial loss if no proper 

detection and response mitigation mechanisms are applied. Intrusion Detection Systems 

(IDSs) for a CPS have been extensively considered and studied in the literature [11], [12], 

[13], [14], [15], and [16]. However, they are not sufficient alone to protect CPSs. 

Accordingly, IDSs must be combined with IRSs to provide effective security protection for 

CPSs.  

 Intrusion Response Systems represent an essential protection layer for CPSs. They are 

responsible for automatically selecting and deploying optimal responses to mitigate the 

impact of the detected attack and keep the process in a safe state without any human 

intervention. Nevertheless, despite their necessity in securing CPSs, they have received less 

attention from the research community. This is because the design of IRSs is very complex 

and dangerous since poorly designed ones can result in higher damage than the damage of the 

intrusion itself. Besides, most of the studies that consider the design of IRS in a CPS focus on 

model-based approaches, which are challenging to design, time-consuming, and not accurate 

nor suitable for large systems. Also, most of these studies considered actions on only one 

level at a time, either the cyber level or the process level. Accordingly, designing an IRS for 

CPS that is model-free, which does not require a deep understanding of the process’s 
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implementation details, generalizes to unseen situations, handles high-dimensional data, and 

combines different action levels is highly needed. In this thesis, a novel model-free deep 

reinforcement learning-based intrusion response agent for a CPS, that considers 

simultaneously cyber and physical actions, is designed using DDQN to mitigate the effect of 

false data injection attacks. 

1.1 Problem Statement 

The increased adoption of networked systems in critical infrastructures has made 

CPSs vulnerable to cyberattacks, which could cause catastrophic financial and human loss. 

Thus, CPSs should have the ability to respond at runtime to detected malicious attacks by 

performing appropriate defensive actions. To the best of our knowledge, there aren't much 

research works that focus on studying the application of reinforcement learning in intrusion 

response systems, especially for CPSs. For that reason, this thesis focuses on investigating the 

applicability of having a model-free deep reinforcement learning agent for building an 

intrusion response system using the DDQN algorithm for a CPS testbed. The designed 

intrusion response agent considers both cyber level and process level actions to mitigate the 

effect of false data injection attacks. More specifically, this thesis works towards answering 

the following two research questions: 

• How can model-free deep reinforcement learning be adopted for building effective 

IRS for a given CPS testbed?  

• Are model-free deep reinforcement learning intrusion response systems effective for 

cyber physical systems? 

1.2 Thesis Objective and Contributions  

The main objective of this thesis is to design an intrusion response system capable of 

automatically selecting optimal actions and responding to false data injection attacks against a 

CPS testbed. It is a dynamic IRS that reasons about an ongoing attack based on the observed 

alerts and determines an appropriate response to take. In this thesis, the problem of intrusion 

response in CPSs is tackled using two different approaches. In the first approach, we 

introduce the GA-IRS, an intrusion response system based on a conventional Genetic 
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algorithm. The second approach, which is the main focus of the thesis, is the DRL-IRS, an 

intrusion response system based on a model-free deep reinforcement learning DDQN 

algorithm. Accordingly, the main contributions of this thesis can be summarized as follows:  

1. Present a taxonomy of IRSs design approaches based on different design parameters.  

2. Review the state of the art on IRSs for CPSs and non-CPSs using both conventional 

optimization-based approaches and Reinforcement Learning (RL)-based approaches.  

3. Model and design of a CPS testbed 

4. Model and design of cyberattacks against the CPS testbed using an attack tree model. 

5. Design an intrusion response system using Genetic algorithm  

6. Setting up an RL environment and integrating it with the CPS testbed. 

7. Design a novel model-free deep reinforcement learning intrusion response agent for a 

CPS testbed using DDQN algorithm.  

8. Collect a representative dataset that includes the <state, action, next state, reward> 

tuples to be used for future offline approaches using RL. 

9. Evaluate the performance of the proposed solution. 

10. Discuss open challenges and possible directions for future research work in the area. 

Note that Contributions 1 and 2 are compiled into a journal publication under review 

titled “Intrusion Response Systems for Cyber-Physical Systems: A Comprehensive 

Survey” and submitted to Journal of Computers and Security. Moreover, contributions 3 

and 4 were compiled into a conference paper titled “Design and Implementation of 

Cyber-Physical Attacks on Modbus/TCP Protocol” which was published in the World 

Congress on Industrial Control Systems Security Conference (WCICSS-2020). Also, 

contributions 6 and 7 are compiled into a journal publication titled  “Intrusion Response 

for Cyber-Physical Systems: A Model-Free Deep Reinforcement Learning Approach” 

and submitted to Journal of Network and Computer Applications. 

1.3 Thesis Outline 

The content of this thesis is divided into nine chapters to address the defined 

objectives and contributions. A schematic illustration of the thesis outline is shown in Figure 
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2. The figure starts with Chapter 1 which introduces CPSs, IRSs, the problem statement, 

thesis objectives, and thesis contributions. Chapter 2 provides background information on 

CPS cybersecurity, attacks taxonomy, and IRS taxonomy. Chapter 3 reviews and compare the 

different conventional and RL-based decision-making approaches. Chapter 4 surveys the 

state-of-the-art solutions and pinpoints the limitations in the literature. Chapter 5 models and 

describes the used CPS testbed with its architecture, components, communication, and 

designed cyberattacks. The proposed solution methodology of the intrusion response system 

problem is then solved in Chapter 6 and Chapter 7. Chapter 6 solves the IRS problem using a 

Genetic algorithm approach, while Chapter 7 solves it using a model-free deep reinforcement 

learning approach applying the DDQN algorithm. The experimental scenarios, training 

results, evaluation, challenges, and dataset collection are presented in Chapter 8. Finally, 

Chapter 9 concludes the thesis and highlights the future directions.  

 

 

Figure 2. Thesis outline schematic 

 

 

 



  

   6 

 

CHAPTER 2: BACKGROUND 

This chapter starts with the motivation behind the necessity of designing and 

implementation proper automatic cybersecurity defensive mechanisms to protect CPSs from 

cyberattacks. It then provides a comprehensive attacks taxonomy and IRS systems taxonomy. 

2.1 CPS Security Defense Mechanisms 

CPS security is an ever-growing area of research for protecting CPSs from intruders 

who threaten the integrity and the availability of the physical process. It involves securing all 

the machines that communicate over the network, the physical hardware, and the data transfer 

between the different nodes. The work in [17], [18], [19], and [20] reviews and discusses the 

cybersecurity challenges and the different solutions to address the shift of control systems 

from stand-alone systems to unsecure networked CPSs.  

Not all cybersecurity mechanisms used to protect Information Technology (IT) 

systems are suitable nor directly applicable to CPSs. This owes to the fact that CPSs  integrate 

the cyber and the physical worlds, while IT systems only have cyber interactions. 

Accordingly, the connection with the physical world in a CPS has unique security 

requirements different from those found in traditional IT systems. For example, IT systems 

focus on maintaining the confidentiality security goal as the highest priority. However, in 

CPSs, the real-time availability and integrity of the physical devices have the highest priority. 

Also, the safety requirement of a CPS is much higher than that of an IT system. Besides, 

CPSs are more prone to security risks at different network levels and intolerable to errors or 

delays. Hence, mapping the security solutions of ITSs to CPSs is not ideal because they were 

not intended originally for them. This clearly illustrates why CPS security is more complex 

than IT security and hence, is currently an active research field. Interested readers can refer to 

[21] for more analysis on the vulnerabilities and threats facing critical CPSs. 

According to [22], many countries have suffered from catastrophic cyberattacks 

against their CPSs. For example, in 2012, Qatar’s RasGas oil company was attacked by a 

virus that brought down all the company’s computers and forced a close until recovery [23]. 

The authors in [24] also mentioned the DDoS BlackEnergy Malware that targeted the 
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Ukrainian Power-grids for political motives in 2015. The Stuxnet worm and the Shamoon 

virus targeted Iran’s nuclear infrastructure in 2010 and Saudi Arabia’s oil production plant in 

2012, respectively [25]. The United Arab Emirates (UAE) also suffered from Malware that 

targeted their energy sector in 2015. Furthermore, the authors in [26] highlighted more 

incidents against CPSs, such as the attack on the German steel factory in 2014, which caused 

massive damages because the plant was unable to perform the safety shutdown procedures. 

In light of the previously mentioned threats, researchers emphasize the need to deploy 

well-designed and robust defensive security systems to secure critical cyber-physical 

processes. Figure 3 shows the recommended flow of defensive security mechanisms, which 

includes a prevention phase, detection phase, response phase, and forensics phase. In the 

prevention phase, the Intrusion Prevention Systems (IPSs) continuously monitor the process 

and generate proactive responses to prevent intrusions. In the detection phase, IDSs generate a 

passive alert response after identifying deviations in the traffic by using different detection 

techniques as summarized in Table 1. More details on the different IDS techniques and 

classifications are reported in [27], [28], and [29]. In the response phase, IRSs generate a 

reactive response in a timely manner to handle intrusions and mitigate their effect on the 

attacked system. The design of IRSs is the most complex and challenging part since poorly 

designed ones can result in higher damage than the damage of the intrusion itself. In the 

forensics phase, the security teams investigate the logged data from the previous phases to 

understand what had happened and how similar events can be avoided in the future. 

 

 

Figure 3. The flow of the defensive mechanisms 
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Table 1. Intrusion Detection Techniques 

Detection 

Technique 

Type IDS Description 

Knowledge 

based 

Signature based Looks for defined attack patterns in the traffic 

Protocol analysis Identifies deviations of the protocol states/specification 

 

Behavior 

based 

 

Rule based 

 

Detects an attack only if has a specific rule to detect it 

Process analysis Uses the physical models to predict the expected output 

Statistical 

techniques 

Uses statistical methods to determine deviations from 

the normal expected behavior 

Machine learning 

techniques 

Learns from data and makes predictions based on them 

 

In this thesis, the main focus is to investigate and design the response phase of the 

defensive mechanisms. Accordingly, it reviews existing conventional and reinforcement 

learning based decision-making solutions for IRSs. Also, it designs a novel model-free DRL-

based agent to automatically respond to false data injection attacks against a CPS testbed. 

2.2 Attacks Taxonomy  

Figure 4 classifies attacks according to their targeted security objective into 

confidentiality, integrity, and availability attacks, which are summarized below: 

 

 

Figure 4. Attacks taxonomy against CPSs 
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2.2.1 Attacks on Confidentiality 

Attacks on confidentiality, also referred to as reconnaissance attacks, are information 

gathering attacks. These attacks are the initial steps that attackers take to discover, study, 

analyze, and collect information about the targeted network before developing any 

sophisticated attacks [30]. During this phase, the attacker can know the network 

capabilities, network topologies, hosts with their IP and MAC addresses, used protocols, 

running services, open ports, etc. The work in [31] studies the different types of 

reconnaissance attacks and mentions some applicable detection and mitigation 

techniques.   

2.2.2 Attacks on Integrity 

Attacks on integrity involve unauthorized manipulation, injection, or modification of 

the data and the system resources. It occurs when the attacker compromises the 

communication channel between two components and intercepts exchanged messages. 

This enables several attacks, including Man in The Middle attack (MITM) that modifies 

packets payload and replay attack that plays back old stale recorded messages. These data 

tampering attacks are serious threats, particularly to CPSs. The work in [32] identifies 

data integrity attacks in terms of their criticality, strategy, detection approaches, and 

countermeasure recommendations. 

2.2.3 Attacks on Availability 

Attacks on availability, such as Denial of Service (DOS) attacks, involve crashing a 

target device or a communication connection by either flooding the target with enormous 

noise traffic or changing some of the fields of the transmitted packets. Accordingly, the 

target will not be able to perform its normal intended services and will eventually halt all 

the services running on it, which may cause catastrophic impacts. Several studies show 

the vulnerability of cyber-physical systems to availability attacks, such as DoS, including 

the work in [33] that models and assesses DoS attacks to sensors and actuators of a CPS. 
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2.3 IRS Taxonomy 

Response systems are considered extremely important yet challenging to design due to 

the complexity of the CPS network and the complexity of attacks. IRSs are categorized based 

on their different design parameters according to [34], [35], [36], [37], and [38]. Initially, 

depending on their level of automation, they are divided into notification, manual, and 

automatic systems. In the notification systems [39], similar to an IDS, the IRS generates an 

alert to the operators, who are responsible for deciding on a suitable mitigation action to stop 

the attack. In the manual systems, the IRS generates a list of possible predefined 

countermeasures to mitigate the detected attack and sends it to the operators to choose from. 

Both notification and manual systems introduce delays between detection and response time. 

In the automatic intrusion response systems (AIRSs) [40], which is the focus of this 

taxonomy, the optimal response is selected and executed automatically without the need for 

any human intervention. This makes AIRSs suitable for the time and availability demands of 

CPSs. Figure 5 summarizes the evolution of the IRSs area, with its different cyber-response 

solution approaches. These classifications are briefly explained below: 

 

 

Figure 5. AIRS taxonomy 
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2.3.1 Information Sources 

Intrusion response systems expect inputs from different information sources, 

including the monitored system and the different detection tools, such as IDS. From the 

monitored system, valuable information can be extracted, such as the system data, 

network topologies, and asset configurations. From an IDS, the IRS can collect intrusion 

alerts, intrusion confidence level, intrusion severity level, and so on. These collected 

information aids the IRS in selecting the optimal response.  

2.3.2 Decision-making Metrics 

Various metrics can be considered in the response selection process. They are 

classified into three different categories, which are attack-related, response-related, and 

system-related. Examples for each metric type are shown in Table 2. IRSs use either one-

type metric or a combination of different metrics to build a more effective response 

system. For more detailed analysis of the different decision-making metrics, the reader 

can refer to [41], [42], and [43]. 

 

Table 2. Decision-Making Metrics 

Type Metrics 

Attack-related Frequency, type, confidence, time, and severity 

Response-related Cost, time, negative impact, positive effect, and goodness 

System-related Importance of assets 

 

2.3.3 Response Selection 

AIRSs have three response selection techniques to map the detected attacks with their 

suitable responses, which are static, dynamic, and cost-sensitive mappings. In static 

mapping, each attack is mapped to a specific predefined response through a mapping 

table. This strategy is implemented by SNORT [44]. In dynamic mapping, each attack is 

mapped to a predefined set of responses in which the optimal response is chosen based on 

the attack-related decision metrics. This shows that it is possible to have different 

countermeasures to the same attack type. The authors in [45] utilize the dynamic mapping 
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approach when designing their response strategy model. In cost-sensitive mapping, the 

response selection process takes into consideration the countermeasure cost and the 

intrusion damage cost, which are not considered in static and dynamic mapping. A 

response is then chosen only if its cost is less than the intrusion damage as implemented 

in [46] and [47]. 

2.3.4 Risk Assessment 

Risk assessment is used by automatic cost-sensitive IRSs and is categorized into 

offline assessment and online assessment. In offline/static risk assessment as in [48], an 

IRS calculates the risks on the system in advance depending on static values that are 

assigned by experts on every asset in the network. On the other hand, online/dynamic risk 

assessment calculates the risk in attack time, taking into consideration the dependencies 

between the different assets and the current number of users using them as in [49]. Three 

approaches are used in the online assessment, which are attack graph-based [50], service 

dependency graph-based [51], and non-graph based [52]. The authors in [53] and [54] 

review and propose different risk assessment methods. 

2.3.5 Activity of Responses 

Responses can be either passive or active. Active responses change the state of the 

environment/system to effectively block the attack and mitigate its negative impact. The 

work in [55] is one of the examples that use active actions. On the other hand, passive 

ones do not change the state of the environment. They only notify operators and raise 

alerts. The work in [56] and [57] enumerate the different possible actions for each type. 

2.3.6 Prediction Ability 

AIRSs are classified into reactive and proactive systems in regard to the considered 

response time. In the reactive designs (e.g.,[58]), the response is generated only after 

receiving an alert from the detection system. However, in the proactive designs as in [59], 

the AIRS deploys a prediction mechanism to be able to respond and control any malicious 

activities before being detected. 
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2.3.7 Adjustment Ability 

Depending on the adjustment ability, AIRSs are categorized into adaptive and non-

adaptive systems. In the adaptive AIRSs [60], the effectiveness/goodness history of the 

responses is considered when choosing the optimal response. This helps the AIRS to 

develop an optimal ordered set of responses over time. On the other hand, non-adaptive 

AIRSs, such as the work in [61], do not have mechanisms for adjusting and learning from 

the success/failure history of the responses when being selected. 

2.3.8 Response Execution 

Depending on the response execution method, AIRSs are classified into burst and 

retroactive modes. In the burst mode [62], there is no mechanism to evaluate the effect of 

the response after being deployed on the system. This could be a huge risk because the 

IRS has no clue whether the deployed responses were enough to neutralize the attack or 

not, which could lead to deploying many limiting responses when a subset of them would 

have been enough to mitigate the attack. In contrast, the retroactive mode checks the 

effect of the deployed response and only executes further responses when the system 

needs them. As an example, the authors in [63] and [64] consider a retroactive approach. 

2.3.9 Attack Modelling 

Attack modelling approaches are visual diagrams that model the attacker's behavior in 

an IRS. They are divided into four main approaches, which are attack graphs, attack trees, 

multilevel Bayesian networks, and service dependency graphs. The work in [65], [66], 

and [67] exemplifies how these techniques are used, which is usually in the risk 

assessment phase to obtain/calculate the different decision-making metrics, such as the 

attack damage. Unfortunately, despite their popularity, they do not have a standardized 

visual representation. Accordingly, the representation of their components changes with 

the system description. Table 3 summarizes the analyzed modelling techniques by 

highlighting their advantages and disadvantages. For more detailed information on the 

different modelling formalisms, the reader is advised to refer to [68], [69], [70], and [71]. 
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Table 3. Summary of the Attack Modelling Approaches 

Modelling 

Approach 

Description Advantages Disadvantages 

Attack graphs 

(AGs) 

Show the possible 

attack paths that an 

attacker can use to 

reach a target. 

Vertices represent 

states and edges 

represent transitions 

among the states 

 

-Help in measuring 

the system’s risk 

-Can represent 

multiple attacks 

-Some tools are 

available to generate 

up-to 1000-node 

graphs 

automatically 

 

-Not suitable for big 

networks 

-Not suitable for 

zero-day attack 

modelling 

Attack trees 

(ATs) 

Show the system 

states and how they 

can be attacked. 

Intermediate nodes 

are connected with 

AND/OR gate to 

create multiple 

paths to reach the 

attacker’s goal (root 

node) 

-Simple to use  

-Can be combined 

with other models 

-Includes some 

descriptive 

attributes, such as 

the attack 

likelihood, the cost 

of exploitation, the 

time needed to 

exploit, and the 

required knowledge. 

-Have other 

extensions to enable 

more features 

 

-Challenging to map 

attacks to defenses 

-Identify high level 

details, not specific 

attack-related ones 

-Require constant 

updating and 

maintenance 

-Limited as they can 

only represent a 

single attack  

-Very complex to be 

used for large 

systems 

 

Multilevel Bayesian 

Networks 

(MLBNs) 

Show propagation 

of cyberattacks with 

exploit probabilities 

on the edges 

-Modeling 

uncertainties 

-It is used to assess 

the risk caused by 

attacks     

-Same limitations of 

the attack graphs 

-Require experts to 

assign the 

probabilities       

 

Service Dependency 

Graphs (SDGs) 

Show the 

dependency 

relationship 

between the 

different services in 

a system 

-Show the 

functional 

dependencies 

between the 

different services 

-Reveal how 

attacking a service 

can affect other 

dependent one in 

terms of the CIA 

aspects 

-Very complex for 

large systems 

-Require full deep 

knowledge of the 

system and the 

available services 

-Need experts to 

define the 

dependencies 

 

2.3.10 Decision-making Models 

An intrusion response decision-making model is used to formulate the selection 

problem of the optimal countermeasure action. The selection problem is usually based on 
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the current system state, a set of actions, a reward function that finds a trade-off among 

different decision-making metrics. For an IRS, the environment can be modeled using 

single-objective or multi-objective optimization functions, Markov decision processes, 

and game theory models [72]. Besides these conventional methods, reinforcement 

learning-based approaches, especially model-free ones, have been recently explored to 

design IRSs for unknown or known environments. More descriptive details on each 

approach are given in Chapter 3. 

2.3.11 Optimization Problem Solution Approaches 

There are several techniques to solve the response selection problems based on the 

considered modelling approach. For the single/multi-objective optimization functions, 

Pareto optimality is considered one of the most popular solution methods. For game 

theoretic problem models, Nash equilibrium, Genetic algorithms, and linear programming 

are some of the solution approaches that are used [73]. Recently, the usage of 

reinforcement learning algorithms has been invading the IRSs field. It is different from 

the conventional solution methods since it generalizes much better, usually has higher 

accuracy, and most importantly, can work without a system model 
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CHAPTER 3: OVERVIEW ON CONVENTIONAL OPTIMIZATION AND 

REINFORCEMENT LEARNING DECISION-MAKING APPROACHES 

In this chapter, we start by describing the IRS decision-making problem that we aim 

to solve. Then we provide a fundamental overview on the three conventional decision-making 

models utilized in the literature. Also, this chapter describes the RL framework, DRL basics, 

RL taxonomy, and ends with a comparison between conventional optimization methods and 

DRL approaches in solving decision-making problems. The aim of this overview is to help 

the reader to understand the basic theories behind the solutions reviewed in Chapter 4. 

3.1 Decision-making Problem Description 

At first, let’s present and visualize the decision-making problem for the IRS that we 

are aiming to solve by considering different modelling approaches. Figure 6 shows the main 

parts of an IRS, which are the monitored CPS environment and the defensive agent. A cyber 

physical system contains the physical plant and the control system, which communicate 

together through the communication network layer using open-standard protocols such as 

Modbus. The plant sends sensor-measured states, while the control system sends back the 

appropriate actuator actions. The Attacker is an outsider or sometimes insider entity who 

gains rewards by threatening the security of the CPS by either exploiting vulnerabilities in the 

system design or well-known ones in the used communication protocols. The IDS comes into 

the picture when an attack happens. It receives all the observations coming from the CPS in 

vector X[n] to monitor the system's activity. Those observations are the states of the system, 

which include both cyber-level data and process-level data. Once a malicious activity is 

encountered by the IDS, it generates an alert that triggers the activation of the IRS. 

The IRS agent receives a threat detection and alert generation vector A[n] from the 

IDS, including IDS-related data, such as the confidence level, attack severity, and attack type. 

The IRS optimizer block, which is the algorithm used to find the optimal solution, uses these 

values to guide the risk assessment procedure embedded in it. Simultaneously, the agent 

receives the states vector X[n] that represents the attacked CPS environment. The IRS policy, 

which is the focus of our thesis, is responsible for selecting optimal actions for each of the 
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received states. After deploying the action, the environment returns a reward that indicates the 

goodness of the deployed action. The state, chosen action, and received reward are sent to the 

IRS optimizer to guide its learning procedure. Accordingly, the IRS optimizer updates the 

policy by either encouraging the same action or discouraging it in future similar scenarios. 

Following that, the environment moves to a new state and the same procedures are repeated 

until the agent is well-trained.  

 

 

Figure 6. Decision-making problem architecture for intrusion response systems (X[n] includes 

plant and cyber data, A[n] includes IDS-related data) 

 



  

   18 

 

The modelling part, which is the focus of this chapter, comes in the system model 

block at the bottom of Figure 6. When your CPS environment is known, a prediction system 

model helps the IRS optimizer to find the optimal policy for different scenarios. This 

prediction model gives the agent information about promising actions, future states, and 

rewards. The system model block could include the attacker model, the defender model, or 

both. Modelling the attacker behaviour can be done using the techniques mentioned earlier in 

Table 3. Attacker modelling helps in assessing the risk on the system and knowing the best 

positions for defense points. This is done by showing the propagation of the attack, the system 

vulnerabilities, and the possible attack paths with their likelihoods to reach different targets. 

For defender modelling, the multi-objective optimization functions, Markov decision process, 

and game theory, are the most widely used conventional decision-making methods. 

Moreover, Model-based reinforcement learning have been recently used in intrusion response 

system decision-making problems. They model the relationship between a defender agent and 

its environment by capturing the dynamics of the environment and defining the defender’s 

objectives in terms of states, actions, rewards, and transition probabilities. In addition, game 

theory models the interaction between the attacker and the defender in a game format until it 

can reach Nash equilibrium.  

Ultimately, solving this decision-making problem aims to present a more resilient 

CPS against advanced cyberattacks. The presented approaches are divided to conventional 

methods and reinforcement learning methods as summarized below: 

3.2 Overview on Conventional Optimization Methods  

3.2.1 Multi-objective Optimization Functions 

Real-world optimization problems are naturally complex problems that require 

several conflicting objectives to be optimized at the same time. Therefore, single-

objective functions are not applicable in most cases. Real-life problems are modeled as 

multi-objective optimization problems (MOOPs) if having up to 3 objective functions and 

many-objective optimization problems (MaOPs) if they are more than 3. An optimization 

problem is defined to get the minimum or maximum of functions with some specified 
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constraints. Accordingly, a MOOP can be defined as follows:   

𝑚𝑖𝑛/𝑚𝑎𝑥 𝐹(𝑥)  =  (𝑓1(𝑥), … , 𝑓𝑚(𝑥))      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑋         Equation 1 

Where 𝐹(𝑥) is the vector of objective functions, 𝑚 is the number of objective 

functions considered, and 𝑋 is the set of feasible decision vectors.  

To solve a MOOP with 𝑚 objective functions, trade-off solutions are required to 

satisfy the different competing objectives. Pareto optimality is one of the widely used 

approaches to solve a MOOP. It provides Pareto Optimal Solutions (POSs), which are the 

solutions that are not dominated by any other solution in a solution set as they are all 

considered equally good. This happens when one objective function cannot be improved 

further without worsening another objective function. 

