
QATAR UNIVERSITY

COLLEGE OF ENGINEERING

INTRUSION RESPONSE FOR CYBER-PHYSICAL SYSTEMS: A MODEL-FREE DEEP

REINFORCEMENT LEARNING APPROACH

BY

MAY SAED MOHAMED BASHENDY

A Thesis Submitted to

the College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computing

 June 2022

© 2022 May Bashendy. All Rights Reserved.

 ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of

May Bashendy defended on 11/05/2022.

Dr. Abdelkarim Erradi

 Thesis/Dissertation Supervisor

Dr. Khaled Khan

 Committee Member

Dr. Elias Bou-Harb

Committee Member

Dr. Ridha Hamila

Committee Member

Dr. Ahmed Massoud Abdou

Associate Dean of Research and Graduate Studies

Approved:

Khalifa Nasser Al-Khalifa, Dean, College of Engineering

 iii

ABSTRACT

BASHENDY, MAY, S., Masters: June : 2022,

Masters of Science in Computing

Title: Intrusion Response for Cyber-Physical Systems: A Model-Free Deep Reinforcement

Learning Approach

Supervisor of Thesis: Abdelkarim, E, Erradi.

Cyberattacks on Cyber-Physical Systems (CPSs) are on the rise due to CPS increased

networked connectivity, which may cause costly environmental hazards as well as human and

financial loss. Although the connectivity of CPSs has significantly improved production, it

introduced new vulnerabilities, which necessitate designing and implementing proper

automatic cybersecurity defensive mechanisms to protect CPSs from cyberattacks. This thesis

presents the design, implementation, and evaluation of a dynamic Intrusion Response System

(IRS) to automatically respond to false data injection attacks against a model-based CPS

testbed. The proposed IRS was designed using two approaches: an optimization approach

with Genetic algorithm and a model-free Deep Reinforcement Learning-based (DRL)

approach using Double Deep Q Networks (DDQN) algorithm. The proposed solutions are

evaluated on an online Continuous Stirred Tank Reactor (CSTR) testbed that mimics a real-

world CPS. Experimental results demonstrate the effectiveness of the proposed approaches in

responding to false data injection attacks and minimize the impact on the system. Finally, the

thesis highlights open research questions and sketches directions for future work.

 iv

DEDICATION

To mom and dad.

To my family for their prayers, love, and endless support.

To my friends for their encouragement and help.

 v

ACKNOWLEDGMENTS

I wish to express my sincere gratitude and appreciation to my supervisor Dr.

Abdelkarim Erradi for his guidance and support. My appreciation is also extended to Dr.

Ashraf Tantawy for his continuous help, encouragement, and valuable feedback. This work

would have never been possible without their assistance and supervision.

 vi

TABLE OF CONTENTS

DEDICATION ... IV

ACKNOWLEDGMENTS .. V

LIST OF TABLES ... IX

LIST OF FIGURES .. X

LIST OF ACRONYMS ... XII

CHAPTER 1 : INTRODUCTION ... 1

1.1 Problem Statement ... 3

1.2 Thesis Objective and Contributions ... 3

1.3 Thesis Outline .. 4

CHAPTER 2 : BACKGROUND ... 6

2.1 CPS Security Defense Mechanisms ... 6

2.2 Attacks Taxonomy ... 8

2.3 IRS Taxonomy ... 10

CHAPTER 3 : OVERVIEW ON CONVENTIONAL OPTIMIZATION AND

REINFORCEMENT LEARNING DECISION-MAKING APPROACHES 16

3.1 Decision-making Problem Description .. 16

3.2 Overview on Conventional Optimization Methods ... 18

3.3 Overview on Reinforcement Learning Methods .. 23

3.4 Conventional Optimization Vs RL Approaches .. 28

CHAPTER 4 : SURVEY OF WORKS ON INTRUSION RESPONSE SYSTEMS 31

4.1 Conventional Approaches for IRSs .. 31

4.2 Reinforcement Learning Approaches for IRSs .. 40

 vii

4.3 Summary, Limitations, and Discussions .. 50

CHAPTER 5 : MODELING AND DESIGN OF A CPS TESTBED 57

5.1 CPS Description ... 57

5.2 CPS Implementation .. 60

5.3 Modelling and Design of Cyberattacks .. 66

CHAPTER 6 : IRS DESIGN USING GENETIC ALGORITHM (GA-IRS) 74

6.1 Single-objective Optimization Formulation ... 74

6.2 Genetic Algorithm Framework .. 76

6.3 Experimental Settings .. 78

6.4 Case Studies ... 79

6.5 Evaluation .. 83

CHAPTER 7 : IRS DESIGN USING DEEP REINFORCEMENT LEARNING (DRL-IRS) 86

7.1 DRL-IRS Agent Architecture .. 86

7.2 State Space ... 87

7.3 Action Space .. 88

7.4 Reward Function .. 89

7.5 Double Deep Q Network (DDQN) Algorithm ... 91

CHAPTER 8 : DRL-IRS TRAINING RESULTS AND EVALUATION 94

8.1 Experimental Setup .. 94

8.2 Agent Training Experiments .. 97

8.3 Agent Testing and Evaluation .. 102

8.4 Dataset Collection .. 109

8.5 Challenges .. 109

 viii

CHAPTER 9 : CONCLUSION AND FUTUREWORKS ... 112

REFERENCES .. 113

 ix

LIST OF TABLES

Table 1. Intrusion Detection Techniques ... 8

Table 2. Decision-Making Metrics .. 11

Table 3. Summary of the Attack Modelling Approaches .. 14

Table 4. Advantages and Disadvantages of Widely Used Model-free RL Algorithms 27

Table 5. Advantages and Disadvantages of Decision-making Modelling Approaches 29

Table 6. Summary of Reseach Works on IRSs Using Conventional Solutions 38

Table 7. Summary of Research Works on IRSs using RL Solutions 48

Table 8. Advantages, Disadvantages, and Future Works of the IRSs Approaches.................. 54

Table 9. Attack Tree Attributes ... 67

Table 10. Partial HAZOP Sheet for the Reactor Process ... 69

Table 11. Categorical Classifications of the Reactor's Parameters’ ... 71

Table 12. Attack Scenarios Description for the GA-IRS solution ... 71

Table 13. Attack Scenarios Description for the DRL-IRS Solution .. 73

Table 14. Parameter Settings for the Conventional GA Approach .. 79

Table 15. Case Studies Description for the GA-IRS Appraoch ... 79

Table 16. Evaluating the Impact of GA Optimization in Reducing the Deviations................. 84

Table 17. Reward Symbols Description for the DRL-IRS approach 90

Table 18. Neural Network Architecture ... 94

Table 19. DRL-IRS Agent Training Experiments Description .. 97

Table 20. Parameters Settings Summary ... 102

Table 21. Experiment 1: Perfromance Evaluation ... 104

Table 22. Experiemnt 2: Performance Evaluation ... 106

Table 23. Experiment 3: Perfromance Evaluation ... 107

 x

LIST OF FIGURES

Figure 1. CPS operations [7] .. 2

Figure 2. Thesis outline schematic ... 5

Figure 3. The flow of the defensive mechanisms .. 7

Figure 4. Attacks taxonomy against CPSs ... 8

Figure 5. AIRS taxonomy .. 10

Figure 6. Decision-making problem architecture for intrusion response systems (X[n] includes

plant and cyber data, A[n] includes IDS-related data) ... 17

Figure 7. Classification of game theory modeling. Game theory modeling for cyber security is

highlighted in blue color .. 22

Figure 8. Machine learning taxonomy. The thesis’s focus is highlighted in blue.................... 24

Figure 9. The standard framework of RL .. 25

Figure 10. Reinforcement learning taxonomy. This thesis uses the algorithm path highlighted

in blue .. 27

Figure 11. Scopus: publications on RL for IRSs in CPSs .. 53

Figure 12. Reactor P&ID ... 58

Figure 13. Testbed architecture .. 60

Figure 14. Process simulation model in MATLAB/Simulink ... 61

Figure 15. Process simulation for the reactor in LabVIEW (front panel) 61

Figure 16. Process simulation for the reactor in LabVIEW (block diagram snippet) 62

Figure 17. Modbus/TCP ADU ... 63

Figure 18. HMI for the reactor process (front panel) ... 64

Figure 19. HMI for the reactor process (snippet block diagram) ... 65

Figure 20. Attack tree model against CPS using Modbus/TCP protocol 66

Figure 21. Attack attributes vs attacker profile. The attack attributes define the required

resources and knowledge required for a successful attack... 68

Figure 22. Execution time distribution for different attacker profiles 68

Figure 23. False data injection attack... 72

 xi

Figure 24. Flowchart of the Genetic algorithm (GA) .. 78

Figure 25. Case study 1: Random policy approach ... 80

Figure 26. Case study 2: GA optimization for S = [380,0.5] scenario 81

Figure 27. Case study 3: GA optimization for S = [436.8,1.88] scenario 82

Figure 28. Case study 4: GA optimization for S=[477, 1.35] scenario 83

Figure 29: DRL-IRS Agent on a CPS testbed architecture .. 87

Figure 30. General framework of the DDQN algorithm .. 92

Figure 31. Mini-batch training ... 95

Figure 32. Exploration-Exploitation dilemma [130] .. 96

Figure 33. Experiemnt 1: Learning curve .. 99

Figure 34. Experiment 2: Learning curve .. 100

Figure 35. Experiemnt 3: Learning curve .. 102

Figure 36. Agent training - failed attempt example (results after 5 training days) 111

 xii

LIST OF ACRONYMS

CPS Cyber Physical System

ICT Information and Communication Technology

CSTR Continuous Stirred Tank Reactor

IPS Intrusion Prevention System

IDS Intrusion Detection System

IRS Intrusion Response System

AIRS Automatic Intrusion Response System

ML Machine Learning

RL Reinforcement Learning

ReLU Rectified Linear Unit

DNN Deep Neural Network

DQN Deep Q Network

DDQN Double Deep Q Network

GA Genetic Algorithms

NSGA Non-dominated Sorting Genetic Algorithms

VI Value Iteration

MITM Man in The Middle

DoS Denial of Service

MDP Markov Decision Process

HMI Human Machine Interface

BPCS Basic Process Control System

SIS Safety Instrumented System

PID Piping & Instrumentation Diagram

PDF Probability Density Function

CDF Cumulative Distribution Function (CDF)

POS Pareto Optimal Solution

CVSS Common Vulnerability Scoring System

 xiii

SDG Service Dependency Graph

MLBN Multilevel Bayesian Network

MOOP Multi-objective optimization problem

ADT Attack Defense Tree

GPU Graphics Processing Unit

TTR Time to Recover

C Hazard Cost

Acost Availability Cost

P Profit per second

PP Production Profit

t Sampling time

M Scaling factor

N Scaling factor

Z Scaling factor

𝑹𝑮𝑨 The reward function used for the GA-IRS approach

𝑹𝑫𝑹𝑳 The reward function used for the DRL-IRS approach

Exp1 Experiment 1

Exp2 Experiment 2

Exp3 Experiment 3

HL Hidden Layer

 1

CHAPTER 1: INTRODUCTION

Cyber-Physical Systems (CPSs) integrate a physical plant with different embedded

computing, communication networks, and human interfacing to monitor and control a process

[1]. CPSs domains include manufacturing, energy, transportation, and health care. Originally,

these systems were not considered vulnerable since they were designed to operate at

physically isolated locations that run on proprietary hardware and software. However, with

the recent evolution in information and communication technology (ICT), these systems have

been networked to integrate them with corporate systems and enable remote access

capabilities. In addition, to enable communication and interoperability between the different

CPS components, open standard industrial protocols such as Modbus, DNP3, and CIP are

used. Unfortunately, these protocols lack sufficient security mechanisms, such as encryption

and authentication [2]. Consequently, such vulnerabilities have exposed CPSs to new security

threats and made them an easy prime target for cyberattacks that aim to gain unauthorized

access to the control network and cause disturbances/hazards in the physical process. The

work in [3], [4], [5], and [6] studies and summarizes the different cyberattacks against CPSs.

According to [7], Figure 1 illustrates the general basic operations of CPSs. The

controller utilizes sensing and actuation components to control the process. The sensors and

actuators are connected to one or more controllers, where the control algorithms are

implemented. The controller receives and interprets the sensors' signals. Then, based on the

control logic and the target set points, the controller sends the suitable values to the actuators

to adjust the state of the process. The operator can use the HMI to monitor and configure the

process. Further details on CPSs components, architecture, protocols, vulnerabilities, and

testbeds are available in [8], [9], and [10].

 2

Figure 1. CPS operations [7]

 Since CPSs are typically mission-critical systems, they are intolerant to errors or

delays, which can cause catastrophic human, economic, and financial loss if no proper

detection and response mitigation mechanisms are applied. Intrusion Detection Systems

(IDSs) for a CPS have been extensively considered and studied in the literature [11], [12],

[13], [14], [15], and [16]. However, they are not sufficient alone to protect CPSs.

Accordingly, IDSs must be combined with IRSs to provide effective security protection for

CPSs.

 Intrusion Response Systems represent an essential protection layer for CPSs. They are

responsible for automatically selecting and deploying optimal responses to mitigate the

impact of the detected attack and keep the process in a safe state without any human

intervention. Nevertheless, despite their necessity in securing CPSs, they have received less

attention from the research community. This is because the design of IRSs is very complex

and dangerous since poorly designed ones can result in higher damage than the damage of the

intrusion itself. Besides, most of the studies that consider the design of IRS in a CPS focus on

model-based approaches, which are challenging to design, time-consuming, and not accurate

nor suitable for large systems. Also, most of these studies considered actions on only one

level at a time, either the cyber level or the process level. Accordingly, designing an IRS for

CPS that is model-free, which does not require a deep understanding of the process’s

 3

implementation details, generalizes to unseen situations, handles high-dimensional data, and

combines different action levels is highly needed. In this thesis, a novel model-free deep

reinforcement learning-based intrusion response agent for a CPS, that considers

simultaneously cyber and physical actions, is designed using DDQN to mitigate the effect of

false data injection attacks.

1.1 Problem Statement

The increased adoption of networked systems in critical infrastructures has made

CPSs vulnerable to cyberattacks, which could cause catastrophic financial and human loss.

Thus, CPSs should have the ability to respond at runtime to detected malicious attacks by

performing appropriate defensive actions. To the best of our knowledge, there aren't much

research works that focus on studying the application of reinforcement learning in intrusion

response systems, especially for CPSs. For that reason, this thesis focuses on investigating the

applicability of having a model-free deep reinforcement learning agent for building an

intrusion response system using the DDQN algorithm for a CPS testbed. The designed

intrusion response agent considers both cyber level and process level actions to mitigate the

effect of false data injection attacks. More specifically, this thesis works towards answering

the following two research questions:

• How can model-free deep reinforcement learning be adopted for building effective

IRS for a given CPS testbed?

• Are model-free deep reinforcement learning intrusion response systems effective for

cyber physical systems?

1.2 Thesis Objective and Contributions

The main objective of this thesis is to design an intrusion response system capable of

automatically selecting optimal actions and responding to false data injection attacks against a

CPS testbed. It is a dynamic IRS that reasons about an ongoing attack based on the observed

alerts and determines an appropriate response to take. In this thesis, the problem of intrusion

response in CPSs is tackled using two different approaches. In the first approach, we

introduce the GA-IRS, an intrusion response system based on a conventional Genetic

 4

algorithm. The second approach, which is the main focus of the thesis, is the DRL-IRS, an

intrusion response system based on a model-free deep reinforcement learning DDQN

algorithm. Accordingly, the main contributions of this thesis can be summarized as follows:

1. Present a taxonomy of IRSs design approaches based on different design parameters.

2. Review the state of the art on IRSs for CPSs and non-CPSs using both conventional

optimization-based approaches and Reinforcement Learning (RL)-based approaches.

3. Model and design of a CPS testbed

4. Model and design of cyberattacks against the CPS testbed using an attack tree model.

5. Design an intrusion response system using Genetic algorithm

6. Setting up an RL environment and integrating it with the CPS testbed.

7. Design a novel model-free deep reinforcement learning intrusion response agent for a

CPS testbed using DDQN algorithm.

8. Collect a representative dataset that includes the <state, action, next state, reward>

tuples to be used for future offline approaches using RL.

9. Evaluate the performance of the proposed solution.

10. Discuss open challenges and possible directions for future research work in the area.

Note that Contributions 1 and 2 are compiled into a journal publication under review

titled “Intrusion Response Systems for Cyber-Physical Systems: A Comprehensive

Survey” and submitted to Journal of Computers and Security. Moreover, contributions 3

and 4 were compiled into a conference paper titled “Design and Implementation of

Cyber-Physical Attacks on Modbus/TCP Protocol” which was published in the World

Congress on Industrial Control Systems Security Conference (WCICSS-2020). Also,

contributions 6 and 7 are compiled into a journal publication titled “Intrusion Response

for Cyber-Physical Systems: A Model-Free Deep Reinforcement Learning Approach”

and submitted to Journal of Network and Computer Applications.

1.3 Thesis Outline

The content of this thesis is divided into nine chapters to address the defined

objectives and contributions. A schematic illustration of the thesis outline is shown in Figure

 5

2. The figure starts with Chapter 1 which introduces CPSs, IRSs, the problem statement,

thesis objectives, and thesis contributions. Chapter 2 provides background information on

CPS cybersecurity, attacks taxonomy, and IRS taxonomy. Chapter 3 reviews and compare the

different conventional and RL-based decision-making approaches. Chapter 4 surveys the

state-of-the-art solutions and pinpoints the limitations in the literature. Chapter 5 models and

describes the used CPS testbed with its architecture, components, communication, and

designed cyberattacks. The proposed solution methodology of the intrusion response system

problem is then solved in Chapter 6 and Chapter 7. Chapter 6 solves the IRS problem using a

Genetic algorithm approach, while Chapter 7 solves it using a model-free deep reinforcement

learning approach applying the DDQN algorithm. The experimental scenarios, training

results, evaluation, challenges, and dataset collection are presented in Chapter 8. Finally,

Chapter 9 concludes the thesis and highlights the future directions.

Figure 2. Thesis outline schematic

 6

CHAPTER 2: BACKGROUND

This chapter starts with the motivation behind the necessity of designing and

implementation proper automatic cybersecurity defensive mechanisms to protect CPSs from

cyberattacks. It then provides a comprehensive attacks taxonomy and IRS systems taxonomy.

2.1 CPS Security Defense Mechanisms

CPS security is an ever-growing area of research for protecting CPSs from intruders

who threaten the integrity and the availability of the physical process. It involves securing all

the machines that communicate over the network, the physical hardware, and the data transfer

between the different nodes. The work in [17], [18], [19], and [20] reviews and discusses the

cybersecurity challenges and the different solutions to address the shift of control systems

from stand-alone systems to unsecure networked CPSs.

Not all cybersecurity mechanisms used to protect Information Technology (IT)

systems are suitable nor directly applicable to CPSs. This owes to the fact that CPSs integrate

the cyber and the physical worlds, while IT systems only have cyber interactions.

Accordingly, the connection with the physical world in a CPS has unique security

requirements different from those found in traditional IT systems. For example, IT systems

focus on maintaining the confidentiality security goal as the highest priority. However, in

CPSs, the real-time availability and integrity of the physical devices have the highest priority.

Also, the safety requirement of a CPS is much higher than that of an IT system. Besides,

CPSs are more prone to security risks at different network levels and intolerable to errors or

delays. Hence, mapping the security solutions of ITSs to CPSs is not ideal because they were

not intended originally for them. This clearly illustrates why CPS security is more complex

than IT security and hence, is currently an active research field. Interested readers can refer to

[21] for more analysis on the vulnerabilities and threats facing critical CPSs.

According to [22], many countries have suffered from catastrophic cyberattacks

against their CPSs. For example, in 2012, Qatar’s RasGas oil company was attacked by a

virus that brought down all the company’s computers and forced a close until recovery [23].

The authors in [24] also mentioned the DDoS BlackEnergy Malware that targeted the

 7

Ukrainian Power-grids for political motives in 2015. The Stuxnet worm and the Shamoon

virus targeted Iran’s nuclear infrastructure in 2010 and Saudi Arabia’s oil production plant in

2012, respectively [25]. The United Arab Emirates (UAE) also suffered from Malware that

targeted their energy sector in 2015. Furthermore, the authors in [26] highlighted more

incidents against CPSs, such as the attack on the German steel factory in 2014, which caused

massive damages because the plant was unable to perform the safety shutdown procedures.

In light of the previously mentioned threats, researchers emphasize the need to deploy

well-designed and robust defensive security systems to secure critical cyber-physical

processes. Figure 3 shows the recommended flow of defensive security mechanisms, which

includes a prevention phase, detection phase, response phase, and forensics phase. In the

prevention phase, the Intrusion Prevention Systems (IPSs) continuously monitor the process

and generate proactive responses to prevent intrusions. In the detection phase, IDSs generate a

passive alert response after identifying deviations in the traffic by using different detection

techniques as summarized in Table 1. More details on the different IDS techniques and

classifications are reported in [27], [28], and [29]. In the response phase, IRSs generate a

reactive response in a timely manner to handle intrusions and mitigate their effect on the

attacked system. The design of IRSs is the most complex and challenging part since poorly

designed ones can result in higher damage than the damage of the intrusion itself. In the

forensics phase, the security teams investigate the logged data from the previous phases to

understand what had happened and how similar events can be avoided in the future.

Figure 3. The flow of the defensive mechanisms

 8

Table 1. Intrusion Detection Techniques

Detection

Technique

Type IDS Description

Knowledge

based

Signature based Looks for defined attack patterns in the traffic

Protocol analysis Identifies deviations of the protocol states/specification

Behavior

based

Rule based

Detects an attack only if has a specific rule to detect it

Process analysis Uses the physical models to predict the expected output

Statistical

techniques

Uses statistical methods to determine deviations from

the normal expected behavior

Machine learning

techniques

Learns from data and makes predictions based on them

In this thesis, the main focus is to investigate and design the response phase of the

defensive mechanisms. Accordingly, it reviews existing conventional and reinforcement

learning based decision-making solutions for IRSs. Also, it designs a novel model-free DRL-

based agent to automatically respond to false data injection attacks against a CPS testbed.

2.2 Attacks Taxonomy

Figure 4 classifies attacks according to their targeted security objective into

confidentiality, integrity, and availability attacks, which are summarized below:

Figure 4. Attacks taxonomy against CPSs

 9

2.2.1 Attacks on Confidentiality

Attacks on confidentiality, also referred to as reconnaissance attacks, are information

gathering attacks. These attacks are the initial steps that attackers take to discover, study,

analyze, and collect information about the targeted network before developing any

sophisticated attacks [30]. During this phase, the attacker can know the network

capabilities, network topologies, hosts with their IP and MAC addresses, used protocols,

running services, open ports, etc. The work in [31] studies the different types of

reconnaissance attacks and mentions some applicable detection and mitigation

techniques.

2.2.2 Attacks on Integrity

Attacks on integrity involve unauthorized manipulation, injection, or modification of

the data and the system resources. It occurs when the attacker compromises the

communication channel between two components and intercepts exchanged messages.

This enables several attacks, including Man in The Middle attack (MITM) that modifies

packets payload and replay attack that plays back old stale recorded messages. These data

tampering attacks are serious threats, particularly to CPSs. The work in [32] identifies

data integrity attacks in terms of their criticality, strategy, detection approaches, and

countermeasure recommendations.

2.2.3 Attacks on Availability

Attacks on availability, such as Denial of Service (DOS) attacks, involve crashing a

target device or a communication connection by either flooding the target with enormous

noise traffic or changing some of the fields of the transmitted packets. Accordingly, the

target will not be able to perform its normal intended services and will eventually halt all

the services running on it, which may cause catastrophic impacts. Several studies show

the vulnerability of cyber-physical systems to availability attacks, such as DoS, including

the work in [33] that models and assesses DoS attacks to sensors and actuators of a CPS.

 10

2.3 IRS Taxonomy

Response systems are considered extremely important yet challenging to design due to

the complexity of the CPS network and the complexity of attacks. IRSs are categorized based

on their different design parameters according to [34], [35], [36], [37], and [38]. Initially,

depending on their level of automation, they are divided into notification, manual, and

automatic systems. In the notification systems [39], similar to an IDS, the IRS generates an

alert to the operators, who are responsible for deciding on a suitable mitigation action to stop

the attack. In the manual systems, the IRS generates a list of possible predefined

countermeasures to mitigate the detected attack and sends it to the operators to choose from.

Both notification and manual systems introduce delays between detection and response time.

In the automatic intrusion response systems (AIRSs) [40], which is the focus of this

taxonomy, the optimal response is selected and executed automatically without the need for

any human intervention. This makes AIRSs suitable for the time and availability demands of

CPSs. Figure 5 summarizes the evolution of the IRSs area, with its different cyber-response

solution approaches. These classifications are briefly explained below:

Figure 5. AIRS taxonomy

 11

2.3.1 Information Sources

Intrusion response systems expect inputs from different information sources,

including the monitored system and the different detection tools, such as IDS. From the

monitored system, valuable information can be extracted, such as the system data,

network topologies, and asset configurations. From an IDS, the IRS can collect intrusion

alerts, intrusion confidence level, intrusion severity level, and so on. These collected

information aids the IRS in selecting the optimal response.

2.3.2 Decision-making Metrics

Various metrics can be considered in the response selection process. They are

classified into three different categories, which are attack-related, response-related, and

system-related. Examples for each metric type are shown in Table 2. IRSs use either one-

type metric or a combination of different metrics to build a more effective response

system. For more detailed analysis of the different decision-making metrics, the reader

can refer to [41], [42], and [43].

Table 2. Decision-Making Metrics

Type Metrics

Attack-related Frequency, type, confidence, time, and severity

Response-related Cost, time, negative impact, positive effect, and goodness

System-related Importance of assets

2.3.3 Response Selection

AIRSs have three response selection techniques to map the detected attacks with their

suitable responses, which are static, dynamic, and cost-sensitive mappings. In static

mapping, each attack is mapped to a specific predefined response through a mapping

table. This strategy is implemented by SNORT [44]. In dynamic mapping, each attack is

mapped to a predefined set of responses in which the optimal response is chosen based on

the attack-related decision metrics. This shows that it is possible to have different

countermeasures to the same attack type. The authors in [45] utilize the dynamic mapping

 12

approach when designing their response strategy model. In cost-sensitive mapping, the

response selection process takes into consideration the countermeasure cost and the

intrusion damage cost, which are not considered in static and dynamic mapping. A

response is then chosen only if its cost is less than the intrusion damage as implemented

in [46] and [47].

2.3.4 Risk Assessment

Risk assessment is used by automatic cost-sensitive IRSs and is categorized into

offline assessment and online assessment. In offline/static risk assessment as in [48], an

IRS calculates the risks on the system in advance depending on static values that are

assigned by experts on every asset in the network. On the other hand, online/dynamic risk

assessment calculates the risk in attack time, taking into consideration the dependencies

between the different assets and the current number of users using them as in [49]. Three

approaches are used in the online assessment, which are attack graph-based [50], service

dependency graph-based [51], and non-graph based [52]. The authors in [53] and [54]

review and propose different risk assessment methods.

2.3.5 Activity of Responses

Responses can be either passive or active. Active responses change the state of the

environment/system to effectively block the attack and mitigate its negative impact. The

work in [55] is one of the examples that use active actions. On the other hand, passive

ones do not change the state of the environment. They only notify operators and raise

alerts. The work in [56] and [57] enumerate the different possible actions for each type.

2.3.6 Prediction Ability

AIRSs are classified into reactive and proactive systems in regard to the considered

response time. In the reactive designs (e.g.,[58]), the response is generated only after

receiving an alert from the detection system. However, in the proactive designs as in [59],

the AIRS deploys a prediction mechanism to be able to respond and control any malicious

activities before being detected.

 13

2.3.7 Adjustment Ability

Depending on the adjustment ability, AIRSs are categorized into adaptive and non-

adaptive systems. In the adaptive AIRSs [60], the effectiveness/goodness history of the

responses is considered when choosing the optimal response. This helps the AIRS to

develop an optimal ordered set of responses over time. On the other hand, non-adaptive

AIRSs, such as the work in [61], do not have mechanisms for adjusting and learning from

the success/failure history of the responses when being selected.

2.3.8 Response Execution

Depending on the response execution method, AIRSs are classified into burst and

retroactive modes. In the burst mode [62], there is no mechanism to evaluate the effect of

the response after being deployed on the system. This could be a huge risk because the

IRS has no clue whether the deployed responses were enough to neutralize the attack or

not, which could lead to deploying many limiting responses when a subset of them would

have been enough to mitigate the attack. In contrast, the retroactive mode checks the

effect of the deployed response and only executes further responses when the system

needs them. As an example, the authors in [63] and [64] consider a retroactive approach.

2.3.9 Attack Modelling

Attack modelling approaches are visual diagrams that model the attacker's behavior in

an IRS. They are divided into four main approaches, which are attack graphs, attack trees,

multilevel Bayesian networks, and service dependency graphs. The work in [65], [66],

and [67] exemplifies how these techniques are used, which is usually in the risk

assessment phase to obtain/calculate the different decision-making metrics, such as the

attack damage. Unfortunately, despite their popularity, they do not have a standardized

visual representation. Accordingly, the representation of their components changes with

the system description. Table 3 summarizes the analyzed modelling techniques by

highlighting their advantages and disadvantages. For more detailed information on the

different modelling formalisms, the reader is advised to refer to [68], [69], [70], and [71].

 14

Table 3. Summary of the Attack Modelling Approaches

Modelling

Approach

Description Advantages Disadvantages

Attack graphs

(AGs)

Show the possible

attack paths that an

attacker can use to

reach a target.

Vertices represent

states and edges

represent transitions

among the states

-Help in measuring

the system’s risk

-Can represent

multiple attacks

-Some tools are

available to generate

up-to 1000-node

graphs

automatically

-Not suitable for big

networks

-Not suitable for

zero-day attack

modelling

Attack trees

(ATs)

Show the system

states and how they

can be attacked.

Intermediate nodes

are connected with

AND/OR gate to

create multiple

paths to reach the

attacker’s goal (root

node)

-Simple to use

-Can be combined

with other models

-Includes some

descriptive

attributes, such as

the attack

likelihood, the cost

of exploitation, the

time needed to

exploit, and the

required knowledge.

-Have other

extensions to enable

more features

-Challenging to map

attacks to defenses

-Identify high level

details, not specific

attack-related ones

-Require constant

updating and

maintenance

-Limited as they can

only represent a

single attack

-Very complex to be

used for large

systems

Multilevel Bayesian

Networks

(MLBNs)

Show propagation

of cyberattacks with

exploit probabilities

on the edges

-Modeling

uncertainties

-It is used to assess

the risk caused by

attacks

-Same limitations of

the attack graphs

-Require experts to

assign the

probabilities

Service Dependency

Graphs (SDGs)

Show the

dependency

relationship

between the

different services in

a system

-Show the

functional

dependencies

between the

different services

-Reveal how

attacking a service

can affect other

dependent one in

terms of the CIA

aspects

-Very complex for

large systems

-Require full deep

knowledge of the

system and the

available services

-Need experts to

define the

dependencies

2.3.10 Decision-making Models

An intrusion response decision-making model is used to formulate the selection

problem of the optimal countermeasure action. The selection problem is usually based on

 15

the current system state, a set of actions, a reward function that finds a trade-off among

different decision-making metrics. For an IRS, the environment can be modeled using

single-objective or multi-objective optimization functions, Markov decision processes,

and game theory models [72]. Besides these conventional methods, reinforcement

learning-based approaches, especially model-free ones, have been recently explored to

design IRSs for unknown or known environments. More descriptive details on each

approach are given in Chapter 3.

2.3.11 Optimization Problem Solution Approaches

There are several techniques to solve the response selection problems based on the

considered modelling approach. For the single/multi-objective optimization functions,

Pareto optimality is considered one of the most popular solution methods. For game

theoretic problem models, Nash equilibrium, Genetic algorithms, and linear programming

are some of the solution approaches that are used [73]. Recently, the usage of

reinforcement learning algorithms has been invading the IRSs field. It is different from

the conventional solution methods since it generalizes much better, usually has higher

accuracy, and most importantly, can work without a system model

 16

CHAPTER 3: OVERVIEW ON CONVENTIONAL OPTIMIZATION AND

REINFORCEMENT LEARNING DECISION-MAKING APPROACHES

In this chapter, we start by describing the IRS decision-making problem that we aim

to solve. Then we provide a fundamental overview on the three conventional decision-making

models utilized in the literature. Also, this chapter describes the RL framework, DRL basics,

RL taxonomy, and ends with a comparison between conventional optimization methods and

DRL approaches in solving decision-making problems. The aim of this overview is to help

the reader to understand the basic theories behind the solutions reviewed in Chapter 4.

3.1 Decision-making Problem Description

At first, let’s present and visualize the decision-making problem for the IRS that we

are aiming to solve by considering different modelling approaches. Figure 6 shows the main

parts of an IRS, which are the monitored CPS environment and the defensive agent. A cyber

physical system contains the physical plant and the control system, which communicate

together through the communication network layer using open-standard protocols such as

Modbus. The plant sends sensor-measured states, while the control system sends back the

appropriate actuator actions. The Attacker is an outsider or sometimes insider entity who

gains rewards by threatening the security of the CPS by either exploiting vulnerabilities in the

system design or well-known ones in the used communication protocols. The IDS comes into

the picture when an attack happens. It receives all the observations coming from the CPS in

vector X[n] to monitor the system's activity. Those observations are the states of the system,

which include both cyber-level data and process-level data. Once a malicious activity is

encountered by the IDS, it generates an alert that triggers the activation of the IRS.

The IRS agent receives a threat detection and alert generation vector A[n] from the

IDS, including IDS-related data, such as the confidence level, attack severity, and attack type.

The IRS optimizer block, which is the algorithm used to find the optimal solution, uses these

values to guide the risk assessment procedure embedded in it. Simultaneously, the agent

receives the states vector X[n] that represents the attacked CPS environment. The IRS policy,

which is the focus of our thesis, is responsible for selecting optimal actions for each of the

 17

received states. After deploying the action, the environment returns a reward that indicates the

goodness of the deployed action. The state, chosen action, and received reward are sent to the

IRS optimizer to guide its learning procedure. Accordingly, the IRS optimizer updates the

policy by either encouraging the same action or discouraging it in future similar scenarios.

Following that, the environment moves to a new state and the same procedures are repeated

until the agent is well-trained.

Figure 6. Decision-making problem architecture for intrusion response systems (X[n] includes

plant and cyber data, A[n] includes IDS-related data)

 18

The modelling part, which is the focus of this chapter, comes in the system model

block at the bottom of Figure 6. When your CPS environment is known, a prediction system

model helps the IRS optimizer to find the optimal policy for different scenarios. This

prediction model gives the agent information about promising actions, future states, and

rewards. The system model block could include the attacker model, the defender model, or

both. Modelling the attacker behaviour can be done using the techniques mentioned earlier in

Table 3. Attacker modelling helps in assessing the risk on the system and knowing the best

positions for defense points. This is done by showing the propagation of the attack, the system

vulnerabilities, and the possible attack paths with their likelihoods to reach different targets.

For defender modelling, the multi-objective optimization functions, Markov decision process,

and game theory, are the most widely used conventional decision-making methods.

Moreover, Model-based reinforcement learning have been recently used in intrusion response

system decision-making problems. They model the relationship between a defender agent and

its environment by capturing the dynamics of the environment and defining the defender’s

objectives in terms of states, actions, rewards, and transition probabilities. In addition, game

theory models the interaction between the attacker and the defender in a game format until it

can reach Nash equilibrium.

Ultimately, solving this decision-making problem aims to present a more resilient

CPS against advanced cyberattacks. The presented approaches are divided to conventional

methods and reinforcement learning methods as summarized below:

3.2 Overview on Conventional Optimization Methods

3.2.1 Multi-objective Optimization Functions

Real-world optimization problems are naturally complex problems that require

several conflicting objectives to be optimized at the same time. Therefore, single-

objective functions are not applicable in most cases. Real-life problems are modeled as

multi-objective optimization problems (MOOPs) if having up to 3 objective functions and

many-objective optimization problems (MaOPs) if they are more than 3. An optimization

problem is defined to get the minimum or maximum of functions with some specified

 19

constraints. Accordingly, a MOOP can be defined as follows:

𝑚𝑖𝑛/𝑚𝑎𝑥 𝐹(𝑥) = (𝑓1(𝑥), … , 𝑓𝑚(𝑥)) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑋 Equation 1

Where 𝐹(𝑥) is the vector of objective functions, 𝑚 is the number of objective

functions considered, and 𝑋 is the set of feasible decision vectors.

To solve a MOOP with 𝑚 objective functions, trade-off solutions are required to

satisfy the different competing objectives. Pareto optimality is one of the widely used

approaches to solve a MOOP. It provides Pareto Optimal Solutions (POSs), which are the

solutions that are not dominated by any other solution in a solution set as they are all

considered equally good. This happens when one objective function cannot be improved

further without worsening another objective function.

The algorithms that are used to find the POSs are categorized into several groups,

such as evolution and swarm intelligence, as presented in [74]. One of the widely used

group of algorithms that proved their effectiveness in solving MOOPs are the Multi-

Objective Evolutionary algorithms (MOEAs) [75]. For example, the Non-dominated

Sorting Genetic algorithms (NSGA-II [76] and NSGA-III) have been exhaustively used in

the literature because of their promising ability in generating a set of well-converged,

diversified, and non-dominated POSs to the conflicting objectives in a single run. After

finding the POSs, each algorithm considers different selection technique to choose the

most optimal solution from the POSs. Based on the different selection techniques,

algorithms are classified into Dominance-based algorithms, Decomposition-based

algorithms, and Indicator-based algorithms. These techniques are extensively explained

and compared in [77].

It is important to note that no one algorithm fits all optimization problems. The

performance of the algorithms depends heavily on the considered objective functions.

Consequently, the suitable choice of algorithms based on the problem at hand is very

important since it significantly affects the required computational time and the number of

iterations needed for convergence. Readers may refer to [78], [79], and [80] for more

details on the usage of multi-objective optimization functions in decision-making.

 20

3.2.2 Markov Decision Processes

A Markov Decision Process (MDP) is an optimization approach that models decision-

making under uncertainty of an agent interacting with an environment. In comparison

with Markov chains, MDPs extend them by adding actions and rewards. Also, MDPs

satisfy the Markovian property, which ensures that taking an action only depends on the

current state.

MDPs are defined with the following tuple < 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 >, where 𝑆 is the state

space (𝑠 ∈ 𝑆), 𝐴 is the action space (𝑎 ∈ 𝐴), 𝑃 is the transition probability that represents

the probability of changing the environment from state 𝑠 to a new state 𝑠′ based on the

performed action 𝑎 on state 𝑠 𝑝(𝑠, 𝑠′) = 𝑝(𝑠𝑡+1 = 𝑠′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎), 𝑅 is the immediate

reward of choosing action 𝑎 in state 𝑠, and 𝛾 is the discount factor that controls the

importance of future rewards in a way that the agent cares more about present reward

than future ones as 𝛾 increases (𝛾 = [0,1)).

Solving a MDP means to find the optimal policy, which is the optimal mapping

between states and actions, that maximizes the cumulative discounted reward function.

Different approaches can be used to solve a MDP, such as dynamic programming, linear

programming, and approximation methods. However, these approaches can only be used

if the transition probabilities 𝑇 are known. Unfortunately, in real world problems, the

transition probabilities 𝑇 and the rewards 𝑅 are usually unknown. Accordingly,

reinforcement learning algorithms, which are applicable for both model-based and model-

free problems, have been recently proposed to solve the incomplete MDP and find

optimal policies with inaccurate or no knowledge of the system model. For more

information about the different solving algorithms, the reader is referred to the work in

[81].

There are several extension variants of MDPs, such as the competitive Markov

decision process (CMDP), the constrained MDP, and the partially observable Markov

decision process (POMDP). More details on the variants are available in [82].

 21

3.2.3 Game Theory

Game theory is a mathematical approach to model the interaction between rational

decision-makers in different situations [83]. A game is described by four basic elements:

• Players: Individuals or entities who make decisions. In cyber security, players are

typically the attacker and the IRS.

• Actions: Decisions made by each player based on the current state of the game.

For cyber attackers, actions could represent attack steps such as password crack,

or machine compromise. For the IRS, actions could include specific IP address

blocking, applying a security patch, or shutting down a compromised machine.

• Payoff: The return that each player gets after taking the chosen sequence of

actions. It could be positive or negative, depending on whether the return is a gain

or a loss.

• Strategies: The guide to the actions that are taken by each player based on the

available information about the game. The strategy could be pure, in which the

player takes the same action for the same given information, or mixed, where the

player picks an action randomly according to a pre-defined probability

distribution over a finite set of actions.

Equilibrium is one of the key concepts in game theory. An equilibrium is a set of

strategies, one strategy for each player, such that none of the players can improve their

payoff by unilaterally deviating from the selected strategy. Figure 7 illustrates the

different game classifications summarized below:

 22

Figure 7. Classification of game theory modeling. Game theory modeling for cyber security is

highlighted in blue color

• Number of Game Stages: A static/strategic game is a one-move game where

players take their action at the same time. A dynamic game is a multi-step game

where the number of steps could be finite or infinite.

• Game Structure Information: In a complete information game, all players know

the rules of the game and the payoff for each player. Otherwise, the game is an

incomplete information game.

• Players' Moves Information: In a perfect information game, each player knows all

the previous actions of all other players. Otherwise, the game is considered an

Imperfect information game.

• Cooperation: In Cooperative games, players may benefit from forming coalitions,

but there could still be an underlying competition. Cooperative games typically

have more than two players. Non cooperative games have no cooperation

between players.

• Payoff: In a Zero-sum game, the sum of all outcomes adds up to zero. For a 2-

player game, the gain of one player is the loss of the other player. In a Constant

 23

sum game, the payoff outcomes add up to a constant value. In a Nonzero sum

game, the outcomes add up to different amounts.

Game theory is used in cyber security in two key applications, defense strategy

design and risk assessment. In defense strategy, the attack-defense interaction is modeled,

and the optimal defense strategy is estimated. In risk assessment, the security state of the

system is assessed using the predicted strategy for both the attacker and defender. Games

in cyber security studies are typically classified as dynamic, incomplete information,

imperfect information, non-cooperative, zero-sum games. More details on the different

classifications of games can be found in [84], [85], and [86].

It should be highlighted that game theory assumes players are rational, i.e., each

player takes the best decision that maximizes the benefit. This may not always be true in

practice. Human behavior is not perfectly rational and may be influenced by many factors

beyond the analyst's recognition. Albeit it represents a formal modeling approach to

describe the interaction between the attacker and defense mechanism.

3.3 Overview on Reinforcement Learning Methods

Reinforcement Learning (RL) is a branch of machine learning, alongside supervised and

unsupervised learning. Figure 8 shows a simple taxonomy of the three main machine learning

algorithms. Supervised learning uses labelled data to learn a functional mapping between the

inputs and their corresponding desired outputs. Unsupervised learning uses unlabeled data to

learn similarities and discover patters from the input data. Reinforcement learning interacts

with an environment to learn a series of optimal actions instead of relying on complex

mathematical models. One of the core features of RL is its applicability in the decision-

making field in order to reach a specific objective

 24

Figure 8. Machine learning taxonomy. The thesis’s focus is highlighted in blue

3.3.1 Reinforcement Learning (RL) Framework

The standard framework of RL consists of an environment and an agent, as shown in

Figure 9. The environment, which is everything outside the agent, is typically formulated

as a MDP that is defined by a 5-tuple < 𝑆, 𝐴, 𝑃, 𝑅, 𝛾 >. The state 𝑆 and action 𝐴 spaces,

which define the dynamics of the environment, can be discrete or continuous based on the

considered problem. At each time step 𝑡, the agent receives the current states of the

environment. These states should provide all the required information to describe the

dynamics of the environment. Based on these states, the agent directly interacts with the

environment by taking an action. As a result of this action, the environment moves to a

new state at time 𝑡 + 1, and the agent gets a scalar immediate reward/penalty value as

feedback on performance. From the reward value, the agent can assess how good or bad

the action was and consequently, how far is the agent from achieving the goal. The main

objective of RL is to learn an optimal policy, which is the strategy that the agent follows

to take an optimal action given the observed environment’s state, that aims to maximize

the cumulative rewards over time. It is worth mentioning that a complete interaction of

having a state, action, and reward is called a step. While a series of decision steps are

called an episode. At the end of each episode, or when reaching a terminal state, the

environment resets to a random state to ensure that the agent explores the entire state

space and does not overfit.

Machine Learning
Taxonomy

Supervised
Classification and

Regression

Unsupervised
Clustering and

Dimension
reduction

Reinforcement Decision-making

 25

Figure 9. The standard framework of RL

3.3.2 Deep Reinforcement Learning (DRL)

DRL has the exact same framework as shown in Figure 9, but with integrating neural

networks to work as the brain of the agent instead of using traditional tabular RL solvers,

such as Q-Learning and Value Iteration (VI). A neural network works as a function

approximator that learns how to map between the input states and the desired output

values and hence improves the applicability of the algorithms. The usage of Deep Neural

Networks (DNNs) overcomes several limitations that classical RL approaches suffer from

in real-world implementations. For instance, DRL only stores the network parameters

instead of all state-action values, so less memory demand is needed in comparison to

tabular methods. Also, DRL handles the curse of dimensionality problem that tabular RL

approaches suffer from, especially when dealing with large-scale systems that have large

state and action spaces. Furthermore, it can efficiently and effectively handle complex

tasks with no or less knowledge of the system. It also provides better generalization with

unseen states and hence better performance. The ability of DRL to overcome these

limitations and address challenging problems has made it popular in different fields

including games [87][88], robotics [89][90], cybersecurity [91][92], and autonomous

systems [93][94].

3.3.3 Reinforcement Learning Taxonomy

Figure 10 presents the main categorizations of reinforcement learning algorithms.

Depending on whether the environment is known to the agent or not, RL algorithms are

 26

classified into model-free algorithms and model-based algorithms [95]. Model-free

algorithms do not require a model of the environment for solving a problem. They can

learn an optimal policy and achieve near-optimal results using trial and error technique.

Consequently, it is used when the state transition probabilities and the rewards are

unknown. On the other hand, model-based algorithms use the transition probabilities and

the known rewards, which represent a model of knowledge for the system, to derive the

optimal best action policy. It is worth noting that having a model for the environment

does not always mean that the agent is model-based. The agent is said to be model-based

when the transition probabilities and the reward matrix of the state-action pairs are known

or learned, otherwise, it is not.

Model-free algorithms are classified into value-based, policy-based, and Actor-critic

algorithms. Value-based algorithms compute the value, which is also called Q-value, of

an action given a state and do not learn an explicit policy since they map state-action pairs

to values. These Q-values are the quality state-action value function, which indicate the

goodness of a particular action in a state and whether this action should be reinforced in

similar situations or not. On the other hand, policy-based algorithms do not need a value

function, but an explicit policy with the best optimal parameters is constructed that maps

states to actions. Actor-critic algorithms maintain both since they learn both a policy

(actor) and an action-value function (critic) to evaluate the learned policy.

The model-free value-based algorithms are further classified into Off-policy

algorithms and On-policy algorithms. They differ in the way they update their Q-values in

which off-policy algorithms update them using the Q-value of the next state and the

greedy best action. Also, off-policy approaches learn a policy 𝜋 from using experiences

sampled from another policy. while on-policy algorithms use the Q-value of the next state

and the current policy's action, and they learn a policy 𝜋 from experiences sampled from

the same policy. Table 4 mentions the advantages and disadvantages of some of the

widely used reinforcement learning algorithms from each category. For more information

on Reinforcement learning framework and taxonomy, refer to [96], [97], and [98].

 27

Figure 10. Reinforcement learning taxonomy. This thesis uses the algorithm path highlighted

in blue

Table 4. Advantages and Disadvantages of Widely Used Model-free RL Algorithms

Algorithm Policy Type Advantages Disadvantages

Q-Learning Off-policy Value-based -Simple

-More freedom for

exploration

-Can select actions

without MDP

-Not very stable

-Not generalizable

-Unable to deal with

large spaces

-Overestimation of

the value function

Deep Q

Network

(DQN)

Off-policy Value-based -Good for large

spaces

-Generalizes to

unseen states

-Unstable

performance

-Suffers from

maximum bias issue

-Takes long time to

converge

Double Deep

Q Network

(DDQN)

Off-policy Value-based -Handles the issue of

overestimation bias

of Q-values in DQN

-Uses two networks

for decoupling

between choosing

and evaluating action

-Faster and more

stable than DQN

-Slow change in

policy that can make

the two networks too

similar to make

independent decisions

RL
algorithms

Model-
free

Value-
based

Off-policy

Q-learning

DQN

Double
DQN

On-policy

SARSA

Policy-
based

PG

A2C/A3C

Actor-
Critic

PPO

DDPG

TD3

SAC

Model-
based

Given
model

AlphaZero

Learn
model

World
models

I2A

 28

Algorithm Policy Type Advantages Disadvantages

Dueling Deep

Q Network

Off-policy Value-based -Decomposes the Q-

value as the sum of

the state values and

advantage function of

taking that action

-Naively adding the

two decomposed

values can be

problematic

SARSA On-policy Value-based -Avoids high risk

(conservative)

-Cannot use old data

(no replay memory)

Policy

Gradient (PG)

On-policy Policy-based -Effective in high

dimensional spaces

-Can learn stochastic

policies

-Usually converges to

a local optimum

-Slow convergence

Deep

Deterministic

Policy

Gradient

(DDPG)

Off-policy Actor-Critic -Directly finds the

policy with the most

rewards

-works well with

continuous actions

-Sensitive to

hyperparameters

-Poor sample

efficiency

-Slow learning rate

Proximal

Policy

Optimization

(PPO)

On-policy Actor-Critic -Improves samples

efficiency

-Unstable during the

training process

Twin Delayed

Deep

Deterministic

Policy

Gradient

(TD3)

Off-policy Actor-Critic -Reduces the

overestimation bias

seen in previous

algorithms

-The learning process

is time consuming

Soft Actor-

Critic (SAC)

Off-policy Actor-Critic -Enables stability

-Robustness to noise

-Brittle to the

hyperparameter that

controls exploration

3.4 Conventional Optimization Vs RL Approaches

 There are several differences between conventional optimization and RL decision-

making approaches. In this section, we mention some of these variations and highlight the

advantages and disadvantages of each approach as shown in Table 5.

To begin, conventional optimization solutions rely on explicit knowledge of the

system that is expressed in complex mathematical formulations. These expressions are

referred to as the objective functions of the optimization problem. Usually, abstracting these

functions is not an easy task especially for complicated large-scale real-world systems.

 29

Alternatively, RL approaches do not require an accurate mathematical model. It can even

work with model-free problems while relying on a reward function to evaluate the decision-

making performance of the agent based on its interactions with the environment.

Another point is that most conventional optimization techniques do not achieve the

real-time decision-making requirement, which is crucial in several scenarios. Also, other

traditional programming approaches such as dynamic and stochastic programming tend to

have high computational costs, and their effectiveness is not assured for large complicated

systems. On the contrary, reinforcement learning approaches are more robust, can handle

higher-dimensional complex scenarios, and provide real-time decisions since they make

decisions based on the current state of the system.

Although reinforcement learning approaches tend to be more promising solutions that

can provide scalable, generalized, online, robust, and efficient performance, they also have

some major challenges. To start with, they provide slower convergence in comparison to the

conventional optimization techniques. Also, tuning the hyperparameters is a very time-

consuming procedure that can highly affect the performance of the agent. Designing a

representative reward function that can effectively describe the goal of the agent and deciding

on a reasonable size and type for the state and action spaces are other factors that highly

affects the computational time of the RL agent.

Table 5. Advantages and Disadvantages of Decision-making Modelling Approaches

Decision-making

Modelling

Approach

Advantages Disadvantages

Multi-objective

optimization

functions

- Easy to formulate

-Can find Pareto solutions in a

single run

-Mostly suffer from high

computational cost

-Do not guarantee an optimal

solution

Markov Decision

Processes

-Help defenders to know what

paths are more probable to be

followed by an attacker

-Do not scale well

-Need other attack modelling

techniques to assign probabilities to

the paths that an attacker can take

Game Theory -Simple -The definition of the payoff

 30

Decision-making

Modelling

Approach

Advantages Disadvantages

-Can be deployed in a distributed

manner

function is very challenging

-Lacks scalability and robustness

-It is a planning technique (game

matrix should be already known)

Reinforcement

Learning (RL)

-It is a learning not a planning

problem

-Can generalize to unseen states

-Can handle continuous spaces

-Can handle large environments

-Can resist biased datasets when

using online learning

-Uses samples to optimize the

performance

-Can work with model-free

systems

-Needs huge number of simulation

trials for training

-Designing good representative

reward function is challenging

-Requires tuning of numerous

hyperparameters

-Provides no performance

guarantees at all

 31

CHAPTER 4: SURVEY OF WORKS ON INTRUSION RESPONSE SYSTEMS

This chapter presents a survey of the current major works on intrusion response

systems. Initially, we aimed to target only the work intended for CPSs. However, we found

that the work in this area is still in its infancy, so we considered reviewing IRSs for both CPS

and non-CPS domains to enrich our knowledge on how to approach the area of securing CPSs

and bridge the gap between security in ITS and CPS domains. The surveyed papers are

classified into two main categories based on whether the decision-making approach is done

using conventional optimization methods, including multi-objective optimization functions

and game theory, or is done using reinforcement learning approaches. It is worth mentioning

that we prepared a comprehensive survey paper on intrusion response systems and submitted

it to the Journal of Network and Computer Applications.