The algorithms that are used to find the POSs are categorized into several groups, 

such as evolution and swarm intelligence, as presented in [74]. One of the widely used 

group of algorithms that proved their effectiveness in solving MOOPs are the Multi-

Objective Evolutionary algorithms (MOEAs) [75]. For example, the Non-dominated 

Sorting Genetic algorithms (NSGA-II [76] and NSGA-III) have been exhaustively used in 

the literature because of their promising ability in generating a set of well-converged, 

diversified, and non-dominated POSs to the conflicting objectives in a single run. After 

finding the POSs, each algorithm considers different selection technique to choose the 

most optimal solution from the POSs. Based on the different selection techniques, 

algorithms are classified into Dominance-based algorithms, Decomposition-based 

algorithms, and Indicator-based algorithms. These techniques are extensively explained 

and compared in [77]. 

It is important to note that no one algorithm fits all optimization problems. The 

performance of the algorithms depends heavily on the considered objective functions. 

Consequently, the suitable choice of algorithms based on the problem at hand is very 

important since it significantly affects the required computational time and the number of 

iterations needed for convergence. Readers may refer to [78], [79], and [80] for more 

details on the usage of multi-objective optimization functions in decision-making.  
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3.2.2 Markov Decision Processes 

A Markov Decision Process (MDP) is an optimization approach that models decision-

making under uncertainty of an agent interacting with an environment. In comparison 

with Markov chains, MDPs extend them by adding actions and rewards. Also, MDPs 

satisfy the Markovian property, which ensures that taking an action only depends on the 

current state.  

MDPs are defined with the following tuple < 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 >, where 𝑆 is the state 

space (𝑠 ∈ 𝑆), 𝐴 is the action space (𝑎 ∈ 𝐴), 𝑃 is the transition probability that represents 

the probability of changing the environment from state 𝑠 to a new state 𝑠′ based on the 

performed action 𝑎 on state 𝑠 𝑝(𝑠, 𝑠′) =  𝑝(𝑠𝑡+1 = 𝑠′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), 𝑅 is the immediate 

reward of choosing action 𝑎 in state 𝑠, and 𝛾 is the discount factor that controls the 

importance of future rewards in a way that the agent cares more about present reward 

than future ones as 𝛾 increases (𝛾 =  [0,1)).  

Solving a MDP means to find the optimal policy, which is the optimal mapping 

between states and actions, that maximizes the cumulative discounted reward function. 

Different approaches can be used to solve a MDP, such as dynamic programming, linear 

programming, and approximation methods. However, these approaches can only be used 

if the transition probabilities 𝑇 are known. Unfortunately, in real world problems, the 

transition probabilities 𝑇 and the rewards 𝑅 are usually unknown. Accordingly, 

reinforcement learning algorithms, which are applicable for both model-based and model-

free problems, have been recently proposed to solve the incomplete MDP and find 

optimal policies with inaccurate or no knowledge of the system model. For more 

information about the different solving algorithms, the reader is referred to the work in 

[81]. 

There are several extension variants of MDPs, such as the competitive Markov 

decision process (CMDP), the constrained MDP, and the partially observable Markov 

decision process (POMDP). More details on the variants are available in [82]. 
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3.2.3 Game Theory 

Game theory is a mathematical approach to model the interaction between rational 

decision-makers in different situations [83]. A game is described by four basic elements: 

• Players: Individuals or entities who make decisions. In cyber security, players are 

typically the attacker and the IRS. 

• Actions: Decisions made by each player based on the current state of the game. 

For cyber attackers, actions could represent attack steps such as password crack, 

or machine compromise. For the IRS, actions could include specific IP address 

blocking, applying a security patch, or shutting down a compromised machine.  

• Payoff: The return that each player gets after taking the chosen sequence of 

actions. It could be positive or negative, depending on whether the return is a gain 

or a loss. 

• Strategies: The guide to the actions that are taken by each player based on the 

available information about the game. The strategy could be pure, in which the 

player takes the same action for the same given information, or mixed, where the 

player picks an action randomly according to a pre-defined probability 

distribution over a finite set of actions. 

Equilibrium is one of the key concepts in game theory. An equilibrium is a set of 

strategies, one strategy for each player, such that none of the players can improve their 

payoff by unilaterally deviating from the selected strategy. Figure 7 illustrates the 

different game classifications summarized below: 
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Figure 7. Classification of game theory modeling. Game theory modeling for cyber security is 

highlighted in blue color 

 

• Number of Game Stages: A static/strategic game is a one-move game where 

players take their action at the same time. A dynamic game is a multi-step game 

where the number of steps could be finite or infinite. 

• Game Structure Information: In a complete information game, all players know 

the rules of the game and the payoff for each player. Otherwise, the game is an 

incomplete information game.   

• Players' Moves Information: In a perfect information game, each player knows all 

the previous actions of all other players. Otherwise, the game is considered an 

Imperfect information game. 

• Cooperation: In Cooperative games, players may benefit from forming coalitions, 

but there could still be an underlying competition. Cooperative games typically 

have more than two players. Non cooperative games have no cooperation 

between players. 

• Payoff: In a Zero-sum game, the sum of all outcomes adds up to zero. For a 2-

player game, the gain of one player is the loss of the other player. In a Constant 
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sum game, the payoff outcomes add up to a constant value. In a Nonzero sum 

game, the outcomes add up to different amounts. 

Game theory is used in cyber security in two key applications, defense strategy 

design and risk assessment. In defense strategy, the attack-defense interaction is modeled, 

and the optimal defense strategy is estimated. In risk assessment, the security state of the 

system is assessed using the predicted strategy for both the attacker and defender. Games 

in cyber security studies are typically classified as dynamic, incomplete information, 

imperfect information, non-cooperative, zero-sum games. More details on the different 

classifications of games can be found in [84], [85], and [86]. 

It should be highlighted that game theory assumes players are rational, i.e., each 

player takes the best decision that maximizes the benefit. This may not always be true in 

practice. Human behavior is not perfectly rational and may be influenced by many factors 

beyond the analyst's recognition. Albeit it represents a formal modeling approach to 

describe the interaction between the attacker and defense mechanism. 

3.3 Overview on Reinforcement Learning Methods 

Reinforcement Learning (RL) is a branch of machine learning, alongside supervised and 

unsupervised learning. Figure 8 shows a simple taxonomy of the three main machine learning 

algorithms. Supervised learning uses labelled data to learn a functional mapping between the 

inputs and their corresponding desired outputs. Unsupervised learning uses unlabeled data to 

learn similarities and discover patters from the input data. Reinforcement learning interacts 

with an environment to learn a series of optimal actions instead of relying on complex 

mathematical models. One of the core features of RL is its applicability in the decision-

making field in order to reach a specific objective 



  

   24 

 

 

Figure 8. Machine learning taxonomy. The thesis’s focus is highlighted in blue 

 

3.3.1 Reinforcement Learning (RL) Framework 

The standard framework of RL consists of an environment and an agent, as shown in 

Figure 9. The environment, which is everything outside the agent, is typically formulated 

as a MDP that is defined by a 5-tuple < 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 >. The state 𝑆 and action 𝐴 spaces, 

which define the dynamics of the environment, can be discrete or continuous based on the 

considered problem. At each time step 𝑡, the agent receives the current states of the 

environment. These states should provide all the required information to describe the 

dynamics of the environment. Based on these states, the agent directly interacts with the 

environment by taking an action. As a result of this action, the environment moves to a 

new state at time 𝑡 + 1, and the agent gets a scalar immediate reward/penalty value as 

feedback on performance. From the reward value, the agent can assess how good or bad 

the action was and consequently, how far is the agent from achieving the goal. The main 

objective of RL is to learn an optimal policy, which is the strategy that the agent follows 

to take an optimal action given the observed environment’s state, that aims to maximize 

the cumulative rewards over time. It is worth mentioning that a complete interaction of 

having a state, action, and reward is called a step. While a series of decision steps are 

called an episode. At the end of each episode, or when reaching a terminal state, the 

environment resets to a random state to ensure that the agent explores the entire state 

space and does not overfit.   

Machine Learning 
Taxonomy

Supervised
Classification and 

Regression

Unsupervised
Clustering and  

Dimension 
reduction

Reinforcement Decision-making
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Figure 9. The standard framework of RL 

 

3.3.2 Deep Reinforcement Learning (DRL) 

DRL has the exact same framework as shown in Figure 9, but with integrating neural 

networks to work as the brain of the agent instead of using traditional tabular RL solvers, 

such as Q-Learning and Value Iteration (VI). A neural network works as a function 

approximator that learns how to map between the input states and the desired output 

values and hence improves the applicability of the algorithms. The usage of Deep Neural 

Networks (DNNs) overcomes several limitations that classical RL approaches suffer from 

in real-world implementations. For instance, DRL only stores the network parameters 

instead of all state-action values, so less memory demand is needed in comparison to 

tabular methods. Also, DRL handles the curse of dimensionality problem that tabular RL 

approaches suffer from, especially when dealing with large-scale systems that have large 

state and action spaces. Furthermore, it can efficiently and effectively handle complex 

tasks with no or less knowledge of the system. It also provides better generalization with 

unseen states and hence better performance. The ability of DRL to overcome these 

limitations and address challenging problems has made it popular in different fields 

including games [87][88], robotics [89][90], cybersecurity [91][92], and autonomous 

systems [93][94].  

3.3.3 Reinforcement Learning Taxonomy 

Figure 10 presents the main categorizations of reinforcement learning algorithms. 

Depending on whether the environment is known to the agent or not, RL algorithms are 



  

   26 

 

classified into model-free algorithms and model-based algorithms [95]. Model-free 

algorithms do not require a model of the environment for solving a problem. They can 

learn an optimal policy and achieve near-optimal results using trial and error technique. 

Consequently, it is used when the state transition probabilities and the rewards are 

unknown. On the other hand, model-based algorithms use the transition probabilities and 

the known rewards, which represent a model of knowledge for the system, to derive the 

optimal best action policy. It is worth noting that having a model for the environment 

does not always mean that the agent is model-based. The agent is said to be model-based 

when the transition probabilities and the reward matrix of the state-action pairs are known 

or learned, otherwise, it is not. 

Model-free algorithms are classified into value-based, policy-based, and Actor-critic 

algorithms. Value-based algorithms compute the value, which is also called Q-value, of 

an action given a state and do not learn an explicit policy since they map state-action pairs 

to values. These Q-values are the quality state-action value function, which indicate the 

goodness of a particular action in a state and whether this action should be reinforced in 

similar situations or not. On the other hand, policy-based algorithms do not need a value 

function, but an explicit policy with the best optimal parameters is constructed that maps 

states to actions. Actor-critic algorithms maintain both since they learn both a policy 

(actor) and an action-value function (critic) to evaluate the learned policy.  

The model-free value-based algorithms are further classified into Off-policy 

algorithms and On-policy algorithms. They differ in the way they update their Q-values in 

which off-policy algorithms update them using the Q-value of the next state and the 

greedy best action. Also, off-policy approaches learn a policy 𝜋 from using experiences 

sampled from another policy. while on-policy algorithms use the Q-value of the next state 

and the current policy's action, and they learn a policy 𝜋 from experiences sampled from 

the same policy. Table 4 mentions the advantages and disadvantages of some of the 

widely used reinforcement learning algorithms from each category. For more information 

on Reinforcement learning framework and taxonomy, refer to [96], [97], and [98].  
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Figure 10. Reinforcement learning taxonomy. This thesis uses the algorithm path highlighted 

in blue 

 

Table 4. Advantages and Disadvantages of Widely Used Model-free RL Algorithms 

Algorithm Policy Type Advantages Disadvantages 

Q-Learning Off-policy Value-based -Simple 

-More freedom for 

exploration 

-Can select actions 

without MDP 

-Not very stable 

-Not generalizable 

-Unable to deal with 

large spaces 

-Overestimation of 

the value function 

 

Deep Q 

Network 

(DQN) 

Off-policy Value-based -Good for large 

spaces 

-Generalizes to 

unseen states 

-Unstable 

performance 

-Suffers from 

maximum bias issue 

-Takes long time to 

converge 

 

Double Deep 

Q Network 

(DDQN) 

Off-policy Value-based -Handles the issue of 

overestimation bias 

of Q-values in DQN 

-Uses two networks 

for decoupling 

between choosing 

and evaluating action 

-Faster and more 

stable than DQN 

-Slow change in 

policy that can make 

the two networks too 

similar to make 

independent decisions 

RL 
algorithms

Model-
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based
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DQN

On-policy

SARSA

Policy-
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Learn 
model

World 
models

I2A



  

   28 

 

Algorithm Policy Type Advantages Disadvantages 

Dueling Deep 

Q Network 

Off-policy Value-based -Decomposes the Q-

value as the sum of 

the state values and 

advantage function of 

taking that action 

 

-Naively adding the 

two decomposed 

values can be 

problematic 

SARSA On-policy Value-based -Avoids high risk 

(conservative) 

-Cannot use old data 

(no replay memory) 

 

Policy 

Gradient (PG) 

On-policy Policy-based -Effective in high 

dimensional spaces 

-Can learn stochastic 

policies 

 

-Usually converges to 

a local optimum 

-Slow convergence 

Deep 

Deterministic 

Policy 

Gradient 

(DDPG) 

Off-policy Actor-Critic -Directly finds the 

policy with the most 

rewards 

-works well with 

continuous actions 

-Sensitive to 

hyperparameters 

-Poor sample 

efficiency 

-Slow learning rate 

 

Proximal 

Policy 

Optimization 

(PPO) 

 

On-policy Actor-Critic -Improves samples 

efficiency 

-Unstable during the 

training process 

Twin Delayed 

Deep 

Deterministic 

Policy 

Gradient 

(TD3) 

 

Off-policy Actor-Critic -Reduces the 

overestimation bias 

seen in previous 

algorithms 

-The learning process 

is time consuming 

Soft Actor-

Critic (SAC) 

Off-policy Actor-Critic -Enables stability 

-Robustness to noise 

-Brittle to the 

hyperparameter that 

controls exploration 

 

3.4 Conventional Optimization Vs RL Approaches 

 There are several differences between conventional optimization and RL decision-

making approaches. In this section, we mention some of these variations and highlight the 

advantages and disadvantages of each approach as shown in Table 5.  

To begin, conventional optimization solutions rely on explicit knowledge of the 

system that is expressed in complex mathematical formulations. These expressions are 

referred to as the objective functions of the optimization problem. Usually, abstracting these 

functions is not an easy task especially for complicated large-scale real-world systems. 
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Alternatively, RL approaches do not require an accurate mathematical model. It can even 

work with model-free problems while relying on a reward function to evaluate the decision-

making performance of the agent based on its interactions with the environment.  

Another point is that most conventional optimization techniques do not achieve the 

real-time decision-making requirement, which is crucial in several scenarios. Also, other 

traditional programming approaches such as dynamic and stochastic programming tend to 

have high computational costs, and their effectiveness is not assured for large complicated 

systems. On the contrary, reinforcement learning approaches are more robust, can handle 

higher-dimensional complex scenarios, and provide real-time decisions since they make 

decisions based on the current state of the system.  

Although reinforcement learning approaches tend to be more promising solutions that 

can provide scalable, generalized, online, robust, and efficient performance, they also have 

some major challenges. To start with, they provide slower convergence in comparison to the 

conventional optimization techniques. Also, tuning the hyperparameters is a very time-

consuming procedure that can highly affect the performance of the agent. Designing a 

representative reward function that can effectively describe the goal of the agent and deciding 

on a reasonable size and type for the state and action spaces are other factors that highly 

affects the computational time of the RL agent.  

 

Table 5. Advantages and Disadvantages of Decision-making Modelling Approaches 

Decision-making 

Modelling 

Approach 

Advantages Disadvantages 

Multi-objective 

optimization 

functions 

- Easy to formulate 

-Can find Pareto solutions in a 

single run 

-Mostly suffer from high 

computational cost 

-Do not guarantee an optimal 

solution 

 

Markov Decision 

Processes 

-Help defenders to know what 

paths are more probable to be 

followed by an attacker 

-Do not scale well 

-Need other attack modelling 

techniques to assign probabilities to 

the paths that an attacker can take 

 

Game Theory -Simple -The definition of the payoff 
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Decision-making 

Modelling 

Approach 

Advantages Disadvantages 

-Can be deployed in a distributed 

manner 

function is very challenging 

-Lacks scalability and robustness 

-It is a planning technique (game 

matrix should be already known) 

 

Reinforcement 

Learning (RL) 

-It is a learning not a planning 

problem 

-Can generalize to unseen states 

-Can handle continuous spaces 

-Can handle large environments 

-Can resist biased datasets when 

using online learning 

-Uses samples to optimize the 

performance 

-Can work with model-free 

systems 

-Needs huge number of simulation 

trials for training 

-Designing good representative 

reward function is challenging  

-Requires tuning of numerous 

hyperparameters 

-Provides no performance 

guarantees at all 
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CHAPTER 4: SURVEY OF WORKS ON INTRUSION RESPONSE SYSTEMS 

This chapter presents a survey of the current major works on intrusion response 

systems. Initially, we aimed to target only the work intended for CPSs. However, we found 

that the work in this area is still in its infancy, so we considered reviewing IRSs for both CPS 

and non-CPS domains to enrich our knowledge on how to approach the area of securing CPSs 

and bridge the gap between security in ITS and CPS domains. The surveyed papers are 

classified into two main categories based on whether the decision-making approach is done 

using conventional optimization methods, including multi-objective optimization functions 

and game theory, or is done using reinforcement learning approaches. It is worth mentioning 

that we prepared a comprehensive survey paper on intrusion response systems and submitted 

it to the Journal of Network and Computer Applications.  

4.1 Conventional Approaches for IRSs 

Conventional optimization approaches depend on having a mathematical model 

consisting of objective functions, constraints, and different decision variables that the agent 

has to optimize. This section includes research works using multi-objective optimization 

functions and game theory solutions to build IRSs. For easy reference, a summary of the main 

points of the reviewed works is available in Table 6. 

4.1.1 Multi-objective Optimization Functions Solutions 

Optimizing objective functions to find optimal policies is one of the conventional 

approaches that is used when designing intrusion response systems.  

In [99], the authors design an intrusion response system that can dynamically select 

the optimal countermeasure based on a trade-off between the attack damage and the 

countermeasure cost. The problem is treated as a multi-objective optimization problem 

(MOOP) with four metrics to consider when choosing the optimal response, which are 

attack damage cost, countermeasure positive effect, countermeasure negative impact, and 

countermeasure deployment cost. The main aim is to choose the best countermeasure that 

can maximize its positive effect, minimize its negative impact, and minimize its 

deployment cost. The proposed framework uses Attack-Defense Trees (ADTs), which is 
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an attack modelling approach that shows the attacker’s progress and possible paths to the 

target. Also, the framework uses the Service Dependency Graphs (SDGs), which shows 

the dependencies between the different services and measures the severity of the 

undergoing attack. A Pareto optimal solution set is initially created with the possible 

countermeasures that satisfy the optimization trade-off. Then, a simple additive weighting 

(SAW) method is used to select the optimal countermeasure, which holds the maximum 

final score value, from this set. The evaluation of the proposed solution is done on a real 

cloud environment that consists of 6 virtual machines connected by 4 switches and 15 

vulnerabilities in total. The considered countermeasures are blocking IP addresses, 

blocking ports, blocking all traffic, restarting the service, closing connection, disabling 

features, patching, and shutdown. The authors conclude that this framework dynamically 

evaluates countermeasures, selects optimal ones, and deploys them in 449 milliseconds. 

This is considered very fast, which is one of the main advantages of this approach. One 

drawback of this approach is that it uses only one attack tree for a service, which is not 

the case in real-life scenarios where a forest of trees is usually used to protect system 

assets, so it lacks scalability. Finally, although the proposed solution is not intended for 

CPSs, it is applicable for their usage. 

A dynamic decision-making approach for intrusion response for securing industrial 

control systems at run-time is proposed in [100]. The decision-making problem is 

formulated as a MOOP to maximize security benefit (𝑆𝑒𝑐𝐵), system benefit (𝑆𝑦𝑠𝐵), and 

state benefit (𝑆𝑡𝑎𝐵). The architecture of the proposed model takes the attack evidence and 

abnormal evidence as inputs from the intrusion detection system. Then, these inputs are 

mapped into a multilevel Bayesian Network (BN) to extract all the possible attack paths 

to the target and hence study the attack propagation from the cyber domain to the physical 

domain. A security measure set is developed after considering both the defense and 

recovery measures. From this security measure set, a candidate security strategy space is 

built with 2𝑛 strategies where 𝑛 corresponds to the number of security measures 

(countermeasure actions). Using this security strategy space, several Pareto optimal 
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solutions are found by solving the MOOP using the Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II). Finally, the optimal security strategy solution is selected based 

on a distance-based evaluation method. The proposed approach has experimented with a 

simplified Tennessee Eastman chemical process control system to assess its effectiveness. 

Two attack scenarios are simulated using MATLAB environment in which the first 

scenario assumes that the launched attacks do not compromise the physical control 

system, while the second scenario assumes that they do. The considered defense measures 

include shutdown servers, blocking traffics, limiting incorrect password attempts, closing 

connections, restarting, and encrypting messages. In comparison with other approaches, 

this proposed solution is of an advantage in terms of considering security measures 

covering both the cyber and the physical domains. Also, it is one of the very few 

approaches that considers not only defense measures, but also recovery ones. On the other 

hand, the scalability and the time complexity of this approach concern the authors as they 

highly depend on the scale of the constructed BN and the size of the strategy space.  

The work in [101] proposes a general real-time control approach for designing IRS 

for industrial cyber-physical systems. Unlike most works that focus on the response 

policy selection decisions, this paper focuses on the security policy execution based on a 

given real-time security policy input. The main aim is to ensure that the system does not 

have massive losses while enforcing corrective mitigation responses. Initially, a MOOP is 

defined to maximize security protection time, minimize communication load, and 

minimize execution time of responses. Their solution approach is based on table-driven 

scheduling of responses using NSGA-II algorithm, which is used to solve the MOOP and 

find the Pareto solution set. Then, the responses in the Pareto solution set are ranked to 

select the one with the highest security protection time, which is the highest priority, as 

the optimal response. A directed acyclic graph (DAG), which models the dependency 

between the different tasks, is used to map the system and response tasks and schedule the 

tables on each node. Each system node has a scheduling table that is periodically updated 

with response tasks to be performed to protect against ongoing cyberattacks. The 
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proposed framework is evaluated on a simulated simplified TEP control system based on 

OPEN and MATLAB. The results show that the execution of the responses is done 

effectively without negatively affecting the system tasks with a fast execution time of less 

than 60 ms, which is about 10 generations. The advantage of this approach is that it 

addresses the response execution scheduling perspective that is neglected by many 

researchers when designing IRSs. However, they assumed some values without clear 

justifications, such as indicating that the communication load and the execution time of a 

task/response is statically defined in advance for all tasks. 

The authors in [102] formulate the countermeasure decision-making as a single 

objective optimization problem. The attack damage, deployment cost, negative impact on 

the QoS, and security benefit are the four metrics considered in the optimal policy 

selection process. To solve the optimization function, they propose a Genetic algorithm 

with three-dimensional encoding (GATE). Unlike most works, this work not only selects 

the optimal countermeasure, but also decides on where it should be deployed, in what 

order, and for how long. Determining these fine-grained decisions influences the 

effectiveness of the selected responses. For evaluation, an experimental network of 

servers is used to validate the effectiveness of the proposed approach. The considered 

countermeasures are blocking traffic, blocking ports, and closing connections. The results 

show that the framework can effectively generate an appropriate reasonable response 

policy to the detected attacks. In addition, three different algorithms are compared with 

the proposed one, which are the traverse algorithm (TA), the random algorithm (RA), and 

the simulated annealing algorithm (SAA). The comparison reveals the superiority of the 

GATE algorithm in terms of the fitness value and computational time. The advantage of 

this framework is emphasizing the importance of considering the fine-grained details 

when designing an intrusion response system. On the other hand, this approach does not 

consider modeling the attacker. We believe that this approach is not very suitable for 

CPSs because they are usually more complex for a single objective representation. Also, 

some of the taken assumptions, such as not allowing multiple countermeasures on the 
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same defense point, are not suitable for a CPS, which usually requires a composite of 

actions to mitigate the attack effect that is usually seen at multiple layers. 

4.1.2 Game Theory Solutions 

Recent studies present clearly that game theory is increasingly used in building 

intrusion response systems. 

In [103], the authors propose a cyber-physical response system (CPR) that can 

automatically mitigate cyber-originated attacks causing physical consequences against a 

power grid critical infrastructure. The proposed framework considers both cyber-side and 

physical-side response actions when mitigating the detected attacks. The interaction 

between the attacker and the CPR system is modeled using a sequential Stackelberg 

stochastic game approach with two players in which the CPR system is the leading 

player, and the attacker is the follower player. Both players aim to maximize their benefit 

with the help of a reward function. This game is represented as a competitive Markov 

decision process (CMDP). The states, which are obtained from both cyber intrusion 

detector (anti-virus) and power system sensors, represent the compromised cyber host and 

the physical consequences on the process. The CMDP is solved using the value iteration 

algorithm and the infinite-horizon discounted cost method to obtain the optimal response 

that maximizes the accumulative long-run reward. A case study is presented to evaluate 

the proposed framework in a publicly available power system that contains seven 

generator controllers. Four different attack scenarios are considered in which each time 

certain generator controllers are compromised. The considered countermeasures are 

disabling the compromised generator, dispatching other working generators, killing the 

malicious process on the controller from the cyber-side to restore its normal operations, 

and load shedding. The results show that in most scenarios, using both the cyber-side and 

physical-side responses is required to stop the attack since their capabilities complement 

each other. One of the advantages of this paper is that the solution approach is not too 

system specific as it can be applied to different network models. However, the usage of a 

very limited list of countermeasure actions is a common downside. 
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In [104], the authors propose a multi-layer defense architecture to protect the main 

layers of critical infrastructures from different cyberattacks. The considered layers to be 

protected are the management layer, supervision layer, real-time control layer, and 

physical layer. A multi-model anomaly-based intrusion detection approach is used to 

detect the existence of intrusion behaviors. An analytic hierarchy process (AHP) approach 

is used to assess the impact and the risk of ongoing attacks on the process, considering 

asset identification and classification, asset quantization, and dynamic assessment. A 

hierarchical, dynamic, two-player, non-cooperative, finite game is then proposed to select 

the optimal protection strategy in a two-step approach, which is building an attack 

defense tree (ADTrees) model and building a security performance game (SPG) model. 

Finally, the real-time intrusion response interprets the selected security mechanism and 

applies the changes on the required nodes. For evaluation, a networked water level 

control system is considered to test the effectiveness of the proposed framework. 

Different attack scenarios are simulated, such as setpoint change attack at the supervision 

layer, response injection at the real-time control layer, and command injection at the 

physical layer. The considered countermeasures are access control list, self-

reconfiguration, self-updating, and activating safety guards to take over the compromised 

controller. The results show the effectiveness of the proposed defense approach in 

mitigating the impacts of these attacks. The advantage of this approach is its applicability 

to wide range of industrial CPSs. Nevertheless, one of the limitations of this approach is 

that the attacker's level of experience and the time taken for building the attacker model is 

not considered when evaluating the solution. 

In [105], the authors designed a multi-step dynamic decision-making approach to 

obtain the optimal defense strategy for the detected attacks. There are two kinds of 

possible defense strategies considered, which are security strategies and recovery 

strategies. The security strategies reduce the risk of the attacks but invalidate some of the 

system functions in return. The recovery strategies are the ones that can recover failed 

system functions under an execution cost. The IDS inputs are the evidence list that 
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contains any attack occurrence or function invalidation and the current state of the 

system. The architecture of the proposed framework contains several modules, including 

a Multilayer Bayesian network (MLBN), process model, state controller, optimal defense 

strategy generator, and a strategy execution system. It uses a 2-player non-cooperative 

zero-sum game between the defender and the attacker. The game uses the Nash 

equilibrium theorem to find the solution and obtain the optimal defense strategy. This 

approach has been evaluated using a chemical reactor control system simulated in 

MATLAB. Different attacks are considered, such as network scanning, buffer overflow, 

vulnerability scanning, DoS attack, brute force attack, and reactor failure. The defensive 

actions are shutdown, disconnect, and encrypt. For the recovery actions, rebooting 

different PLCs are considered. The results show that the proposed framework effectively 

found the optimal defense strategy that minimizes the system loss within seconds. 

Moreover, the presence of a state controller model reduced the computational complexity 

by 87.5%. This paper has an advantage of showing a novel quantification approach for 

the risk assessment calculations to find the optimal attack-defense strategy using MLBN 

and system models. However, the computation time is still an open issue that requires 

further improvements to meet more strict real-time requirements of CPSs. 

In [106], the authors propose an automated cost-sensitive response and recovery 

engine (RRE) to mitigate attacks in real-time. The response decision-making model uses 

a two-player, sequential, multi-step, non-zero sum, hierarchical, Stackelberg stochastic 

game strategy with attack-response trees (ARTs). The ARTs are designed offline by 

experts to describe the security state of each asset. The modeling of the game uses a 

partially observable competitive Markov decision process (POCMDP) that is 

automatically obtained from the ART. The solution of the game is the optimal network-

level countermeasures, which have the minimum accumulative attack damage and the 

maximum accumulative long-run response reward. The architecture consists of two 

engines: the local engine resides in host computers, and the global engine, which is 

responsible for the security of the whole infrastructure, resides in the response and 
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recovery server. The local engines receive a set of assets that need to be protected, IDS 

alerts, and ART graphs as inputs. Then, it generates a finite set of security state spaces of 

all the safe states that the host computer can tolerate. The state space is sent to the 

decision-making unit that uses a game-theoretic approach with the value iteration method 

and maxmin strategy to find the optimal response. Then, the selected optimal responses 

are implemented by the RRE agent, which reports back whether the actions are 

accomplished successfully or not. The global engine comes into the picture to handle 

attacks if the local engines are compromised or unable to recover the system. The 

effectiveness of the proposed RRE engine is evaluated on several networks of different 

sizes. Results show that the RRE engine works very well in choosing the appropriate 

countermeasure action even for large-scale networks that have more than 500 nodes, 

which are still solvable in less than 40 seconds. The main contributed advantage of this 

approach is providing a scalable distributed solution that improves the performance of a 

response engine. However, it only uses cyber-level actions, includes some subjective 

static definitions of network properties, introduces trust issues between the different 

nodes, and lacks accurate system state insights because of the distributed nature. 

 

Table 6. Summary of Reseach Works on IRSs Using Conventional Solutions 
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making 
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Modelling 
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-making 
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on 

problems 
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[99] No ADTs 
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IP 
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blocking 
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closing 
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disabling 
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time 



  

   39 

 

Decision-

making 

Model 

Ref. CPS Attack 

Modelling 

Approach 

Actions Decision

-making 

Metrics 

Solving 

Approach 

Evaluation 

patching, 

and 

shutdown 

 

 

[100] Yes MLBN Shutdown 

servers, 

blocking 

traffic, 

limiting 

incorrect 

password 

attempts, 

closing 

connectio

n, 

restarting, 

and 

encrypting 

 

Security 

benefit, 

system 

benefit, 

and state 

benefit 

NSGA-II 

algorithm 

with a 

distance-

based 

method 

Based on 

execution 

time and 

response 

goodness 

[101] Yes NA Not 

mentioned 

Protectio

n time, 

execution 

time, and 

communi

cation 

load 

 

NSGA-II 

algorithm 

with a 

crowding 

distance 

method 

Based on 

execution 

time 

[102] No NA Blocking 

traffic, 

blocking 

ports, and 

closing 

connectio

n 

Attack 

damage, 

negative 

impact 

on the 

QoS, 

security 

benefit, 

and 

deploym

ent cost 

 

Genetic 

algorithm 
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three-
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al 

encoding 

(GATE) 
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computatio

nal time 

Game 

theory 

[103] Yes NA Disabling 
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g, and 

killing 

malicious 

processes 

The 
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Decision-

making 

Model 

Ref. CPS Attack 

Modelling 

Approach 

Actions Decision

-making 

Metrics 

Solving 

Approach 

Evaluation 

[104] Yes Attack 

defense 

trees 

Access 

control 

lists, 

activating 

safety 

guards, 

and self-

reconfigur

ation 

The risk 

(impact) 

of 

ongoing 

attacks 

An 

analytic 

hierarchy 

process 

(AHP) 

Based on 

checking 

the state of 

some 

process-

related 

values 

 

 

[105] Yes MLBN Shutdown, 

disconnect

, encrypt, 

and PLCs 

rebooting 

Attack 

damage, 

system 

degradati

on, 

system 

stability, 

and state 

reachabil

ity 

 

Nash 

equilibriu

m theorem 

Based on 

computatio

n time 

(computatio

nal 

complexity) 

[106] No Attack 

response 

trees 

Not 

mentioned 

Attack 

damage 

and 

accumula

tive long-

run 

response 

reward 

The value 

iteration 

algorithm 

with the 

infinite-

horizon 

discounte

d cost and 

maximin 

approach 

Based on 

handling 

scalability, 

and time 

needed to 

respond 

 

4.2 Reinforcement Learning Approaches for IRSs 

The application of reinforcement learning to the intrusion response field is relatively new, 

especially for CPSs. We divided the work in this area into model-based solutions and model-

free solution. Table 7 shows a summary for each of the examined works in this section. 

4.2.1 Model-based Solutions 

In [107], the authors propose an intrusion response system using deep reinforcement 

learning that is modeled with a Markov Decision Process (MDP). They state that they are 

the first to use deep reinforcement learning (DRL) in designing an IRS. Table 7 shows the 

states, actions, and reward function of the considered MDP model. For solving the MDP 
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model, the authors propose a Deep Q-Learning (DQL) technique that uses a Convolution 

Neural Network as a non-linear function approximator. The considered system for 

evaluation is a stationary microservice-based system. Both Q-Learning and DQL 

algorithms have been used to estimate the action-value function to solve the formulated 

MDP model. Results show that DQL converges to an optimal solution faster than the 

tabular Q-learning algorithm in terms of time and number of episodes. In addition, it 

achieved noticeably less memory utilization and maximum cumulative reward. In 

comparison with conventional standard methods, which require an accurate model of the 

system for designing an IRS, the use of DRL reduces the needed time to find defense 

strategies and handles large-scale systems more effectively. On the other hand, DQL 

approach require tuning many hyperparameters, which can highly influence the agent 

behavior, to achieve the desired optimal rewards. 

In [108], the authors use the MDP framework to design an IRS. The proposed design 

captures both the defender and the attacker models and plans optimal long-term responses 

to protect the system. Initially, a Single Agent MDP is used to model the IRS defender 

model such that the agent has an objective of finding an optimal policy with a maximized 

reward. In the defender model, the responses are evaluated based on their response time, 

operational cost, and impact index on the system. Some considered response actions are 

firewall activation, blocking source IP address, and generating an alert. After developing 

the defender model, the attacker model is added using a competitive multiple agent MDP 

that is implemented as a stochastic game. Each attack in the attacker model has three 

characteristics, which are attack belief, which is the probability that a specific attack will 

be executed by the attacker in the future, attack action, which is the future action to be 

taken by the attacker based on the dependencies between attacks, and the intrusion 

damage of the attack on the system. The MDP model is solved using the Value Iteration 

(VI) and the Upper Confidence Trees (UCT) algorithms. Considering a system with 1000 

system attributes and 1000 possible response actions, the VI outperforms the UCT in all 

the experiments. Since the MDP model grows exponentially when used to describe large 
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systems, the authors designed a dynamic attributes and actions selection engine, which 

instantiates the MDP problem with the minimum number of attributes and actions that are 

only directly related to the detected attack. Also, the usage of the parallel version of the 

VI algorithm was considered to handle the scalability.  As a consequence, the proposed 

IRS was able to generate the optimal response policy in less than 2 seconds. Advantages 

of the solution include modeling both the defender and the attacker and handling 

scalability. One disadvantage is considering statically defined transition probabilities 

instead of using a dynamic feedback loop between the protected system and the IRS. 

The authors in [109] use the Q-learning algorithm to select the optimal strategy by 

optimizing the game model. They propose a two-player zero-sum stochastic game model 

to generate optimal defense strategies to mitigate highly organized cyberattacks in 

Industrial Cyber-Physical Systems (ICPSs). The attacker in this game is assumed to 

infiltrate from the corporate network and propagate until he/she reaches the physical 

process. The authors use the base-group metrics provided by the common vulnerability 

scoring system (CVSS) to quantify the probability of success of attacks. The state of the 

game is represented by a binary vector where a value of 1 means the device is 

compromised and a value of 0 means not. The defender actions are security responses, 

such as installing patches and restarting. The reward function depends on time-based 

quantification in a way that 𝑅(𝐴𝑡,𝑖) is the time needed to recover the compromised device 

after an attack, 𝑇(𝐷𝑡,𝑗) is the time needed to perform the defender action, and 𝐶(𝐴𝑡,𝑖) is 

the time needed to perform the attacker action. The proposed game model is evaluated on 

a simulated simplified Tennessee-Eastman (STE) process control system that uses 

Modbus communication protocol. Q-learning algorithm shows its effectiveness in solving 

the game model, indicating a fast convergence rate with higher learning rates. The 

proposed approach highlights the possibility of performing self-learning to derive the 

optimal defense strategy without accurate knowledge of the model parameters. Also, this 

approach considers both the cyber and physical layers when designing an IRS for ICPSs. 
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However, the assumption that the players have complete information of the actions of 

other players is unrealistic in real-world problems. 

In [110], The authors model the security problem between the defender and the 

attacker in a CPS as imperfect information stochastic game that is solved using a Multi-

Agent Reinforcement Learning (MARL) approach. The Q-Learning algorithm is applied 

to achieve the learning element and decide on the best actions, which increase the overall 

expected reward, to be taken by each player at run-time. The work aims to reach a Nash 

Equilibrium (NE) in favor of the defender system. The considered system states are the 

security status, which is either low, medium, high, or critical. The architecture of the 

modeled CPS, which is assumed to be known by the defender, composes of four layers to 

mimic a real vulnerable CPS network. The different considered types of vulnerabilities 

are taken from the Common Vulnerability Scoring System (CVSS) with their 

corresponding information, including vulnerability access, exploitability score, and CVSS 

score. The experimental section focuses on a virus spreading attack scenario that exploits 

zero-day vulnerabilities to reflect realistic assumption. The simulations are done using the 

MiniCPS simulator and OpenAI Gym for implementing the reinforcement learning 

algorithm. The results show that the proposed hybrid approach cannot stop the attack but 

can limit its success rate. Accordingly, the attackers succeed by 25% on attacking the 

cyber layer while by 94% on the physical layer. This shows a huge disadvantage since the 

proposed method is not very effective in protecting the physical layer, which is originally 

the main target of any attacker against CPSs. 

In [111], the authors also use the Q-learning algorithm with a game model to find the 

optimal defender actions in a simulated power system environment. The interactions 

between the adversary and defender are modeled as a two-person zero-sum repeated 

game. This game considers several parameterized factors when calculating the reward 

function, including the attack and defense costs, allocated budgets, and the players’ 

strengths. The Minimax Q-learning algorithm is used to solve the game and find the 

optimal action in favor of each player. The system simulation is performed using 
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MATLAB. The conducted experiments reveal the postattack effects on the system in 

terms of voltage violation that reflects the saved and lost power of its elements. The 

results show that this solution can defend the transmission lines, which are the prime 

targets of attackers, effectively and efficiently. The advantage of using a repeated game is 

that players can generate actions independent of the actions' history, and hence the game 

is close to real-life scenarios. Disadvantages include poor evaluation in terms of 

comparison with different RL algorithms. 

4.2.2 Model-free Solutions 

In [112], the authors extend their work in [107] to find the optimal intrusion response 

in a non-stationary microservice-based system. They use a model-free DQN algorithm for 

building their IRS. The considered approach consists of the following four phases: 

designing the system model, building a software simulator for the system, using a RL 

agent to learn the simulated system, and detaching the RL agent from the simulator to 

attach it to a real system. The considered states are five Boolean variables representing 

the current status of each component, such as active, updated, new version available, 

corrupted, and vulnerable. Seven actions are considered with their pre-conditions, post-

conditions, execution time, and cost, including restart component, start firewall, and fix a 

vulnerability. For evaluation, the authors compared the effectiveness of the tabular Q-

Learning agent and the DQL/DQN agent on both stationary and non-stationary systems. 

The considered evaluation metrics are steps of convergence, cumulative reward, and 

execution time. The results show that for stationary systems, DQL converges faster in 

terms of the number of episodes. Also, it exhibits a constant behavior with the increasing 

number of system attributes and linear memory utilization. For non-stationary systems, 

the results show that Q-learning converges faster than DQL only if a structural change to 

the neural network is needed. Otherwise, DQL is a better choice because it is memory-

efficient and provides better generalization capabilities. The proposed solution also 

proved effectiveness when compared with a standard planning technique (VI). All in all, 

this approach is scalable, which can work with large systems. Also, it is one of the very 
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first papers that addresses non-stationary systems. However, like any learning-based 

approach, many hyperparameters need tuning, which is not a simple task to do. Moreover, 

the proposed IRS is reactive; since it only models the defender system and ignores the 

attacker model. 

In [113], the authors use model-free reinforcement learning with the off-policy 

tabular Q-learning approach to decide on the optimal response policy in network security. 

The proposed model consists of two network states {𝑆𝑁, 𝑆𝐴}, which correspond to the 

state of the network under normal conditions and the state when it is under attack, 

respectively. Two actions {𝑎𝑝, 𝑎𝑑𝑛}, were considered in which 𝑎𝑝 is for a protection 

action and 𝑎𝑑𝑛 is for a do-nothing action. The model also includes a reward matrix 𝑅, 

which contains the immediate reward the agent will obtain by performing action 𝑎 in state 

𝑠. Estimating the transition probability matrix 𝑇, which shows how the environment will 

change from one state to another under the selected actions, is done using the maximum 

likelihood estimation (MLE) on bootstrapped data sequences and the Laplace smoothing 

approach. This transition probability estimation is not needed when using Q-learning, 

because it is a model-free algorithm. However, it is used for evaluating the model with 

other techniques that require knowledge of the environment. The used dataset is the ISCX 

NSL-KDD, which contains 42 variables and 24 different attack scenarios. The results 

show that after 100,000 iterations, the action-value matrix Q (S, A) for each action and 

state combination is computed. Once the action-value function is determined, the optimal 

policy is created by choosing the action with the maximum value in each state. For 

evaluation, several other techniques are used with the help of the estimated transition 

probabilities, which are Linear Programming (LP), Policy Iteration (PI), and Value 

Iteration (VI). The results show that Q-learning was able to obtain the same optimal 

policy as the other approaches, but with the advantage of not requiring environment 

knowledge. This emphasizes the value of using model-free reinforcement techniques in 

network security. However, the approach provides poor evaluation as it did not mention 
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the cumulative reward and execution time metrics. 

In [114], the authors propose a model-free reinforcement approach using the Q-

Learning algorithm to detect and respond to attacks in non-stationary systems by solving 

its MDP. Non-stationary systems present the concept of having a dynamic environment 

where an action can be added, removed, or changed over time. This dynamicity makes 

model-based approaches challenging to apply, because non-stationary systems do not 

always behave as modeled. The represented environment is a three-tier web application 

with a state space that consists of several variables representing if each component server 

is vulnerable, started, up to date, has a CPU load, or under attack. The agent considers 

several actions, such as starting, stopping, updating, and patching the attacked server. 

Three scenarios are used in the experimental section, which are adding new actions, 

changing the reward parameters of the actions, and removing actions. After training the 

agent for 200,000 learning episodes on a simulation system, the results show that the 

agent converges to the near-optimal solution and can adapt to any changes in the different 

experimental scenarios by obtaining a high cumulative reward. Advantages show that the 

proposed approach succeeds in capturing the dynamics of the changing environment and 

automating the defense against advanced attacks in a non-stationary system, which does 

not depend on a static model of the system. The disadvantages of the proposed approach 

include requiring more time to converge to the near-optimal solution and poor evaluation 

of the performance. 

The authors in [115] propose a DRL-based approach to mitigate a different range of 

DDoS attacks in real-time, including TCP SYN, UDP, and ICMP flooding. Their 

framework leverages Software-Defined Networks (SDN) with OpenFlow standards to 

have a centralized global view of the network that helps with collecting the network 

statistics. They use the Deep Deterministic Policy Gradient (DDPG) algorithm, which is 

an actor-critic-based algorithm. The state-space contains eight features from the collected 

traffic, which are port number, number of received packets, number of transmitted 

packets, number of received bytes, number of transmitted bytes, number of packets of 
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each flow, number of bytes of each flow, and time the switch has been alive in 

nanoseconds. For the actions, the agent outputs a vector of size 𝑁 (N is the number of 

hosts) where each value is between [0.1, 1] and represents the maximum bandwidth that 

is allowed by the host. In this way, the attacker traffic is throttled, and most of the 

resources are available to serve legitimate traffic. The considered reward function is -1 if 

the traffic load on a server is greater than a defined upper boundary 𝑈𝑠 = 6 𝑀𝑏𝑝𝑠 and is 

𝜆𝑝𝑏 + (1 − 𝜆)(1 − 𝑝𝑎), otherwise. The hyper-parameter 𝜆 weights the two parts of the 

reward function, 𝑝𝑏 represents the percentage of legitimate traffic reaching the server, and 

𝑝𝑎 represents the percentage of the malicious attack traffic reaching the server. For 

evaluation, the proposed approach is compared with two popular state-of-the-art throttling 

methods, which are the AIMD router throttling and the CTL, on a sample SDN topology 

of virtual hosts and OpenFlow switches that is created using Mininet. The evaluation is 

done in different attack dynamics, such as constant rate attack, increasing rate attack, 

pulse attack, and group attack. The results show that the proposed agent outperforms 

them and can effectively mitigate DDoS flooding attacks of different protocols. The 

advantage of the SDN approach is that it decouples control and data aspects in the 

network and generalizes well with different unseen scenarios. On the other hand, the 

disadvantages include not addressing the scalability requirements and assuming that the 

sending rate of the attacker is significantly higher than the legitimate user, which is not 

always the case. 

In [116], the authors use a multiagent router throttling decentralized approach using 

SARSA RL algorithm and the Coordinated Team Learning (CTL) design to defend DDoS 

attacks in network intrusions. The purpose of the RL agents is to rate-limit the traffic 

directed towards a victim when a DDoS attack happens in a scalable system. The state-

space of each agent consists of four features corresponding to the traffic rates of four 

considered routers. The action space consists of 10 actions that correspond to 0% to 90% 

traffic drop probabilities from traffic directed to the victim server. Teams of agents use 
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the task decomposition approach and work as independent teams that receive rewards at 

the team level. Experiments are done on a network emulator testbed using tree network 

topologies consisting of homogeneous teams of agents. The training is done offline to 

obtain a policy that can be used later in evaluation. Different attack dynamics were 

considered for evaluating the proposed approach against other popular throttling 

approaches, including constant-rate attack, increasing-rate attack, pulse attack, and group 

attack. Results show that the proposed throttling approach outperforms the baseline and 

the popular AIMD router throttling technique. The proposed method was also evaluated 

with online training and showed promising results, but with more time needed for 

convergence. The same multi-agent approach was used in [117] to design an intrusion 

response system using Deep Q-Networks, but with a model-based mindset. The 

advantage of the proposed solution is that it focuses on addressing the scalability 

challenge using offline learning. Also, it is more resilient than centralized approaches 

because it does not have a single point of failure. However, this work does not consider 

attackers who send traffic at a rate similar to legitimate users.  

 

Table 7. Summary of Research Works on IRSs using RL Solutions 

Algorithm Ref. CPS Model States Actions Reward Evaluation 

DQN [107] No Model-

based 

Variables 

to indicate 

if each 

componen

t is active, 

updated, 

has a new 

version, 

corrupted, 

or 

vulnerable 

Starting 

component, 

restarting 

component, 

starting 

firewall, or 

updating 

component 

𝑅(𝑆𝑡 , 𝑎, 𝑆𝑡+1) 

=

−𝑤𝑡
𝑇(𝑎)

𝑇𝑚𝑎𝑥
−

𝑤𝑐
𝐶(𝑎)

𝐶𝑚𝑎𝑥
, 

where the 

weights 

show the 

importanc

e of the 

execution 

time 

𝑇(𝑎) and 

cost 𝐶(𝑎) 

 

Algorithms 

are 

compared 

in terms of 

execution 

time, 

learning 

episode, 

and 

cumulative 

reward 

[112] No Model-

free 

Same as in [107], but with one extra action to start 

the component faster. Also, the evaluation is done on 

stationary and non-stationary systems 
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Algorithm Ref. CPS Model States Actions Reward Evaluation 

VI-parallel [108] No Model-

based 

Probabilit

y that the 

system is 

under 

attack, and 

the system 

status, 

such as if 

the 

firewall is 

active or 

no 

18 actions 

are 

mentioned 

including 

blocking 

source IP, 

redirect to 

honeypot, 

and alert 

𝑅(𝑆𝑡 , 𝑎, 𝑆𝑡+1) 

=

−𝑤𝑡
𝑇(𝑎)

𝑇𝑚𝑎𝑥
−

𝑤𝑐
𝐶(𝑎)

𝐶𝑚𝑎𝑥
−

𝑤𝑖𝐼(𝑥), 

where 𝐼(𝑥) 

shows the 

impact 

index of 

the action x 

on the 

system 

 

The VI and 

the UCT 

algorithms 

are 

compared 

in terms of 

resolution 

time, cost, 

and impact 

Q-learning [109] Yes Model-

based 

Binary 

vector 

indicating 

compromi

sed 

devices 

Patching, 

restarting, 

and 

switching 

to another 

device 

𝑈𝑡
𝐷(𝐴𝑡,𝑖, 𝐷𝑡,𝑗) 

= − 𝜖(𝐴𝑡,𝑖, 𝐷𝑡,𝑗) 

*𝑅(𝐴𝑡,𝑖)  +
 𝑇(𝐷𝑡,𝑗)  −

 𝐶(𝐴𝑡,𝑖) 

 

Evaluated 

on a control 

process in 

terms of 

convergenc

e time 

[113] No Model-

free 
𝑆𝐴 for 

under 

attack and  

𝑆𝐴 for 

normal 

𝑎𝑝 for 

protection 

and  

𝑎𝑑𝑛 for a 

do-

nothing 

A reward 

matrix is 

defined  

Effectivene

ss 

evaluation 

is done 

using root 

mean 

square error 

 

[114] No Model-

free 

8 

variables 

including: 

isWebSer

verOn, 

isWebSer

verUnder

Attack, 

and CPU 

load 

 

14 actions 

such as: 

scaleup 

WS, start 

WS, patch 

httpd, 

update, 

and 

shutdown 

𝑅(𝑎)

= −𝑤𝑡

𝑇(𝑎)

𝑇𝑚𝑎𝑥

− 𝑤𝑐

𝐶(𝑎)

𝐶𝑚𝑎𝑥

− 𝑤𝑐𝑜𝑛𝑓𝐶𝑜𝑛𝑓(𝑎) 

−𝑤𝐼𝐼(𝑎) −
𝑊𝐴A(a) 

Cumulative 

reward is 

used to test 

the 

approach 

[110] Yes Model-

based 

Security 

status 

level (low, 

medium, 

high, or 

critical) 

Random 

strategy, 

human 

capabilitie

s, and 

patch 

managing 

Not 

mentioned 

Based on 

the success 

rate of the 

attacker 

after 

applying 

the policies 

       

[111] Yes Model-

based 

A set of 

game 

repetitions 

A set of 

10 actions 

of 

different 

transmissi

𝑅𝐷(𝑠, 𝑎, 𝑑) 

= −1, 𝑖𝑓 𝑈𝐴 

> 𝑈𝐷 and 0 

otherwise, 

where 

Evaluation 

is based on 

the voltage 

violation of 

the system 
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Algorithm Ref. CPS Model States Actions Reward Evaluation 

on lines  𝑈𝐴 𝑎𝑛𝑑 𝑈𝐷 

are the 

payoffs 

 

elements 

DDPG [115] No Model-

free 

Eight 

features 

from the 

network 

traffic, 

such as 

port 

number 

and the 

number of 

packets 

 A vector 

of values 

between 

0.1 and 1 

that shows 

the 

maximum 

bandwidth 

allowed 

by each 

host 

-1 if the 

traffic load 

on the 

server is >
 𝑈𝑆 and is 

𝜆𝑝𝑏 +
(1 −
𝜆)(1 − 𝑝𝑎) 

when the 

load is ≤
 𝑈𝑆 

 

Compared 

with AIMD 

and CTL 

approaches 

in different 

dynamics 

SARSA [116] No Model-

free 

Traffic 

rates (the 

traffic 

arrived at 

the router 

over the 

last T 

seconds 

10 actions 

correspon

ding to the 

traffic 

drop 

probabilit

y (0% to 

90%) 

-1 if the 

load on the 

router is > 

the upper 

boundary. 