4.1 Conventional Approaches for IRSs

Conventional optimization approaches depend on having a mathematical model

consisting of objective functions, constraints, and different decision variables that the agent

has to optimize. This section includes research works using multi-objective optimization

functions and game theory solutions to build IRSs. For easy reference, a summary of the main

points of the reviewed works is available in Table 6.

4.1.1 Multi-objective Optimization Functions Solutions

Optimizing objective functions to find optimal policies is one of the conventional

approaches that is used when designing intrusion response systems.

In [99], the authors design an intrusion response system that can dynamically select

the optimal countermeasure based on a trade-off between the attack damage and the

countermeasure cost. The problem is treated as a multi-objective optimization problem

(MOOP) with four metrics to consider when choosing the optimal response, which are

attack damage cost, countermeasure positive effect, countermeasure negative impact, and

countermeasure deployment cost. The main aim is to choose the best countermeasure that

can maximize its positive effect, minimize its negative impact, and minimize its

deployment cost. The proposed framework uses Attack-Defense Trees (ADTs), which is

 32

an attack modelling approach that shows the attacker’s progress and possible paths to the

target. Also, the framework uses the Service Dependency Graphs (SDGs), which shows

the dependencies between the different services and measures the severity of the

undergoing attack. A Pareto optimal solution set is initially created with the possible

countermeasures that satisfy the optimization trade-off. Then, a simple additive weighting

(SAW) method is used to select the optimal countermeasure, which holds the maximum

final score value, from this set. The evaluation of the proposed solution is done on a real

cloud environment that consists of 6 virtual machines connected by 4 switches and 15

vulnerabilities in total. The considered countermeasures are blocking IP addresses,

blocking ports, blocking all traffic, restarting the service, closing connection, disabling

features, patching, and shutdown. The authors conclude that this framework dynamically

evaluates countermeasures, selects optimal ones, and deploys them in 449 milliseconds.

This is considered very fast, which is one of the main advantages of this approach. One

drawback of this approach is that it uses only one attack tree for a service, which is not

the case in real-life scenarios where a forest of trees is usually used to protect system

assets, so it lacks scalability. Finally, although the proposed solution is not intended for

CPSs, it is applicable for their usage.

A dynamic decision-making approach for intrusion response for securing industrial

control systems at run-time is proposed in [100]. The decision-making problem is

formulated as a MOOP to maximize security benefit (𝑆𝑒𝑐𝐵), system benefit (𝑆𝑦𝑠𝐵), and

state benefit (𝑆𝑡𝑎𝐵). The architecture of the proposed model takes the attack evidence and

abnormal evidence as inputs from the intrusion detection system. Then, these inputs are

mapped into a multilevel Bayesian Network (BN) to extract all the possible attack paths

to the target and hence study the attack propagation from the cyber domain to the physical

domain. A security measure set is developed after considering both the defense and

recovery measures. From this security measure set, a candidate security strategy space is

built with 2𝑛 strategies where 𝑛 corresponds to the number of security measures

(countermeasure actions). Using this security strategy space, several Pareto optimal

 33

solutions are found by solving the MOOP using the Non-dominated Sorting Genetic

Algorithm-II (NSGA-II). Finally, the optimal security strategy solution is selected based

on a distance-based evaluation method. The proposed approach has experimented with a

simplified Tennessee Eastman chemical process control system to assess its effectiveness.

Two attack scenarios are simulated using MATLAB environment in which the first

scenario assumes that the launched attacks do not compromise the physical control

system, while the second scenario assumes that they do. The considered defense measures

include shutdown servers, blocking traffics, limiting incorrect password attempts, closing

connections, restarting, and encrypting messages. In comparison with other approaches,

this proposed solution is of an advantage in terms of considering security measures

covering both the cyber and the physical domains. Also, it is one of the very few

approaches that considers not only defense measures, but also recovery ones. On the other

hand, the scalability and the time complexity of this approach concern the authors as they

highly depend on the scale of the constructed BN and the size of the strategy space.

The work in [101] proposes a general real-time control approach for designing IRS

for industrial cyber-physical systems. Unlike most works that focus on the response

policy selection decisions, this paper focuses on the security policy execution based on a

given real-time security policy input. The main aim is to ensure that the system does not

have massive losses while enforcing corrective mitigation responses. Initially, a MOOP is

defined to maximize security protection time, minimize communication load, and

minimize execution time of responses. Their solution approach is based on table-driven

scheduling of responses using NSGA-II algorithm, which is used to solve the MOOP and

find the Pareto solution set. Then, the responses in the Pareto solution set are ranked to

select the one with the highest security protection time, which is the highest priority, as

the optimal response. A directed acyclic graph (DAG), which models the dependency

between the different tasks, is used to map the system and response tasks and schedule the

tables on each node. Each system node has a scheduling table that is periodically updated

with response tasks to be performed to protect against ongoing cyberattacks. The

 34

proposed framework is evaluated on a simulated simplified TEP control system based on

OPEN and MATLAB. The results show that the execution of the responses is done

effectively without negatively affecting the system tasks with a fast execution time of less

than 60 ms, which is about 10 generations. The advantage of this approach is that it

addresses the response execution scheduling perspective that is neglected by many

researchers when designing IRSs. However, they assumed some values without clear

justifications, such as indicating that the communication load and the execution time of a

task/response is statically defined in advance for all tasks.

The authors in [102] formulate the countermeasure decision-making as a single

objective optimization problem. The attack damage, deployment cost, negative impact on

the QoS, and security benefit are the four metrics considered in the optimal policy

selection process. To solve the optimization function, they propose a Genetic algorithm

with three-dimensional encoding (GATE). Unlike most works, this work not only selects

the optimal countermeasure, but also decides on where it should be deployed, in what

order, and for how long. Determining these fine-grained decisions influences the

effectiveness of the selected responses. For evaluation, an experimental network of

servers is used to validate the effectiveness of the proposed approach. The considered

countermeasures are blocking traffic, blocking ports, and closing connections. The results

show that the framework can effectively generate an appropriate reasonable response

policy to the detected attacks. In addition, three different algorithms are compared with

the proposed one, which are the traverse algorithm (TA), the random algorithm (RA), and

the simulated annealing algorithm (SAA). The comparison reveals the superiority of the

GATE algorithm in terms of the fitness value and computational time. The advantage of

this framework is emphasizing the importance of considering the fine-grained details

when designing an intrusion response system. On the other hand, this approach does not

consider modeling the attacker. We believe that this approach is not very suitable for

CPSs because they are usually more complex for a single objective representation. Also,

some of the taken assumptions, such as not allowing multiple countermeasures on the

 35

same defense point, are not suitable for a CPS, which usually requires a composite of

actions to mitigate the attack effect that is usually seen at multiple layers.

4.1.2 Game Theory Solutions

Recent studies present clearly that game theory is increasingly used in building

intrusion response systems.

In [103], the authors propose a cyber-physical response system (CPR) that can

automatically mitigate cyber-originated attacks causing physical consequences against a

power grid critical infrastructure. The proposed framework considers both cyber-side and

physical-side response actions when mitigating the detected attacks. The interaction

between the attacker and the CPR system is modeled using a sequential Stackelberg

stochastic game approach with two players in which the CPR system is the leading

player, and the attacker is the follower player. Both players aim to maximize their benefit

with the help of a reward function. This game is represented as a competitive Markov

decision process (CMDP). The states, which are obtained from both cyber intrusion

detector (anti-virus) and power system sensors, represent the compromised cyber host and

the physical consequences on the process. The CMDP is solved using the value iteration

algorithm and the infinite-horizon discounted cost method to obtain the optimal response

that maximizes the accumulative long-run reward. A case study is presented to evaluate

the proposed framework in a publicly available power system that contains seven

generator controllers. Four different attack scenarios are considered in which each time

certain generator controllers are compromised. The considered countermeasures are

disabling the compromised generator, dispatching other working generators, killing the

malicious process on the controller from the cyber-side to restore its normal operations,

and load shedding. The results show that in most scenarios, using both the cyber-side and

physical-side responses is required to stop the attack since their capabilities complement

each other. One of the advantages of this paper is that the solution approach is not too

system specific as it can be applied to different network models. However, the usage of a

very limited list of countermeasure actions is a common downside.

 36

In [104], the authors propose a multi-layer defense architecture to protect the main

layers of critical infrastructures from different cyberattacks. The considered layers to be

protected are the management layer, supervision layer, real-time control layer, and

physical layer. A multi-model anomaly-based intrusion detection approach is used to

detect the existence of intrusion behaviors. An analytic hierarchy process (AHP) approach

is used to assess the impact and the risk of ongoing attacks on the process, considering

asset identification and classification, asset quantization, and dynamic assessment. A

hierarchical, dynamic, two-player, non-cooperative, finite game is then proposed to select

the optimal protection strategy in a two-step approach, which is building an attack

defense tree (ADTrees) model and building a security performance game (SPG) model.

Finally, the real-time intrusion response interprets the selected security mechanism and

applies the changes on the required nodes. For evaluation, a networked water level

control system is considered to test the effectiveness of the proposed framework.

Different attack scenarios are simulated, such as setpoint change attack at the supervision

layer, response injection at the real-time control layer, and command injection at the

physical layer. The considered countermeasures are access control list, self-

reconfiguration, self-updating, and activating safety guards to take over the compromised

controller. The results show the effectiveness of the proposed defense approach in

mitigating the impacts of these attacks. The advantage of this approach is its applicability

to wide range of industrial CPSs. Nevertheless, one of the limitations of this approach is

that the attacker's level of experience and the time taken for building the attacker model is

not considered when evaluating the solution.

In [105], the authors designed a multi-step dynamic decision-making approach to

obtain the optimal defense strategy for the detected attacks. There are two kinds of

possible defense strategies considered, which are security strategies and recovery

strategies. The security strategies reduce the risk of the attacks but invalidate some of the

system functions in return. The recovery strategies are the ones that can recover failed

system functions under an execution cost. The IDS inputs are the evidence list that

 37

contains any attack occurrence or function invalidation and the current state of the

system. The architecture of the proposed framework contains several modules, including

a Multilayer Bayesian network (MLBN), process model, state controller, optimal defense

strategy generator, and a strategy execution system. It uses a 2-player non-cooperative

zero-sum game between the defender and the attacker. The game uses the Nash

equilibrium theorem to find the solution and obtain the optimal defense strategy. This

approach has been evaluated using a chemical reactor control system simulated in

MATLAB. Different attacks are considered, such as network scanning, buffer overflow,

vulnerability scanning, DoS attack, brute force attack, and reactor failure. The defensive

actions are shutdown, disconnect, and encrypt. For the recovery actions, rebooting

different PLCs are considered. The results show that the proposed framework effectively

found the optimal defense strategy that minimizes the system loss within seconds.

Moreover, the presence of a state controller model reduced the computational complexity

by 87.5%. This paper has an advantage of showing a novel quantification approach for

the risk assessment calculations to find the optimal attack-defense strategy using MLBN

and system models. However, the computation time is still an open issue that requires

further improvements to meet more strict real-time requirements of CPSs.

In [106], the authors propose an automated cost-sensitive response and recovery

engine (RRE) to mitigate attacks in real-time. The response decision-making model uses

a two-player, sequential, multi-step, non-zero sum, hierarchical, Stackelberg stochastic

game strategy with attack-response trees (ARTs). The ARTs are designed offline by

experts to describe the security state of each asset. The modeling of the game uses a

partially observable competitive Markov decision process (POCMDP) that is

automatically obtained from the ART. The solution of the game is the optimal network-

level countermeasures, which have the minimum accumulative attack damage and the

maximum accumulative long-run response reward. The architecture consists of two

engines: the local engine resides in host computers, and the global engine, which is

responsible for the security of the whole infrastructure, resides in the response and

 38

recovery server. The local engines receive a set of assets that need to be protected, IDS

alerts, and ART graphs as inputs. Then, it generates a finite set of security state spaces of

all the safe states that the host computer can tolerate. The state space is sent to the

decision-making unit that uses a game-theoretic approach with the value iteration method

and maxmin strategy to find the optimal response. Then, the selected optimal responses

are implemented by the RRE agent, which reports back whether the actions are

accomplished successfully or not. The global engine comes into the picture to handle

attacks if the local engines are compromised or unable to recover the system. The

effectiveness of the proposed RRE engine is evaluated on several networks of different

sizes. Results show that the RRE engine works very well in choosing the appropriate

countermeasure action even for large-scale networks that have more than 500 nodes,

which are still solvable in less than 40 seconds. The main contributed advantage of this

approach is providing a scalable distributed solution that improves the performance of a

response engine. However, it only uses cyber-level actions, includes some subjective

static definitions of network properties, introduces trust issues between the different

nodes, and lacks accurate system state insights because of the distributed nature.

Table 6. Summary of Reseach Works on IRSs Using Conventional Solutions

Decision-

making

Model

Ref. CPS Attack

Modelling

Approach

Actions Decision

-making

Metrics

Solving

Approach

Evaluation

Multi-

objective

optimizati

on

problems

(MOOPs)

[99] No ADTs

and SDG

Blocking

IP

addresses,

blocking

ports,

blocking

traffic,

restarting

services,

closing

connectio

n,

disabling

features,

Attack

damage

cost,

positive

and

negative

impacts

of

actions,

and

deploym

ent cost

SAW

method to

extract the

optimal

solution

from the

Pareto

optimal

set

Based on

response

selection

and

deployment

time

 39

Decision-

making

Model

Ref. CPS Attack

Modelling

Approach

Actions Decision

-making

Metrics

Solving

Approach

Evaluation

patching,

and

shutdown

[100] Yes MLBN Shutdown

servers,

blocking

traffic,

limiting

incorrect

password

attempts,

closing

connectio

n,

restarting,

and

encrypting

Security

benefit,

system

benefit,

and state

benefit

NSGA-II

algorithm

with a

distance-

based

method

Based on

execution

time and

response

goodness

[101] Yes NA Not

mentioned

Protectio

n time,

execution

time, and

communi

cation

load

NSGA-II

algorithm

with a

crowding

distance

method

Based on

execution

time

[102] No NA Blocking

traffic,

blocking

ports, and

closing

connectio

n

Attack

damage,

negative

impact

on the

QoS,

security

benefit,

and

deploym

ent cost

Genetic

algorithm

with

three-

dimension

al

encoding

(GATE)

Based on

fitness

values and

computatio

nal time

Game

theory

[103] Yes NA Disabling

compromi

sed

generators

, re-

dispatchin

g, and

killing

malicious

processes

The

accumula

tive long-

run

reward of

responses

The value

iteration

algorithm

with the

infinite-

horizon

discounte

d cost

Based on

decision-

making

convergenc

e iterations

 40

Decision-

making

Model

Ref. CPS Attack

Modelling

Approach

Actions Decision

-making

Metrics

Solving

Approach

Evaluation

[104] Yes Attack

defense

trees

Access

control

lists,

activating

safety

guards,

and self-

reconfigur

ation

The risk

(impact)

of

ongoing

attacks

An

analytic

hierarchy

process

(AHP)

Based on

checking

the state of

some

process-

related

values

[105] Yes MLBN Shutdown,

disconnect

, encrypt,

and PLCs

rebooting

Attack

damage,

system

degradati

on,

system

stability,

and state

reachabil

ity

Nash

equilibriu

m theorem

Based on

computatio

n time

(computatio

nal

complexity)

[106] No Attack

response

trees

Not

mentioned

Attack

damage

and

accumula

tive long-

run

response

reward

The value

iteration

algorithm

with the

infinite-

horizon

discounte

d cost and

maximin

approach

Based on

handling

scalability,

and time

needed to

respond

4.2 Reinforcement Learning Approaches for IRSs

The application of reinforcement learning to the intrusion response field is relatively new,

especially for CPSs. We divided the work in this area into model-based solutions and model-

free solution. Table 7 shows a summary for each of the examined works in this section.

4.2.1 Model-based Solutions

In [107], the authors propose an intrusion response system using deep reinforcement

learning that is modeled with a Markov Decision Process (MDP). They state that they are

the first to use deep reinforcement learning (DRL) in designing an IRS. Table 7 shows the

states, actions, and reward function of the considered MDP model. For solving the MDP

 41

model, the authors propose a Deep Q-Learning (DQL) technique that uses a Convolution

Neural Network as a non-linear function approximator. The considered system for

evaluation is a stationary microservice-based system. Both Q-Learning and DQL

algorithms have been used to estimate the action-value function to solve the formulated

MDP model. Results show that DQL converges to an optimal solution faster than the

tabular Q-learning algorithm in terms of time and number of episodes. In addition, it

achieved noticeably less memory utilization and maximum cumulative reward. In

comparison with conventional standard methods, which require an accurate model of the

system for designing an IRS, the use of DRL reduces the needed time to find defense

strategies and handles large-scale systems more effectively. On the other hand, DQL

approach require tuning many hyperparameters, which can highly influence the agent

behavior, to achieve the desired optimal rewards.

In [108], the authors use the MDP framework to design an IRS. The proposed design

captures both the defender and the attacker models and plans optimal long-term responses

to protect the system. Initially, a Single Agent MDP is used to model the IRS defender

model such that the agent has an objective of finding an optimal policy with a maximized

reward. In the defender model, the responses are evaluated based on their response time,

operational cost, and impact index on the system. Some considered response actions are

firewall activation, blocking source IP address, and generating an alert. After developing

the defender model, the attacker model is added using a competitive multiple agent MDP

that is implemented as a stochastic game. Each attack in the attacker model has three

characteristics, which are attack belief, which is the probability that a specific attack will

be executed by the attacker in the future, attack action, which is the future action to be

taken by the attacker based on the dependencies between attacks, and the intrusion

damage of the attack on the system. The MDP model is solved using the Value Iteration

(VI) and the Upper Confidence Trees (UCT) algorithms. Considering a system with 1000

system attributes and 1000 possible response actions, the VI outperforms the UCT in all

the experiments. Since the MDP model grows exponentially when used to describe large

 42

systems, the authors designed a dynamic attributes and actions selection engine, which

instantiates the MDP problem with the minimum number of attributes and actions that are

only directly related to the detected attack. Also, the usage of the parallel version of the

VI algorithm was considered to handle the scalability. As a consequence, the proposed

IRS was able to generate the optimal response policy in less than 2 seconds. Advantages

of the solution include modeling both the defender and the attacker and handling

scalability. One disadvantage is considering statically defined transition probabilities

instead of using a dynamic feedback loop between the protected system and the IRS.

The authors in [109] use the Q-learning algorithm to select the optimal strategy by

optimizing the game model. They propose a two-player zero-sum stochastic game model

to generate optimal defense strategies to mitigate highly organized cyberattacks in

Industrial Cyber-Physical Systems (ICPSs). The attacker in this game is assumed to

infiltrate from the corporate network and propagate until he/she reaches the physical

process. The authors use the base-group metrics provided by the common vulnerability

scoring system (CVSS) to quantify the probability of success of attacks. The state of the

game is represented by a binary vector where a value of 1 means the device is

compromised and a value of 0 means not. The defender actions are security responses,

such as installing patches and restarting. The reward function depends on time-based

quantification in a way that 𝑅(𝐴𝑡,𝑖) is the time needed to recover the compromised device

after an attack, 𝑇(𝐷𝑡,𝑗) is the time needed to perform the defender action, and 𝐶(𝐴𝑡,𝑖) is

the time needed to perform the attacker action. The proposed game model is evaluated on

a simulated simplified Tennessee-Eastman (STE) process control system that uses

Modbus communication protocol. Q-learning algorithm shows its effectiveness in solving

the game model, indicating a fast convergence rate with higher learning rates. The

proposed approach highlights the possibility of performing self-learning to derive the

optimal defense strategy without accurate knowledge of the model parameters. Also, this

approach considers both the cyber and physical layers when designing an IRS for ICPSs.

 43

However, the assumption that the players have complete information of the actions of

other players is unrealistic in real-world problems.

In [110], The authors model the security problem between the defender and the

attacker in a CPS as imperfect information stochastic game that is solved using a Multi-

Agent Reinforcement Learning (MARL) approach. The Q-Learning algorithm is applied

to achieve the learning element and decide on the best actions, which increase the overall

expected reward, to be taken by each player at run-time. The work aims to reach a Nash

Equilibrium (NE) in favor of the defender system. The considered system states are the

security status, which is either low, medium, high, or critical. The architecture of the

modeled CPS, which is assumed to be known by the defender, composes of four layers to

mimic a real vulnerable CPS network. The different considered types of vulnerabilities

are taken from the Common Vulnerability Scoring System (CVSS) with their

corresponding information, including vulnerability access, exploitability score, and CVSS

score. The experimental section focuses on a virus spreading attack scenario that exploits

zero-day vulnerabilities to reflect realistic assumption. The simulations are done using the

MiniCPS simulator and OpenAI Gym for implementing the reinforcement learning

algorithm. The results show that the proposed hybrid approach cannot stop the attack but

can limit its success rate. Accordingly, the attackers succeed by 25% on attacking the

cyber layer while by 94% on the physical layer. This shows a huge disadvantage since the

proposed method is not very effective in protecting the physical layer, which is originally

the main target of any attacker against CPSs.

In [111], the authors also use the Q-learning algorithm with a game model to find the

optimal defender actions in a simulated power system environment. The interactions

between the adversary and defender are modeled as a two-person zero-sum repeated

game. This game considers several parameterized factors when calculating the reward

function, including the attack and defense costs, allocated budgets, and the players’

strengths. The Minimax Q-learning algorithm is used to solve the game and find the

optimal action in favor of each player. The system simulation is performed using

 44

MATLAB. The conducted experiments reveal the postattack effects on the system in

terms of voltage violation that reflects the saved and lost power of its elements. The

results show that this solution can defend the transmission lines, which are the prime

targets of attackers, effectively and efficiently. The advantage of using a repeated game is

that players can generate actions independent of the actions' history, and hence the game

is close to real-life scenarios. Disadvantages include poor evaluation in terms of

comparison with different RL algorithms.

4.2.2 Model-free Solutions

In [112], the authors extend their work in [107] to find the optimal intrusion response

in a non-stationary microservice-based system. They use a model-free DQN algorithm for

building their IRS. The considered approach consists of the following four phases:

designing the system model, building a software simulator for the system, using a RL

agent to learn the simulated system, and detaching the RL agent from the simulator to

attach it to a real system. The considered states are five Boolean variables representing

the current status of each component, such as active, updated, new version available,

corrupted, and vulnerable. Seven actions are considered with their pre-conditions, post-

conditions, execution time, and cost, including restart component, start firewall, and fix a

vulnerability. For evaluation, the authors compared the effectiveness of the tabular Q-

Learning agent and the DQL/DQN agent on both stationary and non-stationary systems.

The considered evaluation metrics are steps of convergence, cumulative reward, and

execution time. The results show that for stationary systems, DQL converges faster in

terms of the number of episodes. Also, it exhibits a constant behavior with the increasing

number of system attributes and linear memory utilization. For non-stationary systems,

the results show that Q-learning converges faster than DQL only if a structural change to

the neural network is needed. Otherwise, DQL is a better choice because it is memory-

efficient and provides better generalization capabilities. The proposed solution also

proved effectiveness when compared with a standard planning technique (VI). All in all,

this approach is scalable, which can work with large systems. Also, it is one of the very

 45

first papers that addresses non-stationary systems. However, like any learning-based

approach, many hyperparameters need tuning, which is not a simple task to do. Moreover,

the proposed IRS is reactive; since it only models the defender system and ignores the

attacker model.

In [113], the authors use model-free reinforcement learning with the off-policy

tabular Q-learning approach to decide on the optimal response policy in network security.

The proposed model consists of two network states {𝑆𝑁, 𝑆𝐴}, which correspond to the

state of the network under normal conditions and the state when it is under attack,

respectively. Two actions {𝑎𝑝, 𝑎𝑑𝑛}, were considered in which 𝑎𝑝 is for a protection

action and 𝑎𝑑𝑛 is for a do-nothing action. The model also includes a reward matrix 𝑅,

which contains the immediate reward the agent will obtain by performing action 𝑎 in state

𝑠. Estimating the transition probability matrix 𝑇, which shows how the environment will

change from one state to another under the selected actions, is done using the maximum

likelihood estimation (MLE) on bootstrapped data sequences and the Laplace smoothing

approach. This transition probability estimation is not needed when using Q-learning,

because it is a model-free algorithm. However, it is used for evaluating the model with

other techniques that require knowledge of the environment. The used dataset is the ISCX

NSL-KDD, which contains 42 variables and 24 different attack scenarios. The results

show that after 100,000 iterations, the action-value matrix Q (S, A) for each action and

state combination is computed. Once the action-value function is determined, the optimal

policy is created by choosing the action with the maximum value in each state. For

evaluation, several other techniques are used with the help of the estimated transition

probabilities, which are Linear Programming (LP), Policy Iteration (PI), and Value

Iteration (VI). The results show that Q-learning was able to obtain the same optimal

policy as the other approaches, but with the advantage of not requiring environment

knowledge. This emphasizes the value of using model-free reinforcement techniques in

network security. However, the approach provides poor evaluation as it did not mention

 46

the cumulative reward and execution time metrics.

In [114], the authors propose a model-free reinforcement approach using the Q-

Learning algorithm to detect and respond to attacks in non-stationary systems by solving

its MDP. Non-stationary systems present the concept of having a dynamic environment

where an action can be added, removed, or changed over time. This dynamicity makes

model-based approaches challenging to apply, because non-stationary systems do not

always behave as modeled. The represented environment is a three-tier web application

with a state space that consists of several variables representing if each component server

is vulnerable, started, up to date, has a CPU load, or under attack. The agent considers

several actions, such as starting, stopping, updating, and patching the attacked server.

Three scenarios are used in the experimental section, which are adding new actions,

changing the reward parameters of the actions, and removing actions. After training the

agent for 200,000 learning episodes on a simulation system, the results show that the

agent converges to the near-optimal solution and can adapt to any changes in the different

experimental scenarios by obtaining a high cumulative reward. Advantages show that the

proposed approach succeeds in capturing the dynamics of the changing environment and

automating the defense against advanced attacks in a non-stationary system, which does

not depend on a static model of the system. The disadvantages of the proposed approach

include requiring more time to converge to the near-optimal solution and poor evaluation

of the performance.