Otherwise, 

the reward 

is between 

0 and 1 𝑟 =
𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒𝐿𝑜𝑎𝑑𝑠𝑒𝑟𝑣𝑒𝑟

𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒𝐿𝑜𝑎𝑑𝑡𝑜𝑡𝑎𝑙
 

Scalability, 

adaptability

, and 

resiliently 

are tested 

against 

existing 

throttling 

approaches 

 

4.3 Summary, Limitations, and Discussions 

This section provides a full comparison of the numerous works analyzed, focusing on 

both the positives and the negatives of each work. According to our conducted survey, Table 

8 presents some of the advantages, disadvantages, and future works of the different IRSs 

solutions. In here, we discuss and point-out several challenges and shortcomings that seem to 

be the most prominent in the development of Intrusion response systems. Also, we highlight 

the future directions analyzed from our conducted survey that require immediate attention 

from the research community.  

Traditionally, intrusion response techniques had been a manual and time-consuming 

process. However, this approach is not suitable for real-time critical cyber-physical systems. 

Unfortunately, there are many challenges that researchers face when designing automatic 

intrusion response systems. To begin with, there is a very limited explored countermeasure 
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pool of actions, especially the ones that are applicable for CPSs and consider both the cyber 

and the physical damages. Also, it is noticeable that most of the used countermeasures in 

designing IRSs are cyber-level actions. This shows a deficiency of response actions usage in 

the physical-level, which is very important for securing CPSs. Moreover, only little is known 

about combining several atomic actions when responding to a detected attack. The execution 

requirements of the countermeasures have been also ignored by the researchers who focused 

mainly on the optimal selection of responses. Accordingly, it is noteworthy that the reviewed 

works use a very small set of countermeasures, which makes their performance questionable 

when the search space expands.  

Concerning the conventional approaches, Table 6 reveals that most of the works 

require an attack modeling technique for the risk assessment phase, which is usually an 

overhead and not very easy to implement, especially for large networks. Also, the usage of 

MOOPs to solve the decision problem neglects the nature of having a constantly changing 

state space. Besides, there is no standard representation for attack modeling techniques, which 

makes it even more challenging. Moreover, considering a static attack model, as in [100], is 

not very realistic to the dynamicity of the attacker behavior. Some works don't use an attack 

model and assume that the risk parameters are statically obtained by security experts as in 

[101]. However, this is another simple and not very realistic assumption for critical industrial 

CPSs. Furthermore, the presence of experts' opinions when designing models, such as attack 

trees and service dependency graphs, makes the decision of optimal countermeasures 

somehow subjective to their own perspectives, which is not always desirable. These 

limitations encourage the exploration of more advanced, automated, and intelligent solutions, 

such as the current direction of using reinforcement learning in solving decision-making 

problems where the risk assessment part is embedded in the learning algorithm. There are also 

clear limitations in the works that use the game theory approach, such as assuming a finite 

state space, which is usually not the case in cybersecurity. Additionally, some authors falsely 

assume in game theory solutions that each player must know the cost function of other 

players. This assumption is difficult to be justified in real-life scenarios. Another limitation in 
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game theory approaches is that all of them build games with no more than two-players. 

Another important limitation analyzed from our literature review is that most of the 

studied works don't deal with the problem of handling zero-day attack scenarios and 

scalability issues. We noticed that most works rely on small-scale simulated environments to 

evaluate their solution as in [104], while Only few, such as [106], assessed the feasibility of 

their IRS in large-scale environments. It is worth mentioning that the usage of real 

environments in the evaluation process was also neglected, which raises some concerns on the 

applicability of the solutions in real-life scenarios.  

Continuing on the limitations, most of the solution approaches do not consider 

modelling both the attacker and the defender when designing an IRS as in [112]. The 

unavailability of a publicly available dataset, which stores all of the (state, action, next state, 

reward) tuples, for building response systems for CPSs using an offline approach is another 

deficiency that authors face. There is also a lack in IRSs designs for dynamic non-stationary 

environments that could change abruptly with unknown probabilities. Additionally, there is a 

lack of open-source tools that can be used for preventing, assessing, and responding to 

security breaches in CPSs.  

Another fact stemming from Table 7 is that all the works analyzed that use RL for 

designing IRSs, except those presented in [109] and [111], do not consider a CPS 

environment. Scopus brought up only 16 search results, as shown in Figure 11, for ({Intrusion 

response} OR {Countermeasure} OR {Defense} OR {Incident response} OR {Mitigation}) 

AND {Reinforcement learning} AND ({Cyber-physical} OR {Industrial systems}). From this 

Scopus figure, we can see that most of these results are in 2020, which is very recent. This 

indicates that the utilization of RL in IRSs that are designed for CPSs is still in its very early 

stages. One can easily notice that many other challenges have been overlooked by the 

researchers, such as the real-time response issue, the alert parallelization problem, and 

handling false alarms since most works assume that the received alarms are 100% accurate. 
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Figure 11. Scopus: publications on RL for IRSs in CPSs 

 

All these complex challenges resulted in limited applicability of the research work in 

IRSs to real-life systems. Also, it delayed the development of commercial IRS tools and 

publicly available datasets. This emphasizes that the work on IRSs, especially for CPSs, is 

still in its very early stages and that there are still open research questions that require further 

investigations from the research community in the area of IRSs design. 

All in all, the limitations discussed reflect how important, yet very difficult to design, 

is intrusion response systems for CPSs. In this thesis, our proposed methodology, which 

utilizes model-free deep reinforcement learning, addresses some of these limitations. Initially, 

our solution provides an enhanced countermeasure pool, which provides composite actions on 

both the cyber-level and the process-level, applicable for effectively securing CPSs. Also, the 

proposed method handles the generalization issue that conventional approaches suffer from. 

Moreover, using a model-free approach avoids the overhead of dealing with the modelling 

part, which is usually very hard and inaccurate for large complex CPSs because they involve 

hundreds of sensors and actuators. Accordingly, we investigate the usage of both 

conventional Genetic algorithm solution and model-free deep reinforcement learning for 

developing an IRS for a CPS, which is a solution approach that has not been explored to date. 

Our goal is to peruse an online RL approach, which considers both the cyber level and the 

process level data, for the optimal selection of countermeasures in a CPS testbed. 
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Table 8. Advantages, Disadvantages, and Future Works of the IRSs Approaches 

Approach  Ref. Advantages Disadvantages Future works 

Multi-

objective 

optimization 

functions 

[99] -Fast dynamic response 

selection 

-Adaptive approach 

-Models attacker 

behavior 

-Considers combining 

responses 

-Unrealistic usage of 

1 ADT to protect 

assets 

-Lacks in scalability 

-The difficulty of 

creating ADT/SDG is 

not considered 

 

-Considering 

the applicability 

of using 

multiple attack 

defense trees 

[100] -Considers defense and 

recovery measures on 

both cyber and physical 

domains 

-Prevents the expansion 

of the attack surface 

-Experiments with 

different attack scenarios 

 

-Does not address the 

scalability and time 

complexity issues 

-Not mentioned 

[101] -Focuses on the 

execution of the 

countermeasures 

-Does not discuss 

effects of ongoing 

attacks 

-Uses unjustified 

static values 

-Considering 

heterogeneous 

nodes 

-Discussing 

security policy 

generation 

 

[102] -Decides on the order 

and duration of selected 

actions 

-Does not model the 

attacker behavior 

-Considering 

the time interval 

between actions' 

deployment and 

execution 

 

Game theory [103] -Considers cyber-side 

and physical-side 

responses 

-Considers sensor alert 

uncertainties 

-Not too system-specific 

 

-Using a limited list 

of countermeasures 

-Not mentioned 

[104] -Provides a complete 

multi-layer defense 

architecture 

-Applicable to different 

CPSs 

-Uses an abstract 

high-level 

explanation 

-Does not take the 

attackers’ expertise 

and time to build 

attacker model into 

consideration 

 

-Exploring 

different 

applications for 

CPS protection 

[105] -Presents a novel risk 

assessment approach 

-Considers both defense 

and recovery actions 

-Computation time 

and complexity are 

an issue 

-Using a more 

efficient 

dynamic update 

algorithm for 

the MLBN 
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Approach  Ref. Advantages Disadvantages Future works 

[106] -Provides a scalable 

solution 

-Uses a distributed model 

that improves the 

performance 

-The distributed 

model adds trust 

issues between the 

nodes 

-The used 

countermeasures are 

not presented 

 

-Not mentioned 

Reinforcement 

learning 

[107] -Does not need an 

accurate model of the 

system 

-Handles large-scale 

systems 

-Requires several 

episodes to converge 

-Tuning 

hyperparameters is 

time consuming 

-Using GPUs to 

increase 

processing 

speed 

-Considering 

multi-agent 

systems 

 

[112] -Deals with a non-

stationary system 

-Better generalization 

property 

-Scalable approach 

-Ignores modelling 

the attacker behavior 

-Using GPUs to 

increase 

processing 

speed 

-Considering 

multi-agent 

systems 

 

[108] -Captures both the 

defender and attacker 

models 

-Suitable for large-scale 

systems 

-Provides a proactive 

approach 

-No feedback loop 

between the system 

and the IRS agent 

-Establishing a 

feedback loop 

between the 

controller and 

the system 

-Considering a 

non-

deterministic 

MDP 

 

[113] -Uses offline approach 

with a network dataset 

-Poor evaluation 

metrics are used 

-Exploring Q-

learning 

algorithm in 

different 

domains 

-Considering 

combining Q-

learning with 

other models to 

improve the 

performance 

 

[114] -First to consider 

dynamic non-stationary 

systems 

-Different attack 

dynamic scenarios are 

considered 

-More time needed to 

converge to a near-

optimal solution 

-Does not model the 

attacker behavior 

-Comparing 

with different 

algorithms 

-Including 

attacker 

behavior 
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Approach  Ref. Advantages Disadvantages Future works 

[115] -The usage of SDN 

decouples control from 

data 

-Different attack 

dynamics are considered 

 

-Does not address the 

scalability issue 

-Not mentioned 

[116] -Scalable decentralized 

approach 

-Both offline and online 

training are considered 

-Does not consider 

attackers with 

legitimate sending 

rates 

-Focusing on 

online training 

-Exploring ways 

to improve the 

learning speed 

 

[109] -The time needed to 

recover metric is 

considered 

-It assumes complete 

players knowledge 

-Considering 

unknown 

vulnerabilities 

-Considering 

players with 

incomplete 

information of 

other players 

 

[110] -Models both the 

defender and attacker 

-Uses realistic 

assumptions 

-Does not protect the 

physical layer 

-Considering a 

game with 

imperfect 

information 

 

[111] -Models both the 

defender and attacker 

-No comparison with 

other RL algorithms 

-Extending the 

approach for 

general CPSs 

 

Proposed 

solution 

NA -Detailed comprehensive 

background and survey 

work 

-Modeling and design of 

a CPS testbed 

-Modelling and design of 

cyberattacks  

-Uses both a Genetic 

algorithm and a model-

free DDQN algorithm to 

solve the intrusion 

response system problem  

-Builds an offline dataset 

for RL usage 

-No comparison with 

other RL algorithms  

-Very long training 

time (scalability is an 

issue) 

-Limited state-space 

and action-space 

considered 

 

-Consider multi-

agent RL 

approaches 

-Consider more 

attack scenarios 

-Use the 

collected dataset 

in an offline RL 

approach 

-Compare with 

other RL 

algorithms 
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CHAPTER 5: MODELING AND DESIGN OF A CPS TESTBED 

In this chapter, we present the modelling and design of a small-scale simulated 

exothermic Continuous Stirred Tank Reactor (CSTR) testbed using both MATLAB/Simulink 

and LabVIEW. The motivation behind building this testbed is to use it as our interactive 

environment, where we apply our conducted experimentations, in both the GA-based and RL-

based intrusion response decision-making designs. This is due to the lack of publicly 

available security-relevant datasets that can be used in our cyber security research 

investigations. Also, we present the modelling and design of different attack scenarios 

considered in each proposed solution. 

5.1 CPS Description 

In this section, we give the overall picture of our considered CSTR physical process. 

Also, we mention the high-level architecture of our designed CPS testbed, including the used 

components, their roles, and the communication protocol used between them. 

5.1.1 Process Description 

The CSTR plays a vital role in the process industry, where cyber security is essential 

for the safety and reliability of its physical system operations. It is essential in any process 

plant that generates new products from raw inlet reactants. We chose the CSTR as the 

physical system because of many reasons. First, the process variables, which we aim to 

regulate and control, are closely coupled. Thus, any change in one process variable will 

impact other variables and manifest itself in the overall process behaviour. Second, the 

process has several safety hazard scenarios, which can be produced by a cyberattack. 

Finally, mitigation layers for a number of safety hazards rely mainly on the control and 

safety systems, which are cyber systems that could be compromised by a cyberattack. 

Accordingly, this type of process is suitable for experimenting with different cyberattack 

scenarios, implementing different mitigation techniques that consider simultaneously 

cyber and physical actions, and evaluating the effectiveness of the defensive mechanisms 

in a realistic operating process environment. 
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We consider an irreversible exothermic CSTR process, with a first order reaction in 

the reactant A with rate k and a heat of reaction 𝜆. 

𝐴 
𝑘
→ 𝐵 

Figure 12 shows the Piping & Instrumentation Diagram (P&ID) for the reactor. The 

reactor vessel has an inlet stream, an outlet stream, and a coolant stream. The inlet stream 

is where the reactant is carried in, the output stream is where the product is carried out, 

and the cooling stream is where the cooling fluid is carried in to absorb the heat of the 

exothermic reaction. Reactant 𝐴 enters the reactor with concentration 𝐶𝐴0
, temperature 𝑇0, 

and volumetric flow rate 𝐹0. A first-order reaction takes place where a mole percentage of 

reactant 𝐴 is consumed to produce product 𝐵. The outlet stream contains both reactant 𝐴 

and product 𝐵, with reactant 𝐴 concentration 𝐶𝐴, outlet temperature 𝑇, and flow 𝐹. The 

outlet temperature T is the same as the reactor temperature. The coolant fluid flows into 

the reactor jacket with temperature 𝑇𝐽0
 and flow rate 𝐹𝐽0

, and leaves the jacket with 

temperature 𝑇𝐽. The total coolant volume in the jacket is designated by 𝑉𝐽. The detailed 

mathematical model of the non-linear reactor is out of the scope of this thesis, but readers 

can refer to [118] for modelling details.  

 

 

Figure 12. Reactor P&ID 
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5.1.2 Cyber System Description 

Figure 13 shows the architecture of the CPS testbed, which is implemented as part of 

an NPRP project at Qatar University. This part describes the role of each component 

found in the architecture. Starting from the process simulator, it numerically solves the 

model differential equations. The Basic Process Control System (BPCS) executes the 

control logic responsible for regulating the different variables of the process. The Safety 

Instrumented System (SIS) executes the safety shutdown logic when BPCS fails. 

Following the IEC 61511 standard, the BPCS and SIS have to be completely independent, 

including fields sensors, logic solvers, and field actuators. The Human Machine Interface 

(HMI) is a graphical user interface for monitoring the physical process and allowing 

manual controlling by a human operator when needed. It should be highlighted that no 

operator action is allowed on the SIS. The firewall separates the control network from the 

cooperate network. The IDS detects abnormalities and sends related evidence to the RL 

agent. It is worth noting that the design of the IDS is out of the scope of this thesis, but we 

assume the presence of an active IDS with a 100% trust. Finally, the RL agent node is 

where we placed our IRS agent during the training and testing phases to receive system 

states and send applicable selected actions. All these components connect to the control 

network via an Ethernet interface. 

Each node has its own communication path that is used to interconnect with the rest 

of the testbed nodes. The process simulator communicates with the BPCS controller 

physically using the I/O lines in the cRio module. The SIS communicates with the BPCS 

through a Modbus link. Also, the BPCS controller communicates and receives commands 

from the HMI through a Modbus link. Since Modbus TCP/IP communication protocol 

considers a Master/Slave architecture, it is worth noting that the BPCS is the master, and 

the SIS is the slave in the first communication link. However, in the second Modbus link, 

the HMI plays the master role and the BPCS takes the slave role. Also, it should be 

highlighted that no direct communication link is allowed on the SIS from the HMI. The 

RL agent node communicates with the rest of the components using the UDP/IP 
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communication protocol. 

 

Figure 13. Testbed architecture 

 

5.2 CPS Implementation 

The process is simulated using two open-source platforms, which are MATLAB/Simulink 

and LabVIEW Real-Time (RT) module. It is worth mentioning that several other simulated 

testbeds were developed at various labs for researchers to experiment with cyberattacks and 

vulnerabilities and evaluate their detection and defensive mechanisms. Examples include the 

smart power grid testbeds presented in [119], the National SCADA Testbed (NSTB) [120], 

and the Idaho National Labs (INL) SCADA Testbed [121]. In our experiments, we use the 

Simulink simulation to solve the intrusion response problem using the Genetic Algorithm 

approach (GA-IRS). However, the LabVIEW simulation is used to solve the same problem 

using the reinforcement learning-based DDQN approach (DRL-IRS).  

5.2.1 Process Simulation 

The process simulation model was implemented in both Simulink and LabVIEW. 

Both platforms are graphical-based (block diagram) environments that are widely used to 

simulate industrial systems. Initially, we simulated the non-linear controller, which was 
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designed to stabilize the system, in Simulink as shown in Figure 14. The Reactor S-

Function is where we define the mathematical model equations for the reactor and 

initialize all the required parameters. Then, we moved to LabVIEW, where we added 

hardware components and a communication network. Figure 15 shows the front panel of 

the designed process simulation in LabVIEW, while Figure 16 shows a snippet from its 

block diagram where the mathematical formulas of the model are implemented.  

 

 

Figure 14. Process simulation model in MATLAB/Simulink 

 

 

Figure 15. Process simulation for the reactor in LabVIEW (front panel) 
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Figure 16. Process simulation for the reactor in LabVIEW (block diagram snippet) 

 

5.2.2 Cyber System Implementation 

In this section, we explain some implementation details of the testbed’s components 

shown in Figure 13. The testbed uses open hardware and software components to allow 

control of the experimental environment. For example, the testbed uses industrial NI 

controllers, which allow low-level programming for all software tasks, including 

communication protocols. The process simulator, BPCS controller, and SIS controller run 

on Compact RIO (cRIO) 9064, Compact RIO (cRIO) 9064, and myRIO 1900, 

respectively.  

Initially, the measurement and actuation signals were exchanged between the process 

simulation, controllers, and HMI using a high-speed UDP/IP communication over 

Ethernet. However, we wanted to simulate a more realistic environment for an industrial 

process. Accordingly, we changed the communication links to Modbus/TCP, which is a 

more reliable and widely used communication protocol for industrial processes. The 

Modbus Application Data Unit (ADU) is shown in Figure 17. We also represented each 

sensor and actuator as one I/O line in cRio modules. The I/O lines are connected 

physically to the controllers to mimic real sensors' and actuators' connections. The sensors 
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that are considered in the testbed measure the temperature, the concentration, the flow 

rate, and the reactor level. While there are three main actuators, which are the inlet valve, 

the outlet valve, and the coolant valve, that control the flow rate for the different pipes. 

 

 

Figure 17. Modbus/TCP ADU 

 

The process simulation model is implemented using LabVIEW Real-Time (RT) 

module. The Simulation uses fixed Ordinary Differential Equations (ODE) solver with a 

simulation step size of 0.1 𝑚𝑠 real-time resolution. It also sends the process data to the 

process controller every 10 𝑚𝑠, through the I/O lines, as responses to the received 

queries. The BPCS, which runs RT Linux OS, uses the PID control algorithm since it is 

the defacto standard in the process control industry. The PID is used to control the level, 

temperature, and concentration of the reactor. Commands are sent from the HMI to the 

BPCS using the ‘write holding registers’ and ‘write holding coils’ Modbus 

communication blocks in LabVIEW based on the type of the sent data. These values are 

used by the PID to perform the control logic. The controller also exchanges the data 

received from the HMI to the physical process visa periodic communication.  

The SIS, which runs RT Linus OS, implements the safety shutdown logic when 

hazards are identified. Hazards happen mainly when the process variables exceed their 

safe operating limit. For example, in a reactor overflow hazard (level > 95%), the inlet 

stream has to be closed. While for a high-temperature hazard, both the inlet and the outlet 

stream valves should be closed. The SIS communicates two types of data to the BPCS, 

which are periodic field measurements and discrete events that take place during a 

shutdown for display purposes and further control actions. The HMI, which acts as an 
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operator interface to the physical process, is developed using LabVIEW graphical 

programming and runs on Windows 10 OS, as shown in Figure 18. The HMI periodically 

reads process data information from the BPCS. As can be seen from Figure 19, which 

shows a snippet from the front panel of the designed HMI, reading responses from the 

BPCS are done using the Modbus communication blocks, such as ‘read input registers’ 

and ‘read discrete inputs’. It should be highlighted that each type of these Modbus blocks 

uses a different Modbus function code. Another point to notice is that the HMI is not 

allowed to write directly to field devices nor to have direct communication with SIS for 

safety reasons. Concerning the firewall, it was implemented using iptables running on 

Ubuntu Linux. These tables were used to ensure that no direct traffic is allowed between 

the control and cooperate networks.  

 

 

Figure 18. HMI for the reactor process (front panel) 
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Figure 19. HMI for the reactor process (snippet block diagram) 

 

The RL Agent node in the architecture is where we placed our reinforcement 

learning intrusion response agent during the training and testing phase. This node is 

responsible for receiving states and sending back appropriate defensive actions. For 

communication purposes, we opened a UDP/IP communication channel between our 

RL agent node (which uses MATLAB) and the BPCS controller, and the SIS 

controller in LabVIEW. The selection of UDP/IP is mainly because we looked for a 

fast, simple, and efficient communication protocol. In our experiments, we assume 

that all our required states are gathered and sent from the BPCS controller to the RL 

agent through this UDP/IP communication link. Also, this communication link is 

used by the RL agent to send the selected actions to their execution locations, which 

can be on the BPCS controller, SIS controller, or the control network. Note that the 

RL agent has direct access to all the components and can overwrite any logic. All in 

all, these modifications in the communication setups are to prepare the CSTR testbed 

to be used as an interactive environment for the training of the reinforcement learning 

IRS agent (DRL-IRS), which will be presented in Chapter 7. 
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5.3 Modelling and Design of Cyberattacks 

This section presents a comprehensive and detailed attack tree for modelling different 

attack scenarios, which are Reconnaissance attack, MITM attack, Denial of Service (DoS) 

attack, and Replay attack. We also discuss the different attack scenarios considered in both 

the GA-IRS and DRL-IRS solution approaches. More details on the design and 

implementation of cyber physical attacks on Modbus/TCP protocol is available in our 

published research paper [122]. 

5.3.1 Attacks Model 

According to [68], attack trees are visual diagrams that are very popular for 

modelling the sequence of steps needed to perform different cyber-attacks. Figure 20 

shows our designed bottom-up attack tree that outlines how to perform reconnaissance, 

replay injection, command/response modification, and DoS attacks against our CPS 

testbed that uses Modbus/TCP communication protocol. 

 

 

Figure 20. Attack tree model against CPS using Modbus/TCP protocol 
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Three attributes, which are summarized in Table 9, are associated with each attack 

step: Time to execute the attack step (t), resources/tools required (r), and knowledge 

needed (k). The tuple (k, t) is added to each tree edge while the resources (r) are 

embedded in each attack step. The time to execute each attack step could be modeled as a 

random variable with a Probability Density Function (PDF) that depends on the attacker’s 

profile. In this work, we assume a Gaussian distribution for mathematical tractability, T  ~ 

N (μ, σ), with a mean time to execute the attack (μ) and standard deviation (σ), when 

possessing the required knowledge and resources.  

 

Table 9. Attack Tree Attributes 

Attributes Symbol Description 

Resources r Resources needed to perform each attack step, such as tools and 

manpower 

Time t The time taken (in min) to successfully execute each attack step 

Knowledge k The level of attacker’s knowledge needed on a scale 

(Low/Medium/High) 

 

Other distributions could be used as well. The correct approach to decide on a 

specific distribution is to learn from real attack data, which is still lacking in the research 

community. To capture the variation of the PDF with the attacker profile, several 

attacker's attributes could be defined, such as knowledge, access to tools, financial ability, 

and motivation [123]. In this work, we consider two attributes only, resources and 

knowledge, that are mapped to the attack attributes. To facilitate quantitative analysis, we 

assume r, k ∈ [0,1] are normalized values. This gives rise to the two-dimensional attack 

space depicted in Figure 21. The attack step is represented by the vector [𝑟𝑠, 𝑘𝑠] and the 

attacker profile is represented by the vector [𝑟𝑎 , 𝑘𝑎]. The distance between the attacker 

profile and attack vector changes the execution time PDF via a function mapping g(.). An 

example function that changes the Gaussian distribution parameter μ is  

μ = μ0 − 𝛼1(𝑟𝑎 − 𝑟𝑠)  −  𝛼2(𝑘𝑎 − 𝑘𝑠)    Equation 2 

where 𝜇0 is the parameter value for (𝑟𝑠, 𝑘𝑠) attribute values, and 𝛼1 and 𝛼2 are weight 

factors that reward or penalize the excess or shortage in required resources and 
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knowledge, respectively. 

 

 

Figure 21. Attack attributes vs attacker profile. The attack attributes define the required 

resources and knowledge required for a successful attack 

 

Equation 2 assumes that if the attacker has less knowledge and resources, the attack 

could still succeed but with a longer time. Other functions could model the scenario of the 

impossibility of launching an attack if the resources, such as tools or knowledge, cannot 

be met. This will have the impact of shifting the execution time PDF such that the mean 

time approaches infinity. Therefore, different attack steps will have different function 

definitions. Figure 22 shows a family of distributions for the attack execution time for 

different attacker profiles where the parameter μ is calculated according to (1) with μ0 =

10, σ = 1. 