The authors in [115] propose a DRL-based approach to mitigate a different range of

DDoS attacks in real-time, including TCP SYN, UDP, and ICMP flooding. Their

framework leverages Software-Defined Networks (SDN) with OpenFlow standards to

have a centralized global view of the network that helps with collecting the network

statistics. They use the Deep Deterministic Policy Gradient (DDPG) algorithm, which is

an actor-critic-based algorithm. The state-space contains eight features from the collected

traffic, which are port number, number of received packets, number of transmitted

packets, number of received bytes, number of transmitted bytes, number of packets of

 47

each flow, number of bytes of each flow, and time the switch has been alive in

nanoseconds. For the actions, the agent outputs a vector of size 𝑁 (N is the number of

hosts) where each value is between [0.1, 1] and represents the maximum bandwidth that

is allowed by the host. In this way, the attacker traffic is throttled, and most of the

resources are available to serve legitimate traffic. The considered reward function is -1 if

the traffic load on a server is greater than a defined upper boundary 𝑈𝑠 = 6 𝑀𝑏𝑝𝑠 and is

𝜆𝑝𝑏 + (1 − 𝜆)(1 − 𝑝𝑎), otherwise. The hyper-parameter 𝜆 weights the two parts of the

reward function, 𝑝𝑏 represents the percentage of legitimate traffic reaching the server, and

𝑝𝑎 represents the percentage of the malicious attack traffic reaching the server. For

evaluation, the proposed approach is compared with two popular state-of-the-art throttling

methods, which are the AIMD router throttling and the CTL, on a sample SDN topology

of virtual hosts and OpenFlow switches that is created using Mininet. The evaluation is

done in different attack dynamics, such as constant rate attack, increasing rate attack,

pulse attack, and group attack. The results show that the proposed agent outperforms

them and can effectively mitigate DDoS flooding attacks of different protocols. The

advantage of the SDN approach is that it decouples control and data aspects in the

network and generalizes well with different unseen scenarios. On the other hand, the

disadvantages include not addressing the scalability requirements and assuming that the

sending rate of the attacker is significantly higher than the legitimate user, which is not

always the case.

In [116], the authors use a multiagent router throttling decentralized approach using

SARSA RL algorithm and the Coordinated Team Learning (CTL) design to defend DDoS

attacks in network intrusions. The purpose of the RL agents is to rate-limit the traffic

directed towards a victim when a DDoS attack happens in a scalable system. The state-

space of each agent consists of four features corresponding to the traffic rates of four

considered routers. The action space consists of 10 actions that correspond to 0% to 90%

traffic drop probabilities from traffic directed to the victim server. Teams of agents use

 48

the task decomposition approach and work as independent teams that receive rewards at

the team level. Experiments are done on a network emulator testbed using tree network

topologies consisting of homogeneous teams of agents. The training is done offline to

obtain a policy that can be used later in evaluation. Different attack dynamics were

considered for evaluating the proposed approach against other popular throttling

approaches, including constant-rate attack, increasing-rate attack, pulse attack, and group

attack. Results show that the proposed throttling approach outperforms the baseline and

the popular AIMD router throttling technique. The proposed method was also evaluated

with online training and showed promising results, but with more time needed for

convergence. The same multi-agent approach was used in [117] to design an intrusion

response system using Deep Q-Networks, but with a model-based mindset. The

advantage of the proposed solution is that it focuses on addressing the scalability

challenge using offline learning. Also, it is more resilient than centralized approaches

because it does not have a single point of failure. However, this work does not consider

attackers who send traffic at a rate similar to legitimate users.

Table 7. Summary of Research Works on IRSs using RL Solutions

Algorithm Ref. CPS Model States Actions Reward Evaluation

DQN [107] No Model-

based

Variables

to indicate

if each

componen

t is active,

updated,

has a new

version,

corrupted,

or

vulnerable

Starting

component,

restarting

component,

starting

firewall, or

updating

component

𝑅(𝑆𝑡 , 𝑎, 𝑆𝑡+1)

=

−𝑤𝑡
𝑇(𝑎)

𝑇𝑚𝑎𝑥
−

𝑤𝑐
𝐶(𝑎)

𝐶𝑚𝑎𝑥
,

where the

weights

show the

importanc

e of the

execution

time

𝑇(𝑎) and

cost 𝐶(𝑎)

Algorithms

are

compared

in terms of

execution

time,

learning

episode,

and

cumulative

reward

[112] No Model-

free

Same as in [107], but with one extra action to start

the component faster. Also, the evaluation is done on

stationary and non-stationary systems

 49

Algorithm Ref. CPS Model States Actions Reward Evaluation

VI-parallel [108] No Model-

based

Probabilit

y that the

system is

under

attack, and

the system

status,

such as if

the

firewall is

active or

no

18 actions

are

mentioned

including

blocking

source IP,

redirect to

honeypot,

and alert

𝑅(𝑆𝑡 , 𝑎, 𝑆𝑡+1)

=

−𝑤𝑡
𝑇(𝑎)

𝑇𝑚𝑎𝑥
−

𝑤𝑐
𝐶(𝑎)

𝐶𝑚𝑎𝑥
−

𝑤𝑖𝐼(𝑥),

where 𝐼(𝑥)

shows the

impact

index of

the action x

on the

system

The VI and

the UCT

algorithms

are

compared

in terms of

resolution

time, cost,

and impact

Q-learning [109] Yes Model-

based

Binary

vector

indicating

compromi

sed

devices

Patching,

restarting,

and

switching

to another

device

𝑈𝑡
𝐷(𝐴𝑡,𝑖, 𝐷𝑡,𝑗)

= − 𝜖(𝐴𝑡,𝑖, 𝐷𝑡,𝑗)

*𝑅(𝐴𝑡,𝑖) +
 𝑇(𝐷𝑡,𝑗) −

 𝐶(𝐴𝑡,𝑖)

Evaluated

on a control

process in

terms of

convergenc

e time

[113] No Model-

free
𝑆𝐴 for

under

attack and

𝑆𝐴 for

normal

𝑎𝑝 for

protection

and

𝑎𝑑𝑛 for a

do-

nothing

A reward

matrix is

defined

Effectivene

ss

evaluation

is done

using root

mean

square error

[114] No Model-

free

8

variables

including:

isWebSer

verOn,

isWebSer

verUnder

Attack,

and CPU

load

14 actions

such as:

scaleup

WS, start

WS, patch

httpd,

update,

and

shutdown

𝑅(𝑎)

= −𝑤𝑡

𝑇(𝑎)

𝑇𝑚𝑎𝑥

− 𝑤𝑐

𝐶(𝑎)

𝐶𝑚𝑎𝑥

− 𝑤𝑐𝑜𝑛𝑓𝐶𝑜𝑛𝑓(𝑎)

−𝑤𝐼𝐼(𝑎) −
𝑊𝐴A(a)

Cumulative

reward is

used to test

the

approach

[110] Yes Model-

based

Security

status

level (low,

medium,

high, or

critical)

Random

strategy,

human

capabilitie

s, and

patch

managing

Not

mentioned

Based on

the success

rate of the

attacker

after

applying

the policies

[111] Yes Model-

based

A set of

game

repetitions

A set of

10 actions

of

different

transmissi

𝑅𝐷(𝑠, 𝑎, 𝑑)

= −1, 𝑖𝑓 𝑈𝐴

> 𝑈𝐷 and 0

otherwise,

where

Evaluation

is based on

the voltage

violation of

the system

 50

Algorithm Ref. CPS Model States Actions Reward Evaluation

on lines 𝑈𝐴 𝑎𝑛𝑑 𝑈𝐷

are the

payoffs

elements

DDPG [115] No Model-

free

Eight

features

from the

network

traffic,

such as

port

number

and the

number of

packets

 A vector

of values

between

0.1 and 1

that shows

the

maximum

bandwidth

allowed

by each

host

-1 if the

traffic load

on the

server is >
 𝑈𝑆 and is

𝜆𝑝𝑏 +
(1 −
𝜆)(1 − 𝑝𝑎)

when the

load is ≤
 𝑈𝑆

Compared

with AIMD

and CTL

approaches

in different

dynamics

SARSA [116] No Model-

free

Traffic

rates (the

traffic

arrived at

the router

over the

last T

seconds

10 actions

correspon

ding to the

traffic

drop

probabilit

y (0% to

90%)

-1 if the

load on the

router is >

the upper

boundary.

Otherwise,

the reward

is between

0 and 1 𝑟 =
𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒𝐿𝑜𝑎𝑑𝑠𝑒𝑟𝑣𝑒𝑟

𝐿𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒𝐿𝑜𝑎𝑑𝑡𝑜𝑡𝑎𝑙

Scalability,

adaptability

, and

resiliently

are tested

against

existing

throttling

approaches

4.3 Summary, Limitations, and Discussions

This section provides a full comparison of the numerous works analyzed, focusing on

both the positives and the negatives of each work. According to our conducted survey, Table

8 presents some of the advantages, disadvantages, and future works of the different IRSs

solutions. In here, we discuss and point-out several challenges and shortcomings that seem to

be the most prominent in the development of Intrusion response systems. Also, we highlight

the future directions analyzed from our conducted survey that require immediate attention

from the research community.

Traditionally, intrusion response techniques had been a manual and time-consuming

process. However, this approach is not suitable for real-time critical cyber-physical systems.

Unfortunately, there are many challenges that researchers face when designing automatic

intrusion response systems. To begin with, there is a very limited explored countermeasure

 51

pool of actions, especially the ones that are applicable for CPSs and consider both the cyber

and the physical damages. Also, it is noticeable that most of the used countermeasures in

designing IRSs are cyber-level actions. This shows a deficiency of response actions usage in

the physical-level, which is very important for securing CPSs. Moreover, only little is known

about combining several atomic actions when responding to a detected attack. The execution

requirements of the countermeasures have been also ignored by the researchers who focused

mainly on the optimal selection of responses. Accordingly, it is noteworthy that the reviewed

works use a very small set of countermeasures, which makes their performance questionable

when the search space expands.

Concerning the conventional approaches, Table 6 reveals that most of the works

require an attack modeling technique for the risk assessment phase, which is usually an

overhead and not very easy to implement, especially for large networks. Also, the usage of

MOOPs to solve the decision problem neglects the nature of having a constantly changing

state space. Besides, there is no standard representation for attack modeling techniques, which

makes it even more challenging. Moreover, considering a static attack model, as in [100], is

not very realistic to the dynamicity of the attacker behavior. Some works don't use an attack

model and assume that the risk parameters are statically obtained by security experts as in

[101]. However, this is another simple and not very realistic assumption for critical industrial

CPSs. Furthermore, the presence of experts' opinions when designing models, such as attack

trees and service dependency graphs, makes the decision of optimal countermeasures

somehow subjective to their own perspectives, which is not always desirable. These

limitations encourage the exploration of more advanced, automated, and intelligent solutions,

such as the current direction of using reinforcement learning in solving decision-making

problems where the risk assessment part is embedded in the learning algorithm. There are also

clear limitations in the works that use the game theory approach, such as assuming a finite

state space, which is usually not the case in cybersecurity. Additionally, some authors falsely

assume in game theory solutions that each player must know the cost function of other

players. This assumption is difficult to be justified in real-life scenarios. Another limitation in

 52

game theory approaches is that all of them build games with no more than two-players.

Another important limitation analyzed from our literature review is that most of the

studied works don't deal with the problem of handling zero-day attack scenarios and

scalability issues. We noticed that most works rely on small-scale simulated environments to

evaluate their solution as in [104], while Only few, such as [106], assessed the feasibility of

their IRS in large-scale environments. It is worth mentioning that the usage of real

environments in the evaluation process was also neglected, which raises some concerns on the

applicability of the solutions in real-life scenarios.

Continuing on the limitations, most of the solution approaches do not consider

modelling both the attacker and the defender when designing an IRS as in [112]. The

unavailability of a publicly available dataset, which stores all of the (state, action, next state,

reward) tuples, for building response systems for CPSs using an offline approach is another

deficiency that authors face. There is also a lack in IRSs designs for dynamic non-stationary

environments that could change abruptly with unknown probabilities. Additionally, there is a

lack of open-source tools that can be used for preventing, assessing, and responding to

security breaches in CPSs.

Another fact stemming from Table 7 is that all the works analyzed that use RL for

designing IRSs, except those presented in [109] and [111], do not consider a CPS

environment. Scopus brought up only 16 search results, as shown in Figure 11, for ({Intrusion

response} OR {Countermeasure} OR {Defense} OR {Incident response} OR {Mitigation})

AND {Reinforcement learning} AND ({Cyber-physical} OR {Industrial systems}). From this

Scopus figure, we can see that most of these results are in 2020, which is very recent. This

indicates that the utilization of RL in IRSs that are designed for CPSs is still in its very early

stages. One can easily notice that many other challenges have been overlooked by the

researchers, such as the real-time response issue, the alert parallelization problem, and

handling false alarms since most works assume that the received alarms are 100% accurate.

 53

Figure 11. Scopus: publications on RL for IRSs in CPSs

All these complex challenges resulted in limited applicability of the research work in

IRSs to real-life systems. Also, it delayed the development of commercial IRS tools and

publicly available datasets. This emphasizes that the work on IRSs, especially for CPSs, is

still in its very early stages and that there are still open research questions that require further

investigations from the research community in the area of IRSs design.

All in all, the limitations discussed reflect how important, yet very difficult to design,

is intrusion response systems for CPSs. In this thesis, our proposed methodology, which

utilizes model-free deep reinforcement learning, addresses some of these limitations. Initially,

our solution provides an enhanced countermeasure pool, which provides composite actions on

both the cyber-level and the process-level, applicable for effectively securing CPSs. Also, the

proposed method handles the generalization issue that conventional approaches suffer from.

Moreover, using a model-free approach avoids the overhead of dealing with the modelling

part, which is usually very hard and inaccurate for large complex CPSs because they involve

hundreds of sensors and actuators. Accordingly, we investigate the usage of both

conventional Genetic algorithm solution and model-free deep reinforcement learning for

developing an IRS for a CPS, which is a solution approach that has not been explored to date.

Our goal is to peruse an online RL approach, which considers both the cyber level and the

process level data, for the optimal selection of countermeasures in a CPS testbed.

 54

Table 8. Advantages, Disadvantages, and Future Works of the IRSs Approaches

Approach Ref. Advantages Disadvantages Future works

Multi-

objective

optimization

functions

[99] -Fast dynamic response

selection

-Adaptive approach

-Models attacker

behavior

-Considers combining

responses

-Unrealistic usage of

1 ADT to protect

assets

-Lacks in scalability

-The difficulty of

creating ADT/SDG is

not considered

-Considering

the applicability

of using

multiple attack

defense trees

[100] -Considers defense and

recovery measures on

both cyber and physical

domains

-Prevents the expansion

of the attack surface

-Experiments with

different attack scenarios

-Does not address the

scalability and time

complexity issues

-Not mentioned

[101] -Focuses on the

execution of the

countermeasures

-Does not discuss

effects of ongoing

attacks

-Uses unjustified

static values

-Considering

heterogeneous

nodes

-Discussing

security policy

generation

[102] -Decides on the order

and duration of selected

actions

-Does not model the

attacker behavior

-Considering

the time interval

between actions'

deployment and

execution

Game theory [103] -Considers cyber-side

and physical-side

responses

-Considers sensor alert

uncertainties

-Not too system-specific

-Using a limited list

of countermeasures

-Not mentioned

[104] -Provides a complete

multi-layer defense

architecture

-Applicable to different

CPSs

-Uses an abstract

high-level

explanation

-Does not take the

attackers’ expertise

and time to build

attacker model into

consideration

-Exploring

different

applications for

CPS protection

[105] -Presents a novel risk

assessment approach

-Considers both defense

and recovery actions

-Computation time

and complexity are

an issue

-Using a more

efficient

dynamic update

algorithm for

the MLBN

 55

Approach Ref. Advantages Disadvantages Future works

[106] -Provides a scalable

solution

-Uses a distributed model

that improves the

performance

-The distributed

model adds trust

issues between the

nodes

-The used

countermeasures are

not presented

-Not mentioned

Reinforcement

learning

[107] -Does not need an

accurate model of the

system

-Handles large-scale

systems

-Requires several

episodes to converge

-Tuning

hyperparameters is

time consuming

-Using GPUs to

increase

processing

speed

-Considering

multi-agent

systems

[112] -Deals with a non-

stationary system

-Better generalization

property

-Scalable approach

-Ignores modelling

the attacker behavior

-Using GPUs to

increase

processing

speed

-Considering

multi-agent

systems

[108] -Captures both the

defender and attacker

models

-Suitable for large-scale

systems

-Provides a proactive

approach

-No feedback loop

between the system

and the IRS agent

-Establishing a

feedback loop

between the

controller and

the system

-Considering a

non-

deterministic

MDP

[113] -Uses offline approach

with a network dataset

-Poor evaluation

metrics are used

-Exploring Q-

learning

algorithm in

different

domains

-Considering

combining Q-

learning with

other models to

improve the

performance

[114] -First to consider

dynamic non-stationary

systems

-Different attack

dynamic scenarios are

considered

-More time needed to

converge to a near-

optimal solution

-Does not model the

attacker behavior

-Comparing

with different

algorithms

-Including

attacker

behavior

 56

Approach Ref. Advantages Disadvantages Future works

[115] -The usage of SDN

decouples control from

data

-Different attack

dynamics are considered

-Does not address the

scalability issue

-Not mentioned

[116] -Scalable decentralized

approach

-Both offline and online

training are considered

-Does not consider

attackers with

legitimate sending

rates

-Focusing on

online training

-Exploring ways

to improve the

learning speed

[109] -The time needed to

recover metric is

considered

-It assumes complete

players knowledge

-Considering

unknown

vulnerabilities

-Considering

players with

incomplete

information of

other players

[110] -Models both the

defender and attacker

-Uses realistic

assumptions

-Does not protect the

physical layer

-Considering a

game with

imperfect

information

[111] -Models both the

defender and attacker

-No comparison with

other RL algorithms

-Extending the

approach for

general CPSs

Proposed

solution

NA -Detailed comprehensive

background and survey

work

-Modeling and design of

a CPS testbed

-Modelling and design of

cyberattacks

-Uses both a Genetic

algorithm and a model-

free DDQN algorithm to

solve the intrusion

response system problem

-Builds an offline dataset

for RL usage

-No comparison with

other RL algorithms

-Very long training

time (scalability is an

issue)

-Limited state-space

and action-space

considered

-Consider multi-

agent RL

approaches

-Consider more

attack scenarios

-Use the

collected dataset

in an offline RL

approach

-Compare with

other RL

algorithms

 57

CHAPTER 5: MODELING AND DESIGN OF A CPS TESTBED

In this chapter, we present the modelling and design of a small-scale simulated

exothermic Continuous Stirred Tank Reactor (CSTR) testbed using both MATLAB/Simulink

and LabVIEW. The motivation behind building this testbed is to use it as our interactive

environment, where we apply our conducted experimentations, in both the GA-based and RL-

based intrusion response decision-making designs. This is due to the lack of publicly

available security-relevant datasets that can be used in our cyber security research

investigations. Also, we present the modelling and design of different attack scenarios

considered in each proposed solution.

5.1 CPS Description

In this section, we give the overall picture of our considered CSTR physical process.

Also, we mention the high-level architecture of our designed CPS testbed, including the used

components, their roles, and the communication protocol used between them.

5.1.1 Process Description

The CSTR plays a vital role in the process industry, where cyber security is essential

for the safety and reliability of its physical system operations. It is essential in any process

plant that generates new products from raw inlet reactants. We chose the CSTR as the

physical system because of many reasons. First, the process variables, which we aim to

regulate and control, are closely coupled. Thus, any change in one process variable will

impact other variables and manifest itself in the overall process behaviour. Second, the

process has several safety hazard scenarios, which can be produced by a cyberattack.

Finally, mitigation layers for a number of safety hazards rely mainly on the control and

safety systems, which are cyber systems that could be compromised by a cyberattack.

Accordingly, this type of process is suitable for experimenting with different cyberattack

scenarios, implementing different mitigation techniques that consider simultaneously

cyber and physical actions, and evaluating the effectiveness of the defensive mechanisms

in a realistic operating process environment.

 58

We consider an irreversible exothermic CSTR process, with a first order reaction in

the reactant A with rate k and a heat of reaction 𝜆.

𝐴
𝑘
→ 𝐵

Figure 12 shows the Piping & Instrumentation Diagram (P&ID) for the reactor. The

reactor vessel has an inlet stream, an outlet stream, and a coolant stream. The inlet stream

is where the reactant is carried in, the output stream is where the product is carried out,

and the cooling stream is where the cooling fluid is carried in to absorb the heat of the

exothermic reaction. Reactant 𝐴 enters the reactor with concentration 𝐶𝐴0
, temperature 𝑇0,

and volumetric flow rate 𝐹0. A first-order reaction takes place where a mole percentage of

reactant 𝐴 is consumed to produce product 𝐵. The outlet stream contains both reactant 𝐴

and product 𝐵, with reactant 𝐴 concentration 𝐶𝐴, outlet temperature 𝑇, and flow 𝐹. The

outlet temperature T is the same as the reactor temperature. The coolant fluid flows into

the reactor jacket with temperature 𝑇𝐽0
 and flow rate 𝐹𝐽0

, and leaves the jacket with

temperature 𝑇𝐽. The total coolant volume in the jacket is designated by 𝑉𝐽. The detailed

mathematical model of the non-linear reactor is out of the scope of this thesis, but readers

can refer to [118] for modelling details.

Figure 12. Reactor P&ID

 59

5.1.2 Cyber System Description

Figure 13 shows the architecture of the CPS testbed, which is implemented as part of

an NPRP project at Qatar University. This part describes the role of each component

found in the architecture. Starting from the process simulator, it numerically solves the

model differential equations. The Basic Process Control System (BPCS) executes the

control logic responsible for regulating the different variables of the process. The Safety

Instrumented System (SIS) executes the safety shutdown logic when BPCS fails.

Following the IEC 61511 standard, the BPCS and SIS have to be completely independent,

including fields sensors, logic solvers, and field actuators. The Human Machine Interface

(HMI) is a graphical user interface for monitoring the physical process and allowing

manual controlling by a human operator when needed. It should be highlighted that no

operator action is allowed on the SIS. The firewall separates the control network from the

cooperate network. The IDS detects abnormalities and sends related evidence to the RL

agent. It is worth noting that the design of the IDS is out of the scope of this thesis, but we

assume the presence of an active IDS with a 100% trust. Finally, the RL agent node is

where we placed our IRS agent during the training and testing phases to receive system

states and send applicable selected actions. All these components connect to the control

network via an Ethernet interface.

Each node has its own communication path that is used to interconnect with the rest

of the testbed nodes. The process simulator communicates with the BPCS controller

physically using the I/O lines in the cRio module. The SIS communicates with the BPCS

through a Modbus link. Also, the BPCS controller communicates and receives commands

from the HMI through a Modbus link. Since Modbus TCP/IP communication protocol

considers a Master/Slave architecture, it is worth noting that the BPCS is the master, and

the SIS is the slave in the first communication link. However, in the second Modbus link,

the HMI plays the master role and the BPCS takes the slave role. Also, it should be

highlighted that no direct communication link is allowed on the SIS from the HMI. The

RL agent node communicates with the rest of the components using the UDP/IP

 60

communication protocol.

Figure 13. Testbed architecture

5.2 CPS Implementation

The process is simulated using two open-source platforms, which are MATLAB/Simulink

and LabVIEW Real-Time (RT) module. It is worth mentioning that several other simulated

testbeds were developed at various labs for researchers to experiment with cyberattacks and

vulnerabilities and evaluate their detection and defensive mechanisms. Examples include the

smart power grid testbeds presented in [119], the National SCADA Testbed (NSTB) [120],

and the Idaho National Labs (INL) SCADA Testbed [121]. In our experiments, we use the

Simulink simulation to solve the intrusion response problem using the Genetic Algorithm

approach (GA-IRS). However, the LabVIEW simulation is used to solve the same problem

using the reinforcement learning-based DDQN approach (DRL-IRS).

5.2.1 Process Simulation

The process simulation model was implemented in both Simulink and LabVIEW.

Both platforms are graphical-based (block diagram) environments that are widely used to

simulate industrial systems. Initially, we simulated the non-linear controller, which was

 61

designed to stabilize the system, in Simulink as shown in Figure 14. The Reactor S-

Function is where we define the mathematical model equations for the reactor and

initialize all the required parameters. Then, we moved to LabVIEW, where we added

hardware components and a communication network. Figure 15 shows the front panel of

the designed process simulation in LabVIEW, while Figure 16 shows a snippet from its

block diagram where the mathematical formulas of the model are implemented.

Figure 14. Process simulation model in MATLAB/Simulink

Figure 15. Process simulation for the reactor in LabVIEW (front panel)

 62

Figure 16. Process simulation for the reactor in LabVIEW (block diagram snippet)

5.2.2 Cyber System Implementation

In this section, we explain some implementation details of the testbed’s components

shown in Figure 13. The testbed uses open hardware and software components to allow

control of the experimental environment. For example, the testbed uses industrial NI

controllers, which allow low-level programming for all software tasks, including

communication protocols. The process simulator, BPCS controller, and SIS controller run

on Compact RIO (cRIO) 9064, Compact RIO (cRIO) 9064, and myRIO 1900,

respectively.

Initially, the measurement and actuation signals were exchanged between the process

simulation, controllers, and HMI using a high-speed UDP/IP communication over

Ethernet. However, we wanted to simulate a more realistic environment for an industrial

process. Accordingly, we changed the communication links to Modbus/TCP, which is a

more reliable and widely used communication protocol for industrial processes. The

Modbus Application Data Unit (ADU) is shown in Figure 17. We also represented each

sensor and actuator as one I/O line in cRio modules. The I/O lines are connected

physically to the controllers to mimic real sensors' and actuators' connections. The sensors

 63

that are considered in the testbed measure the temperature, the concentration, the flow

rate, and the reactor level. While there are three main actuators, which are the inlet valve,

the outlet valve, and the coolant valve, that control the flow rate for the different pipes.

Figure 17. Modbus/TCP ADU

The process simulation model is implemented using LabVIEW Real-Time (RT)

module. The Simulation uses fixed Ordinary Differential Equations (ODE) solver with a

simulation step size of 0.1 𝑚𝑠 real-time resolution. It also sends the process data to the

process controller every 10 𝑚𝑠, through the I/O lines, as responses to the received

queries. The BPCS, which runs RT Linux OS, uses the PID control algorithm since it is

the defacto standard in the process control industry. The PID is used to control the level,

temperature, and concentration of the reactor. Commands are sent from the HMI to the

BPCS using the ‘write holding registers’ and ‘write holding coils’ Modbus

communication blocks in LabVIEW based on the type of the sent data. These values are

used by the PID to perform the control logic. The controller also exchanges the data

received from the HMI to the physical process visa periodic communication.