 

 

Figure 22. Execution time distribution for different attacker profiles 
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The attack tree, shown in Figure 20, identifies the different attack paths that can be 

used to compromise and threaten our CPS. Initially, it starts with performing 

reconnaissance attacks to affect the confidentiality of the system and gather enough 

information for performing more sophisticated active attacks. The next step intercepts the 

flow of traffic between the targeted parties using ARP spoofing, which poisons the ARP 

table of the two parties by linking their IP addresses with the attacker's MAC address. 

Following that, the packets are analyzed using Wireshark and thus are accessible by the 

attacker to be modified. Modifications include changing the function code field to an 

unsupported one, injecting a whole replayed payload, or changing any specific value in 

the payload. Finally, the packets are re-transmitted to their intended destination after 

being maliciously changed to cause either a DoS attack, a replay attack, or a false 

command/response modification attack. In this  work, we assume an insider attacker 

profile with resources and knowledge (r, k) matching the requirements of each attack 

step.  

5.3.2 Attack Scenarios 

There are several vulnerabilities in the process that can be exploited by attackers to 

launch different attack scenarios. The two main hazards associated with the CSTR 

process are the reactor overflow (high level) and reactor runaway (high temperature). In 

the process industry, Hazard and Operability (HAZOP) study is the key risk assessment 

methodology used to identify hazards, their initiating events, and the consequences [124]. 

Table 10 is a partial HAZOP sheet showing the two hazards and their consequences.  

 

Table 10. Partial HAZOP Sheet for the Reactor Process 

Hazard Initiating Event  

(Cause)  

Consequences Safeguards 

(IPL) 

High Level 

(Reactor 

overflow) 

Controller failure 

OR Outlet control 

valve fully closed 

OR Inlet valve stuck 

fully open 

 

2 or more fatalities (safety), 

Product loss (financial), 

Environmental contamination 

(environment) 

 

Reactor 

dike 

(Mitigation) 
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Hazard Initiating Event  

(Cause)  

Consequences Safeguards 

(IPL) 

High Temperature 

(Reactor 

Meltdown) 

Coolant inlet control 

valve fully 

(partially) closed OR 

Inlet valve stuck 

fully open 

10 or more fatalities (safety), 

Product loss (financial), 

Environmental contamination 

(environment) 

None 

 

In this thesis, both GA-IRS and DRL-IRS solutions, consider that our testbed 

environment is under the Command/Response modification attack against the 

setpoint, which is an example of the false data injection MITM attacks. This attack 

aims to tamper different defined setpoints to either increase the reactor’s temperature 

or reactor’s level beyond design limits and hence, cause a reactor meltdown attack or 

a reactor overflow attack, respectively. An important point to highlight is that the 

detection procedures of the attacks is out of the scope of this thesis, but there is an 

assumption that there is an active IDS that detects abnormalities with a 100% trust 

since dealing with IDS uncertainties is also beyond the scope of this thesis. 

5.3.2.1 Attack Scenarios for the GA-IRS Approach 

In the GA-IRS approach, we consider different scenarios for the false data 

injection attack. Each scenario manipulates the temperature and/or the level of the 

reactor by setting a fault setpoint to cause different hazardous consequences. It is 

worth mentioning that the considered attack scenarios are simulated, and that the 

attacker profile is assumed to be not persistent, which means that it is a one-shot 

attack since the attacker gets out of the network once succeeding in performing the 

attack that drives the process towards hazardous situations.  

At first, we divided the range of the reactor’s temperature and level into 4 

regions, which are low, normal, high, and hazard as shown in Table 11. Under normal 

conditions, when the level is less than 30%, the water pump turns on and the inlet 

flow becomes 2 𝑚3/𝑠𝑒𝑐 to prevent an underflow. When the water level is greater 

than 70%, the water pump turns off and the inlet water flow becomes 0 to prevent a 
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possible overflow. For the temperature, the coolant valve opens to cool down the 

reactor’s temperature when it is greater than 460 𝑘. Accordingly, the level dangerous 

point is < 𝐻𝐿 = 95%, 𝐿𝐿 = 10% >, The level setpoint is < 𝐻𝐿 = 70%, 𝐿𝐿 =

30% >, the temperature dangerous point is < 𝐻𝑇 = 480 𝑘, 𝐿𝑇 = 360 𝑘 >, and the 

temperature setpoint is < 𝐻𝑇 = 460 𝑘, 𝐿𝑇 = 410 𝑘 >. It is important to know that 

the ideal reference temperature is 420 𝑘 and level is 1 𝑚. 

 

Table 11. Categorical Classifications of the Reactor's Parameters’ 

Parameter Low Normal High Hazard 

Temperature 

(T) 
360 < 𝑇 < 410 410 ≤ 𝑇 ≤ 460 460 < 𝑇 < 480    𝑇 ≥ 480 

𝑇 ≤ 360 

 

Level (L)  0.2 < 𝐿 < 0.6 0.6 ≤ 𝐿 ≤ 1.4 1.4 < 𝐿 < 1.9 𝐿 ≥ 1.9 

𝐿 ≤ 0.2 

 

After knowing the normal behavior of our CSTR process with standard setpoints, 

we designed different attack scenarios for tampering the setpoint configuration data 

of the temperature and the level as shown in Table 12. The following scenarios 

represent how tampering the setpoint can lead to dangerous abnormalities if not 

detected and regulated by selecting the appropriate countermeasures.  

 

Table 12. Attack Scenarios Description for the GA-IRS solution 

Scenario Attack Type Attack Description 

1  Setting a fault setpoint 

for 𝐿𝐿  𝑎𝑛𝑑 𝐿𝑇 

𝐿𝐿  𝑎𝑛𝑑 𝐿𝑇 are tampered from 30% and 410 to 

5% and 370, respectively. So, when the level is 

less than 30% but greater than 5%, the water 

pump will not turn on because the setpoint was 

tampered to 5%. Thus, the level will continue 

to drop. The same goes to the temperature. 

 

2 Setting a fault setpoint 

for 𝐻𝐿 

𝐻𝐿 is tampered from 70% to 100%. So, when 

the level is more than 70% and less than 100%, 

the water pump will not turn off because of the 

fault setpoint. Thus, the level will continue to 

increase until it brims over the tank causing a 

reactor overflow attack. 

 

3 Setting a fault setpoint 𝐻𝑇 is tampered from 460 to 500. So, when the 



  

   72 

 

Scenario Attack Type Attack Description 

for 𝐻𝑇 temperature is more than 460 and less than 500, 

the coolant valve will still not open to cool 

down the process. Hence, the temperature will 

keep on increasing. 

 

5.3.2.2 Attack Scenarios for the DRL-IRS Approach 

In our experiments to train the DRL-IRS agent, we considered the fault setpoint 

data injection attack on the temperature. Figure 20 shows the detailed implementation 

steps of this attack, which aims to increase the reactor’s temperature beyond design 

limits and hence, cause a reactor meltdown attack. In this attack, the attacker 

compromises the communication link between the HMI and the BPCS controller to 

send false commands that tamper the temperature setpoint from the standard 420 𝑘 to 

900 𝑘. Accordingly, the controller adjusts to the new malicious setpoint and does not 

open the coolant valve when the temperature increases beyond 460 𝑘 as being 

designed, and the temperature continues to increase. At the same time, A tampered 

response is sent back from the BPCS to the HMI showing a normal 420 𝑘 

temperature setpoint to deceive the operator, while the actual malicious temperature 

setpoint received and used by the controller is 900. Figure 23 shows how the attacker 

affects the data integrity of the response/command packets by modifying their 

payloads from the network level to perform the false data injection attack.  

 

 

Figure 23. False data injection attack 
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From this fault setpoint data injection attack, we designed three different 

scenarios that the DRL-IRS agent has to deal with and find the optimal sequence of 

actions for each one of them in the different training experiments discussed in Section 

8.2 Agent Training . Keeping in mind that the ultimate aim of the three scenarios is to 

cause a reactor meltdown attack. Table 13 describes the situation of the environment 

when each scenario is detected. Also, unlike the GA-IRS scenarios where we 

considered a non-persistent attacker profile, in here, we consider an active determined 

attacker profile that has all the needed resources and is persistent to reach the goal as 

long as no mitigations are performed to stop the attacker. Another assumption is that 

the attacker is an insider, so the steps of penetrating the CPS network is neglected. 

Finally, we assume that the DRL-IRS agent is activated after receiving an alert from 

the IDS to respond and select the optimal sequence of actions that can reduce the risk 

of the detected undergoing attack scenario.  

 

Table 13. Attack Scenarios Description for the DRL-IRS Solution 

Scenario Attack Scenario Description 

1 The false data injection on the temperature setpoint is performed 

successfully, the safety controller (SIS) is not compromised by the 

attacker, and the attacker source or IP address is known 

 

2 The false data injection on the temperature setpoint is performed 

successfully, the safety controller (SIS) is not compromised by the 

attacker, but the attacker source/address is not known  

 

3 The false data injection on the temperature setpoint is performed 

successfully, the safety controller (SIS) is compromised by the attacker, 

and the attacker source/address is also not known 
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CHAPTER 6: IRS DESIGN USING GENETIC ALGORITHM (GA-IRS) 

In this chapter, we use a conventional optimization approach to solve the intrusion 

response decision-making problem. We formulate the decision-making problem into a 

weighted single-objective optimization function that aims to regulate the CSTR process. The 

Genetic Algorithm (GA) is used to solve the optimization problem to find the optimal 

response for the different considered case studies. Finally, the impact of the applied approach 

is evaluated based on its computational complexity and response effectiveness. 

6.1 Single-objective Optimization Formulation 

The selection of the optimal response action from the action space is formulated as an 

unconstraint weighted single-objective optimization problem. The goal is to find the optimal 

action vector that maximizes the final reward objective function. The state space of this 

chemical reactor control system is defined as 𝑆 =  [𝑇, 𝐿], where 𝑇 is the reactor’s temperature 

in kelvin (𝑘) and 𝐿 is the reactor’s level in meter (𝑚). The considered decision-making 

actions, which are used to defend against the cyberattacks, are compacted in the vector 𝐴 =

 [𝐼𝑉 𝐶𝑉 𝑆𝑃]. 𝐼𝑉 and 𝐶𝑉 are Boolean values to either open (𝐼𝑉 =  𝐶𝑉 = 1) or close (𝐼𝑉 =

 𝐶𝑉 = 0) the inlet valve and the coolant valve, respectively. 𝑆𝑃 is the temperature setpoint 

value, which ranges discretely between 300 and 500, and is used to regulate the reactor’s 

temperature. The objective function, which we aim to maximize, is mainly composed of the 

benefit of the selected action and its cost as follows:  

𝑚𝑎𝑥𝑥 𝜖 𝑋   𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑥)– 𝐶𝑜𝑠𝑡(𝑥)   Equation 3 

Where 𝑥 is the action vector selected, which belongs to the action space 𝑋. The  𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑥) 

is a positive value given for action 𝑥 for keeping the process away from hazards. The 𝐶𝑜𝑠𝑡(𝑥) 

is a value that evaluates how deviated is the process from the defined setpoints after 

performing the selected action vector 𝑥. The 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑥) is calculated as follows: 

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑥)  =  𝑡 ∗ 𝑃    Equation 4 

Where 𝑡 is the sampling time in sec, and 𝑃 is the profit per sec. This benefit is given to the 

selected action as long as the action did not drive the process to hazards but kept it working in 
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a safe operational window. The safe operational window for the temperature is being greater 

than 360 𝑘 and smaller than 480 𝑘. While for the level, the operational window is having the 

level greater than 0.2 𝑚 and smaller than 1.9 𝑚. Other than these operational windows, the 

process is said to be in a hazardous situation, and hence the benefit is zero. 

  The calculation of 𝐶𝑜𝑠𝑡(𝑥) needs more detailed discussion. The cost is represented as 

the Time to Recover (𝑇𝑇𝑅) metric. The 𝑇𝑇𝑅 is the time needed (in sec) by the CSTR system 

to put the compromised process near the defined setpoints for the temperature and level. As 

the 𝑇𝑇𝑅 increases as a result of deploying action 𝑥, the action’s cost increases as well. It is 

worth mentioning that the 𝐶𝑜𝑠𝑡(𝑥) for actions that drive the system to hazardous conditions 

when deployed at a specific state is set to be 3000, which is a large penalty (hazard cost (𝐶)) 

to that action and hence, next time a better action will be explored in that state. The 𝑇𝑇𝑅 

metric, which is multiplied by the profit per sec value (𝑃) to change it from 𝑠𝑒𝑐 to $ unit, is 

calculated as shown below:  

            𝐶𝑜𝑠𝑡(𝑥) =  𝑇𝑇𝑅                                         Equation 5                                       

𝑇𝑇𝑅 = 𝑃 ∗  (𝑤𝑇 ∗ 𝑇𝑇𝑅𝑇 + 𝑤𝐿 ∗ 𝑇𝑇𝑅𝐿)    Equation 6 

Where 𝑇𝑇𝑅𝑇 is the time needed to recover the temperature of the reactor and 𝑇𝑇𝑅𝐿   is the 

time needed to recover the level of the reactor. 𝑤𝑇 and 𝑤𝐿 are weight values to indicate the 

importance of each term in the equation in which 𝑤𝑇 + 𝑤𝐿  =  1. For calculating 𝑇𝑇𝑅𝑇 and 

𝑇𝑇𝑅𝐿  , the following equations are used:  

𝑇𝑇𝑅𝑇  =  𝑒𝜀∗𝑑𝑒𝑣𝑇(𝑥) − 1               Equation 7 

𝑇𝑇𝑅𝐿 = 𝛼 ∗ 𝑑𝑒𝑣𝐿(𝑥)                 Equation 8 

Where 𝑑𝑒𝑣𝑇(𝑥) and 𝑑𝑒𝑣𝐿(𝑥) represent the deviations of the reactor’s temperature and level 

from their defined setpoints (distance metric) after deploying action 𝑥, respectively. 𝜀 and 𝛼 

are hyperparameter values that are tuned to achieve the best performance. Equation 7 shows 

an exponential relationship between the deviation of the temperature and its 𝑇𝑇𝑅𝑇 cost. 

While Equation 8 shows a linear relationship between the deviation of the reactor’s level and 

its 𝑇𝑇𝑅𝐿 cost. These assumptions are made for simplification purposes and to show the 
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significant danger of the reactor meltdown attack since it causes more disastrous 

consequences than the reactor overflow attack as shown in Table 10. To calculate the error 

deviations, we use the following equations: 

𝑑𝑒𝑣𝑇(𝑥) =  |
𝑟𝑒𝑓𝑇−𝑁𝑒𝑤𝑇

𝑟𝑒𝑓𝑇 
|                            Equation 9 

𝑑𝑒𝑣𝐿(𝑥)  =  |
𝑟𝑒𝑓𝐿−𝑁𝑒𝑤𝐿

𝑟𝑒𝑓𝐿
|              Equation 10 

Where 𝑟𝑒𝑓𝑇 and 𝑟𝑒𝑓𝐿 are the defined setpoint values for the temperature and level of the 

CSTR model, respectively. 𝑁𝑒𝑤𝑇 and 𝑁𝑒𝑤𝐿 are the new temperature and new level states, 

respectively, that the process transmitted to after performing action 𝑥. So, the TTR is: 

𝑇𝑇𝑅 =  𝑃 ∗ ((𝑤𝑇 ∗ 𝑒
𝜀∗|

𝑟𝑒𝑓𝑇−𝑁𝑒𝑤𝑇
𝑟𝑒𝑓𝑇

|
− 1) +  (𝑤𝐿 ∗ 𝛼 ∗ |

𝑟𝑒𝑓𝐿−𝑁𝑒𝑤𝐿

𝑟𝑒𝑓𝐿
|))      Equation 11 

Finally, combining all the equations together gives the objective function (Reward 

function) that our optimization algorithm aims to maximize. This reward function, which is 

multiplied by a scaling factor 𝑀, assesses the quality of the produced product by using the 

𝑇𝑇𝑅 metric as follows: 

𝑅𝐺𝐴 = 𝑀 ∗  ( 𝑡 ∗ 𝑃 − 𝑃 ∗ ((𝑤𝑇 ∗ 𝑒
𝜀∗|

𝑟𝑒𝑓𝑇−𝑁𝑒𝑤𝑇
𝑟𝑒𝑓𝑇

|
− 1) +  (𝑤𝐿 ∗ 𝛼 ∗ |

𝑟𝑒𝑓𝐿−𝑁𝑒𝑤𝐿

𝑟𝑒𝑓𝐿
|)))Equation 12 

6.2 Genetic Algorithm Framework 

According to [125], Genetic Algorithm (GA) is a very popular heuristic evolutionary 

technique for solving constrained or unconstrained optimization problems. GA was inspired 

by Darwin’s theory of natural evolution and survival of the fittest. The choice of using GA to 

solve our intrusion response decision-making problem is mainly because it is one of the most 

well-established and widely used algorithms in the literature. Figure 24 is a flowchart 

showing the general scheme of how GA works.  

Initially, GA starts with randomly initializing a population of solutions in which each 

solution is called a Chromosome and is represented as a set of genes. The genes are the 

decision parameters that describe each solution depending on the type of the problem. The 

fitness value, which is dependent on the problem we are trying to solve, is then computed in 

the evaluation step to show the goodness of each solution in the population. For the fitness 
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values, the higher the number, the better the solution.  

Since GA uses the concept of a generational loop to improve their solutions, we need 

to figure out when to stop looping so that the process does not continue forever. This is done 

by checking if the termination conditions are satisfied or not. Some termination conditions 

include having a goal achieved, reaching a maximum number of generations, or noticing a 

performance stagnation of the fitness scores from generation to generation. Following that, 

the fittest individuals that we expect to have the most valuable genetic information are 

selected from the population to become parents and produce the next offspring generation. 

Several selection methods can be used, such as Roulette-wheel selection, binary tournament 

selection, and rank selection. More comparative details on each selection approach is 

available in [126]. Variation operators including crossover and mutation methods, which are 

used to generate a new generation from the previously chosen one, are then used to combine 

the two selected parents to create new individuals for the offspring population. In the 

crossover, genes from each parent are separated and exchanged to produce an offspring 

having several genes from each parent. There are several possible strategies for a crossover 

which are randomly selecting a single point for the crossover, multi-point crossover, or 

uniform crossover.  In mutation, an arbitrary gene is randomly changed from some randomly 

chosen offspring individuals to increase the variety of the offspring population by introducing 

new genetic information into the population. Finally, the newly evolved population is then 

used as the next population and loops back for evaluation. This new population contains both 

the parent’s population and the offspring population and it has the size of the originally 

initialized population. The algorithm repeatedly performs modifications on the population of 

solutions until the termination conditions are satisfied and the final population, which 

explored the solution space and evolved toward the optimal solutions across several 

generations, is returned.  
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Figure 24. Flowchart of the Genetic algorithm (GA) 

 

6.3 Experimental Settings 

The CSTR process used in evaluating the proposed GA-IRS approach is executed in 

MATLAB R2021a/Simulink on a computer with Intel® Core™ i7-8565U CPU @ 1.8GHz 

and 16GB RAM memory. The optimization approach, which aims to maximize the reward 

function shown in Equation 12, is implemented using the inbuilt function for single-objective 

optimization (𝑔𝑎) from the optimization toolbox in MATLAB. However, since the 𝑔𝑎 

function is only used for minimization problems, we set the problem to minimize the negative 

value of the reward function in order to achieve our desired objective. Table 14 displays the 

different settings of the parameters that are used in the objective function and the GA options. 

The choice of each parameter value is tuned to achieve the desired objective of protecting the 

CSTR system from going into hazardous states resulting from attackers exploiting the 

system’s vulnerabilities. For example, since we only have 3 decision actions, which are 

controlling the opening and closing of each of the two considered valves and reconfiguring 

the setpoint, a suitable population size of 100 is set to avoid local minima solution. Also, it is 

worth mentioning that using a higher weight in the reward function for the temperature term 

𝑤𝑇  =  0.8 in comparison to the weight for the level term 𝑤𝐿 = 0.2 indicates that our 
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objective function prioritizes temperature regulation over level since it is more costly to have 

a meltdown reactor attack.  

 

Table 14. Parameter Settings for the Conventional GA Approach 

Parameter Value 

𝑀 , 𝑡 , 𝑃 3 , 2 (𝑠𝑒𝑐), 5 ($) 

𝑤𝑇, 𝑤𝐿 0.8, 0.2 

𝜀 , α 10, 5 

𝑟𝑒𝑓𝑇, 𝑟𝑒𝑓𝐿 420 (𝑘) , 1 (𝑚) 

HazardCost (C) −3000 

Population size, Max generations, Max Stall 

Generations 
100, 100, 100 

Function Tolerance 0.001 

Actions lower bounds [𝐼𝑉 𝐶𝑉 𝑆𝑃] 𝐿𝑏 =  [0 0 300] (𝑆𝑃 takes discrete values) 

Actions upper bounds [𝐼𝑉 𝐶𝑉 𝑆𝑃] 𝑈𝑏 =  [1 1 500] (𝑆𝑃 takes discrete values) 

Termination conditions Objective function value is less than the 

defined function tolerance or reaching the 

maximum defined number of generations 

 

6.4 Case Studies 

Different case studies are used to validate the performance of the proposed GA in 

solving the intrusion response decision-making problem under different attack scenarios. 

The considered attack scenarios are described earlier in Table 12. The objective of the 

optimization algorithm is to find the optimal action vector 𝐴 =  [𝐼𝑉 𝐶𝑉 𝑆𝑃] that can 

defend against the cyberattack, maximize the reward function and bring the system closer 

to the setpoints and away from hazards. Table 15 describes the performed cases studies 

and the attack scenarios they dealt with. These case studies investigate how the GA 

selects the optimal action configurations to recover the process to its normal operations.  

 

Table 15. Case Studies Description for the GA-IRS Appraoch 

Case Study Attack Scenario Description 

1 and 2 1 The current system state is S = [380,0.5]. The level is less 

than 30% but 𝐿𝐿 is tampered in this attack scenario so the 

water pump doesn’t turn on, and the level continues to 

drop. The same goes to the temperature. 

 

3 2 The current system state is S = [436.8,1.88], the level is 

more than 70% but 𝐻𝐿 is tampered in this attack scenario 
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Case Study Attack Scenario Description 

so the water pump does not turn off, and the level 

continues to increase until it brims over the tank  

 

4 3 The current system state is S = [477,1.35], the temperature 

is more than 460 but 𝐻𝑇 is tampered in this attack scenario 

so the coolant valve does not open, and the temperature 

keeps on increasing  

 

6.4.1 Case Study 1 

This is the base case study; it uses a random policy without optimization to show the 

random behavior of the CSTR model and compare it with the other optimized case studies 

to give some initial thoughts about the performance. For this case, the CSTR has a low 

level of 0.5 𝑚 and a low temperature of 380 𝑘. Figure 25 shows the results of performing 

random actions for 100 runs. We can see that the system continuously selects random 

actions that lead to falling into hazards, showing a hazard cost (𝐶) penalty of 3000. This 

behavior is not desired since we aim to protect the CSTR from falling into hazards and 

thus, optimize the performance. 

 

 

Figure 25. Case study 1: Random policy approach 
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6.4.2 Case Study 2 

In the second case study, the CSTR environment was also set to simulate having a 

low level of 0.5 𝑚 and a low temperature of 380 𝑘, as in the first study. Figure 261 shows 

the results of the GA optimization algorithm. The optimal action that was selected as the 

selected solution is 𝐴 =  [1 1 422], which means to open the inlet valve, open the outlet 

valve, and adjust the temperature setpoint value to 422. As a result of deploying the 

selected action, the reactor’s temperature settled at 420 k and the level at 0.6 m, which 

shows a normal behavior of both the temperature and level. In comparison to the base 

case study, we can see the effectiveness of the optimized solution in regulating the CSTR 

to its normal operations and keeping it away from hazards.  

 

 

Figure 26. Case study 2: GA optimization for S = [380,0.5] scenario 

 

6.4.3 Case Study 3 

The CSTR environment simulates having a high level of 1.88 𝑚, as a result of the 

fault setpoint attack previously described, and a normal temperature of 436.8 𝑘. Figure 27 

 

1 This is the only case study that has a maximum generation of 200 
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shows the results of the optimization algorithm, which selected the best action as 𝐴 =

 [0 1 435]. This action closes the inlet valve, which is a reasonable action since this 

scenario already suffers from a high level, so we aim to reduce the level by initially 

stopping the inlet water flow. Also, the action opens the coolant valve to regulate the 

temperature with a setting point of 435. After deploying the chosen action, the reactor’s 

new temperature settled at 420 𝑘 and the level at 1 𝑚, which are the exact desired defined 

setpoints for having optimal temperature and level values. This case study still shows a 

consistent superiority to the baseline case. 

 

 

Figure 27. Case study 3: GA optimization for S = [436.8,1.88] scenario 

 

6.4.4 Case Study 4 

This case study simulated a CSTR environment with a high temperature of 477 𝑘 and 

a normal level of 1.35 𝑚. Figure 28 shows the results of the optimization algorithm, 

which selected the best action that can be deployed as 𝐴 =  [1 1 324]. This action opens 

both the inlet and the coolant valves with a regulating setpoint value of 324. After 

deploying this action, the reactor’s temperature settled at 434 𝑘 and the level at 0.9 𝑚, 

which shows a normal behavior of both the temperature and level as desired. It is 
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noticeable that tuning the setpoint value plays a major role in regulating the CSTR and 

reducing the potential losses as seen from the presented case studies. Consequently, an 

attack targeting the tampering of these setpoints can cause catastrophic damages. Also, 

these case studies proved that their performance is effective in defending against attacks 

and obviously regulating the CSTR better than the random baseline case.  

 

 

Figure 28. Case study 4: GA optimization for S=[477, 1.35] scenario 

 

6.5 Evaluation 

 This section examines the impact of the proposed conventional GA decision-making 

algorithm in terms of computational time complexity and response action effectiveness in 

reducing the deviations of the reactor’s temperature and level in the CSTR process.  

Since the state and action spaces were small, it was not hard for the optimization 

algorithm to find the optimal decision for the different case studies in a reasonable period of 

time. Accordingly, the computational time complexity of this approach is not high since the 

case studies needed approximately 5 to 7 hours for the optimization to finish. This is 

obviously affected by the size of the state and action spaces. Thus, this metric is not 

comparable with other state-of-the-art approaches since each has its own simulated process 
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with its different considered state and actions spaces.  

Concerning the GA-IRS approach effectiveness in reducing the temperature and level 

deviations, which is the main evaluation metric to be considered, Table 16 evaluates the 

temperature, level, and the percentage deviation for each case study before and after applying 

the selected response action. The deviation percentages are calculated using Equation 13 for 

the temperature, and Equation 14 for the level. From this table, we can state that the proposed 

approach successfully generated appropriate action policies that were able to reduce the 

deviations in all the different case studies and thus, maximize the reward function. In other 

words, the deviations were reduced by 9.5% and 10% for the second case study, 4% and 

88% for the third case study, and 10.27% and 25% for the third case study, for the reactor’s 

temperature and level, respectively. Also, we can also notice that the second, third, and fourth 

case studies outperform the random policy approach. 

   𝑇𝑒𝑚𝑝_𝑑𝑒𝑣 =  |
𝑡𝑒𝑚𝑝 −𝑟𝑒𝑓𝑇 

𝑟𝑒𝑓𝑇
| ∗ 100   Equation 13 

𝐿𝑒𝑣𝑒𝑙_𝑑𝑒𝑣 =  |
𝑙𝑒𝑣𝑒𝑙 −𝑟𝑒𝑓𝐿 

𝑟𝑒𝑓𝐿
| ∗ 100             Equation 14 

 

Table 16. Evaluating the Impact of GA Optimization in Reducing the Deviations 

Case Study 2 3 4 

Before After Before After Before After 

Temp (T) 380 420 436.8 420 477 434 

T deviation 9.5% 0% 4% 0% 13.6% 3.33% 

Level (L) 0.5 0.6 1.88 1 1.35 0.9 

L deviation  50% 40% 88% 0% 35% 10% 

 

Despite the successful performance of the GA solution approach in protecting the 

CSTR model from falling into hazardous states and minimizing the system’s deviations, they 

are not suitable for real-world online applications. This is because this approach is a one-shot 

optimization that does not provide an adaptive solution. Usually, when real industrial systems 

are under attack, a sequence of non-identical actions are needed to bring the system to a stable 

state, not just a single optimal action execution. Also, this approach is not generalizable and 
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cannot handle changes in the system dynamics. Accordingly, there is a need for adaptive, 

generalized, and intelligent solution for solving the intrusion response decision-making 

problem, such as the model-free reinforcement learning-based approach discussed in the 

following chapter.  
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CHAPTER 7: IRS DESIGN USING DEEP REINFORCEMENT LEARNING (DRL-IRS) 

In this chapter, the design methodology of the intrusion response agent using a 

model-free deep reinforcement learning approach is presented. We thoroughly discuss the 

proposed DRL-IRS architecture along with the details of its state space, action space, reward 

function, and utilized DDQN algorithm. 

7.1 DRL-IRS Agent Architecture 

Figure 29 depicts the high-level architecture of the proposed design of the intrusion 

response agent for a CPS using Double Deep Q Network (DDQN) algorithm. The architecture 

starts by getting the states information from the simulated CPS environment at every time 

step. These states are mapped to the input layer of the Deep Neural Network (DNN). The 

hidden layers of the Neural Network (NN), with the defined activation function, perform 

transformations of the inputs into something that the output layer can use. The output layer 

has N outputs, where N is the number of the available actions, such that each output 

corresponds to the Q-value of each potential action at the given state. The Q-value indicates 

how good is it to perform action 𝑎 in state 𝑠. During testing, the agent acts by picking the 

action with the highest Q-value to be deployed. However, during training, the agent is 

encouraged to act randomly sometimes to explore the environment carefully and find the best 

possible sequence of actions to the goal. Accordingly, the action selection and the 

exploitation-exploration balance is handled by the decaying epsilon greedy policy, which will 

be discussed later. After deciding on the action, the DDQN agent directly interacts with the 

environment online to deploy the selected action. As a result, the environment moves to a new 

next state, and the agent gets a scalar reward/penalty value as feedback on performance to 

update the parameters of the deep network. From the reward value, the agent can assess how 

good or bad the deployed action was, so it can learn to take better actions in the future. 

Accordingly, the agent can learn depending on its own experience with the unknown 

environment.  

The main objective of the proposed IRS agent is to learn an optimal policy, which is 

the strategy that the agent follows to take an action given the state, that maximizes the long-
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term cumulative reward, and balances between exploring the environment and exploiting the 

agent’s current knowledge. Now that we have seen the general broad picture of the proposed 

architecture, let’s get into the details of each part.  

 

 

Figure 29: DRL-IRS Agent on a CPS testbed architecture 

 

7.2 State Space 

The states in reinforcement learning are the input information given to the agent to 

help it take decisions in different situations. A state-space can be either of discrete values or 

continuous values depending on the considered problem. In cyber-physical systems, the states 

are usually either process-based, cyber-based, or both. In our experiments, we integrated 

process-based and IDS-based states to enrich the agent visibility to the current state of the 

protected system. Also, integrating different categories of states exposes the agent to different 

training scenarios and thus, allows it to generalize and make accurate decisions in different 

situations.  

The complete state space that we consider for our problem is defined to be 𝑆 =

[𝑇 𝐿 𝑂𝐹 𝐴𝑆]. 𝑇 and 𝐿 are process-based states, which are the reactor temperature and the 

reactor level, respectively. 𝑂𝐹 is the outlet flow, which is a process-based state indicating the 

quantity of the produced output product in the CSTR process. Finally, 𝐴𝑆 is a state expected 
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from the IDS showing which attack scenario is being detected. To elaborate, we consider 

three different attack scenarios, which are described previously in Table 13, for the false data 

injection attack in which the IDS is assumed to be able to detect them successfully. Each 

attack scenario will have a different optimal sequence of actions that the agent has to learn 

from interacting with the testbed to reach convergence. Thus, at time step 𝑡, the state vector is 

𝑠𝑡 = [𝑡𝑡 𝑙𝑡 𝑜𝑓𝑡  𝑎𝑠𝑡], which encompasses only discrete variables for all the state parameters. 

7.3 Action Space 

The actions in reinforcement learning are the decisions that the agent takes as an 

output based on the given states. An action-space can also be of discrete or continuous values. 

In CPSs, the actions can be implemented only on the cyber-level, the process level, or both at 

the same time. In the literature, the combination of both cyber-level and process-level actions 

in one action vector is not addressed thoroughly. For this reason, we targeted to include this 

as one of the action combinations in our actions list.  

The complete action space that we consider for our problem to mitigate the false data 

injection attack has several atomic actions, such as dropping attack packets, safety shutdown 

using the three safety valves, setpoint reconfiguration, and manual shutdown. Accordingly, 

our action vector is defined to be 𝐴 = [𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃 𝑀𝑆], where 𝐷𝑃 is a cyber-level 

action to drop attack packets from the network, if attack source is known. 𝑆𝐼, 𝑆𝐶, and 𝑆𝑂 are 

the safety shutdown actions for the three valves in our process, which are the inlet valve, the 

coolant valve, and the outlet valve, respectively. The 𝑆𝑃 corresponds to the setpoint 

regulating action, and 𝑀𝑆 decides whether the manual shutdown action is activated or not. 

Thus, at time step t, the action vector is 𝑎𝑡  =  [𝑑𝑝𝑡  𝑠𝑖𝑡 𝑠𝑐𝑡  𝑠𝑜𝑡 𝑠𝑝𝑡  𝑚𝑠𝑡], which encompasses 

only discrete variables since all the actions can either be 0 or 1, except 𝑠𝑝𝑡 which is set to be 

420. For the three safety valves, 0 means closing the valves and 1 means opening them. Also, 

for 𝑑𝑝𝑡 and 𝑚𝑠𝑡, 0 means not to drop attack packets and not to perform manual shutdown 

while 1 means to drop the packets and perform manual shutdown, respectively. It is worth 

noting that the choice of the actions contributing to the action space are process dependent. 
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Also, the atomic actions that the action vector 𝐴 is made up from are used to build 6 different 

combinations of discrete actions. Each combination can include either one or more than one 

action at a time and are designed to suit the different training experiments conducted. This 

will be thoroughly discussed in detail training section. 

7.4 Reward Function 

The reward is a scalar value that assesses the performance of the agent during the 

training period. The ultimate aim of the agent is to maximize the long-term reward received 

from the environment. The reward function encapsulates and encodes the goals that the agent 

aims to achieve. There are three approaches to formulate the reward function, which are 

continuous rewards, discrete rewards, and mixed rewards [127]. The continuous reward is 

usually improving the convergence allowing for simpler network configurations, the discrete 

reward usually guides the agent to avoid specific state regions but with slower convergence, 

and the mixed reward combines the advantages of each type. In here, we discuss the three 

goals that derive the formulation of our reward function. 

Initially, the first goal of the agent is to assess the quality of the produced product from the 

CSTR process. The product quality is assessed by two indirect measurements, which are the 

temperature and the level of the reactor. To elaborate, as long as the product is produced 

while the reactor maintains its temperature and level around the defined setpoints then, we 

can say that the produced product has good quality. Accordingly, the product quality degrades 

as the temperature and level deviate away from their defined setpoints. It is worth mentioning 

that using the concentration variable of the produced product would have been a more 

appropriate measure to assess its quality. However, we did not use it because it was unstable 

during training hence, using it would have not given reliable feedback. The second goal is to 

assess the quantity of the produced product. This is assessed by considering the outlet flow 

value, which represents the amount of the produced product, such that the quantity is directly 

proportional to the reward. The third and final goal is to prevent the CSTR process from 

falling into hazardous states. Thus, the temperature and the level should not exceed the upper 

and lower boundaries (hazard states) defined in Table 11. Otherwise, the agent receives a very 

high negative penalty of −3000 (𝐶). Accordingly, the reward function that fulfills these goals 

is formulated as shown below ( 

Table 17 shows the symbols description) 
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𝑟1 = (𝑁 ∗ 𝑂𝐹 ∗ (𝑃𝑃 ∗ e−𝑇𝑇𝑅)) + 𝑃MS                             Equation 15 

𝑃𝑃 = 𝑍 ∗  𝑃 ∗  𝑡                                               Equation 16 

𝑃𝑀𝑆 = {
−TTR –  Acost , if MS == 1

0,   otherwise
                              Equation 17 

𝑟2  =  −C (𝑇 ≤ 360  | 𝑇 ≥ 480 | 𝐿 ≤ 0.2 | 𝐿 ≥ 1.9)                Equation 18 

𝑅𝐷𝑅𝐿 = 𝑟1 + 𝑟2                                                                  Equation 19 

 

Table 17. Reward Symbols Description for the DRL-IRS approach 

Reward Symbol Description 

𝑁, 𝑍 Scaling factors 

𝑂𝐹 Outlet flow state 

𝑃𝑃 Maximum production profit the process can get at each time step 

𝑃 Profit per sec 

𝑡 Sampling time 

𝑇𝑇𝑅 Time to recover (calculated using Equation 11) 

𝑃MS Penalty the agent gets only when performing the manual 

shutdown action (𝑀𝑆), 

Acost Availability cost penalty 

𝐶 Hazard cost 

𝑇 Reactor’s temperature 

𝐿 Reactor’s level 

 

Our reward function is of a mixed type that combines both continuous and discrete 

reward components. 𝑟1, which is the continuous signal, is used to provide a higher reward 

when the quality and the quantity of the produced product are near target ideal values. The 

quality is shown by the 𝑇𝑇𝑅 distance metric, in which better quality shows a lower 𝑇𝑇𝑅 value 

and vice versa. The quantity, on the other hand, is captured by the 𝑂𝐹 parameter that gives a 

higher reward as it increases. Also, 𝑟1 encounters the manual shutdown action penalty, which 

is a terminal state. 𝑟2, which is the discrete signal, provides a large penalty to drive the system 

away from hazardous conditions. In case of falling into a hazardous state, which is also a 

terminal state in our experiments, 𝑟2 would be much higher than 𝑟1. This is because even if 

there is a produced quantity of product captured by 𝑟1, this product is a waste and would not 

have been used by the process due to its possible toxicity. All in all, the total reward received 

at each time step is given by Equation 19. 
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7.5 Double Deep Q Network (DDQN) Algorithm 

In practical large-scale real-life systems, such as our CSTR testbed, it is unfeasible to 

precisely model the complex dynamics of the process by knowing all the transition 

probabilities. Accordingly, this calls for efficient and intelligent approaches that do not 

require the transition probabilities to learn the optimal solution for optimization. Fortunately, 

RL supports model-free approaches where the agent can learn the optimal policy without 

requiring an accurate model of the environment. Precisely, Q-Learning algorithm is one of the 

most commonly used model-free algorithms [128]. However, the tabular approach of the Q-

learning algorithm, which suffers from the curse of dimensionality with high dimensional 

state/action spaces, limits its applicability to a narrow range of applications. Subsequently, 

several variants of the Q-learning algorithm that utilizes the advantages of NNs have been 

developed to overcome these limitations, such as the DDQN algorithm.  

The DDQN algorithm is an off-policy, model free, online, value-based RL algorithm. 

It utilizes deep NNs, which act as a function estimator, to improve generalization, allow for 

large state/action spaces, and reduce the complexity of training complex environments. 

DDQN algorithm uses the exact same procedures of the popular Deep Q Network (DQN) 

algorithm, but with an additional independent network for Q-value estimation, that is where 

the term ‘Double’ came from. The usage of the extra identical target network allows DDQN 

to avoid the maximum estimation bias issue found in DQN and ensures a faster, robust, and 

more stable learning than DQN.  

Figure 30 shows the general framework of how DDQN works, which will be 

thoroughly explained in the Algorithm steps in the following paragraph. The first row of the 

framework is previously explained when discussing the DRL-IRS architecture in Figure 29. 

Hence, continuing on the DRL-IRS architecture, A replay buffer is used to store the 

experiences in the form of (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) tuples, which are collected by the agent from the 

interaction with the environment. It is worth noting that oldest tuples are deleted in case the 

buffer was full, so that they can be replaced by new experiences. For training the agent, a 

mini-batch is used with two NNs: the online critic DQN and the target network. Introducing a 
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second target network, which is an exact replica of the critic network, helps in stabilizing the 

learning by breaking the correlation of errors that happens when using only one NN. The role 

of the online DQN is to make all the decisions and choose which action the agent is going to 

take in every step. Whereas the target network evaluates the action and decides how valuable 

it is. More details on the algorithm steps are given below: 

 

 

Figure 30. General framework of the DDQN algorithm 

 

Algorithm 1 [129] illustrates the details of the DDQN algorithm that show how the 

agent learns. Initially, the agent initializes several input parameters, including a replay 

memory buffer 𝐷 of maximum size 𝑁𝑟, the online critic network parameters 𝜃, the target 

network parameters 𝜃−, a training batch size 𝑁𝑏, and the target network replacement 

frequency 𝑁−. The two initialized networks: the online critic network and the target network, 

are given the exact same initial weight parameters. For each training step, the agent decides 

on whether to choose a random action or perform the action suggested by the online network 

that has the maximum Q-value based on the decaying epsilon greedy policy. After executing 

the action, the agent receives a reward and the next state from the environment. The transition 

experience tuple is also stored in the replay buffer. Following that, a random minibatch of size 

𝑁𝑏 is sampled from the replay buffer and fed to the online NN to optimize on its parameters. 
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The target network is used to compute the target Q-value for each of the 𝑁𝑏 tuples by 

accounting for terminal states. To elaborate, if it was a terminal state, then we are sure that 

there is no future reward for us to look forward to, and so the second term in the target value 

function formula 𝑦𝑗 is set to 0. If it is not a terminal state, the critic network estimator 𝜃 is 

used first to select the action by performing the 𝑎𝑟𝑔𝑚𝑎𝑥 operation then, the second target 

network estimator 𝜃− is used to evaluate that action by getting its Q-value. Afterwards, the 

Mean Square Error (MSE) is computed, which is the difference between the target Q-value 𝑦𝑗 

and the predicted Q-value that is computed using the critic network 𝜃. Finally, the parameters 

of the critic network undergo gradient update to update the network’s weights by minimizing 

the loss function. It is worth noting that the target network is not trained hence it never 

undergoes gradient updates since it is only used to guarantee that the predicted Q-values and 

the target Q-values would be computed via two separate independent networks to gain 

training stability. At the end, the weight parameters of the critic network are copied into the 

target network at regular intervals every 𝑁− steps. 
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CHAPTER 8: DRL-IRS TRAINING RESULTS AND EVALUATION 

 In this chapter, we discuss the experimental settings, including the NN architecture, 

network parameters, DDQN settings, and training episodes. Also, we present the details of the 

three different training experiments conducted (Exp1, Exp2, and Exp3). Then, the learning 

performance results of each training experiment is examined, discussed, and evaluated. 

Finally, the chapter ends with brief information about the collected dataset and the challenges 

of developing this thesis.  

8.1 Experimental Setup 

8.1.1 Deep Neural Network Architecture 

The adopted Neural Network for the DDQN agent consists of one critic network, 

which has two fully connected hidden layers. The number of neurons in the first layer is 

150 and the second layer is 100 for Exp1. However, in Exp2 and Exp3, the used neurons 

are 50 and 25 for the first and second hidden layers, respectively. For the activation 

function, the rectified linear (ReLU) activation unites are utilized. The size of the input 

layer is the same as the number of states, while the size of the output layer equals to the 

number of considered actions. Each output from the critic network represents the Q-value, 

which is a single linear unit, of the given state with a specific action. In order to optimize 

the network parameters with a learning rate of 0.001, Adam optimizer is employed. To 

avoid overfitting, the L2 regulation is used with a value of 0.002. Table 18 shows the 

architecture, which was fine-tuned with trial-and-error process to decide on its different 

parameters. 

 

Table 18. Neural Network Architecture 

Neural Network Number of Layers Structure (number 

of neurons in each 

layer) 

Activation 

Function 

Critic network 

(Target network has 

the same structure) 

4 fully connected 

layers (input layer, 

2 hidden layers, and 

the output layer) 

Dependent on the 

different 

experiments 

conducted 

ReLu 
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8.1.2 Replay Buffer 

A replay buffer is used to store the agent’s experiences in memory to be sampled in a 

minibatch that is used for the training to optimize the network parameters. The usage of a 

random minibatch approach in training is important snice it breaks the correlation 

between the samples, provides better sample efficiency, and allows the agent to see each 

sample more than once before being removed from the memory. Figure 31 shows the 

concept of using the replay buffer experiences in optimizing the network. Concerning the 

size of the replay buffer, it is set to be 1,000,000 in our experiments since large sizes are 

better to ensure that the samples are not thrown away quickly.  

 

 

Figure 31. Mini-batch training 

 

8.1.3 Training Episodes 

An episode is the path that the agent follows from an initial state to a terminal state. 

There is a maximum number of episodes that has to be defined for the training session. In 

our experiments, an episode terminates when either the system reaches a hazardous state, 

which happens when the rector’s temperature and level states enter their respective hazard 

zone, when manual shutdown happens, or when reaching the maximum defined number 

of steps per episode. The manual shutdown is considered a terminating state because the 

agent cannot progress anywhere from it. Accordingly, these cases define our termination 

criteria. The maximum number of steps per episode is another essential hyperparameter 

that needs to be set for effective training. It is important to be tuned in a way that allows 

the agent to explore the state space carefully. Thus, a maximum of 100 steps/episode 

were used in Exp1 and 300 steps/episode were used for Exp2 and Exp3. 
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8.1.4 Decaying Epsilon Greedy Approach 

The action selection process at time 𝑡 in RL is facing an exploration-exploitation 

dilemma, which is simplified as shown in Figure 32. Exploration encourages the agent to 

act randomly to explore all the different actions in different states. On the other hand, 

exploitation chooses the action with the highest known q-value at a given state. Always 

choosing one method over the other is not advised because only exploring will not drive 

the agent to the optimal solution and always exploiting can likely cause the agent to be 

stuck at a local optimum. Accordingly, the decaying epsilon greedy approach comes to 

balance the tradeoff between exploration and exploitation.  

Decaying epsilon greedy approach chooses between exploration and exploitation 

based on the value of epsilon 𝜀, which refers to the probability to explore. Initially, we 

want the agent to explore thoroughly the action space, so we set epsilon to be high. 

However, as time passes, we would want the agent to use its knowledge in choosing the 

action with the highest Q-value in each state. Thus, the 𝜀 keeps on decaying by a defines 

epsilon decay rate as time passes until it reaches the minimum defined epsilon value. For 

example, if 𝜀 = 0.4 then we are selecting random actions with a probability of 0.4 

regardless of the established actual q value and exploiting the agent knowledge in 

choosing the best-known action with a probability of 0.6.  

 

 

Figure 32. Exploration-Exploitation dilemma [130] 

 



  

   97 

 

8.2 Agent Training Experiments 

In this section, we present the different training experiments that were conducted on the 

testbed. Table 19 presents a summary of the performed experiments, including their 

considered attack scenarios, which are explained in Table 13, the state space, the action space, 

and the reward function. Notably, we start with the simple experimental setup then, add more 

attack scenarios, states, and actions as we move from one experiment to another. Table 20 

summarises the used parameters in each experiment.  

 

Table 19. DRL-IRS Agent Training Experiments Description 

Experiments Attack 

Scenarios 

Considered 

State Space Action Space Reward 

Function 

Exp1 Scenario 1 𝑆 = [𝑇 𝐿 ] 4 actions: 

 𝐴𝑒𝑥𝑝1 = [ 𝑆𝐼 𝑆𝐶 𝑆𝑂] 

 

Equation 12 

Exp2 Scenario 1 and 

2 
𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆] 5 actions: 

 𝐴𝑒𝑥𝑝2 =
[𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃] 
 

Equation 19 

Exp3 Scenario 1, 2, 

and 3 
𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆] 6 actions: 

 𝐴𝑒𝑥𝑝3 =
[𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃 𝑀𝑆] 
 

Equation 19 

 

8.2.1 Experiment 1 (Exp1): Training results 

In the first experiment, we aimed to have a simple setup to examine how the agent 

will react with only one attack scenario. The state-space only consisted of the reactor’s 

temperature and level values 𝑆 = [𝑇 𝐿]. The action-space only considered the three 

actions that manipulate the inlet, coolant, and outlet safety valves 𝐴𝑒𝑥𝑝1 = [ 𝑆𝐼 𝑆𝐶 𝑆𝑂]. 

Using these three Boolean actions, we could have made 8 different combinations. 

However, only 4 different combinations for opening (Boolean=1) and closing 

(Boolean=0) the valves were used. The 4 actions manipulating the safety valves are 𝑎1  =

 [0 0 0], 𝑎2  =  [0 1 0], 𝑎3  =  [1 0 1], and 𝑎4  =  [1 1 1]. These actions are chosen 

carefully after making sure that the process is maintaining its stability when implementing 
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any of them. On the other hand, the unchosen action combinations were throwing the 

process off-guard, and the process had to be restarted every time any of these actions are 

performed. Accordingly, we eliminated them from the action space to simplify the 

training procedure. For the reward function, Equation 12 was used for this experiment. 

This reward function only assessed the quality of the produced product by considering the 

𝑇𝑇𝑅 metric. Consequently, the agent aims to learn how and when to use these 4 actions, 

which manipulate the status of the safety valves, to prevent the process from falling into 

hazardous states and achieve the optimum product quality by keeping the process 

operating around the ideal defined setpoints as much as possible. 

Figure 33 shows the learning performance of the DDQN algorithm in the first 

experiment. It captures the episodic reward and the average reward of 30 successive 

episodes of the learning process by the blue curve and the red curve, respectively. It is 

demonstrated from the figure that the agent was falling into hazards repeatedly while 

exploring the environment in the first 2400 episodes. This is shown by the fluctuated 

episodic reward behavior of the learning curve. The early fluctuation in the behavior is 

expected since the model-free agent was still exploring the environment, and the action 

policy was not optimized yet. Starting from episode 2400 until episode 2700, the agent 

was experiencing higher rewards most of the time. However, the behavior of the agent 

was not stable since it was still violating the hazard protection goal of the process. 

Approximately at episode 2700, the agent exhibited a stable performance, showing that 

the agent successfully converged to the optimal action policy. It is worth mentioning that 

our criteria for stopping the training phase for this experiment and declaring that the agent 

converged are: (1) having the average reward to be around the maximum known reward 

value (3000) by a maximum of 20% and (2) having a stable behavior for at least 500 

consecutive episodes.  
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Figure 33. Experiemnt 1: Learning curve 

 

8.2.2 Experiment 2 (Exp2): Training results 

In the second experiment, we added one more attack scenario, two more states, and 

one more cyber-action to increase the function usability of the agent. The state-space 

consisted of the temperature, level, outlet flow, and an identifier (either 1 or 2) expected 

from the IDS to represent the type of the detected attack scenario 𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆]. The 

action-space consisted of the previous 4 actions presented in Exp1 with an additional 

action defined as 𝐴𝑒𝑥𝑝2 = [𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃] =  𝑎5 =   [1 1 1 1 420]. This action is 

implemented when the attacker source address is known so that it drops attacker packets, 

opens the three safety valves, and recovers the attacked setpoint value by reconfiguring it 

to 420 to return the process to its normal operations. It is important to know that the 

choice of the setpoint regulating value is process-dependent. Initially, we planned to have 

several actions with different setpoint values for the agent to decide which value to use. 

However, we wanted to reduce the action space as much as possible and thus, hopefully, 

reduce the training time. Also, to reduce the training time, we used a fewer number of 

neurons in the hidden layers, upgraded the reward function to give more representative 

values, and decreased the agent’s sampling time from 5 𝑠 to 2 𝑠.  For the reward function, 

Equation 19 was used for this experiment. This reward function assessed the quality and 

the quantity of the produced product by considering the 𝑇𝑇𝑅 metric and the outlet flow 

value, respectively. Consequently, the agent aims to learn how and when to use these 5 
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actions, which either manipulate the status of the safety valves or select the cyber action 

to maximize the reward function and achieve the agent’s objective in responding to 

cyberattacks in the most optimal way.  