The SIS, which runs RT Linus OS, implements the safety shutdown logic when

hazards are identified. Hazards happen mainly when the process variables exceed their

safe operating limit. For example, in a reactor overflow hazard (level > 95%), the inlet

stream has to be closed. While for a high-temperature hazard, both the inlet and the outlet

stream valves should be closed. The SIS communicates two types of data to the BPCS,

which are periodic field measurements and discrete events that take place during a

shutdown for display purposes and further control actions. The HMI, which acts as an

 64

operator interface to the physical process, is developed using LabVIEW graphical

programming and runs on Windows 10 OS, as shown in Figure 18. The HMI periodically

reads process data information from the BPCS. As can be seen from Figure 19, which

shows a snippet from the front panel of the designed HMI, reading responses from the

BPCS are done using the Modbus communication blocks, such as ‘read input registers’

and ‘read discrete inputs’. It should be highlighted that each type of these Modbus blocks

uses a different Modbus function code. Another point to notice is that the HMI is not

allowed to write directly to field devices nor to have direct communication with SIS for

safety reasons. Concerning the firewall, it was implemented using iptables running on

Ubuntu Linux. These tables were used to ensure that no direct traffic is allowed between

the control and cooperate networks.

Figure 18. HMI for the reactor process (front panel)

 65

Figure 19. HMI for the reactor process (snippet block diagram)

The RL Agent node in the architecture is where we placed our reinforcement

learning intrusion response agent during the training and testing phase. This node is

responsible for receiving states and sending back appropriate defensive actions. For

communication purposes, we opened a UDP/IP communication channel between our

RL agent node (which uses MATLAB) and the BPCS controller, and the SIS

controller in LabVIEW. The selection of UDP/IP is mainly because we looked for a

fast, simple, and efficient communication protocol. In our experiments, we assume

that all our required states are gathered and sent from the BPCS controller to the RL

agent through this UDP/IP communication link. Also, this communication link is

used by the RL agent to send the selected actions to their execution locations, which

can be on the BPCS controller, SIS controller, or the control network. Note that the

RL agent has direct access to all the components and can overwrite any logic. All in

all, these modifications in the communication setups are to prepare the CSTR testbed

to be used as an interactive environment for the training of the reinforcement learning

IRS agent (DRL-IRS), which will be presented in Chapter 7.

 66

5.3 Modelling and Design of Cyberattacks

This section presents a comprehensive and detailed attack tree for modelling different

attack scenarios, which are Reconnaissance attack, MITM attack, Denial of Service (DoS)

attack, and Replay attack. We also discuss the different attack scenarios considered in both

the GA-IRS and DRL-IRS solution approaches. More details on the design and

implementation of cyber physical attacks on Modbus/TCP protocol is available in our

published research paper [122].

5.3.1 Attacks Model

According to [68], attack trees are visual diagrams that are very popular for

modelling the sequence of steps needed to perform different cyber-attacks. Figure 20

shows our designed bottom-up attack tree that outlines how to perform reconnaissance,

replay injection, command/response modification, and DoS attacks against our CPS

testbed that uses Modbus/TCP communication protocol.

Figure 20. Attack tree model against CPS using Modbus/TCP protocol

 67

Three attributes, which are summarized in Table 9, are associated with each attack

step: Time to execute the attack step (t), resources/tools required (r), and knowledge

needed (k). The tuple (k, t) is added to each tree edge while the resources (r) are

embedded in each attack step. The time to execute each attack step could be modeled as a

random variable with a Probability Density Function (PDF) that depends on the attacker’s

profile. In this work, we assume a Gaussian distribution for mathematical tractability, T ~

N (μ, σ), with a mean time to execute the attack (μ) and standard deviation (σ), when

possessing the required knowledge and resources.

Table 9. Attack Tree Attributes

Attributes Symbol Description

Resources r Resources needed to perform each attack step, such as tools and

manpower

Time t The time taken (in min) to successfully execute each attack step

Knowledge k The level of attacker’s knowledge needed on a scale

(Low/Medium/High)

Other distributions could be used as well. The correct approach to decide on a

specific distribution is to learn from real attack data, which is still lacking in the research

community. To capture the variation of the PDF with the attacker profile, several

attacker's attributes could be defined, such as knowledge, access to tools, financial ability,

and motivation [123]. In this work, we consider two attributes only, resources and

knowledge, that are mapped to the attack attributes. To facilitate quantitative analysis, we

assume r, k ∈ [0,1] are normalized values. This gives rise to the two-dimensional attack

space depicted in Figure 21. The attack step is represented by the vector [𝑟𝑠, 𝑘𝑠] and the

attacker profile is represented by the vector [𝑟𝑎 , 𝑘𝑎]. The distance between the attacker

profile and attack vector changes the execution time PDF via a function mapping g(.). An

example function that changes the Gaussian distribution parameter μ is

μ = μ0 − 𝛼1(𝑟𝑎 − 𝑟𝑠) − 𝛼2(𝑘𝑎 − 𝑘𝑠) Equation 2

where 𝜇0 is the parameter value for (𝑟𝑠, 𝑘𝑠) attribute values, and 𝛼1 and 𝛼2 are weight

factors that reward or penalize the excess or shortage in required resources and

 68

knowledge, respectively.

Figure 21. Attack attributes vs attacker profile. The attack attributes define the required

resources and knowledge required for a successful attack

Equation 2 assumes that if the attacker has less knowledge and resources, the attack

could still succeed but with a longer time. Other functions could model the scenario of the

impossibility of launching an attack if the resources, such as tools or knowledge, cannot

be met. This will have the impact of shifting the execution time PDF such that the mean

time approaches infinity. Therefore, different attack steps will have different function

definitions. Figure 22 shows a family of distributions for the attack execution time for

different attacker profiles where the parameter μ is calculated according to (1) with μ0 =

10, σ = 1.

Figure 22. Execution time distribution for different attacker profiles

 69

The attack tree, shown in Figure 20, identifies the different attack paths that can be

used to compromise and threaten our CPS. Initially, it starts with performing

reconnaissance attacks to affect the confidentiality of the system and gather enough

information for performing more sophisticated active attacks. The next step intercepts the

flow of traffic between the targeted parties using ARP spoofing, which poisons the ARP

table of the two parties by linking their IP addresses with the attacker's MAC address.

Following that, the packets are analyzed using Wireshark and thus are accessible by the

attacker to be modified. Modifications include changing the function code field to an

unsupported one, injecting a whole replayed payload, or changing any specific value in

the payload. Finally, the packets are re-transmitted to their intended destination after

being maliciously changed to cause either a DoS attack, a replay attack, or a false

command/response modification attack. In this work, we assume an insider attacker

profile with resources and knowledge (r, k) matching the requirements of each attack

step.

5.3.2 Attack Scenarios

There are several vulnerabilities in the process that can be exploited by attackers to

launch different attack scenarios. The two main hazards associated with the CSTR

process are the reactor overflow (high level) and reactor runaway (high temperature). In

the process industry, Hazard and Operability (HAZOP) study is the key risk assessment

methodology used to identify hazards, their initiating events, and the consequences [124].

Table 10 is a partial HAZOP sheet showing the two hazards and their consequences.

Table 10. Partial HAZOP Sheet for the Reactor Process

Hazard Initiating Event

(Cause)

Consequences Safeguards

(IPL)

High Level

(Reactor

overflow)

Controller failure

OR Outlet control

valve fully closed

OR Inlet valve stuck

fully open

2 or more fatalities (safety),

Product loss (financial),

Environmental contamination

(environment)

Reactor

dike

(Mitigation)

 70

Hazard Initiating Event

(Cause)

Consequences Safeguards

(IPL)

High Temperature

(Reactor

Meltdown)

Coolant inlet control

valve fully

(partially) closed OR

Inlet valve stuck

fully open

10 or more fatalities (safety),

Product loss (financial),

Environmental contamination

(environment)

None

In this thesis, both GA-IRS and DRL-IRS solutions, consider that our testbed

environment is under the Command/Response modification attack against the

setpoint, which is an example of the false data injection MITM attacks. This attack

aims to tamper different defined setpoints to either increase the reactor’s temperature

or reactor’s level beyond design limits and hence, cause a reactor meltdown attack or

a reactor overflow attack, respectively. An important point to highlight is that the

detection procedures of the attacks is out of the scope of this thesis, but there is an

assumption that there is an active IDS that detects abnormalities with a 100% trust

since dealing with IDS uncertainties is also beyond the scope of this thesis.

5.3.2.1 Attack Scenarios for the GA-IRS Approach

In the GA-IRS approach, we consider different scenarios for the false data

injection attack. Each scenario manipulates the temperature and/or the level of the

reactor by setting a fault setpoint to cause different hazardous consequences. It is

worth mentioning that the considered attack scenarios are simulated, and that the

attacker profile is assumed to be not persistent, which means that it is a one-shot

attack since the attacker gets out of the network once succeeding in performing the

attack that drives the process towards hazardous situations.

At first, we divided the range of the reactor’s temperature and level into 4

regions, which are low, normal, high, and hazard as shown in Table 11. Under normal

conditions, when the level is less than 30%, the water pump turns on and the inlet

flow becomes 2 𝑚3/𝑠𝑒𝑐 to prevent an underflow. When the water level is greater

than 70%, the water pump turns off and the inlet water flow becomes 0 to prevent a

 71

possible overflow. For the temperature, the coolant valve opens to cool down the

reactor’s temperature when it is greater than 460 𝑘. Accordingly, the level dangerous

point is < 𝐻𝐿 = 95%, 𝐿𝐿 = 10% >, The level setpoint is < 𝐻𝐿 = 70%, 𝐿𝐿 =

30% >, the temperature dangerous point is < 𝐻𝑇 = 480 𝑘, 𝐿𝑇 = 360 𝑘 >, and the

temperature setpoint is < 𝐻𝑇 = 460 𝑘, 𝐿𝑇 = 410 𝑘 >. It is important to know that

the ideal reference temperature is 420 𝑘 and level is 1 𝑚.

Table 11. Categorical Classifications of the Reactor's Parameters’

Parameter Low Normal High Hazard

Temperature

(T)
360 < 𝑇 < 410 410 ≤ 𝑇 ≤ 460 460 < 𝑇 < 480 𝑇 ≥ 480

𝑇 ≤ 360

Level (L) 0.2 < 𝐿 < 0.6 0.6 ≤ 𝐿 ≤ 1.4 1.4 < 𝐿 < 1.9 𝐿 ≥ 1.9

𝐿 ≤ 0.2

After knowing the normal behavior of our CSTR process with standard setpoints,

we designed different attack scenarios for tampering the setpoint configuration data

of the temperature and the level as shown in Table 12. The following scenarios

represent how tampering the setpoint can lead to dangerous abnormalities if not

detected and regulated by selecting the appropriate countermeasures.

Table 12. Attack Scenarios Description for the GA-IRS solution

Scenario Attack Type Attack Description

1 Setting a fault setpoint

for 𝐿𝐿 𝑎𝑛𝑑 𝐿𝑇

𝐿𝐿 𝑎𝑛𝑑 𝐿𝑇 are tampered from 30% and 410 to

5% and 370, respectively. So, when the level is

less than 30% but greater than 5%, the water

pump will not turn on because the setpoint was

tampered to 5%. Thus, the level will continue

to drop. The same goes to the temperature.

2 Setting a fault setpoint

for 𝐻𝐿

𝐻𝐿 is tampered from 70% to 100%. So, when

the level is more than 70% and less than 100%,

the water pump will not turn off because of the

fault setpoint. Thus, the level will continue to

increase until it brims over the tank causing a

reactor overflow attack.

3 Setting a fault setpoint 𝐻𝑇 is tampered from 460 to 500. So, when the

 72

Scenario Attack Type Attack Description

for 𝐻𝑇 temperature is more than 460 and less than 500,

the coolant valve will still not open to cool

down the process. Hence, the temperature will

keep on increasing.

5.3.2.2 Attack Scenarios for the DRL-IRS Approach

In our experiments to train the DRL-IRS agent, we considered the fault setpoint

data injection attack on the temperature. Figure 20 shows the detailed implementation

steps of this attack, which aims to increase the reactor’s temperature beyond design

limits and hence, cause a reactor meltdown attack. In this attack, the attacker

compromises the communication link between the HMI and the BPCS controller to

send false commands that tamper the temperature setpoint from the standard 420 𝑘 to

900 𝑘. Accordingly, the controller adjusts to the new malicious setpoint and does not

open the coolant valve when the temperature increases beyond 460 𝑘 as being

designed, and the temperature continues to increase. At the same time, A tampered

response is sent back from the BPCS to the HMI showing a normal 420 𝑘

temperature setpoint to deceive the operator, while the actual malicious temperature

setpoint received and used by the controller is 900. Figure 23 shows how the attacker

affects the data integrity of the response/command packets by modifying their

payloads from the network level to perform the false data injection attack.

Figure 23. False data injection attack

Physical
System

Controller

SensorActuator

NetworkNetwork

y

y

u

u

 73

From this fault setpoint data injection attack, we designed three different

scenarios that the DRL-IRS agent has to deal with and find the optimal sequence of

actions for each one of them in the different training experiments discussed in Section

8.2 Agent Training . Keeping in mind that the ultimate aim of the three scenarios is to

cause a reactor meltdown attack. Table 13 describes the situation of the environment

when each scenario is detected. Also, unlike the GA-IRS scenarios where we

considered a non-persistent attacker profile, in here, we consider an active determined

attacker profile that has all the needed resources and is persistent to reach the goal as

long as no mitigations are performed to stop the attacker. Another assumption is that

the attacker is an insider, so the steps of penetrating the CPS network is neglected.

Finally, we assume that the DRL-IRS agent is activated after receiving an alert from

the IDS to respond and select the optimal sequence of actions that can reduce the risk

of the detected undergoing attack scenario.

Table 13. Attack Scenarios Description for the DRL-IRS Solution

Scenario Attack Scenario Description

1 The false data injection on the temperature setpoint is performed

successfully, the safety controller (SIS) is not compromised by the

attacker, and the attacker source or IP address is known

2 The false data injection on the temperature setpoint is performed

successfully, the safety controller (SIS) is not compromised by the

attacker, but the attacker source/address is not known

3 The false data injection on the temperature setpoint is performed

successfully, the safety controller (SIS) is compromised by the attacker,

and the attacker source/address is also not known

 74

CHAPTER 6: IRS DESIGN USING GENETIC ALGORITHM (GA-IRS)

In this chapter, we use a conventional optimization approach to solve the intrusion

response decision-making problem. We formulate the decision-making problem into a

weighted single-objective optimization function that aims to regulate the CSTR process. The

Genetic Algorithm (GA) is used to solve the optimization problem to find the optimal

response for the different considered case studies. Finally, the impact of the applied approach

is evaluated based on its computational complexity and response effectiveness.

6.1 Single-objective Optimization Formulation

The selection of the optimal response action from the action space is formulated as an

unconstraint weighted single-objective optimization problem. The goal is to find the optimal

action vector that maximizes the final reward objective function. The state space of this

chemical reactor control system is defined as 𝑆 = [𝑇, 𝐿], where 𝑇 is the reactor’s temperature

in kelvin (𝑘) and 𝐿 is the reactor’s level in meter (𝑚). The considered decision-making

actions, which are used to defend against the cyberattacks, are compacted in the vector 𝐴 =

 [𝐼𝑉 𝐶𝑉 𝑆𝑃]. 𝐼𝑉 and 𝐶𝑉 are Boolean values to either open (𝐼𝑉 = 𝐶𝑉 = 1) or close (𝐼𝑉 =

 𝐶𝑉 = 0) the inlet valve and the coolant valve, respectively. 𝑆𝑃 is the temperature setpoint

value, which ranges discretely between 300 and 500, and is used to regulate the reactor’s

temperature. The objective function, which we aim to maximize, is mainly composed of the

benefit of the selected action and its cost as follows:

𝑚𝑎𝑥𝑥 𝜖 𝑋 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑥)– 𝐶𝑜𝑠𝑡(𝑥) Equation 3

Where 𝑥 is the action vector selected, which belongs to the action space 𝑋. The 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑥)

is a positive value given for action 𝑥 for keeping the process away from hazards. The 𝐶𝑜𝑠𝑡(𝑥)

is a value that evaluates how deviated is the process from the defined setpoints after

performing the selected action vector 𝑥. The 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑥) is calculated as follows:

𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑥) = 𝑡 ∗ 𝑃 Equation 4

Where 𝑡 is the sampling time in sec, and 𝑃 is the profit per sec. This benefit is given to the

selected action as long as the action did not drive the process to hazards but kept it working in

 75

a safe operational window. The safe operational window for the temperature is being greater

than 360 𝑘 and smaller than 480 𝑘. While for the level, the operational window is having the

level greater than 0.2 𝑚 and smaller than 1.9 𝑚. Other than these operational windows, the

process is said to be in a hazardous situation, and hence the benefit is zero.

 The calculation of 𝐶𝑜𝑠𝑡(𝑥) needs more detailed discussion. The cost is represented as

the Time to Recover (𝑇𝑇𝑅) metric. The 𝑇𝑇𝑅 is the time needed (in sec) by the CSTR system

to put the compromised process near the defined setpoints for the temperature and level. As

the 𝑇𝑇𝑅 increases as a result of deploying action 𝑥, the action’s cost increases as well. It is

worth mentioning that the 𝐶𝑜𝑠𝑡(𝑥) for actions that drive the system to hazardous conditions

when deployed at a specific state is set to be 3000, which is a large penalty (hazard cost (𝐶))

to that action and hence, next time a better action will be explored in that state. The 𝑇𝑇𝑅

metric, which is multiplied by the profit per sec value (𝑃) to change it from 𝑠𝑒𝑐 to $ unit, is

calculated as shown below:

 𝐶𝑜𝑠𝑡(𝑥) = 𝑇𝑇𝑅 Equation 5

𝑇𝑇𝑅 = 𝑃 ∗ (𝑤𝑇 ∗ 𝑇𝑇𝑅𝑇 + 𝑤𝐿 ∗ 𝑇𝑇𝑅𝐿) Equation 6

Where 𝑇𝑇𝑅𝑇 is the time needed to recover the temperature of the reactor and 𝑇𝑇𝑅𝐿 is the

time needed to recover the level of the reactor. 𝑤𝑇 and 𝑤𝐿 are weight values to indicate the

importance of each term in the equation in which 𝑤𝑇 + 𝑤𝐿 = 1. For calculating 𝑇𝑇𝑅𝑇 and

𝑇𝑇𝑅𝐿 , the following equations are used:

𝑇𝑇𝑅𝑇 = 𝑒𝜀∗𝑑𝑒𝑣𝑇(𝑥) − 1 Equation 7

𝑇𝑇𝑅𝐿 = 𝛼 ∗ 𝑑𝑒𝑣𝐿(𝑥) Equation 8

Where 𝑑𝑒𝑣𝑇(𝑥) and 𝑑𝑒𝑣𝐿(𝑥) represent the deviations of the reactor’s temperature and level

from their defined setpoints (distance metric) after deploying action 𝑥, respectively. 𝜀 and 𝛼

are hyperparameter values that are tuned to achieve the best performance. Equation 7 shows

an exponential relationship between the deviation of the temperature and its 𝑇𝑇𝑅𝑇 cost.

While Equation 8 shows a linear relationship between the deviation of the reactor’s level and

its 𝑇𝑇𝑅𝐿 cost. These assumptions are made for simplification purposes and to show the

 76

significant danger of the reactor meltdown attack since it causes more disastrous

consequences than the reactor overflow attack as shown in Table 10. To calculate the error

deviations, we use the following equations:

𝑑𝑒𝑣𝑇(𝑥) = |
𝑟𝑒𝑓𝑇−𝑁𝑒𝑤𝑇

𝑟𝑒𝑓𝑇
| Equation 9

𝑑𝑒𝑣𝐿(𝑥) = |
𝑟𝑒𝑓𝐿−𝑁𝑒𝑤𝐿

𝑟𝑒𝑓𝐿
| Equation 10

Where 𝑟𝑒𝑓𝑇 and 𝑟𝑒𝑓𝐿 are the defined setpoint values for the temperature and level of the

CSTR model, respectively. 𝑁𝑒𝑤𝑇 and 𝑁𝑒𝑤𝐿 are the new temperature and new level states,

respectively, that the process transmitted to after performing action 𝑥. So, the TTR is:

𝑇𝑇𝑅 = 𝑃 ∗ ((𝑤𝑇 ∗ 𝑒
𝜀∗|

𝑟𝑒𝑓𝑇−𝑁𝑒𝑤𝑇
𝑟𝑒𝑓𝑇

|
− 1) + (𝑤𝐿 ∗ 𝛼 ∗ |

𝑟𝑒𝑓𝐿−𝑁𝑒𝑤𝐿

𝑟𝑒𝑓𝐿
|)) Equation 11

Finally, combining all the equations together gives the objective function (Reward

function) that our optimization algorithm aims to maximize. This reward function, which is

multiplied by a scaling factor 𝑀, assesses the quality of the produced product by using the

𝑇𝑇𝑅 metric as follows:

𝑅𝐺𝐴 = 𝑀 ∗ (𝑡 ∗ 𝑃 − 𝑃 ∗ ((𝑤𝑇 ∗ 𝑒
𝜀∗|

𝑟𝑒𝑓𝑇−𝑁𝑒𝑤𝑇
𝑟𝑒𝑓𝑇

|
− 1) + (𝑤𝐿 ∗ 𝛼 ∗ |

𝑟𝑒𝑓𝐿−𝑁𝑒𝑤𝐿

𝑟𝑒𝑓𝐿
|)))Equation 12

6.2 Genetic Algorithm Framework

According to [125], Genetic Algorithm (GA) is a very popular heuristic evolutionary

technique for solving constrained or unconstrained optimization problems. GA was inspired

by Darwin’s theory of natural evolution and survival of the fittest. The choice of using GA to

solve our intrusion response decision-making problem is mainly because it is one of the most

well-established and widely used algorithms in the literature. Figure 24 is a flowchart

showing the general scheme of how GA works.

Initially, GA starts with randomly initializing a population of solutions in which each

solution is called a Chromosome and is represented as a set of genes. The genes are the

decision parameters that describe each solution depending on the type of the problem. The

fitness value, which is dependent on the problem we are trying to solve, is then computed in

the evaluation step to show the goodness of each solution in the population. For the fitness

 77

values, the higher the number, the better the solution.

Since GA uses the concept of a generational loop to improve their solutions, we need

to figure out when to stop looping so that the process does not continue forever. This is done

by checking if the termination conditions are satisfied or not. Some termination conditions

include having a goal achieved, reaching a maximum number of generations, or noticing a

performance stagnation of the fitness scores from generation to generation. Following that,

the fittest individuals that we expect to have the most valuable genetic information are

selected from the population to become parents and produce the next offspring generation.

Several selection methods can be used, such as Roulette-wheel selection, binary tournament

selection, and rank selection. More comparative details on each selection approach is

available in [126]. Variation operators including crossover and mutation methods, which are

used to generate a new generation from the previously chosen one, are then used to combine

the two selected parents to create new individuals for the offspring population. In the

crossover, genes from each parent are separated and exchanged to produce an offspring

having several genes from each parent. There are several possible strategies for a crossover

which are randomly selecting a single point for the crossover, multi-point crossover, or

uniform crossover. In mutation, an arbitrary gene is randomly changed from some randomly

chosen offspring individuals to increase the variety of the offspring population by introducing

new genetic information into the population. Finally, the newly evolved population is then

used as the next population and loops back for evaluation. This new population contains both

the parent’s population and the offspring population and it has the size of the originally

initialized population. The algorithm repeatedly performs modifications on the population of

solutions until the termination conditions are satisfied and the final population, which

explored the solution space and evolved toward the optimal solutions across several

generations, is returned.

 78

Figure 24. Flowchart of the Genetic algorithm (GA)

6.3 Experimental Settings

The CSTR process used in evaluating the proposed GA-IRS approach is executed in

MATLAB R2021a/Simulink on a computer with Intel® Core™ i7-8565U CPU @ 1.8GHz

and 16GB RAM memory. The optimization approach, which aims to maximize the reward

function shown in Equation 12, is implemented using the inbuilt function for single-objective

optimization (𝑔𝑎) from the optimization toolbox in MATLAB. However, since the 𝑔𝑎

function is only used for minimization problems, we set the problem to minimize the negative

value of the reward function in order to achieve our desired objective. Table 14 displays the

different settings of the parameters that are used in the objective function and the GA options.

The choice of each parameter value is tuned to achieve the desired objective of protecting the

CSTR system from going into hazardous states resulting from attackers exploiting the

system’s vulnerabilities. For example, since we only have 3 decision actions, which are

controlling the opening and closing of each of the two considered valves and reconfiguring

the setpoint, a suitable population size of 100 is set to avoid local minima solution. Also, it is

worth mentioning that using a higher weight in the reward function for the temperature term

𝑤𝑇 = 0.8 in comparison to the weight for the level term 𝑤𝐿 = 0.2 indicates that our

 79

objective function prioritizes temperature regulation over level since it is more costly to have

a meltdown reactor attack.

Table 14. Parameter Settings for the Conventional GA Approach

Parameter Value

𝑀 , 𝑡 , 𝑃 3 , 2 (𝑠𝑒𝑐), 5 ($)

𝑤𝑇, 𝑤𝐿 0.8, 0.2

𝜀 , α 10, 5

𝑟𝑒𝑓𝑇, 𝑟𝑒𝑓𝐿 420 (𝑘) , 1 (𝑚)

HazardCost (C) −3000

Population size, Max generations, Max Stall

Generations
100, 100, 100

Function Tolerance 0.001

Actions lower bounds [𝐼𝑉 𝐶𝑉 𝑆𝑃] 𝐿𝑏 = [0 0 300] (𝑆𝑃 takes discrete values)

Actions upper bounds [𝐼𝑉 𝐶𝑉 𝑆𝑃] 𝑈𝑏 = [1 1 500] (𝑆𝑃 takes discrete values)

Termination conditions Objective function value is less than the

defined function tolerance or reaching the

maximum defined number of generations

6.4 Case Studies

Different case studies are used to validate the performance of the proposed GA in

solving the intrusion response decision-making problem under different attack scenarios.

The considered attack scenarios are described earlier in Table 12. The objective of the

optimization algorithm is to find the optimal action vector 𝐴 = [𝐼𝑉 𝐶𝑉 𝑆𝑃] that can

defend against the cyberattack, maximize the reward function and bring the system closer

to the setpoints and away from hazards. Table 15 describes the performed cases studies

and the attack scenarios they dealt with. These case studies investigate how the GA

selects the optimal action configurations to recover the process to its normal operations.