Figure 34 presents the learning performance of the DDQN algorithm in the second 

experiment. As previously mentioned, the agent usually performs badly in the first few 

episodes due to the exploration phase. At episode 200, the agent started exploiting its 

knowledge in selecting the actions that give better rewards depending on the considered 

state. Approximately at episode 400, the agent exhibited a stable performance showing 

that it converged to an action policy. However, it seems that the agent converged to a sub-

optimal action policy. This is notable from the reward curve since the episodic rewards 

for attack Scenario 1 are approaching a value of 2000 when they should have been 

optimally approaching a value of 3000. It is worth mentioning that we stopped the 

training phase after having a stable behavior for 500 consecutive episodes. 

 

 

Figure 34. Experiment 2: Learning curve 

 

8.2.3 Experiment 3 (Exp3): Training results 

In the third experiment, we considered all the attack scenarios, the full state space 

𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆], and the full action space 𝐴𝑒𝑥𝑝3  =  [𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃 𝑀𝑆] to improve 

the applicability of using the agent in different situations. The action space consisted of 6 

actions; the five actions presented in the previous experiment with an additional action 
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𝑎6  =  [0 0 0 0 0 1], which disables/closes everything and decides to perform the manual 

shutdown action. Using the manual shutdown action indicates that all other automatic 

actions that the agent tried in this specific state failed to recover the system. Since the 

agent is not applicable to perform the manual shutdown itself, we assume that when it is 

selected as being optimal in a specific state, a human operator will be able to successfully 

perform the manual action and secure the system. Otherwise, the process will fall into 

hazards and suffer from costly environmental and financial losses. For the reward 

function, Equation 19 was used to assess the quality and quantity of the product.   

Figure 35 shows the learning performance of the DDQN algorithm in the third 

experiment. The first 630 episodes show the initial exploring phase of the agent that 

results in fluctuated reward values. However, between episode 630 and episode 1400, the 

agent obtained higher rewards most of the time but with an unstable behavior. 

Approximately at episode 1400, the DDQN agent demonstrated a stable performance for 

more than 500 consecutive episodes indicating that it optimized the action policy 

successfully. In this experiment, we also used a smaller number of neurons in the DN 

hidden layers with a decreased agent’s sampling time to reduce the training time. For this 

experiment, we cannot anticipate where the optimal average reward curve should be 

because this experiment includes three different scenarios each with different optimal 

responses and reward values. For example, the optimal action for the third attack scenario 

is taking the manual shutdown action, which has a negative reward value, unlike 

Scenarios 1 and 2. Accordingly, we stopped the training phase when we witnessed stable 

behaviour for 500 consecutive episodes and evaluated the effectiveness of the trained 

agent responses for each attack scenario in the testing phase.  

 



  

   102 

 

 

Figure 35. Experiemnt 3: Learning curve 

 

Table 20. Parameters Settings Summary 

Parameter Value 

Size of hidden layers (HL1, HL2) 150, 100 for Exp1 

50, 25 for Exp2 and Exp3 

Activation function of hidden layers ReLu 

Minibatch size 256 

Experience buffer length 1,000,000 

Target smooth factor 0.003 

Learning rate 0.001 

Discount factor 0.99 

Maximum and minimum value of exploration 1, 0.1 

Epsilon decay rate 0.005 

Maximum episodes 10,000 

Maximum steps per episode  100 for Exp1 

300 for Exp2 and Exp3 

Window length for averaging 30 for Exp1 

50 for Exp2  

100 for Exp3 

Reward constants: 𝑁, 𝑀, 𝑍, 𝑃, 𝑡, 𝐶, 𝐴𝑐𝑜𝑠𝑡 𝑁𝐴, 3, 𝑁𝐴, 5, 2, 3000, 𝑁𝐴 for Exp1 
1

3
, 𝑁𝐴, 2.5, 3, 2, 3000, 𝑁𝐴 for Exp2 

1

3
, 𝑁𝐴, 2.5, 3, 2, 3000, 500 for Exp3 

 

 8.3 Agent Testing and Evaluation 

In this section, we evaluate the trained agents of the different conducted experiments in 

terms of their response effectiveness and computational time. To evaluate the response 

effectiveness of each trained agent, we run the agent N times on our CSTR testbed to defend 

against different simulated attack scenarios. Each run starts at a random state in the 

environment and returns the total reward obtained. Following that, we calculate the average 
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return from the N runs to assess the effectiveness of the agent in responding to the different 

attack scenarios by choosing a sequence of actions that maximize the reward function.  

8.3.1 Testing the trained agent of Experiment 1 

In experiment 1, the agent has only one attack scenario to deal with (Scenario 1), 

which assumes a non-compromised safety controller and an unknown attack source. We 

simulated this attack scenario on our CSTR testbed and tested the performance of the 

agent in choosing suitable defensive response actions for 𝑁 = 10 runs (each run has 100 

steps).  Table 21 shows the total reward obtained after each run with an average reward of 

2739. We noted from these 10 runs that the agent selects a sequence of non-identical 

actions to keep the process operating around the ideal temperature value (420 𝑘). 

Accordingly, action 𝑎2  =  [0 1 0], which closes both the inlet and outlet valves, was 

repeatedly chosen when the reactor’s temperature was increasing and approaching the 

hazardous region. As a result of performing action 𝑎2, the temperature began to decrease. 

This is expected since it is a common practice to perform the safety shutdown in case of 

reactor high-temperature hazards in model-based solutions [53]. The agent kept on 

monitoring the state of the temperature, and if it decreased more than intended to a value 

far below our 420 𝑘 reference, the agent selected another action 𝑎4  =  [1 1 1] to reopen 

the valves. This pattern of actions was repeated throughout the 10 runs with a clear aim 

of controlling and regulating the process to work around the referenced operating points 

and thus, maximizing the reward function. The pattern of the selected actions and the 

obtained average total reward, which is very close to the ideal reward value (3000/

𝑒𝑝𝑠𝑖𝑜𝑑𝑒), proves the effectiveness of the trained agent.  

The computational time of the DDQN algorithm in training experiment 1 was very 

high since it took approximately 5 days for the agent to reach its convergence state, which 

is a very long training period. This is a complex computational efficiency considering it is 

trained on a small-scale system.  
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Table 21. Experiment 1: Perfromance Evaluation 

Run Total Reward 

1 2612 

2 2780 

3 2765 

4 2790 

5 2830 

6 2842 

7 2502 

8 2684 

9 2787 

10 2800 

Average Reward 𝟐𝟕𝟑𝟗 

 

In addition to the above evaluations, we compared the performance of the DRL-IRS 

agent of Experiment 1 with the performance of the fourth case study from the GA-IRS 

solution. The fourth case study was simulated with the same attack scenario and was 

using the same reward function to solve the intrusion response decision-making problem. 

However, it was solved using a Genetic Algorithm approach. Both algorithms’ 

performance is analyzed and compared in terms of response effectiveness in stabilizing 

the process away from hazards and closer to ideal setpoints.  

As we observed from Table 16, the GA-IRS solution for case study number 4 

stabilized the temperature at 434 𝑘 and the level at 0.9 𝑚. Using these values in Equation 

12 obtained a reward of 23.75, which is shown in Figure 28 as being the best reward 

value achieved by the optimization algorithm. Assuming that we ran this experiment for 

100 steps, just like the DRL-IRS experiment, then the total reward obtained from this 

approach is 2375. As can be seen, the adaptive solution of selecting non-identical 

sequence of actions, which is proposed by the DRL-IRS, shows better performance since 

it obtained a higher average reward of 2739. This indicates that the DRL-IRS solution 

was more effective in stabilizing the reactor’s temperature around the ideal operational 

window. However, the GA-IRS was much faster in comparison to the DRL-IRS 

approach.  
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8.3.2 Testing the trained agent of Experiment 2 

In experiment 2, the agent has two attack scenarios to deal with (Scenario 1 and 2), 

which are described in Table 13. Also, an additional cyber action to drop attack packets 

and reconfigure the setpoint is added to its action space. We simulated each attack 

scenario on the testbed and evaluated the trained agent for 10 runs (each run has 300 

steps). Table 22 shows a summary of the different obtained runs. We observed that the 

agent mainly selects action 𝑎5  =   [1 1 1 1 420], which drops attack packets and 

reconfigures the setpoint, in the sequence of chosen actions when the state indicates that 

the detected attack is Scenario 1. For attack Scenario 2, the agent repeatedly performs the 

safety shutdown action 𝑎2  =  [0 1 0] when the temperature is approaching a high value. 

This action leads to a reduction in the temperature until it reaches a stable state. Then, the 

agent might consider to re-open the valves based on the current system state. If the agent 

decides to keep the valves closed for safety reasons, then the worst reward value that 

could be obtained for Scenario 2 is 0 because closing the valves means stopping the 

production line. However, this means that the testbed worth is gained since the agent’s 

actions stopped it from falling into dangerous hazard situations that could have led to 

huge financial and human losses. This pattern of actions was repeated throughout the 10 

runs with a clear aim to keep the process away from hazards, and close to defined 

setpoints. However, as we noticed from the learning curve in Figure 34, the agent might 

have converged to a suboptimal action policy. The agent clearly was able to achieve the 

third reward goal, which is protecting the system from hazards. However, the first and 

second goals of the reward function, which encourage the agent to select the optimal 

sequence of actions that gets the system as close as possible to the defined setpoints, are 

questionable. Even though reaching global optimal solutions are usually not guaranteed, 

and local optimal solutions are generally acceptable, we believe that this behavior might 

have been because the agent needed more training time to reach a better action policy.  

The computational time of the DDQN algorithm in the training phase of experiment 2 
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took approximately 1.5 days to reach convergence, which is faster than the Exp1. 

 

Table 22. Experiemnt 2: Performance Evaluation 

Attack Scenario Run Total Reward 

1 1 1904 

2 1852 

3 2111 

4 2033 

5 1863 

6 1633 

7 1812 

8 1849 

9 1612 

10 2107 

Average Reward 𝟏𝟖𝟕𝟕 

2 1 0 

2 145 

3 1525 

4 445 

5 1033 

6 301 

7 280 

8 657 

9 481 

10 639 

 Average Reward 𝟓𝟓𝟎 

 

8.3.3 Testing the trained agent of Experiment 3 

In experiment 3, the agent has three attack scenarios to deal with, which are described 

in Table 13. To make sure that the trained agent can deal with each scenario optimally, 

we simulated each scenario 10 times and evaluated the performance of the agent in each 

run. Table 23 shows the total reward obtained after each run for the simulated attack 

scenarios. In attack Scenario 1, the agent was observed in the different runs selecting the 

cyber action to drop the attack packets and reconfigure the setpoint 𝑎5  =   [1 1 1 1 420]. 

In attack Scenario 2, since it assumes that the attacker is not known, the agent decided to 

manipulate the opening and closing of the three safety valves using actions  𝑎2  =  [0 1 0] 

and 𝑎3  =  [1 0 1] to stabilize the process around the ideal operational temperature value 

(420 𝑘). In attack Scenario 3, which is the most powerful attack that compromises the 

safety controller and keeps its source hidden, the manual shutdown action was always 
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chosen by the agent as the optimal action to protect the system. The results obtained from 

this experiment indicate that the agent was able to successfully protect the system from 

falling into hazards in all the three considered attack scenarios.  

The computational time of the DDQN algorithm in the training phase of Exp3 was 

still high since it took approximately 4 days to converge. However, it is considered an 

improvement in comparison to Exp1 since it has triple the size of its state space due to 

including more attack scenarios. This highlights the issue of scalability since the agent 

takes long time to train a relatively small-scale system. 

 

Table 23. Experiment 3: Perfromance Evaluation 

Attack Scenario Run Total Reward 

1 1 2456 

2 2673 

3 2209 

4 2892 

5 2340 

6 2830 

7 2659 

8 2794 

9 2789 

10 2838 

Average Reward 2648 

2 1 534 

2 439 

3 981 

4 602 

5 545 

6 819 

7 171 

8 238 

9 336 

10 145 

Average Reward 481 

3 1 -444 

2 -362 

3 -494 

4 -301 

5 -384 

6 -236 

7 -108 

8 -500 

9 -81 

10 -124 

Average Reward -303 
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It is worth mentioning that we initially aimed to use different RL algorithms with our 

intrusion response problem to perform an analytical comparison of their defensive 

performance. However, with the long training time challenge that we faced during the 

different experiments of the DDQN agent, using other RL algorithms was not achievable 

since we did not have the time for it. Also, it was not feasible to compare our solution with 

other state-of-the-art works because each work uses a different simulation environment. They 

could have the same objective, but with totally different state space, action space, and reward 

setup. Accordingly, comparing their computational time, performance, or their cumulative 

reward curve would have not been reasonable nor fair for a valuable comparison. 

Consequently, we mainly depended in our evaluation on different testing experiments 

conducted on the CPS-designed testbed to assess the effectiveness of each proposed solution 

in choosing the best defensive actions.  

All in all, we strongly believe that the IRS field lacks a reference system for 

validation and comparison of the different intrusion response approaches. While intrusion 

detection systems can be validated and compared against some publicly available labeled 

datasets, unfortunately, intrusion response systems cannot. The evaluation of an intrusion 

response system is more complex because it needs to be performed on some testbed. 

Accordingly, given the lack of a reference testbed, it is almost impossible to rigorously 

compare different intrusion response approaches. 

Finally, going back to our second research question, which is ‘Are model-free deep 

reinforcement learning intrusion response systems effective for cyber-physical systems?’, the 

answer is Yes. From our different experiments, we can evidently state that the agent protected 

the process from falling into hazards 100% of the time. Without the proposed automated 

defensive mechanisms approach, the alternative would have been human operators taking 

different actions. However, human actions in times of emergency are not guaranteed. 

Accordingly, in comparison to the human alternative solution, we believe that our automated 

model-free deep reinforcement learning intrusion response system solution is effective for 

cyber-physical systems.  
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8.4 Dataset Collection 

There is a lack of available CPS security-related datasets, in the form of <state, 

action, next state, reward> tuples, that can be used with offline reinforcement learning 

approaches. Having a publicly available dataset will be a benefit for the research community 

so that they can validate and compare their algorithms and solutions against a reference 

dataset. Accordingly, we took the chance and collected a representative dataset of our CSTR 

CPS environment during online training using the DDQN algorithm.  

The data were collected for 9 days with a total of 3 attack instances of the false data 

injection. It contains 406,047 samples, in which each sample in the dataset includes the state, 

action, next state, and the reward <state, action, next state, reward>. The state is defined as 

𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆], where 𝑇 and 𝐿 are the reactor temperature and the reactor level, 

respectively. 𝑂𝐹 is the outlet flow and 𝐴𝑆 is IDS-related evidence showing the type of the 

detected attack scenario. The action space contains 6 discrete action vectors, which are 

precisely chosen by experts, to defend against the different attacks. The action vector is 

defined as 𝐴 = [𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃 𝑀𝑆], where 𝐷𝑃 is a cyber action to whether drop attack 

packets or not. 𝑆𝐼, 𝑆𝐶, 𝑎𝑛𝑑 𝑆𝑂 are the actions that determine whether to open or close the 

inlet, coolant, and outlet safety valves, respectively. 𝑆𝑃 is an action to reconfigure the setpoint 

and 𝑀𝑆 decides whether the manual shutdown action is needed or not.  

We collected this dataset to analyze and study its applicability in our future work for 

designing an offline reinforcement learning agent for intrusion response decision-making 

problems. We also aim to perform an analytical study to compare the performance of our 

pursued online DRL-IRS solution and the future offline RL solution.  

8.5 Challenges 

 We faced many challenges during the preparation of this thesis. At first, the literature 

work on intrusion response systems for cyber-physical processes is still in its early stages. 

Accordingly, we spent a lot of time in the literature review phase to decide which approach is 

suitable and applicable to our CPS. Then, when deciding on using RL-based approaches, it 

was hard to fully understand the mathematical concepts of the bellman equation and the 
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different methodologies of the possible algorithms. Particularly, it was challenging because 

many things had to be understood and comprehended in a short time.  

Setting up the testbed as the interactive online environment in the reinforcement 

learning framework was another difficult task. At first, we had to build the firewall Iptables; 

to separate the control network from the cooperate network. Then, we changed the 

communication protocol between the components from UDP/IP to Modbus/TCP. Following 

that, we established a new communication link between our RL agent, which runs on 

MATLAB, and the testbed components simulated on LabVIEW. Initially, we used the TCP/IP 

protocol. However, several errors were observed, such as a timeout error between the two 

communicated nodes, due to the reliability strictness of the TCP/IP protocol. For that reason, 

we reestablished the communication link between the RL agent in MATLAB and LabVIEW 

using UDP/IP protocol.  

After setting up the testbed, we started designing and implementing different attack 

scenarios. We took some time to be able to perform the false data injection attack on our 

testbed. This step required knowledge of using the Wireshark protocol analyzer, 

understanding the different fields of the used Modbus/TCP communication protocol, and 

learning how to use different attacking tools, such as the Ettercap tool used for ARP spoofing. 

One of the outcomes of this phase was designing a complete attack script using python for the 

different attack scenarios modelled in Figure 20. This attack script, which utilizes scapy and 

nfqueue packages running on Ubuntu OS, contains all the needed attack steps to ease and 

automate the process of performing attacks to study the system vulnerabilities.  

The next stage focused on building the main blocks of the reinforcement learning 

framework to start the training phase. We spent some effort looking for and experimenting 

with different mitigation actions that can be implemented automatically without human 

intervention. However, one of the hardest things that we faced is designing a representative 

reward function that shows our goals in a mathematical formula. Since there is no standard 

approach to designing the reward function, we had several iterations of modifying and 

experimenting with different types of reward functions before settling on the final one.  
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The training phase was the biggest challenge of the entire thesis. It was extremely 

time-consuming, and we had a lot of failed attempts, such as the attempt shown in Figure 36, 

that we did not have clear justifications for their failure. Not having a dataset to train our 

system offline contributed hugely to having a very long training time since online training is 

significantly slower. Moreover, having a huge number of hyperparameters to tune in the DRL 

framework was challenging and contributed to the high time complexity of the approach. 

Consequently, scalability is still an issue that we faced even for our small-scale system.  

Evaluating our proposed solutions was also one of the thesis challenges. Due to the 

long training time issue that we discussed, we did not have the time to use different 

algorithms on our testbed and compare them. In addition, it was not reasonable to compare 

our solutions with the state-of-the-art works since each work uses a different simulation 

environment and a completely different setup. Consequently, we depended on our local 

experiments to evaluate the effectiveness of each trained agent.  

 

 

Figure 36. Agent training - failed attempt example (results after 5 training days) 
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CHAPTER 9: CONCLUSION AND FUTUREWORKS 

CPSs are used in many systems, including industrial processes, transportation 

systems, and energy systems. The increased connectivity of CPSs made them more vulnerable 

to cyberattacks. Existing research effort on security defensive mechanisms has been focusing 

on intrusion detection to detect and classify cyberattacks. The work on intrusion response is 

still at its early stages and lacks applicability to real CPSs.  

In this context, this thesis first provides a comprehensive review of the design 

taxonomy and decision-making solutions of intrusion response systems. Different works are 

surveyed, compared, and analyzed to highlight their main advantages, disadvantages, and 

future directions. Then the thesis presents a model-based design approach for a CPS security 

testbed. The testbed hardware and software architectural models were developed, and a 

systematic methodology to generate cyberattack experiments was explained. Additionally, we 

used two approaches to design an intrusion response system solution for defending the CPS 

testbed. The first approach uses an optimization technique with a Genetic Algorithm, and the 

second approach uses model-free deep reinforcement learning with a DDQN algorithm. Both 

approaches proved their effectiveness in selecting optimal actions for automatically 

responding to false data injection attacks. Furthermore, we collected a security-related dataset 

for designing and evaluating future offline reinforcement learning solution approaches. 

We anticipate that this thesis will help interested readers to obtain a full view of IRS 

for CPS. Also, it presents to researchers and practitioners an effective IRS design for CPS as 

well as a CPS testbed and a dataset to ease further research and development. For future 

work, we will consider using a multi-agent reinforcement learning approach, utilizing the 

collected dataset for offline RL training approaches, dealing with variable action space, 

adding more attack scenarios, and comparing with other RL algorithms. 

 

 

 

 



  

   113 

 

REFERENCES 

[1] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-Physical Systems Security — A 

Survey,” vol. 4, no. 6, pp. 1802–1831, 2017. 

[2] Z. Drias, A. Serhrouchni, and O. Vogel, “Taxonomy of attacks on Industrial Control 

protocols,” 2015 Int. Conf. Protoc. Eng. Int. Conf. New Technol. Distrib. Syst., pp. 1–

6, 2015. 

[3] L. Cao, X. Jiang, Y. Zhao, S. Wang, D. You, and X. Xu, “A Survey of Network 

Attacks on Cyber-Physical Systems,” IEEE Access, vol. 8, pp. 44219–44227, 2020. 

[4] A. Singh and A. Jain, “Study of Cyber Attacks on Cyber-Physical System,” SSRN 

Electron. J., no. October 2019, 2018. 

[5] F. Li, X. Yan, Y. Xie, Z. Sang, and X. Yuan, “A Review of Cyber-Attack Methods in 

Cyber-Physical Power System,” APAP 2019 - 8th IEEE Int. Conf. Adv. Power Syst. 

Autom. Prot., pp. 1335–1339, 2019. 

[6] B. Chen, N. Pattanaik, A. Goulart, K. L. Butler-Purry, and D. Kundur, “Implementing 

attacks for modbus/TCP protocol in a real-time cyber physical system test bed,” Proc. 

- CQR 2015 2015 IEEE Int. Work. Tech. Comm. Commun. Qual. Reliab., pp. 1–6, 

2015. 

[7] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn, “Guide to Industrial 

Control Systems (ICS) Security NIST Special Publication 800-82 Revision 2,” NIST 

Spec. Publ. 800-82 rev 2, pp. 1–157, 2015. 

[8] H. Xu, W. E. I. Yu, D. Griffith, and N. Golmie, “A Survey on Industrial Internet of 

Things : A Cyber-Physical Systems Perspective,” IEEE Access, vol. 6, pp. 78238–

78259, 2018. 

[9] M. H. Cintuglu, O. A. Mohammed, K. Akkaya, S. Member, A. S. Uluagac, and S. 

Member, “A Survey on Smart Grid Cyber-Physical System Testbeds,” vol. 19, no. 1, 

pp. 446–464, 2017. 

[10] G. Yadav and K. Paul, “Architecture and security of SCADA systems : A review,” Int. 

J. Crit. Infrastruct. Prot., vol. 34, p. 100433, 2021. 



  

   114 

 

[11] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in cyber physical 

systems using recurrent neural networks,” Proc. IEEE Int. Symp. High Assur. Syst. 

Eng., pp. 140–145, 2017. 

[12] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly detection for a 

water treatment system using unsupervised machine learning,” IEEE Int. Conf. Data 

Min. Work. ICDMW, vol. 2017-Novem, pp. 1058–1065, 2017. 

[13] M. Kravchik and A. Shabtai, “Detecting cyber attacks in industrial control systems 

using convolutional neural networks,” Proc. ACM Conf. Comput. Commun. Secur., no. 

October, pp. 72–83, 2018. 

[14] Q. Lin, “TABOR : A Graphical Model-based Approach for Anomaly Detection in 

Industrial TABOR : A Graphical Model-based Approach for Anomaly Detection in 

Industrial Control Systems,” no. June, 2018. 

[15] C. R. Nov, “Anomaly Detection for Industrial Control Systems Using Sequence-to-

Sequence Neural Networks.” 

[16] Y. Li, S. Member, L. Zhang, Z. Lv, and W. Wang, “Detecting Anomalies in Intelligent 

Vehicle Charging and Station Power Supply Systems With Multi-Head Attention 

Models,” vol. 22, no. 1, pp. 555–564, 2021. 

[17] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain, and K. Khan, “Cybersecurity for 

industrial control systems : A survey,” Comput. Secur., vol. 89, 2020. 

[18] H. Habibzadeh, B. H. Nussbaum, F. Anjomshoa, B. Kantarci, and T. Soyata, “A 

survey on cybersecurity , data privacy , and policy issues in cyber-physical system 

deployments in smart cities,” Sustain. Cities Soc., vol. 50, p. 101660, 2019. 

[19] A. A. Nazarenko and G. A. Safdar, “Survey on security and privacy issues in cyber 

physical systems,” AIMS Electron. Electr. Eng., no. July, 2020. 

[20] M. Rizwan, Q. Hu, and S. Zeadally, “Cybersecurity in industrial control systems : 

Issues , technologies , and challenges,” Comput. Networks, vol. 165, p. 106946, 2019. 

[21] C. Alcaraz and S. Zeadally, “Critical infrastructure protection: Requirements and 

challenges for the 21st century,” Int. J. Crit. Infrastruct. Prot., vol. 8, pp. 53–66, Jan. 



  

   115 

 

2015. 

[22] M. N. Al-mhiqani et al., “Cyber-Security Incidents : A Review Cases in Cyber-

Physical Systems,” vol. 9, no. 1, 2018. 

[23] J. A. Yaacoub, O. Salman, H. N. Noura, N. Kaaniche, and A. Chehab, “Cyber-

physical systems security : Limitations , issues and future trends,” Microprocess. 

Microsyst., vol. 77, 2020. 

[24] M. Iaiani, A. Tugnoli, S. Bonvicini, and V. Cozzani, “Analysis of Cybersecurity-

related Incidents in the Process Industry,” Reliab. Eng. Syst. Saf., vol. 209, p. 107485, 

2021. 

[25] S. Zhioua, “The middle east under malware attack dissecting cyber weapons,” Proc. - 

Int. Conf. Distrib. Comput. Syst., pp. 11–16, 2013. 

[26] M. M. Ahmadian, M. Shajari, and M. A. Shafiee, “Industrial control system security 

taxonomic framework with application to a comprehensive incidents survey,” Int. J. 

Crit. Infrastruct. Prot., vol. 29, p. 100356, 2020. 

[27] S. Han, M. Xie, H. H. Chen, and Y. Ling, “Intrusion detection in cyber-physical 

systems: Techniques and challenges,” IEEE Syst. J., vol. 8, no. 4, pp. 1049–1059, 

2014. 

[28] T. Daniya, K. S. Kumar, B. S. Kumar, and C. Sekhar, “A survey on anomaly based 

intrusion detection system,” Mater. Today Proc., no. xxxx, 2021. 