Table 15. Case Studies Description for the GA-IRS Appraoch

Case Study Attack Scenario Description

1 and 2 1 The current system state is S = [380,0.5]. The level is less

than 30% but 𝐿𝐿 is tampered in this attack scenario so the

water pump doesn’t turn on, and the level continues to

drop. The same goes to the temperature.

3 2 The current system state is S = [436.8,1.88], the level is

more than 70% but 𝐻𝐿 is tampered in this attack scenario

 80

Case Study Attack Scenario Description

so the water pump does not turn off, and the level

continues to increase until it brims over the tank

4 3 The current system state is S = [477,1.35], the temperature

is more than 460 but 𝐻𝑇 is tampered in this attack scenario

so the coolant valve does not open, and the temperature

keeps on increasing

6.4.1 Case Study 1

This is the base case study; it uses a random policy without optimization to show the

random behavior of the CSTR model and compare it with the other optimized case studies

to give some initial thoughts about the performance. For this case, the CSTR has a low

level of 0.5 𝑚 and a low temperature of 380 𝑘. Figure 25 shows the results of performing

random actions for 100 runs. We can see that the system continuously selects random

actions that lead to falling into hazards, showing a hazard cost (𝐶) penalty of 3000. This

behavior is not desired since we aim to protect the CSTR from falling into hazards and

thus, optimize the performance.

Figure 25. Case study 1: Random policy approach

 81

6.4.2 Case Study 2

In the second case study, the CSTR environment was also set to simulate having a

low level of 0.5 𝑚 and a low temperature of 380 𝑘, as in the first study. Figure 261 shows

the results of the GA optimization algorithm. The optimal action that was selected as the

selected solution is 𝐴 = [1 1 422], which means to open the inlet valve, open the outlet

valve, and adjust the temperature setpoint value to 422. As a result of deploying the

selected action, the reactor’s temperature settled at 420 k and the level at 0.6 m, which

shows a normal behavior of both the temperature and level. In comparison to the base

case study, we can see the effectiveness of the optimized solution in regulating the CSTR

to its normal operations and keeping it away from hazards.

Figure 26. Case study 2: GA optimization for S = [380,0.5] scenario

6.4.3 Case Study 3

The CSTR environment simulates having a high level of 1.88 𝑚, as a result of the

fault setpoint attack previously described, and a normal temperature of 436.8 𝑘. Figure 27

1 This is the only case study that has a maximum generation of 200

 82

shows the results of the optimization algorithm, which selected the best action as 𝐴 =

 [0 1 435]. This action closes the inlet valve, which is a reasonable action since this

scenario already suffers from a high level, so we aim to reduce the level by initially

stopping the inlet water flow. Also, the action opens the coolant valve to regulate the

temperature with a setting point of 435. After deploying the chosen action, the reactor’s

new temperature settled at 420 𝑘 and the level at 1 𝑚, which are the exact desired defined

setpoints for having optimal temperature and level values. This case study still shows a

consistent superiority to the baseline case.

Figure 27. Case study 3: GA optimization for S = [436.8,1.88] scenario

6.4.4 Case Study 4

This case study simulated a CSTR environment with a high temperature of 477 𝑘 and

a normal level of 1.35 𝑚. Figure 28 shows the results of the optimization algorithm,

which selected the best action that can be deployed as 𝐴 = [1 1 324]. This action opens

both the inlet and the coolant valves with a regulating setpoint value of 324. After

deploying this action, the reactor’s temperature settled at 434 𝑘 and the level at 0.9 𝑚,

which shows a normal behavior of both the temperature and level as desired. It is

 83

noticeable that tuning the setpoint value plays a major role in regulating the CSTR and

reducing the potential losses as seen from the presented case studies. Consequently, an

attack targeting the tampering of these setpoints can cause catastrophic damages. Also,

these case studies proved that their performance is effective in defending against attacks

and obviously regulating the CSTR better than the random baseline case.

Figure 28. Case study 4: GA optimization for S=[477, 1.35] scenario

6.5 Evaluation

 This section examines the impact of the proposed conventional GA decision-making

algorithm in terms of computational time complexity and response action effectiveness in

reducing the deviations of the reactor’s temperature and level in the CSTR process.

Since the state and action spaces were small, it was not hard for the optimization

algorithm to find the optimal decision for the different case studies in a reasonable period of

time. Accordingly, the computational time complexity of this approach is not high since the

case studies needed approximately 5 to 7 hours for the optimization to finish. This is

obviously affected by the size of the state and action spaces. Thus, this metric is not

comparable with other state-of-the-art approaches since each has its own simulated process

 84

with its different considered state and actions spaces.

Concerning the GA-IRS approach effectiveness in reducing the temperature and level

deviations, which is the main evaluation metric to be considered, Table 16 evaluates the

temperature, level, and the percentage deviation for each case study before and after applying

the selected response action. The deviation percentages are calculated using Equation 13 for

the temperature, and Equation 14 for the level. From this table, we can state that the proposed

approach successfully generated appropriate action policies that were able to reduce the

deviations in all the different case studies and thus, maximize the reward function. In other

words, the deviations were reduced by 9.5% and 10% for the second case study, 4% and

88% for the third case study, and 10.27% and 25% for the third case study, for the reactor’s

temperature and level, respectively. Also, we can also notice that the second, third, and fourth

case studies outperform the random policy approach.

 𝑇𝑒𝑚𝑝_𝑑𝑒𝑣 = |
𝑡𝑒𝑚𝑝 −𝑟𝑒𝑓𝑇

𝑟𝑒𝑓𝑇
| ∗ 100 Equation 13

𝐿𝑒𝑣𝑒𝑙_𝑑𝑒𝑣 = |
𝑙𝑒𝑣𝑒𝑙 −𝑟𝑒𝑓𝐿

𝑟𝑒𝑓𝐿
| ∗ 100 Equation 14

Table 16. Evaluating the Impact of GA Optimization in Reducing the Deviations

Case Study 2 3 4

Before After Before After Before After

Temp (T) 380 420 436.8 420 477 434

T deviation 9.5% 0% 4% 0% 13.6% 3.33%

Level (L) 0.5 0.6 1.88 1 1.35 0.9

L deviation 50% 40% 88% 0% 35% 10%

Despite the successful performance of the GA solution approach in protecting the

CSTR model from falling into hazardous states and minimizing the system’s deviations, they

are not suitable for real-world online applications. This is because this approach is a one-shot

optimization that does not provide an adaptive solution. Usually, when real industrial systems

are under attack, a sequence of non-identical actions are needed to bring the system to a stable

state, not just a single optimal action execution. Also, this approach is not generalizable and

 85

cannot handle changes in the system dynamics. Accordingly, there is a need for adaptive,

generalized, and intelligent solution for solving the intrusion response decision-making

problem, such as the model-free reinforcement learning-based approach discussed in the

following chapter.

 86

CHAPTER 7: IRS DESIGN USING DEEP REINFORCEMENT LEARNING (DRL-IRS)

In this chapter, the design methodology of the intrusion response agent using a

model-free deep reinforcement learning approach is presented. We thoroughly discuss the

proposed DRL-IRS architecture along with the details of its state space, action space, reward

function, and utilized DDQN algorithm.

7.1 DRL-IRS Agent Architecture

Figure 29 depicts the high-level architecture of the proposed design of the intrusion

response agent for a CPS using Double Deep Q Network (DDQN) algorithm. The architecture

starts by getting the states information from the simulated CPS environment at every time

step. These states are mapped to the input layer of the Deep Neural Network (DNN). The

hidden layers of the Neural Network (NN), with the defined activation function, perform

transformations of the inputs into something that the output layer can use. The output layer

has N outputs, where N is the number of the available actions, such that each output

corresponds to the Q-value of each potential action at the given state. The Q-value indicates

how good is it to perform action 𝑎 in state 𝑠. During testing, the agent acts by picking the

action with the highest Q-value to be deployed. However, during training, the agent is

encouraged to act randomly sometimes to explore the environment carefully and find the best

possible sequence of actions to the goal. Accordingly, the action selection and the

exploitation-exploration balance is handled by the decaying epsilon greedy policy, which will

be discussed later. After deciding on the action, the DDQN agent directly interacts with the

environment online to deploy the selected action. As a result, the environment moves to a new

next state, and the agent gets a scalar reward/penalty value as feedback on performance to

update the parameters of the deep network. From the reward value, the agent can assess how

good or bad the deployed action was, so it can learn to take better actions in the future.

Accordingly, the agent can learn depending on its own experience with the unknown

environment.

The main objective of the proposed IRS agent is to learn an optimal policy, which is

the strategy that the agent follows to take an action given the state, that maximizes the long-

 87

term cumulative reward, and balances between exploring the environment and exploiting the

agent’s current knowledge. Now that we have seen the general broad picture of the proposed

architecture, let’s get into the details of each part.

Figure 29: DRL-IRS Agent on a CPS testbed architecture

7.2 State Space

The states in reinforcement learning are the input information given to the agent to

help it take decisions in different situations. A state-space can be either of discrete values or

continuous values depending on the considered problem. In cyber-physical systems, the states

are usually either process-based, cyber-based, or both. In our experiments, we integrated

process-based and IDS-based states to enrich the agent visibility to the current state of the

protected system. Also, integrating different categories of states exposes the agent to different

training scenarios and thus, allows it to generalize and make accurate decisions in different

situations.

The complete state space that we consider for our problem is defined to be 𝑆 =

[𝑇 𝐿 𝑂𝐹 𝐴𝑆]. 𝑇 and 𝐿 are process-based states, which are the reactor temperature and the

reactor level, respectively. 𝑂𝐹 is the outlet flow, which is a process-based state indicating the

quantity of the produced output product in the CSTR process. Finally, 𝐴𝑆 is a state expected

 88

from the IDS showing which attack scenario is being detected. To elaborate, we consider

three different attack scenarios, which are described previously in Table 13, for the false data

injection attack in which the IDS is assumed to be able to detect them successfully. Each

attack scenario will have a different optimal sequence of actions that the agent has to learn

from interacting with the testbed to reach convergence. Thus, at time step 𝑡, the state vector is

𝑠𝑡 = [𝑡𝑡 𝑙𝑡 𝑜𝑓𝑡 𝑎𝑠𝑡], which encompasses only discrete variables for all the state parameters.

7.3 Action Space

The actions in reinforcement learning are the decisions that the agent takes as an

output based on the given states. An action-space can also be of discrete or continuous values.

In CPSs, the actions can be implemented only on the cyber-level, the process level, or both at

the same time. In the literature, the combination of both cyber-level and process-level actions

in one action vector is not addressed thoroughly. For this reason, we targeted to include this

as one of the action combinations in our actions list.

The complete action space that we consider for our problem to mitigate the false data

injection attack has several atomic actions, such as dropping attack packets, safety shutdown

using the three safety valves, setpoint reconfiguration, and manual shutdown. Accordingly,

our action vector is defined to be 𝐴 = [𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃 𝑀𝑆], where 𝐷𝑃 is a cyber-level

action to drop attack packets from the network, if attack source is known. 𝑆𝐼, 𝑆𝐶, and 𝑆𝑂 are

the safety shutdown actions for the three valves in our process, which are the inlet valve, the

coolant valve, and the outlet valve, respectively. The 𝑆𝑃 corresponds to the setpoint

regulating action, and 𝑀𝑆 decides whether the manual shutdown action is activated or not.

Thus, at time step t, the action vector is 𝑎𝑡 = [𝑑𝑝𝑡 𝑠𝑖𝑡 𝑠𝑐𝑡 𝑠𝑜𝑡 𝑠𝑝𝑡 𝑚𝑠𝑡], which encompasses

only discrete variables since all the actions can either be 0 or 1, except 𝑠𝑝𝑡 which is set to be

420. For the three safety valves, 0 means closing the valves and 1 means opening them. Also,

for 𝑑𝑝𝑡 and 𝑚𝑠𝑡, 0 means not to drop attack packets and not to perform manual shutdown

while 1 means to drop the packets and perform manual shutdown, respectively. It is worth

noting that the choice of the actions contributing to the action space are process dependent.

 89

Also, the atomic actions that the action vector 𝐴 is made up from are used to build 6 different

combinations of discrete actions. Each combination can include either one or more than one

action at a time and are designed to suit the different training experiments conducted. This

will be thoroughly discussed in detail training section.

7.4 Reward Function

The reward is a scalar value that assesses the performance of the agent during the

training period. The ultimate aim of the agent is to maximize the long-term reward received

from the environment. The reward function encapsulates and encodes the goals that the agent

aims to achieve. There are three approaches to formulate the reward function, which are

continuous rewards, discrete rewards, and mixed rewards [127]. The continuous reward is

usually improving the convergence allowing for simpler network configurations, the discrete

reward usually guides the agent to avoid specific state regions but with slower convergence,

and the mixed reward combines the advantages of each type. In here, we discuss the three

goals that derive the formulation of our reward function.

Initially, the first goal of the agent is to assess the quality of the produced product from the

CSTR process. The product quality is assessed by two indirect measurements, which are the

temperature and the level of the reactor. To elaborate, as long as the product is produced

while the reactor maintains its temperature and level around the defined setpoints then, we

can say that the produced product has good quality. Accordingly, the product quality degrades

as the temperature and level deviate away from their defined setpoints. It is worth mentioning

that using the concentration variable of the produced product would have been a more

appropriate measure to assess its quality. However, we did not use it because it was unstable

during training hence, using it would have not given reliable feedback. The second goal is to

assess the quantity of the produced product. This is assessed by considering the outlet flow

value, which represents the amount of the produced product, such that the quantity is directly

proportional to the reward. The third and final goal is to prevent the CSTR process from

falling into hazardous states. Thus, the temperature and the level should not exceed the upper

and lower boundaries (hazard states) defined in Table 11. Otherwise, the agent receives a very

high negative penalty of −3000 (𝐶). Accordingly, the reward function that fulfills these goals

is formulated as shown below (

Table 17 shows the symbols description)

 90

𝑟1 = (𝑁 ∗ 𝑂𝐹 ∗ (𝑃𝑃 ∗ e−𝑇𝑇𝑅)) + 𝑃MS Equation 15

𝑃𝑃 = 𝑍 ∗ 𝑃 ∗ 𝑡 Equation 16

𝑃𝑀𝑆 = {
−TTR – Acost , if MS == 1

0, otherwise
 Equation 17

𝑟2 = −C (𝑇 ≤ 360 | 𝑇 ≥ 480 | 𝐿 ≤ 0.2 | 𝐿 ≥ 1.9) Equation 18

𝑅𝐷𝑅𝐿 = 𝑟1 + 𝑟2 Equation 19

Table 17. Reward Symbols Description for the DRL-IRS approach

Reward Symbol Description

𝑁, 𝑍 Scaling factors

𝑂𝐹 Outlet flow state

𝑃𝑃 Maximum production profit the process can get at each time step

𝑃 Profit per sec

𝑡 Sampling time

𝑇𝑇𝑅 Time to recover (calculated using Equation 11)

𝑃MS Penalty the agent gets only when performing the manual

shutdown action (𝑀𝑆),

Acost Availability cost penalty

𝐶 Hazard cost

𝑇 Reactor’s temperature

𝐿 Reactor’s level

Our reward function is of a mixed type that combines both continuous and discrete

reward components. 𝑟1, which is the continuous signal, is used to provide a higher reward

when the quality and the quantity of the produced product are near target ideal values. The

quality is shown by the 𝑇𝑇𝑅 distance metric, in which better quality shows a lower 𝑇𝑇𝑅 value

and vice versa. The quantity, on the other hand, is captured by the 𝑂𝐹 parameter that gives a

higher reward as it increases. Also, 𝑟1 encounters the manual shutdown action penalty, which

is a terminal state. 𝑟2, which is the discrete signal, provides a large penalty to drive the system

away from hazardous conditions. In case of falling into a hazardous state, which is also a

terminal state in our experiments, 𝑟2 would be much higher than 𝑟1. This is because even if

there is a produced quantity of product captured by 𝑟1, this product is a waste and would not

have been used by the process due to its possible toxicity. All in all, the total reward received

at each time step is given by Equation 19.

 91

7.5 Double Deep Q Network (DDQN) Algorithm

In practical large-scale real-life systems, such as our CSTR testbed, it is unfeasible to

precisely model the complex dynamics of the process by knowing all the transition

probabilities. Accordingly, this calls for efficient and intelligent approaches that do not

require the transition probabilities to learn the optimal solution for optimization. Fortunately,

RL supports model-free approaches where the agent can learn the optimal policy without

requiring an accurate model of the environment. Precisely, Q-Learning algorithm is one of the

most commonly used model-free algorithms [128]. However, the tabular approach of the Q-

learning algorithm, which suffers from the curse of dimensionality with high dimensional

state/action spaces, limits its applicability to a narrow range of applications. Subsequently,

several variants of the Q-learning algorithm that utilizes the advantages of NNs have been

developed to overcome these limitations, such as the DDQN algorithm.

The DDQN algorithm is an off-policy, model free, online, value-based RL algorithm.

It utilizes deep NNs, which act as a function estimator, to improve generalization, allow for

large state/action spaces, and reduce the complexity of training complex environments.

DDQN algorithm uses the exact same procedures of the popular Deep Q Network (DQN)

algorithm, but with an additional independent network for Q-value estimation, that is where

the term ‘Double’ came from. The usage of the extra identical target network allows DDQN

to avoid the maximum estimation bias issue found in DQN and ensures a faster, robust, and

more stable learning than DQN.

Figure 30 shows the general framework of how DDQN works, which will be

thoroughly explained in the Algorithm steps in the following paragraph. The first row of the

framework is previously explained when discussing the DRL-IRS architecture in Figure 29.

Hence, continuing on the DRL-IRS architecture, A replay buffer is used to store the

experiences in the form of (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) tuples, which are collected by the agent from the

interaction with the environment. It is worth noting that oldest tuples are deleted in case the

buffer was full, so that they can be replaced by new experiences. For training the agent, a

mini-batch is used with two NNs: the online critic DQN and the target network. Introducing a

 92

second target network, which is an exact replica of the critic network, helps in stabilizing the

learning by breaking the correlation of errors that happens when using only one NN. The role

of the online DQN is to make all the decisions and choose which action the agent is going to

take in every step. Whereas the target network evaluates the action and decides how valuable

it is. More details on the algorithm steps are given below:

Figure 30. General framework of the DDQN algorithm

Algorithm 1 [129] illustrates the details of the DDQN algorithm that show how the

agent learns. Initially, the agent initializes several input parameters, including a replay

memory buffer 𝐷 of maximum size 𝑁𝑟, the online critic network parameters 𝜃, the target

network parameters 𝜃−, a training batch size 𝑁𝑏, and the target network replacement

frequency 𝑁−. The two initialized networks: the online critic network and the target network,

are given the exact same initial weight parameters. For each training step, the agent decides

on whether to choose a random action or perform the action suggested by the online network

that has the maximum Q-value based on the decaying epsilon greedy policy. After executing

the action, the agent receives a reward and the next state from the environment. The transition

experience tuple is also stored in the replay buffer. Following that, a random minibatch of size

𝑁𝑏 is sampled from the replay buffer and fed to the online NN to optimize on its parameters.

 93

The target network is used to compute the target Q-value for each of the 𝑁𝑏 tuples by

accounting for terminal states. To elaborate, if it was a terminal state, then we are sure that

there is no future reward for us to look forward to, and so the second term in the target value

function formula 𝑦𝑗 is set to 0. If it is not a terminal state, the critic network estimator 𝜃 is

used first to select the action by performing the 𝑎𝑟𝑔𝑚𝑎𝑥 operation then, the second target

network estimator 𝜃− is used to evaluate that action by getting its Q-value. Afterwards, the

Mean Square Error (MSE) is computed, which is the difference between the target Q-value 𝑦𝑗

and the predicted Q-value that is computed using the critic network 𝜃. Finally, the parameters

of the critic network undergo gradient update to update the network’s weights by minimizing

the loss function. It is worth noting that the target network is not trained hence it never

undergoes gradient updates since it is only used to guarantee that the predicted Q-values and

the target Q-values would be computed via two separate independent networks to gain

training stability. At the end, the weight parameters of the critic network are copied into the

target network at regular intervals every 𝑁− steps.

 94

CHAPTER 8: DRL-IRS TRAINING RESULTS AND EVALUATION

 In this chapter, we discuss the experimental settings, including the NN architecture,

network parameters, DDQN settings, and training episodes. Also, we present the details of the

three different training experiments conducted (Exp1, Exp2, and Exp3). Then, the learning

performance results of each training experiment is examined, discussed, and evaluated.

Finally, the chapter ends with brief information about the collected dataset and the challenges

of developing this thesis.

8.1 Experimental Setup

8.1.1 Deep Neural Network Architecture

The adopted Neural Network for the DDQN agent consists of one critic network,

which has two fully connected hidden layers. The number of neurons in the first layer is

150 and the second layer is 100 for Exp1. However, in Exp2 and Exp3, the used neurons

are 50 and 25 for the first and second hidden layers, respectively. For the activation

function, the rectified linear (ReLU) activation unites are utilized. The size of the input

layer is the same as the number of states, while the size of the output layer equals to the

number of considered actions. Each output from the critic network represents the Q-value,

which is a single linear unit, of the given state with a specific action. In order to optimize

the network parameters with a learning rate of 0.001, Adam optimizer is employed. To

avoid overfitting, the L2 regulation is used with a value of 0.002. Table 18 shows the

architecture, which was fine-tuned with trial-and-error process to decide on its different

parameters.

Table 18. Neural Network Architecture

Neural Network Number of Layers Structure (number

of neurons in each

layer)

Activation

Function

Critic network

(Target network has

the same structure)

4 fully connected

layers (input layer,

2 hidden layers, and

the output layer)

Dependent on the

different

experiments

conducted

ReLu

 95

8.1.2 Replay Buffer

A replay buffer is used to store the agent’s experiences in memory to be sampled in a

minibatch that is used for the training to optimize the network parameters. The usage of a

random minibatch approach in training is important snice it breaks the correlation

between the samples, provides better sample efficiency, and allows the agent to see each

sample more than once before being removed from the memory. Figure 31 shows the

concept of using the replay buffer experiences in optimizing the network. Concerning the

size of the replay buffer, it is set to be 1,000,000 in our experiments since large sizes are

better to ensure that the samples are not thrown away quickly.

Figure 31. Mini-batch training

8.1.3 Training Episodes

An episode is the path that the agent follows from an initial state to a terminal state.

There is a maximum number of episodes that has to be defined for the training session. In

our experiments, an episode terminates when either the system reaches a hazardous state,

which happens when the rector’s temperature and level states enter their respective hazard

zone, when manual shutdown happens, or when reaching the maximum defined number

of steps per episode. The manual shutdown is considered a terminating state because the

agent cannot progress anywhere from it. Accordingly, these cases define our termination

criteria. The maximum number of steps per episode is another essential hyperparameter

that needs to be set for effective training. It is important to be tuned in a way that allows

the agent to explore the state space carefully. Thus, a maximum of 100 steps/episode

were used in Exp1 and 300 steps/episode were used for Exp2 and Exp3.

 96

8.1.4 Decaying Epsilon Greedy Approach

The action selection process at time 𝑡 in RL is facing an exploration-exploitation

dilemma, which is simplified as shown in Figure 32. Exploration encourages the agent to

act randomly to explore all the different actions in different states. On the other hand,

exploitation chooses the action with the highest known q-value at a given state. Always

choosing one method over the other is not advised because only exploring will not drive

the agent to the optimal solution and always exploiting can likely cause the agent to be

stuck at a local optimum. Accordingly, the decaying epsilon greedy approach comes to

balance the tradeoff between exploration and exploitation.

Decaying epsilon greedy approach chooses between exploration and exploitation

based on the value of epsilon 𝜀, which refers to the probability to explore. Initially, we

want the agent to explore thoroughly the action space, so we set epsilon to be high.

However, as time passes, we would want the agent to use its knowledge in choosing the

action with the highest Q-value in each state. Thus, the 𝜀 keeps on decaying by a defines

epsilon decay rate as time passes until it reaches the minimum defined epsilon value. For

example, if 𝜀 = 0.4 then we are selecting random actions with a probability of 0.4

regardless of the established actual q value and exploiting the agent knowledge in

choosing the best-known action with a probability of 0.6.

Figure 32. Exploration-Exploitation dilemma [130]

 97

8.2 Agent Training Experiments

In this section, we present the different training experiments that were conducted on the

testbed. Table 19 presents a summary of the performed experiments, including their

considered attack scenarios, which are explained in Table 13, the state space, the action space,

and the reward function. Notably, we start with the simple experimental setup then, add more

attack scenarios, states, and actions as we move from one experiment to another. Table 20

summarises the used parameters in each experiment.

Table 19. DRL-IRS Agent Training Experiments Description

Experiments Attack

Scenarios

Considered

State Space Action Space Reward

Function

Exp1 Scenario 1 𝑆 = [𝑇 𝐿] 4 actions:

 𝐴𝑒𝑥𝑝1 = [𝑆𝐼 𝑆𝐶 𝑆𝑂]

Equation 12

Exp2 Scenario 1 and

2
𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆] 5 actions:

 𝐴𝑒𝑥𝑝2 =
[𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃]

Equation 19

Exp3 Scenario 1, 2,

and 3
𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆] 6 actions:

 𝐴𝑒𝑥𝑝3 =
[𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃 𝑀𝑆]

Equation 19

8.2.1 Experiment 1 (Exp1): Training results

In the first experiment, we aimed to have a simple setup to examine how the agent

will react with only one attack scenario. The state-space only consisted of the reactor’s

temperature and level values 𝑆 = [𝑇 𝐿]. The action-space only considered the three

actions that manipulate the inlet, coolant, and outlet safety valves 𝐴𝑒𝑥𝑝1 = [𝑆𝐼 𝑆𝐶 𝑆𝑂].

Using these three Boolean actions, we could have made 8 different combinations.

However, only 4 different combinations for opening (Boolean=1) and closing

(Boolean=0) the valves were used. The 4 actions manipulating the safety valves are 𝑎1 =

 [0 0 0], 𝑎2 = [0 1 0], 𝑎3 = [1 0 1], and 𝑎4 = [1 1 1]. These actions are chosen

carefully after making sure that the process is maintaining its stability when implementing

 98

any of them. On the other hand, the unchosen action combinations were throwing the

process off-guard, and the process had to be restarted every time any of these actions are

performed. Accordingly, we eliminated them from the action space to simplify the

training procedure. For the reward function, Equation 12 was used for this experiment.

This reward function only assessed the quality of the produced product by considering the

𝑇𝑇𝑅 metric. Consequently, the agent aims to learn how and when to use these 4 actions,

which manipulate the status of the safety valves, to prevent the process from falling into

hazardous states and achieve the optimum product quality by keeping the process

operating around the ideal defined setpoints as much as possible.

Figure 33 shows the learning performance of the DDQN algorithm in the first

experiment. It captures the episodic reward and the average reward of 30 successive

episodes of the learning process by the blue curve and the red curve, respectively. It is

demonstrated from the figure that the agent was falling into hazards repeatedly while

exploring the environment in the first 2400 episodes. This is shown by the fluctuated

episodic reward behavior of the learning curve. The early fluctuation in the behavior is

expected since the model-free agent was still exploring the environment, and the action

policy was not optimized yet. Starting from episode 2400 until episode 2700, the agent

was experiencing higher rewards most of the time. However, the behavior of the agent

was not stable since it was still violating the hazard protection goal of the process.

Approximately at episode 2700, the agent exhibited a stable performance, showing that

the agent successfully converged to the optimal action policy. It is worth mentioning that

our criteria for stopping the training phase for this experiment and declaring that the agent

converged are: (1) having the average reward to be around the maximum known reward

value (3000) by a maximum of 20% and (2) having a stable behavior for at least 500

consecutive episodes.

 99

Figure 33. Experiemnt 1: Learning curve

8.2.2 Experiment 2 (Exp2): Training results

In the second experiment, we added one more attack scenario, two more states, and

one more cyber-action to increase the function usability of the agent. The state-space

consisted of the temperature, level, outlet flow, and an identifier (either 1 or 2) expected

from the IDS to represent the type of the detected attack scenario 𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆]. The

action-space consisted of the previous 4 actions presented in Exp1 with an additional

action defined as 𝐴𝑒𝑥𝑝2 = [𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃] = 𝑎5 = [1 1 1 1 420]. This action is

implemented when the attacker source address is known so that it drops attacker packets,

opens the three safety valves, and recovers the attacked setpoint value by reconfiguring it

to 420 to return the process to its normal operations. It is important to know that the

choice of the setpoint regulating value is process-dependent. Initially, we planned to have

several actions with different setpoint values for the agent to decide which value to use.

However, we wanted to reduce the action space as much as possible and thus, hopefully,

reduce the training time. Also, to reduce the training time, we used a fewer number of

neurons in the hidden layers, upgraded the reward function to give more representative

values, and decreased the agent’s sampling time from 5 𝑠 to 2 𝑠. For the reward function,

Equation 19 was used for this experiment. This reward function assessed the quality and

the quantity of the produced product by considering the 𝑇𝑇𝑅 metric and the outlet flow

value, respectively. Consequently, the agent aims to learn how and when to use these 5

 100

actions, which either manipulate the status of the safety valves or select the cyber action

to maximize the reward function and achieve the agent’s objective in responding to

cyberattacks in the most optimal way.

Figure 34 presents the learning performance of the DDQN algorithm in the second

experiment. As previously mentioned, the agent usually performs badly in the first few

episodes due to the exploration phase. At episode 200, the agent started exploiting its

knowledge in selecting the actions that give better rewards depending on the considered

state. Approximately at episode 400, the agent exhibited a stable performance showing

that it converged to an action policy. However, it seems that the agent converged to a sub-

optimal action policy. This is notable from the reward curve since the episodic rewards

for attack Scenario 1 are approaching a value of 2000 when they should have been

optimally approaching a value of 3000. It is worth mentioning that we stopped the

training phase after having a stable behavior for 500 consecutive episodes.

Figure 34. Experiment 2: Learning curve

8.2.3 Experiment 3 (Exp3): Training results

In the third experiment, we considered all the attack scenarios, the full state space

𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆], and the full action space 𝐴𝑒𝑥𝑝3 = [𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃 𝑀𝑆] to improve

the applicability of using the agent in different situations. The action space consisted of 6

actions; the five actions presented in the previous experiment with an additional action

 101

𝑎6 = [0 0 0 0 0 1], which disables/closes everything and decides to perform the manual

shutdown action. Using the manual shutdown action indicates that all other automatic

actions that the agent tried in this specific state failed to recover the system. Since the

agent is not applicable to perform the manual shutdown itself, we assume that when it is

selected as being optimal in a specific state, a human operator will be able to successfully

perform the manual action and secure the system. Otherwise, the process will fall into

hazards and suffer from costly environmental and financial losses. For the reward

function, Equation 19 was used to assess the quality and quantity of the product.

Figure 35 shows the learning performance of the DDQN algorithm in the third

experiment. The first 630 episodes show the initial exploring phase of the agent that

results in fluctuated reward values. However, between episode 630 and episode 1400, the

agent obtained higher rewards most of the time but with an unstable behavior.

Approximately at episode 1400, the DDQN agent demonstrated a stable performance for

more than 500 consecutive episodes indicating that it optimized the action policy

successfully. In this experiment, we also used a smaller number of neurons in the DN

hidden layers with a decreased agent’s sampling time to reduce the training time. For this

experiment, we cannot anticipate where the optimal average reward curve should be

because this experiment includes three different scenarios each with different optimal

responses and reward values. For example, the optimal action for the third attack scenario

is taking the manual shutdown action, which has a negative reward value, unlike

Scenarios 1 and 2. Accordingly, we stopped the training phase when we witnessed stable

behaviour for 500 consecutive episodes and evaluated the effectiveness of the trained

agent responses for each attack scenario in the testing phase.

 102

Figure 35. Experiemnt 3: Learning curve

Table 20. Parameters Settings Summary

Parameter Value

Size of hidden layers (HL1, HL2) 150, 100 for Exp1

50, 25 for Exp2 and Exp3

Activation function of hidden layers ReLu

Minibatch size 256

Experience buffer length 1,000,000

Target smooth factor 0.003

Learning rate 0.001

Discount factor 0.99

Maximum and minimum value of exploration 1, 0.1

Epsilon decay rate 0.005

Maximum episodes 10,000

Maximum steps per episode 100 for Exp1

300 for Exp2 and Exp3

Window length for averaging 30 for Exp1

50 for Exp2

100 for Exp3

Reward constants: 𝑁, 𝑀, 𝑍, 𝑃, 𝑡, 𝐶, 𝐴𝑐𝑜𝑠𝑡 𝑁𝐴, 3, 𝑁𝐴, 5, 2, 3000, 𝑁𝐴 for Exp1
1

3
, 𝑁𝐴, 2.5, 3, 2, 3000, 𝑁𝐴 for Exp2

1

3
, 𝑁𝐴, 2.5, 3, 2, 3000, 500 for Exp3

 8.3 Agent Testing and Evaluation

In this section, we evaluate the trained agents of the different conducted experiments in

terms of their response effectiveness and computational time. To evaluate the response

effectiveness of each trained agent, we run the agent N times on our CSTR testbed to defend

against different simulated attack scenarios. Each run starts at a random state in the

environment and returns the total reward obtained. Following that, we calculate the average

 103

return from the N runs to assess the effectiveness of the agent in responding to the different

attack scenarios by choosing a sequence of actions that maximize the reward function.

8.3.1 Testing the trained agent of Experiment 1

In experiment 1, the agent has only one attack scenario to deal with (Scenario 1),

which assumes a non-compromised safety controller and an unknown attack source. We

simulated this attack scenario on our CSTR testbed and tested the performance of the

agent in choosing suitable defensive response actions for 𝑁 = 10 runs (each run has 100

steps). Table 21 shows the total reward obtained after each run with an average reward of

2739. We noted from these 10 runs that the agent selects a sequence of non-identical

actions to keep the process operating around the ideal temperature value (420 𝑘).

Accordingly, action 𝑎2 = [0 1 0], which closes both the inlet and outlet valves, was

repeatedly chosen when the reactor’s temperature was increasing and approaching the

hazardous region. As a result of performing action 𝑎2, the temperature began to decrease.

This is expected since it is a common practice to perform the safety shutdown in case of

reactor high-temperature hazards in model-based solutions [53]. The agent kept on

monitoring the state of the temperature, and if it decreased more than intended to a value

far below our 420 𝑘 reference, the agent selected another action 𝑎4 = [1 1 1] to reopen

the valves. This pattern of actions was repeated throughout the 10 runs with a clear aim

of controlling and regulating the process to work around the referenced operating points

and thus, maximizing the reward function. The pattern of the selected actions and the

obtained average total reward, which is very close to the ideal reward value (3000/

𝑒𝑝𝑠𝑖𝑜𝑑𝑒), proves the effectiveness of the trained agent.

The computational time of the DDQN algorithm in training experiment 1 was very

high since it took approximately 5 days for the agent to reach its convergence state, which

is a very long training period. This is a complex computational efficiency considering it is

trained on a small-scale system.

 104

Table 21. Experiment 1: Perfromance Evaluation

Run Total Reward

1 2612

2 2780

3 2765

4 2790

5 2830

6 2842

7 2502

8 2684

9 2787

10 2800

Average Reward 𝟐𝟕𝟑𝟗

In addition to the above evaluations, we compared the performance of the DRL-IRS

agent of Experiment 1 with the performance of the fourth case study from the GA-IRS

solution. The fourth case study was simulated with the same attack scenario and was

using the same reward function to solve the intrusion response decision-making problem.

However, it was solved using a Genetic Algorithm approach. Both algorithms’

performance is analyzed and compared in terms of response effectiveness in stabilizing

the process away from hazards and closer to ideal setpoints.

As we observed from Table 16, the GA-IRS solution for case study number 4

stabilized the temperature at 434 𝑘 and the level at 0.9 𝑚. Using these values in Equation

12 obtained a reward of 23.75, which is shown in Figure 28 as being the best reward

value achieved by the optimization algorithm. Assuming that we ran this experiment for

100 steps, just like the DRL-IRS experiment, then the total reward obtained from this

approach is 2375. As can be seen, the adaptive solution of selecting non-identical

sequence of actions, which is proposed by the DRL-IRS, shows better performance since

it obtained a higher average reward of 2739. This indicates that the DRL-IRS solution

was more effective in stabilizing the reactor’s temperature around the ideal operational

window. However, the GA-IRS was much faster in comparison to the DRL-IRS

approach.

 105

8.3.2 Testing the trained agent of Experiment 2

In experiment 2, the agent has two attack scenarios to deal with (Scenario 1 and 2),

which are described in Table 13. Also, an additional cyber action to drop attack packets

and reconfigure the setpoint is added to its action space. We simulated each attack

scenario on the testbed and evaluated the trained agent for 10 runs (each run has 300

steps). Table 22 shows a summary of the different obtained runs. We observed that the

agent mainly selects action 𝑎5 = [1 1 1 1 420], which drops attack packets and

reconfigures the setpoint, in the sequence of chosen actions when the state indicates that

the detected attack is Scenario 1. For attack Scenario 2, the agent repeatedly performs the

safety shutdown action 𝑎2 = [0 1 0] when the temperature is approaching a high value.

This action leads to a reduction in the temperature until it reaches a stable state. Then, the

agent might consider to re-open the valves based on the current system state. If the agent

decides to keep the valves closed for safety reasons, then the worst reward value that

could be obtained for Scenario 2 is 0 because closing the valves means stopping the

production line. However, this means that the testbed worth is gained since the agent’s

actions stopped it from falling into dangerous hazard situations that could have led to

huge financial and human losses. This pattern of actions was repeated throughout the 10

runs with a clear aim to keep the process away from hazards, and close to defined

setpoints. However, as we noticed from the learning curve in Figure 34, the agent might

have converged to a suboptimal action policy. The agent clearly was able to achieve the

third reward goal, which is protecting the system from hazards. However, the first and

second goals of the reward function, which encourage the agent to select the optimal

sequence of actions that gets the system as close as possible to the defined setpoints, are

questionable. Even though reaching global optimal solutions are usually not guaranteed,

and local optimal solutions are generally acceptable, we believe that this behavior might

have been because the agent needed more training time to reach a better action policy.

The computational time of the DDQN algorithm in the training phase of experiment 2

 106

took approximately 1.5 days to reach convergence, which is faster than the Exp1.

Table 22. Experiemnt 2: Performance Evaluation

Attack Scenario Run Total Reward

1 1 1904

2 1852

3 2111

4 2033

5 1863

6 1633

7 1812

8 1849

9 1612

10 2107

Average Reward 𝟏𝟖𝟕𝟕

2 1 0

2 145

3 1525

4 445

5 1033

6 301

7 280

8 657

9 481

10 639

 Average Reward 𝟓𝟓𝟎

8.3.3 Testing the trained agent of Experiment 3

In experiment 3, the agent has three attack scenarios to deal with, which are described

in Table 13. To make sure that the trained agent can deal with each scenario optimally,

we simulated each scenario 10 times and evaluated the performance of the agent in each

run. Table 23 shows the total reward obtained after each run for the simulated attack

scenarios. In attack Scenario 1, the agent was observed in the different runs selecting the

cyber action to drop the attack packets and reconfigure the setpoint 𝑎5 = [1 1 1 1 420].

In attack Scenario 2, since it assumes that the attacker is not known, the agent decided to

manipulate the opening and closing of the three safety valves using actions 𝑎2 = [0 1 0]

and 𝑎3 = [1 0 1] to stabilize the process around the ideal operational temperature value

(420 𝑘). In attack Scenario 3, which is the most powerful attack that compromises the

safety controller and keeps its source hidden, the manual shutdown action was always

 107

chosen by the agent as the optimal action to protect the system. The results obtained from

this experiment indicate that the agent was able to successfully protect the system from

falling into hazards in all the three considered attack scenarios.

The computational time of the DDQN algorithm in the training phase of Exp3 was

still high since it took approximately 4 days to converge. However, it is considered an

improvement in comparison to Exp1 since it has triple the size of its state space due to

including more attack scenarios. This highlights the issue of scalability since the agent

takes long time to train a relatively small-scale system.

Table 23. Experiment 3: Perfromance Evaluation

Attack Scenario Run Total Reward

1 1 2456

2 2673

3 2209

4 2892

5 2340

6 2830

7 2659

8 2794

9 2789

10 2838

Average Reward 2648

2 1 534

2 439

3 981

4 602

5 545

6 819

7 171

8 238

9 336

10 145

Average Reward 481

3 1 -444

2 -362

3 -494

4 -301

5 -384

6 -236

7 -108

8 -500

9 -81

10 -124

Average Reward -303

 108

It is worth mentioning that we initially aimed to use different RL algorithms with our

intrusion response problem to perform an analytical comparison of their defensive

performance. However, with the long training time challenge that we faced during the

different experiments of the DDQN agent, using other RL algorithms was not achievable

since we did not have the time for it. Also, it was not feasible to compare our solution with

other state-of-the-art works because each work uses a different simulation environment. They

could have the same objective, but with totally different state space, action space, and reward

setup. Accordingly, comparing their computational time, performance, or their cumulative

reward curve would have not been reasonable nor fair for a valuable comparison.

Consequently, we mainly depended in our evaluation on different testing experiments

conducted on the CPS-designed testbed to assess the effectiveness of each proposed solution

in choosing the best defensive actions.

All in all, we strongly believe that the IRS field lacks a reference system for

validation and comparison of the different intrusion response approaches. While intrusion

detection systems can be validated and compared against some publicly available labeled

datasets, unfortunately, intrusion response systems cannot. The evaluation of an intrusion

response system is more complex because it needs to be performed on some testbed.

Accordingly, given the lack of a reference testbed, it is almost impossible to rigorously

compare different intrusion response approaches.

Finally, going back to our second research question, which is ‘Are model-free deep

reinforcement learning intrusion response systems effective for cyber-physical systems?’, the

answer is Yes. From our different experiments, we can evidently state that the agent protected

the process from falling into hazards 100% of the time. Without the proposed automated

defensive mechanisms approach, the alternative would have been human operators taking

different actions. However, human actions in times of emergency are not guaranteed.

Accordingly, in comparison to the human alternative solution, we believe that our automated

model-free deep reinforcement learning intrusion response system solution is effective for

cyber-physical systems.

 109

8.4 Dataset Collection

There is a lack of available CPS security-related datasets, in the form of <state,

action, next state, reward> tuples, that can be used with offline reinforcement learning

approaches. Having a publicly available dataset will be a benefit for the research community

so that they can validate and compare their algorithms and solutions against a reference

dataset. Accordingly, we took the chance and collected a representative dataset of our CSTR

CPS environment during online training using the DDQN algorithm.

The data were collected for 9 days with a total of 3 attack instances of the false data

injection. It contains 406,047 samples, in which each sample in the dataset includes the state,

action, next state, and the reward <state, action, next state, reward>. The state is defined as

𝑆 = [𝑇 𝐿 𝑂𝐹 𝐴𝑆], where 𝑇 and 𝐿 are the reactor temperature and the reactor level,

respectively. 𝑂𝐹 is the outlet flow and 𝐴𝑆 is IDS-related evidence showing the type of the

detected attack scenario. The action space contains 6 discrete action vectors, which are

precisely chosen by experts, to defend against the different attacks. The action vector is

defined as 𝐴 = [𝐷𝑃 𝑆𝐼 𝑆𝐶 𝑆𝑂 𝑆𝑃 𝑀𝑆], where 𝐷𝑃 is a cyber action to whether drop attack

packets or not. 𝑆𝐼, 𝑆𝐶, 𝑎𝑛𝑑 𝑆𝑂 are the actions that determine whether to open or close the

inlet, coolant, and outlet safety valves, respectively. 𝑆𝑃 is an action to reconfigure the setpoint

and 𝑀𝑆 decides whether the manual shutdown action is needed or not.

We collected this dataset to analyze and study its applicability in our future work for

designing an offline reinforcement learning agent for intrusion response decision-making

problems. We also aim to perform an analytical study to compare the performance of our

pursued online DRL-IRS solution and the future offline RL solution.

8.5 Challenges

 We faced many challenges during the preparation of this thesis. At first, the literature

work on intrusion response systems for cyber-physical processes is still in its early stages.

Accordingly, we spent a lot of time in the literature review phase to decide which approach is

suitable and applicable to our CPS. Then, when deciding on using RL-based approaches, it

was hard to fully understand the mathematical concepts of the bellman equation and the

 110

different methodologies of the possible algorithms. Particularly, it was challenging because

many things had to be understood and comprehended in a short time.

Setting up the testbed as the interactive online environment in the reinforcement

learning framework was another difficult task. At first, we had to build the firewall Iptables;

to separate the control network from the cooperate network. Then, we changed the

communication protocol between the components from UDP/IP to Modbus/TCP. Following

that, we established a new communication link between our RL agent, which runs on

MATLAB, and the testbed components simulated on LabVIEW. Initially, we used the TCP/IP

protocol. However, several errors were observed, such as a timeout error between the two

communicated nodes, due to the reliability strictness of the TCP/IP protocol. For that reason,

we reestablished the communication link between the RL agent in MATLAB and LabVIEW

using UDP/IP protocol.

After setting up the testbed, we started designing and implementing different attack

scenarios. We took some time to be able to perform the false data injection attack on our

testbed. This step required knowledge of using the Wireshark protocol analyzer,

understanding the different fields of the used Modbus/TCP communication protocol, and

learning how to use different attacking tools, such as the Ettercap tool used for ARP spoofing.

One of the outcomes of this phase was designing a complete attack script using python for the

different attack scenarios modelled in Figure 20. This attack script, which utilizes scapy and

nfqueue packages running on Ubuntu OS, contains all the needed attack steps to ease and

automate the process of performing attacks to study the system vulnerabilities.

The next stage focused on building the main blocks of the reinforcement learning

framework to start the training phase. We spent some effort looking for and experimenting

with different mitigation actions that can be implemented automatically without human

intervention. However, one of the hardest things that we faced is designing a representative

reward function that shows our goals in a mathematical formula. Since there is no standard

approach to designing the reward function, we had several iterations of modifying and

experimenting with different types of reward functions before settling on the final one.

 111

The training phase was the biggest challenge of the entire thesis. It was extremely

time-consuming, and we had a lot of failed attempts, such as the attempt shown in Figure 36,

that we did not have clear justifications for their failure. Not having a dataset to train our

system offline contributed hugely to having a very long training time since online training is

significantly slower. Moreover, having a huge number of hyperparameters to tune in the DRL

framework was challenging and contributed to the high time complexity of the approach.

Consequently, scalability is still an issue that we faced even for our small-scale system.

Evaluating our proposed solutions was also one of the thesis challenges. Due to the

long training time issue that we discussed, we did not have the time to use different

algorithms on our testbed and compare them. In addition, it was not reasonable to compare

our solutions with the state-of-the-art works since each work uses a different simulation

environment and a completely different setup. Consequently, we depended on our local

experiments to evaluate the effectiveness of each trained agent.

Figure 36. Agent training - failed attempt example (results after 5 training days)

 112

CHAPTER 9: CONCLUSION AND FUTUREWORKS

CPSs are used in many systems, including industrial processes, transportation

systems, and energy systems. The increased connectivity of CPSs made them more vulnerable

to cyberattacks. Existing research effort on security defensive mechanisms has been focusing

on intrusion detection to detect and classify cyberattacks. The work on intrusion response is

still at its early stages and lacks applicability to real CPSs.

In this context, this thesis first provides a comprehensive review of the design

taxonomy and decision-making solutions of intrusion response systems. Different works are

surveyed, compared, and analyzed to highlight their main advantages, disadvantages, and

future directions. Then the thesis presents a model-based design approach for a CPS security

testbed. The testbed hardware and software architectural models were developed, and a

systematic methodology to generate cyberattack experiments was explained. Additionally, we

used two approaches to design an intrusion response system solution for defending the CPS

testbed. The first approach uses an optimization technique with a Genetic Algorithm, and the

second approach uses model-free deep reinforcement learning with a DDQN algorithm. Both

approaches proved their effectiveness in selecting optimal actions for automatically

responding to false data injection attacks. Furthermore, we collected a security-related dataset

for designing and evaluating future offline reinforcement learning solution approaches.

We anticipate that this thesis will help interested readers to obtain a full view of IRS

for CPS. Also, it presents to researchers and practitioners an effective IRS design for CPS as

well as a CPS testbed and a dataset to ease further research and development. For future

work, we will consider using a multi-agent reinforcement learning approach, utilizing the

collected dataset for offline RL training approaches, dealing with variable action space,

adding more attack scenarios, and comparing with other RL algorithms.

 113

REFERENCES

[1] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-Physical Systems Security — A

Survey,” vol. 4, no. 6, pp. 1802–1831, 2017.

[2] Z. Drias, A. Serhrouchni, and O. Vogel, “Taxonomy of attacks on Industrial Control

protocols,” 2015 Int. Conf. Protoc. Eng. Int. Conf. New Technol. Distrib. Syst., pp. 1–

6, 2015.

[3] L. Cao, X. Jiang, Y. Zhao, S. Wang, D. You, and X. Xu, “A Survey of Network

Attacks on Cyber-Physical Systems,” IEEE Access, vol. 8, pp. 44219–44227, 2020.

[4] A. Singh and A. Jain, “Study of Cyber Attacks on Cyber-Physical System,” SSRN

Electron. J., no. October 2019, 2018.

[5] F. Li, X. Yan, Y. Xie, Z. Sang, and X. Yuan, “A Review of Cyber-Attack Methods in

Cyber-Physical Power System,” APAP 2019 - 8th IEEE Int. Conf. Adv. Power Syst.

Autom. Prot., pp. 1335–1339, 2019.

[6] B. Chen, N. Pattanaik, A. Goulart, K. L. Butler-Purry, and D. Kundur, “Implementing

attacks for modbus/TCP protocol in a real-time cyber physical system test bed,” Proc.

- CQR 2015 2015 IEEE Int. Work. Tech. Comm. Commun. Qual. Reliab., pp. 1–6,

2015.

[7] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn, “Guide to Industrial

Control Systems (ICS) Security NIST Special Publication 800-82 Revision 2,” NIST

Spec. Publ. 800-82 rev 2, pp. 1–157, 2015.

[8] H. Xu, W. E. I. Yu, D. Griffith, and N. Golmie, “A Survey on Industrial Internet of

Things : A Cyber-Physical Systems Perspective,” IEEE Access, vol. 6, pp. 78238–

78259, 2018.

[9] M. H. Cintuglu, O. A. Mohammed, K. Akkaya, S. Member, A. S. Uluagac, and S.

Member, “A Survey on Smart Grid Cyber-Physical System Testbeds,” vol. 19, no. 1,

pp. 446–464, 2017.

[10] G. Yadav and K. Paul, “Architecture and security of SCADA systems : A review,” Int.

J. Crit. Infrastruct. Prot., vol. 34, p. 100433, 2021.

 114

[11] J. Goh, S. Adepu, M. Tan, and Z. S. Lee, “Anomaly detection in cyber physical

systems using recurrent neural networks,” Proc. IEEE Int. Symp. High Assur. Syst.

Eng., pp. 140–145, 2017.

[12] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly detection for a

water treatment system using unsupervised machine learning,” IEEE Int. Conf. Data

Min. Work. ICDMW, vol. 2017-Novem, pp. 1058–1065, 2017.

[13] M. Kravchik and A. Shabtai, “Detecting cyber attacks in industrial control systems

using convolutional neural networks,” Proc. ACM Conf. Comput. Commun. Secur., no.

October, pp. 72–83, 2018.

[14] Q. Lin, “TABOR : A Graphical Model-based Approach for Anomaly Detection in

Industrial TABOR : A Graphical Model-based Approach for Anomaly Detection in

Industrial Control Systems,” no. June, 2018.

[15] C. R. Nov, “Anomaly Detection for Industrial Control Systems Using Sequence-to-

Sequence Neural Networks.”

[16] Y. Li, S. Member, L. Zhang, Z. Lv, and W. Wang, “Detecting Anomalies in Intelligent

Vehicle Charging and Station Power Supply Systems With Multi-Head Attention

Models,” vol. 22, no. 1, pp. 555–564, 2021.

[17] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain, and K. Khan, “Cybersecurity for

industrial control systems : A survey,” Comput. Secur., vol. 89, 2020.

[18] H. Habibzadeh, B. H. Nussbaum, F. Anjomshoa, B. Kantarci, and T. Soyata, “A

survey on cybersecurity , data privacy , and policy issues in cyber-physical system

deployments in smart cities,” Sustain. Cities Soc., vol. 50, p. 101660, 2019.

[19] A. A. Nazarenko and G. A. Safdar, “Survey on security and privacy issues in cyber

physical systems,” AIMS Electron. Electr. Eng., no. July, 2020.

[20] M. Rizwan, Q. Hu, and S. Zeadally, “Cybersecurity in industrial control systems :

Issues , technologies , and challenges,” Comput. Networks, vol. 165, p. 106946, 2019.

[21] C. Alcaraz and S. Zeadally, “Critical infrastructure protection: Requirements and

challenges for the 21st century,” Int. J. Crit. Infrastruct. Prot., vol. 8, pp. 53–66, Jan.

 115

2015.