[29] Kamaldeep, M. Dutta, and J. Granjal, “Towards a Secure Internet of Things: A 

Comprehensive Study of Second Line Defense Mechanisms,” IEEE Access, vol. 8, pp. 

127272–127312, 2020. 

[30] B. Y. W. Mazurczyk, L. Caviglione, and A. E. Day, “review articles Cyber 

Reconnaissance Techniques,” 2021. 

[31] F. Salahdine, N. Kaabouch, and R. Gloria, “Social Engineering Attacks: A 

Reconnaissance Synthesis Analysis,” IEEE Annu. Ubiquitous Comput. Electron. Mob. 

Commun. Conf., no. October, 2020. 

[32] R. Chabukswar, Y. Mo, and B. Sinopoli, Detecting Integrity Attacks on SCADA 



  

   116 

 

Systems, vol. 44, no. 1. IFAC, 2011. 

[33] R. Lanotte, U. Insubria, and D. Informatica, “A Formal Approach to Cyber-Physical 

Attacks,” IEEE 30th Comput. Secur. Found. Symp., no. November 2018, 2017. 

[34] Z. Inayat, A. Gani, N. B. Anuar, M. K. Khan, and S. Anwar, “Intrusion response 

systems: Foundations, design, and challenges,” J. Netw. Comput. Appl., vol. 62, pp. 

53–74, 2016. 

[35] A. Shameli-Sendi, N. Ezzati-Jivan, M. Jabbarifar, and M. Dagenais, “Intrusion 

response systems: survey and taxonomy,” Int. J. Comput. Sci. Netw. Secur, vol. 12, no. 

1, pp. 1–14, 2012. 

[36] S. Anwar et al., “From intrusion detection to an intrusion response system: 

Fundamentals, requirements, and future directions,” Algorithms, vol. 10, no. 2, 2017. 

[37] J. Wong, “A taxonomy of intrusion response systems,” Int. J. Inf. Comput. Secur., no. 

January 2007, 2014. 

[38] A. Shameli-sendi, M. Cheriet, and A. Hamou-lhadj, “Taxonomy of intrusion risk 

assessment and response system,” Coputers Secur., vol. 5, pp. 1–16, 2014. 

[39] E. Hodo et al., “Threat analysis of IoT networks Using Artificial Neural Network 

Intrusion Detection System,” pp. 4–8, 2020. 

[40] H. A. Kholidy, “Autonomous mitigation of cyber risks in the Cyber – Physical 

Systems,” Futur. Gener. Comput. Syst., vol. 115, pp. 171–187, 2021. 

[41] D. K. Singh and P. Kaushik, “Analysis of Decision Making factors for Automated 

Intrusion Response System ( AIRS ): A Review,” vol. 14, no. 6, p. 5500, 2016. 

[42] V. Mateos, V. A. Villagrá, F. Romero, and J. Berrocal, “Definition of response metrics 

for an ontology-based Automated Intrusion Response Systems q,” vol. 38, pp. 1102–

1114, 2012. 

[43] C. Mu, B. Shuai, and H. Liu, “Analysis of Response Factors in Intrusion Response 

Decision-Making,” 2010 Third Int. Jt. Conf. Comput. Sci. Optim., vol. 2, pp. 395–399, 

2010. 

[44] Snort Project Team, “SNORT Users Manual 2.9.16,” 2020. 



  

   117 

 

[45] Kamesh and N. Sakthi Priya, “A survey of cyber crimes Yanping,” Secur. Commun. 

Networks, vol. 5, no. June, pp. 422–437, 2012. 

[46] A. Justina and A. Simon, “A Credible Cost-Sensitive Model For Intrusion Response 

Selection,” 2012 Fourth Int. Conf. Comput. Asp. Soc. Networks, pp. 222–227, 2012. 

[47] A. J. Ikuomola and J. O. Nehinbe, “A Framework for Collaborative , Adaptive and 

Cost Sensitive Intrusion Response System,” 2010 2nd Comput. Sci. Electron. Eng. 

Conf., pp. 1–4, 2010. 

[48] J. S. Wong and C. Strasburg, “A Framework for Cost Sensitive Assessment of 

Intrusion Response Selection,” 2009 33rd Annu. IEEE Int. Comput. Softw. Appl. 

Conf., vol. 1, pp. 355–360, 2009. 

[49] A. Shameli-sendi and M. Dagenais, “ORCEF : Online response cost evaluation 

framework for intrusion response system,” J. Netw. Comput. Appl., vol. 55, pp. 89–

107, 2015. 

[50] M. Jahnke, C. Thul, and P. Martini, “Graph based Metrics for Intrusion Response 

Measures in Computer Networks 1,” 2007. 

[51] N. Kheir and J. Viinikka, “Cost Evaluation for Intrusion Response Using Dependency 

Graphs,” no. c, pp. 1–6, 2009. 

[52] C. Strasburg and J. S. Wong, “Intrusion response cost assessment methodology,” no. 

January, 2009. 

[53] A. Tantawy, S. Abdelwahed, A. Erradi, and K. Shaban, “Model-Based Risk 

Assessment for Cyber Physical Systems Security Computers & Security Model-based 

risk assessment for cyber physical systems security,” Comput. Secur., vol. 96, no. 

May, p. 101864, 2020. 

[54] Y. Cherdantseva et al., “A review of cyber security risk assessment methods for 

SCADA systems,” vol. 56, pp. 1–27, 2016. 

[55] J. Greensmith, “Securing the Internet of Things with Responsive Artificial Immune 

Systems,” pp. 113–120, 2015. 

[56] S. Anwar, J. M. Zain, M. F. Zolkipli, Z. Inayat, A. N. Jabir, and J. B. Odili, “Response 



  

   118 

 

option for attacks detected by intrusion detection system,” 2015 4th Int. Conf. Softw. 

Eng. Comput. Syst. ICSECS 2015 Virtuous Softw. Solut. Big Data, pp. 195–200, 2015. 

[57] N. B. Anuar, M. Papadaki, S. Furnell, and N. Clarke, “An investigation and survey of 

response options for Intrusion Response Systems ( IRSs ),” 2010 Inf. Secur. South 

Africa, pp. 1–8, 2010. 

[58] A. Nadeem and M. Howarth, “Adaptive intrusion detection & prevention of denial of 

service attacks in Adaptive Intrusion Detection & Prevention of Denial of Service 

attacks in MANETs,” no. January, 2009. 

[59] W. Kanoun, N. Cuppens-boulahia, S. Dubus, B. Laboratories, T. Bretagne, and I. 

Telecom, “Risk-aware Framework for Activating and Deactivating Policy-based 

Response,” pp. 207–215, 2010. 

[60] S. K. N. and P. Kabiri, “An Adaptive and Cost-Based Intrusion Response System,” 

Cybern. Syst., vol. 48, pp. 495–509, 2017. 

[61] I. Balepin, S. Maltsev, J. Rowe, and K. Levitt, “Using specification-based intrusion 

detection for automated response,” Lect. Notes Comput. Sci. (including Subser. Lect. 

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2820, pp. 136–154, 2003. 

[62] A. Nadeem and M. Howarth, “An Intrusion Detection & Adaptive Response 

Mechanism for MANETs An Intrusion Detection & Adaptive Response Mechanism 

for MANETs,” no. January 2019, 2014. 

[63] S. Berenjian, M. Shajari, N. Farshid, and M. Hatamian, “Intelligent Automated 

Intrusion Response System based on fuzzy decision making and risk assessment,” 

2016 IEEE 8th Int. Conf. Intell. Syst. IS 2016 - Proc., pp. 709–714, 2016. 

[64] A. Shameli-Sendi, J. Desfossez, M. Dagenais, and M. Jabbarifar, “A retroactive-burst 

framework for automated intrusion response system,” J. Comput. Networks Commun., 

vol. 2013, 2013. 

[65] B. Boˇ, “Game-Theoretic Algorithms for Optimal Network Security Hardening Using 

Attack Graphs Optimal Network Security Hardening Using Attack Graph Games,” no. 

July, 2015. 



  

   119 

 

[66] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, “Optimal security hardening using 

multi-objective optimization on attack tree Optimal Security Hardening Using Multi-

objective Optimization on Attack Tree Models of Networks,” no. January, 2007. 

[67] L. Feng, W. Wang, L. Zhu, and Y. Zhang, “Predicting intrusion goal using dynamic 

Bayesian network with transfer probability estimation $,” J. Netw. Comput. Appl., vol. 

32, pp. 2008–2010, 2009. 

[68] H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph and attack tree visual 

syntax in cyber security,” Comput. Sci. Rev., vol. 35, p. 100219, 2020. 

[69] P. Nespoli, D. Papamartzivanos, F. G. Mármol, and G. Kambourakis, “Optimal 

Countermeasures Selection Against Cyber Attacks: A Comprehensive Survey on 

Reaction Frameworks,” IEEE Commun. Surv. Tutorials, vol. 20, no. 2, pp. 1361–1396, 

2018. 

[70] V. Shandilya, C. B. Simmons, and S. Shiva, “Use of attack graphs in security 

systems,” J. Comput. Networks Commun., vol. 2014, no. April 2016, 2014. 

[71] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer, “DAG-based attack and defense 

modeling: Don’t miss the forest for the attack trees,” Comput. Sci. Rev., vol. 13–14, 

no. C, pp. 1–38, 2014. 

[72] Y. Wang, Y. Wang, J. Liu, Z. Huang, and P. Xie, “A survey of game theoretic 

methods for cyber security,” Proc. - 2016 IEEE 1st Int. Conf. Data Sci. Cyberspace, 

DSC 2016, pp. 631–636, 2017. 

[73] I. Musah, D. K. Boah, and B. Seidu, “A Comprehensive Review of Solution Methods 

and Techniques for Solving Games in Game Theory,” J. Game Theory, vol. 9, no. 2, 

pp. 25–31, 2020. 

[74] H. Liu, Y. Li, Z. Duan, and C. Chen, “A review on multi-objective optimization 

framework in wind energy forecasting techniques and applications,” Energy Convers. 

Manag., vol. 224, no. April, 2020. 

[75] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic 

algorithms : A tutorial,” vol. 91, pp. 992–1007, 2006. 



  

   120 

 

[76] K. D. and S. A. and A. P. and T. Meyarivan, “A fast and elitist multiobjective genetic 

algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, pp. 182–197, 2002. 

[77] K. Taha, “Methods that optimize multi-objective problems: A survey and experimental 

evaluation,” IEEE Access, vol. 8, no. 1, pp. 80855–80878, 2020. 

[78] N. Gunantara, “A review of multi-objective optimization: Methods and its 

applications,” Cogent Eng., vol. 5, no. 1, pp. 1–16, 2018. 

[79] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for 

engineering,” Struct. Multidiscip. Optim., vol. 26, no. 6, pp. 369–395, 2004. 

[80] G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, Comparison of multi-

objective optimization methodologies for engineering applications, vol. 63, no. 5. 

Elsevier Ltd, 2012. 

[81] Y. Rizk, M. Awad, and E. W. Tunstel, “Decision Making in Multiagent Systems : A 

Survey,” vol. 10, no. 3, pp. 514–529, 2020. 

[82] M. A. Alsheikh et al., “Markov Decision Processes With Applications in Wireless 

Sensor Networks : A Survey,” vol. 17, no. 3, pp. 1239–1267, 2015. 

[83] C. Kiennert, Z. Ismail, H. Debar, and J. Leneutre, “A survey on game-theoretic 

approaches for intrusion detection and response optimization,” ACM Comput. Surv., 

vol. 51, no. 5, 2018. 

[84] A. P. Patil, S. Bharath, and N. M. Annigeri, “Applications of Game Theory for Cyber 

Security System : A Survey,” vol. 13, no. 17, pp. 12987–12990, 2018. 

[85] C. T. Do et al., “Game theory for cyber security and privacy,” ACM Comput. Surv., 

vol. 50, no. 2, pp. 30–37, 2017. 

[86] X. Liang and Y. Xiao, “Game theory for network security,” IEEE Commun. Surv. 

Tutorials, vol. 15, no. 1, pp. 472–486, 2013. 

[87] Z. Zhou and H. Xu, “Deep Reinforcement Learning Based Intelligent Decision 

Making for Two-player Sequential Game with Uncertain Irrational Player,” 2019 

IEEE Symp. Ser. Comput. Intell. SSCI 2019, pp. 9–15, 2019. 

[88] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, 



  

   121 

 

2015. 

[89] Y. Long and H. He, “Robot path planning based on deep reinforcement learning,” 

2020 IEEE Conf. Telecommun. Opt. Comput. Sci. TOCS 2020, pp. 151–154, 2020. 

[90] M. Saeed, M. Nagdi, B. Rosman, and H. H. S. M. Ali, “Deep Reinforcement Learning 

for Robotic Hand Manipulation,” Proc. 2020 Int. Conf. Comput. Control. Electr. 

Electron. Eng. ICCCEEE 2020, 2021. 

[91] H. GÜLMEZ, “a Deep Reinforcement Learning Approach for Anomaly Network 

Intrusion Detection System,” no. September, pp. 5–10, 2019. 

[92] M. Lopez-martin, B. Carro, and A. Sanchez-esguevillas, “Application of deep 

reinforcement learning to intrusion detection for supervised problems,” Expert Syst. 

Appl., vol. 141, p. 112963, 2020. 

[93] J. Liao, T. Liu, X. Tang, X. Mu, B. Huang, and D. Cao, “Decision-making strategy on 

highway for autonomous vehicles using deep reinforcement learning,” IEEE Access, 

vol. 8, pp. 177804–177814, 2020. 

[94] Z. Zhou and H. Xu, “Switching Deep Reinforcement Learning based Intelligent 

Online Decision Making for Autonomous Systems under Uncertain Environment,” 

Proc. 2018 IEEE Symp. Ser. Comput. Intell. SSCI 2018, pp. 1453–1460, 2019. 

[95] T. Yang, L. Zhao, W. Li, and A. Y. Zomaya, “Reinforcement learning in sustainable 

energy and electric systems: a survey,” Annu. Rev. Control, vol. 49, pp. 145–163, 

2020. 

[96] M. Alabadi and Z. Albayrak, “Q-Learning for Securing Cyber-Physical Systems : A 

survey,” no. June, 2020. 

[97] A. Uprety, D. B. Rawat, and S. Member, “Reinforcement Learning for IoT Security : 

A Comprehensive Survey,” vol. 4662, no. c, pp. 1–14, 2020. 

[98] X. Liu, H. Xu, W. Liao, and W. Yu, “Reinforcement learning for cyber-physical 

systems,” Proc. - IEEE Int. Conf. Ind. Internet Cloud, ICII 2019, no. Icii, pp. 318–327, 

2019. 

[99] A. Shameli-sendi, H. Louafi, and W. He, “Dynamic Optimal Countermeasure 



  

   122 

 

Selection for Intrusion Response System,” vol. XX, pp. 1–14, 2016. 

[100] X. Li, C. Zhou, Y. Tian, and Y. Qin, “A Dynamic Decision-Making Approach for 

Intrusion Response in Industrial Control Systems,” IEEE Trans. Ind. Informatics, vol. 

15, no. 5, pp. 2544–2554, 2019. 

[101] S. Huang, C. Zhou, N. Xiong, S. Member, S. Yang, and S. Member, “A General Real-

Time Control Approach of Intrusion Response for Industrial Automation Systems,” 

IEEE Trans. Syst. Man, Cybern. Syst., vol. 46, no. 8, pp. 1021–1035, 2016. 

[102] Y. Guo et al., “Decision-Making for Intrusion Response : Which , Where , in What 

Order , and How Long ?,” 2020. 

[103] S. Hossain, S. Etigowni, K. Davis, and S. Zonouz, “Towards Cyber-Physical Intrusion 

Tolerance,” 2015 IEEE Int. Conf. Smart Grid Commun., pp. 139–144, 2015. 

[104] S. Huang, C. Zhou, S. Yang, and Y. Qin, “Cyber-physical System Security for 

Networked Industrial Processes,” vol. 12, no. December, pp. 567–578, 2015. 

[105] Y. Qin, Q. Zhang, C. Zhou, and N. Xiong, “A Risk-Based Dynamic Decision-Making 

Approach for Cybersecurity Protection in Industrial Control Systems,” IEEE Trans. 

Syst. Man, Cybern. Syst., vol. PP, pp. 1–8, 2018. 

[106] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE : A Game-

Theoretic Intrusion Response and Recovery Engine,” IEEE Trans. Parallel Distrib. 

Syst., vol. 25, no. 2, pp. 395–406, 2014. 

[107] S. Iannucci, O. D. Barba, V. Cardellini, and I. Banicescu, “A performance evaluation 

of deep reinforcement learning for model-based intrusion response,” Proc. - 2019 

IEEE 4th Int. Work. Found. Appl. Self* Syst. FAS*W 2019, pp. 158–163, 2019. 

[108] S. Iannucci and S. Abdelwahed, “Model-Based Response Planning Strategies for 

Autonomic Model-based Response Planning Strategies for Autonomic Intrusion 

Protection,” no. April, 2018. 

[109] K. Huang, C. Zhou, Y. Qin, and W. Tu, “A Game-Theoretic Approach to Cross-Layer 

Security Decision-Making in Industrial Cyber-Physical Systems,” IEEE Trans. Ind. 

Electron., vol. 67, no. 3, pp. 2371–2379, 2020. 



  

   123 

 

[110] J. Khoury and M. Nassar, “A Hybrid Game Theory and Reinforcement Learning 

Approach for Cyber-Physical Systems Security,” Proc. IEEE/IFIP Netw. Oper. 

Manag. Symp. 2020 Manag. Age Softwarization Artif. Intell. NOMS 2020, 2020. 

[111] S. Paul, Z. Ni, and C. Mu, “A Learning-Based Solution for an Adversarial Repeated 

Game in Cyber-Physical Power Systems,” IEEE Trans. Neural Networks Learn. Syst., 

vol. 31, no. 11, pp. 4512–4523, 2020. 

[112] S. Iannucci, V. Cardellini, O. Daniel, and I. Banicescu, “A hybrid model-free approach 

for the near-optimal intrusion response control of non-stationary systems,” Futur. 

Gener. Comput. Syst., vol. 109, pp. 111–124, 2020. 

[113] Z. S. Stefanova and K. M. Ramachandran, “Off-Policy Q-learning Technique for 

Intrusion Response in Network Security,” vol. 12, no. 4, pp. 266–272, 2018. 

[114] S. Iannucci, A. Montemaggio, and B. Williams, “Towards Self-Defense of Non-

Stationary Systems,” 2019 Int. Conf. Comput. Netw. Commun., pp. 250–254, 2021. 

[115] Y. Liu, M. Dong, K. Ota, J. Li, and J. Wu, “Deep Reinforcement Learning based 

Smart Mitigation of DDoS Flooding in Software-Defined Networks,” IEEE Int. Work. 

Comput. Aided Model. Des. Commun. Links Networks, CAMAD, vol. 2018-Septe, pp. 

1–6, 2018. 

[116] K. Malialis and D. Kudenko, “Distributed response to network intrusions using 

multiagent reinforcement learning,” Eng. Appl. Artif. Intell., vol. 41, pp. 270–284, 

2015. 

[117] V. Cardellini et al., “An Intrusion Response System Utilizing Deep Q-Networks and 

System Partitions,” SSRN Electron. J., 2022. 

[118] A. T. Arash Golabi, Abdelkarim Erradi, “Towards Automated Hazard Analysis for 

CPS Security with Application to CSTR System,” J. Process Control, 2020. 

[119] A. Hahn, A. Ashok, S. Sridhar, and M. Govindarasu, “Cyber-physical security 

testbeds: Architecture, application, and evaluation for smart grid,” IEEE Trans. Smart 

Grid, vol. 4, no. 2, pp. 847–855, 2013. 

[120] U.S. Department of Energy, “National SCADA Test Bed Enhancing control systems 



  

   124 

 

security in the energy sector PROTECTING,” 2009. 

[121] T. Inl and Idaho National Laboratory, “National SCADA Test Bed Substation 

Automation Evaluation Report,” 2009. 

[122] M. Bashendy, S. Eltanbouly, A. Tantawy, and A. Erradi, “Design and Implementation 

of Cyber-Physical Attacks on Modbus / TCP Protocol,” World Congr. Ind. Control 

Syst. Secur., 2020. 

[123] C. Deloglos, C. Elks, and A. Tantawy, “An Attacker Modeling Framework for the 

Assessment of Cyber-Physical Systems Security,” Lect. Notes Comput. Sci. (including 

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12234 LNCS, no. 

June, pp. 150–163, 2020. 

[124] J. Dunjó, V. Fthenakis, J. A. Vílchez, and J. Arnaldos, “Hazard and operability 

(HAZOP) analysis. A literature review,” J. Hazard. Mater., vol. 173, no. 1–3, pp. 19–

32, 2010. 

[125] V. Punnathanam, C. Sivadurgaprasad, and P. Kotecha, “On the performance of 

MATLAB’s inbuilt genetic algorithm on single and multi-objective unconstrained 

optimization problems,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp. 

3976–3981, 2016. 

[126] Z. Jinghui, H. Xiaomin, G. Min, and Z. Jun, “Comparison of performance between 

different selection strategies on simple genetic algorithms,” Proc. - Int. Conf. Comput. 

Intell. Model. Control Autom. CIMCA 2005 Int. Conf. Intell. Agents, Web Technol. 

Internet, vol. 2, no. January 2015, pp. 1115–1120, 2005. 

[127] “Define Reward Signals,” MathWorks. [Online]. Available: 

https://www.mathworks.com/help/reinforcement-learning/ug/define-reward-

signals.html#:~:text=To guide the learning process,of taking a particular action. 

[Accessed: 01-Mar-2022]. 

[128] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning Algorithms: A 

Comprehensive Classification and Applications,” IEEE Access, vol. 7, pp. 133653–

133667, 2019. 



  

   125 

 

[129] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-

Learning,” 30th AAAI Conf. Artif. Intell. AAAI 2016, no. September 2015, pp. 2094–

2100, 2016. 

[130] A. Mishra, “Tackling Exploration-Exploitation Dilemma in K-armed Bandits,” Nerd 

For Tech, 2021. [Online]. Available: https://medium.com/nerd-for-tech/tackling-

exploration-exploitation-dilemma-in-k-armed-bandits-598c0329cf88. 

 

 


	Dedication
	ACKNOWLEDGMENTS
	List of Tables
	LIST OF FIGURES
	LIST OF ACRONYMS
	Chapter 1 : Introduction
	1.1 Problem Statement
	1.2 Thesis Objective and Contributions
	1.3 Thesis Outline

	Chapter 2 : Background
	2.1 CPS Security Defense Mechanisms
	2.2 Attacks Taxonomy
	2.2.1 Attacks on Confidentiality
	2.2.2 Attacks on Integrity
	2.2.3 Attacks on Availability

	2.3 IRS Taxonomy
	2.3.1 Information Sources
	2.3.2 Decision-making Metrics
	2.3.3 Response Selection
	2.3.4 Risk Assessment
	2.3.5 Activity of Responses
	2.3.6 Prediction Ability
	2.3.7 Adjustment Ability
	2.3.8 Response Execution
	2.3.9 Attack Modelling
	2.3.10 Decision-making Models
	2.3.11 Optimization Problem Solution Approaches


	Chapter 3 : Overview on Conventional optimization and REINFORCEMENT Learning DECISION-Making approaches
	3.1 Decision-making Problem Description
	3.2 Overview on Conventional Optimization Methods
	3.2.1 Multi-objective Optimization Functions
	3.2.2 Markov Decision Processes
	3.2.3 Game Theory

	3.3 Overview on Reinforcement Learning Methods
	3.3.1 Reinforcement Learning (RL) Framework
	3.3.2 Deep Reinforcement Learning (DRL)
	3.3.3 Reinforcement Learning Taxonomy

	3.4 Conventional Optimization Vs RL Approaches

	Chapter 4 : Survey of Works on intrusion response systems
	4.1 Conventional Approaches for IRSs
	4.1.1 Multi-objective Optimization Functions Solutions
	4.1.2 Game Theory Solutions

	4.2 Reinforcement Learning Approaches for IRSs
	4.2.1 Model-based Solutions
	4.2.2 Model-free Solutions

	4.3 Summary, Limitations, and Discussions

	Chapter 5 : Modeling and Design of a CPS Testbed
	5.1 CPS Description
	5.1.1 Process Description
	5.1.2 Cyber System Description

	5.2 CPS Implementation
	5.2.1 Process Simulation
	5.2.2 Cyber System Implementation

	5.3 Modelling and Design of Cyberattacks
	5.3.1 Attacks Model
	5.3.2 Attack Scenarios
	5.3.2.1 Attack Scenarios for the GA-IRS Approach
	5.3.2.2 Attack Scenarios for the DRL-IRS Approach



	Chapter 6 : IRS Design Using Genetic Algorithm (GA-IRS)
	6.1 Single-objective Optimization Formulation
	6.2 Genetic Algorithm Framework
	6.3 Experimental Settings
	6.4 Case Studies
	6.4.1 Case Study 1
	6.4.2 Case Study 2
	6.4.3 Case Study 3
	6.4.4 Case Study 4

	6.5 Evaluation

	Chapter 7 : IRS Design Using Deep Reinforcement Learning (DRL-IRS)
	7.1 DRL-IRS Agent Architecture
	7.2 State Space
	7.3 Action Space
	7.4 Reward Function
	7.5 Double Deep Q Network (DDQN) Algorithm

	Chapter 8 : DRL-IRS Training Results and Evaluation
	8.1 Experimental Setup
	8.1.1 Deep Neural Network Architecture
	8.1.2 Replay Buffer
	8.1.3 Training Episodes
	8.1.4 Decaying Epsilon Greedy Approach

	8.2 Agent Training Experiments
	8.2.1 Experiment 1 (Exp1): Training results
	8.2.2 Experiment 2 (Exp2): Training results
	8.2.3 Experiment 3 (Exp3): Training results

	8.3 Agent Testing and Evaluation
	8.3.1 Testing the trained agent of Experiment 1
	8.3.2 Testing the trained agent of Experiment 2
	8.3.3 Testing the trained agent of Experiment 3

	8.4 Dataset Collection
	8.5 Challenges

	Chapter 9 : Conclusion and Futureworks
	References