[22] M. N. Al-mhiqani et al., “Cyber-Security Incidents : A Review Cases in Cyber-

Physical Systems,” vol. 9, no. 1, 2018.

[23] J. A. Yaacoub, O. Salman, H. N. Noura, N. Kaaniche, and A. Chehab, “Cyber-

physical systems security : Limitations , issues and future trends,” Microprocess.

Microsyst., vol. 77, 2020.

[24] M. Iaiani, A. Tugnoli, S. Bonvicini, and V. Cozzani, “Analysis of Cybersecurity-

related Incidents in the Process Industry,” Reliab. Eng. Syst. Saf., vol. 209, p. 107485,

2021.

[25] S. Zhioua, “The middle east under malware attack dissecting cyber weapons,” Proc. -

Int. Conf. Distrib. Comput. Syst., pp. 11–16, 2013.

[26] M. M. Ahmadian, M. Shajari, and M. A. Shafiee, “Industrial control system security

taxonomic framework with application to a comprehensive incidents survey,” Int. J.

Crit. Infrastruct. Prot., vol. 29, p. 100356, 2020.

[27] S. Han, M. Xie, H. H. Chen, and Y. Ling, “Intrusion detection in cyber-physical

systems: Techniques and challenges,” IEEE Syst. J., vol. 8, no. 4, pp. 1049–1059,

2014.

[28] T. Daniya, K. S. Kumar, B. S. Kumar, and C. Sekhar, “A survey on anomaly based

intrusion detection system,” Mater. Today Proc., no. xxxx, 2021.

[29] Kamaldeep, M. Dutta, and J. Granjal, “Towards a Secure Internet of Things: A

Comprehensive Study of Second Line Defense Mechanisms,” IEEE Access, vol. 8, pp.

127272–127312, 2020.

[30] B. Y. W. Mazurczyk, L. Caviglione, and A. E. Day, “review articles Cyber

Reconnaissance Techniques,” 2021.

[31] F. Salahdine, N. Kaabouch, and R. Gloria, “Social Engineering Attacks: A

Reconnaissance Synthesis Analysis,” IEEE Annu. Ubiquitous Comput. Electron. Mob.

Commun. Conf., no. October, 2020.

[32] R. Chabukswar, Y. Mo, and B. Sinopoli, Detecting Integrity Attacks on SCADA

 116

Systems, vol. 44, no. 1. IFAC, 2011.

[33] R. Lanotte, U. Insubria, and D. Informatica, “A Formal Approach to Cyber-Physical

Attacks,” IEEE 30th Comput. Secur. Found. Symp., no. November 2018, 2017.

[34] Z. Inayat, A. Gani, N. B. Anuar, M. K. Khan, and S. Anwar, “Intrusion response

systems: Foundations, design, and challenges,” J. Netw. Comput. Appl., vol. 62, pp.

53–74, 2016.

[35] A. Shameli-Sendi, N. Ezzati-Jivan, M. Jabbarifar, and M. Dagenais, “Intrusion

response systems: survey and taxonomy,” Int. J. Comput. Sci. Netw. Secur, vol. 12, no.

1, pp. 1–14, 2012.

[36] S. Anwar et al., “From intrusion detection to an intrusion response system:

Fundamentals, requirements, and future directions,” Algorithms, vol. 10, no. 2, 2017.

[37] J. Wong, “A taxonomy of intrusion response systems,” Int. J. Inf. Comput. Secur., no.

January 2007, 2014.

[38] A. Shameli-sendi, M. Cheriet, and A. Hamou-lhadj, “Taxonomy of intrusion risk

assessment and response system,” Coputers Secur., vol. 5, pp. 1–16, 2014.

[39] E. Hodo et al., “Threat analysis of IoT networks Using Artificial Neural Network

Intrusion Detection System,” pp. 4–8, 2020.

[40] H. A. Kholidy, “Autonomous mitigation of cyber risks in the Cyber – Physical

Systems,” Futur. Gener. Comput. Syst., vol. 115, pp. 171–187, 2021.

[41] D. K. Singh and P. Kaushik, “Analysis of Decision Making factors for Automated

Intrusion Response System (AIRS): A Review,” vol. 14, no. 6, p. 5500, 2016.

[42] V. Mateos, V. A. Villagrá, F. Romero, and J. Berrocal, “Definition of response metrics

for an ontology-based Automated Intrusion Response Systems q,” vol. 38, pp. 1102–

1114, 2012.

[43] C. Mu, B. Shuai, and H. Liu, “Analysis of Response Factors in Intrusion Response

Decision-Making,” 2010 Third Int. Jt. Conf. Comput. Sci. Optim., vol. 2, pp. 395–399,

2010.

[44] Snort Project Team, “SNORT Users Manual 2.9.16,” 2020.

 117

[45] Kamesh and N. Sakthi Priya, “A survey of cyber crimes Yanping,” Secur. Commun.

Networks, vol. 5, no. June, pp. 422–437, 2012.

[46] A. Justina and A. Simon, “A Credible Cost-Sensitive Model For Intrusion Response

Selection,” 2012 Fourth Int. Conf. Comput. Asp. Soc. Networks, pp. 222–227, 2012.

[47] A. J. Ikuomola and J. O. Nehinbe, “A Framework for Collaborative , Adaptive and

Cost Sensitive Intrusion Response System,” 2010 2nd Comput. Sci. Electron. Eng.

Conf., pp. 1–4, 2010.

[48] J. S. Wong and C. Strasburg, “A Framework for Cost Sensitive Assessment of

Intrusion Response Selection,” 2009 33rd Annu. IEEE Int. Comput. Softw. Appl.

Conf., vol. 1, pp. 355–360, 2009.

[49] A. Shameli-sendi and M. Dagenais, “ORCEF : Online response cost evaluation

framework for intrusion response system,” J. Netw. Comput. Appl., vol. 55, pp. 89–

107, 2015.

[50] M. Jahnke, C. Thul, and P. Martini, “Graph based Metrics for Intrusion Response

Measures in Computer Networks 1,” 2007.

[51] N. Kheir and J. Viinikka, “Cost Evaluation for Intrusion Response Using Dependency

Graphs,” no. c, pp. 1–6, 2009.

[52] C. Strasburg and J. S. Wong, “Intrusion response cost assessment methodology,” no.

January, 2009.

[53] A. Tantawy, S. Abdelwahed, A. Erradi, and K. Shaban, “Model-Based Risk

Assessment for Cyber Physical Systems Security Computers & Security Model-based

risk assessment for cyber physical systems security,” Comput. Secur., vol. 96, no.

May, p. 101864, 2020.

[54] Y. Cherdantseva et al., “A review of cyber security risk assessment methods for

SCADA systems,” vol. 56, pp. 1–27, 2016.

[55] J. Greensmith, “Securing the Internet of Things with Responsive Artificial Immune

Systems,” pp. 113–120, 2015.

[56] S. Anwar, J. M. Zain, M. F. Zolkipli, Z. Inayat, A. N. Jabir, and J. B. Odili, “Response

 118

option for attacks detected by intrusion detection system,” 2015 4th Int. Conf. Softw.

Eng. Comput. Syst. ICSECS 2015 Virtuous Softw. Solut. Big Data, pp. 195–200, 2015.

[57] N. B. Anuar, M. Papadaki, S. Furnell, and N. Clarke, “An investigation and survey of

response options for Intrusion Response Systems (IRSs),” 2010 Inf. Secur. South

Africa, pp. 1–8, 2010.

[58] A. Nadeem and M. Howarth, “Adaptive intrusion detection & prevention of denial of

service attacks in Adaptive Intrusion Detection & Prevention of Denial of Service

attacks in MANETs,” no. January, 2009.

[59] W. Kanoun, N. Cuppens-boulahia, S. Dubus, B. Laboratories, T. Bretagne, and I.

Telecom, “Risk-aware Framework for Activating and Deactivating Policy-based

Response,” pp. 207–215, 2010.

[60] S. K. N. and P. Kabiri, “An Adaptive and Cost-Based Intrusion Response System,”

Cybern. Syst., vol. 48, pp. 495–509, 2017.

[61] I. Balepin, S. Maltsev, J. Rowe, and K. Levitt, “Using specification-based intrusion

detection for automated response,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2820, pp. 136–154, 2003.

[62] A. Nadeem and M. Howarth, “An Intrusion Detection & Adaptive Response

Mechanism for MANETs An Intrusion Detection & Adaptive Response Mechanism

for MANETs,” no. January 2019, 2014.

[63] S. Berenjian, M. Shajari, N. Farshid, and M. Hatamian, “Intelligent Automated

Intrusion Response System based on fuzzy decision making and risk assessment,”

2016 IEEE 8th Int. Conf. Intell. Syst. IS 2016 - Proc., pp. 709–714, 2016.

[64] A. Shameli-Sendi, J. Desfossez, M. Dagenais, and M. Jabbarifar, “A retroactive-burst

framework for automated intrusion response system,” J. Comput. Networks Commun.,

vol. 2013, 2013.

[65] B. Boˇ, “Game-Theoretic Algorithms for Optimal Network Security Hardening Using

Attack Graphs Optimal Network Security Hardening Using Attack Graph Games,” no.

July, 2015.

 119

[66] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, “Optimal security hardening using

multi-objective optimization on attack tree Optimal Security Hardening Using Multi-

objective Optimization on Attack Tree Models of Networks,” no. January, 2007.

[67] L. Feng, W. Wang, L. Zhu, and Y. Zhang, “Predicting intrusion goal using dynamic

Bayesian network with transfer probability estimation $,” J. Netw. Comput. Appl., vol.

32, pp. 2008–2010, 2009.

[68] H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph and attack tree visual

syntax in cyber security,” Comput. Sci. Rev., vol. 35, p. 100219, 2020.

[69] P. Nespoli, D. Papamartzivanos, F. G. Mármol, and G. Kambourakis, “Optimal

Countermeasures Selection Against Cyber Attacks: A Comprehensive Survey on

Reaction Frameworks,” IEEE Commun. Surv. Tutorials, vol. 20, no. 2, pp. 1361–1396,

2018.

[70] V. Shandilya, C. B. Simmons, and S. Shiva, “Use of attack graphs in security

systems,” J. Comput. Networks Commun., vol. 2014, no. April 2016, 2014.

[71] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer, “DAG-based attack and defense

modeling: Don’t miss the forest for the attack trees,” Comput. Sci. Rev., vol. 13–14,

no. C, pp. 1–38, 2014.

[72] Y. Wang, Y. Wang, J. Liu, Z. Huang, and P. Xie, “A survey of game theoretic

methods for cyber security,” Proc. - 2016 IEEE 1st Int. Conf. Data Sci. Cyberspace,

DSC 2016, pp. 631–636, 2017.

[73] I. Musah, D. K. Boah, and B. Seidu, “A Comprehensive Review of Solution Methods

and Techniques for Solving Games in Game Theory,” J. Game Theory, vol. 9, no. 2,

pp. 25–31, 2020.

[74] H. Liu, Y. Li, Z. Duan, and C. Chen, “A review on multi-objective optimization

framework in wind energy forecasting techniques and applications,” Energy Convers.

Manag., vol. 224, no. April, 2020.

[75] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic

algorithms : A tutorial,” vol. 91, pp. 992–1007, 2006.

 120

[76] K. D. and S. A. and A. P. and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, pp. 182–197, 2002.

[77] K. Taha, “Methods that optimize multi-objective problems: A survey and experimental

evaluation,” IEEE Access, vol. 8, no. 1, pp. 80855–80878, 2020.

[78] N. Gunantara, “A review of multi-objective optimization: Methods and its

applications,” Cogent Eng., vol. 5, no. 1, pp. 1–16, 2018.

[79] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for

engineering,” Struct. Multidiscip. Optim., vol. 26, no. 6, pp. 369–395, 2004.

[80] G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, Comparison of multi-

objective optimization methodologies for engineering applications, vol. 63, no. 5.

Elsevier Ltd, 2012.

[81] Y. Rizk, M. Awad, and E. W. Tunstel, “Decision Making in Multiagent Systems : A

Survey,” vol. 10, no. 3, pp. 514–529, 2020.

[82] M. A. Alsheikh et al., “Markov Decision Processes With Applications in Wireless

Sensor Networks : A Survey,” vol. 17, no. 3, pp. 1239–1267, 2015.

[83] C. Kiennert, Z. Ismail, H. Debar, and J. Leneutre, “A survey on game-theoretic

approaches for intrusion detection and response optimization,” ACM Comput. Surv.,

vol. 51, no. 5, 2018.

[84] A. P. Patil, S. Bharath, and N. M. Annigeri, “Applications of Game Theory for Cyber

Security System : A Survey,” vol. 13, no. 17, pp. 12987–12990, 2018.

[85] C. T. Do et al., “Game theory for cyber security and privacy,” ACM Comput. Surv.,

vol. 50, no. 2, pp. 30–37, 2017.

[86] X. Liang and Y. Xiao, “Game theory for network security,” IEEE Commun. Surv.

Tutorials, vol. 15, no. 1, pp. 472–486, 2013.

[87] Z. Zhou and H. Xu, “Deep Reinforcement Learning Based Intelligent Decision

Making for Two-player Sequential Game with Uncertain Irrational Player,” 2019

IEEE Symp. Ser. Comput. Intell. SSCI 2019, pp. 9–15, 2019.

[88] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,

 121

2015.

[89] Y. Long and H. He, “Robot path planning based on deep reinforcement learning,”

2020 IEEE Conf. Telecommun. Opt. Comput. Sci. TOCS 2020, pp. 151–154, 2020.

[90] M. Saeed, M. Nagdi, B. Rosman, and H. H. S. M. Ali, “Deep Reinforcement Learning

for Robotic Hand Manipulation,” Proc. 2020 Int. Conf. Comput. Control. Electr.

Electron. Eng. ICCCEEE 2020, 2021.

[91] H. GÜLMEZ, “a Deep Reinforcement Learning Approach for Anomaly Network

Intrusion Detection System,” no. September, pp. 5–10, 2019.

[92] M. Lopez-martin, B. Carro, and A. Sanchez-esguevillas, “Application of deep

reinforcement learning to intrusion detection for supervised problems,” Expert Syst.

Appl., vol. 141, p. 112963, 2020.

[93] J. Liao, T. Liu, X. Tang, X. Mu, B. Huang, and D. Cao, “Decision-making strategy on

highway for autonomous vehicles using deep reinforcement learning,” IEEE Access,

vol. 8, pp. 177804–177814, 2020.

[94] Z. Zhou and H. Xu, “Switching Deep Reinforcement Learning based Intelligent

Online Decision Making for Autonomous Systems under Uncertain Environment,”

Proc. 2018 IEEE Symp. Ser. Comput. Intell. SSCI 2018, pp. 1453–1460, 2019.

[95] T. Yang, L. Zhao, W. Li, and A. Y. Zomaya, “Reinforcement learning in sustainable

energy and electric systems: a survey,” Annu. Rev. Control, vol. 49, pp. 145–163,

2020.

[96] M. Alabadi and Z. Albayrak, “Q-Learning for Securing Cyber-Physical Systems : A

survey,” no. June, 2020.

[97] A. Uprety, D. B. Rawat, and S. Member, “Reinforcement Learning for IoT Security :

A Comprehensive Survey,” vol. 4662, no. c, pp. 1–14, 2020.

[98] X. Liu, H. Xu, W. Liao, and W. Yu, “Reinforcement learning for cyber-physical

systems,” Proc. - IEEE Int. Conf. Ind. Internet Cloud, ICII 2019, no. Icii, pp. 318–327,

2019.

[99] A. Shameli-sendi, H. Louafi, and W. He, “Dynamic Optimal Countermeasure

 122

Selection for Intrusion Response System,” vol. XX, pp. 1–14, 2016.

[100] X. Li, C. Zhou, Y. Tian, and Y. Qin, “A Dynamic Decision-Making Approach for

Intrusion Response in Industrial Control Systems,” IEEE Trans. Ind. Informatics, vol.

15, no. 5, pp. 2544–2554, 2019.

[101] S. Huang, C. Zhou, N. Xiong, S. Member, S. Yang, and S. Member, “A General Real-

Time Control Approach of Intrusion Response for Industrial Automation Systems,”

IEEE Trans. Syst. Man, Cybern. Syst., vol. 46, no. 8, pp. 1021–1035, 2016.

[102] Y. Guo et al., “Decision-Making for Intrusion Response : Which , Where , in What

Order , and How Long ?,” 2020.

[103] S. Hossain, S. Etigowni, K. Davis, and S. Zonouz, “Towards Cyber-Physical Intrusion

Tolerance,” 2015 IEEE Int. Conf. Smart Grid Commun., pp. 139–144, 2015.

[104] S. Huang, C. Zhou, S. Yang, and Y. Qin, “Cyber-physical System Security for

Networked Industrial Processes,” vol. 12, no. December, pp. 567–578, 2015.

[105] Y. Qin, Q. Zhang, C. Zhou, and N. Xiong, “A Risk-Based Dynamic Decision-Making

Approach for Cybersecurity Protection in Industrial Control Systems,” IEEE Trans.

Syst. Man, Cybern. Syst., vol. PP, pp. 1–8, 2018.

[106] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE : A Game-

Theoretic Intrusion Response and Recovery Engine,” IEEE Trans. Parallel Distrib.

Syst., vol. 25, no. 2, pp. 395–406, 2014.

[107] S. Iannucci, O. D. Barba, V. Cardellini, and I. Banicescu, “A performance evaluation

of deep reinforcement learning for model-based intrusion response,” Proc. - 2019

IEEE 4th Int. Work. Found. Appl. Self* Syst. FAS*W 2019, pp. 158–163, 2019.

[108] S. Iannucci and S. Abdelwahed, “Model-Based Response Planning Strategies for

Autonomic Model-based Response Planning Strategies for Autonomic Intrusion

Protection,” no. April, 2018.

[109] K. Huang, C. Zhou, Y. Qin, and W. Tu, “A Game-Theoretic Approach to Cross-Layer

Security Decision-Making in Industrial Cyber-Physical Systems,” IEEE Trans. Ind.

Electron., vol. 67, no. 3, pp. 2371–2379, 2020.

 123

[110] J. Khoury and M. Nassar, “A Hybrid Game Theory and Reinforcement Learning

Approach for Cyber-Physical Systems Security,” Proc. IEEE/IFIP Netw. Oper.

Manag. Symp. 2020 Manag. Age Softwarization Artif. Intell. NOMS 2020, 2020.

[111] S. Paul, Z. Ni, and C. Mu, “A Learning-Based Solution for an Adversarial Repeated

Game in Cyber-Physical Power Systems,” IEEE Trans. Neural Networks Learn. Syst.,

vol. 31, no. 11, pp. 4512–4523, 2020.

[112] S. Iannucci, V. Cardellini, O. Daniel, and I. Banicescu, “A hybrid model-free approach

for the near-optimal intrusion response control of non-stationary systems,” Futur.

Gener. Comput. Syst., vol. 109, pp. 111–124, 2020.

[113] Z. S. Stefanova and K. M. Ramachandran, “Off-Policy Q-learning Technique for

Intrusion Response in Network Security,” vol. 12, no. 4, pp. 266–272, 2018.

[114] S. Iannucci, A. Montemaggio, and B. Williams, “Towards Self-Defense of Non-

Stationary Systems,” 2019 Int. Conf. Comput. Netw. Commun., pp. 250–254, 2021.

[115] Y. Liu, M. Dong, K. Ota, J. Li, and J. Wu, “Deep Reinforcement Learning based

Smart Mitigation of DDoS Flooding in Software-Defined Networks,” IEEE Int. Work.

Comput. Aided Model. Des. Commun. Links Networks, CAMAD, vol. 2018-Septe, pp.

1–6, 2018.

[116] K. Malialis and D. Kudenko, “Distributed response to network intrusions using

multiagent reinforcement learning,” Eng. Appl. Artif. Intell., vol. 41, pp. 270–284,

2015.

[117] V. Cardellini et al., “An Intrusion Response System Utilizing Deep Q-Networks and

System Partitions,” SSRN Electron. J., 2022.

[118] A. T. Arash Golabi, Abdelkarim Erradi, “Towards Automated Hazard Analysis for

CPS Security with Application to CSTR System,” J. Process Control, 2020.

[119] A. Hahn, A. Ashok, S. Sridhar, and M. Govindarasu, “Cyber-physical security

testbeds: Architecture, application, and evaluation for smart grid,” IEEE Trans. Smart

Grid, vol. 4, no. 2, pp. 847–855, 2013.

[120] U.S. Department of Energy, “National SCADA Test Bed Enhancing control systems

 124

security in the energy sector PROTECTING,” 2009.

[121] T. Inl and Idaho National Laboratory, “National SCADA Test Bed Substation

Automation Evaluation Report,” 2009.

[122] M. Bashendy, S. Eltanbouly, A. Tantawy, and A. Erradi, “Design and Implementation

of Cyber-Physical Attacks on Modbus / TCP Protocol,” World Congr. Ind. Control

Syst. Secur., 2020.

[123] C. Deloglos, C. Elks, and A. Tantawy, “An Attacker Modeling Framework for the

Assessment of Cyber-Physical Systems Security,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12234 LNCS, no.

June, pp. 150–163, 2020.

[124] J. Dunjó, V. Fthenakis, J. A. Vílchez, and J. Arnaldos, “Hazard and operability

(HAZOP) analysis. A literature review,” J. Hazard. Mater., vol. 173, no. 1–3, pp. 19–

32, 2010.

[125] V. Punnathanam, C. Sivadurgaprasad, and P. Kotecha, “On the performance of

MATLAB’s inbuilt genetic algorithm on single and multi-objective unconstrained

optimization problems,” Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, pp.

3976–3981, 2016.

[126] Z. Jinghui, H. Xiaomin, G. Min, and Z. Jun, “Comparison of performance between

different selection strategies on simple genetic algorithms,” Proc. - Int. Conf. Comput.

Intell. Model. Control Autom. CIMCA 2005 Int. Conf. Intell. Agents, Web Technol.

Internet, vol. 2, no. January 2015, pp. 1115–1120, 2005.

[127] “Define Reward Signals,” MathWorks. [Online]. Available:

https://www.mathworks.com/help/reinforcement-learning/ug/define-reward-

signals.html#:~:text=To guide the learning process,of taking a particular action.

[Accessed: 01-Mar-2022].

[128] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning Algorithms: A

Comprehensive Classification and Applications,” IEEE Access, vol. 7, pp. 133653–

133667, 2019.

 125

[129] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double Q-

Learning,” 30th AAAI Conf. Artif. Intell. AAAI 2016, no. September 2015, pp. 2094–

2100, 2016.

[130] A. Mishra, “Tackling Exploration-Exploitation Dilemma in K-armed Bandits,” Nerd

For Tech, 2021. [Online]. Available: https://medium.com/nerd-for-tech/tackling-

exploration-exploitation-dilemma-in-k-armed-bandits-598c0329cf88.

	Dedication
	ACKNOWLEDGMENTS
	List of Tables
	LIST OF FIGURES
	LIST OF ACRONYMS
	Chapter 1 : Introduction
	1.1 Problem Statement
	1.2 Thesis Objective and Contributions
	1.3 Thesis Outline

	Chapter 2 : Background
	2.1 CPS Security Defense Mechanisms
	2.2 Attacks Taxonomy
	2.2.1 Attacks on Confidentiality
	2.2.2 Attacks on Integrity
	2.2.3 Attacks on Availability

	2.3 IRS Taxonomy
	2.3.1 Information Sources
	2.3.2 Decision-making Metrics
	2.3.3 Response Selection
	2.3.4 Risk Assessment
	2.3.5 Activity of Responses
	2.3.6 Prediction Ability
	2.3.7 Adjustment Ability
	2.3.8 Response Execution
	2.3.9 Attack Modelling
	2.3.10 Decision-making Models
	2.3.11 Optimization Problem Solution Approaches

	Chapter 3 : Overview on Conventional optimization and REINFORCEMENT Learning DECISION-Making approaches
	3.1 Decision-making Problem Description
	3.2 Overview on Conventional Optimization Methods
	3.2.1 Multi-objective Optimization Functions
	3.2.2 Markov Decision Processes
	3.2.3 Game Theory

	3.3 Overview on Reinforcement Learning Methods
	3.3.1 Reinforcement Learning (RL) Framework
	3.3.2 Deep Reinforcement Learning (DRL)
	3.3.3 Reinforcement Learning Taxonomy

	3.4 Conventional Optimization Vs RL Approaches

	Chapter 4 : Survey of Works on intrusion response systems
	4.1 Conventional Approaches for IRSs
	4.1.1 Multi-objective Optimization Functions Solutions
	4.1.2 Game Theory Solutions

	4.2 Reinforcement Learning Approaches for IRSs
	4.2.1 Model-based Solutions
	4.2.2 Model-free Solutions

	4.3 Summary, Limitations, and Discussions

	Chapter 5 : Modeling and Design of a CPS Testbed
	5.1 CPS Description
	5.1.1 Process Description
	5.1.2 Cyber System Description

	5.2 CPS Implementation
	5.2.1 Process Simulation
	5.2.2 Cyber System Implementation

	5.3 Modelling and Design of Cyberattacks
	5.3.1 Attacks Model
	5.3.2 Attack Scenarios
	5.3.2.1 Attack Scenarios for the GA-IRS Approach
	5.3.2.2 Attack Scenarios for the DRL-IRS Approach

	Chapter 6 : IRS Design Using Genetic Algorithm (GA-IRS)
	6.1 Single-objective Optimization Formulation
	6.2 Genetic Algorithm Framework
	6.3 Experimental Settings
	6.4 Case Studies
	6.4.1 Case Study 1
	6.4.2 Case Study 2
	6.4.3 Case Study 3
	6.4.4 Case Study 4

	6.5 Evaluation

	Chapter 7 : IRS Design Using Deep Reinforcement Learning (DRL-IRS)
	7.1 DRL-IRS Agent Architecture
	7.2 State Space
	7.3 Action Space
	7.4 Reward Function
	7.5 Double Deep Q Network (DDQN) Algorithm

	Chapter 8 : DRL-IRS Training Results and Evaluation
	8.1 Experimental Setup
	8.1.1 Deep Neural Network Architecture
	8.1.2 Replay Buffer
	8.1.3 Training Episodes
	8.1.4 Decaying Epsilon Greedy Approach

	8.2 Agent Training Experiments
	8.2.1 Experiment 1 (Exp1): Training results
	8.2.2 Experiment 2 (Exp2): Training results
	8.2.3 Experiment 3 (Exp3): Training results

	8.3 Agent Testing and Evaluation
	8.3.1 Testing the trained agent of Experiment 1
	8.3.2 Testing the trained agent of Experiment 2
	8.3.3 Testing the trained agent of Experiment 3

	8.4 Dataset Collection
	8.5 Challenges

	Chapter 9 : Conclusion and Futureworks
	References

