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Abstract 

A key aspect in the conservation management of the coastal marine zone is mapping the 

benthic habitat, which is the focus of the work presented in this project. Multispectral 

Worldview-2 (WV2) satellite data acquired in April2010 was used to classify and map 

the benthic habitat of the North-Eastern part of Qatar marine zone: A 35 km stretch of 

coastline, 7 km wide, with water depth ranging from 0 to 11 m. Baseline field surveys of 

the area of study carried out in March-April 2010 identified 4 broad benthic types: 

Seagrass, Algae, live corals and sand. WV2 data was corrected for atmospheric and water 

column effects. Depth-invariant bottom indices were calculated and formed the basis for 

classification. Field survey data was used to implement the supervised classification and 

accuracy assessment. From the result of the classificatio~ an overall accuracy of81.8% 

was obtained. The gap in the available information on the benthic cover in the Qatari 

coastal marine zone makes the study useful to detect changes in the benthic cover over 

time. 

Keyword: Benthic cover Mapping, Benthic habitat, Remote sensing, Worldview-2, 

ENVI, Satellite Image processing, Water column correction, Qatar 
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1.1 Problem definition 

Chapter 1 

INTRODUCTION 

Qatar National vision aims to achieve a sustainable development that ensures the 

balance between human development, economic development and the natural 

environment, where neither of which should be sacrificed for the sake of the other [I]. 

Human development on the coasts involves dredging and land reclamation for 

expanding residential areas, industries, and other projects. These all have a great impact 

on the coastal areas and adjacent marine habitats. 

Habitat classification of benthic cover provides a tool to facilitate efficient assessment 

of the state of the benthic habitat, detect changes to the habitat, and to potentially 

mitigate the impacts of human development on benthic habitats and communities. 

Characterization and classification of benthic habitat relies on field survey data which 

provides information on scattered areas of the benthic cover. In addition to the field data, 

the use of high resolution satellite image and advanced image processing techniques can 

generate continuous data of the benthic cover. 

Benthic cover data captured via satellites and validated using field survey data provides 

a cost effective tool for benthic cover classification in accessible and inaccessible areas. 

Moreover Geographic Information System (GIS) can be used to store and manipulate 

benthic cover data and produce maps that show benthic cover classification. 

Mapping and monitoring the benthic habitat of an undisturbed area is needed for a better 

protection of the benthic habitat and for preservation of their related ecosystem. 
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The area of study -North-Eastern part of Qatar- has been selected among all the other 

undisturbed areas due to the availability of data, which includes a set of satellite imagery 

(WorldView-2) and ground truth data. The study area is a 235 km2 strip section of the 

North-Eastern Qatari coastline. This area is relatively undisturbed by human activities 

compared to the rest of the Eastern coastline that includes the major industrial cities in 

Qatar. 

1.2 Aims and Objectives 

The aim of this project is to classify, map and validate the benthic habitat at the North­

Eastern part of Qatar marine zone (QMZ), by combining remote sensing techniques, 

Geographic Information System (GIS) and field data. 

In order to achieve this aim, the following specific objectives were considered: 

1) Correct remotely sensed data by applying pre-processing techniques 

2) Apply image processing techniques to corrected satellite data to identify and 

produce benthic habitat classification. 

3) Validate the benthic habitat classification using field data 

4) Produce maps of benthic habitat. 

2 
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Chapter 2 

BACKGROUND AND LITTERA TURE REVIEW 

2.1 Remote sensing process for benthic cover 

The incident solar radiation received by the benthic cover is influenced by the 

absorption and scattering of the atmospheric components and the water column 

components. Optical satellites have sensors that are sensitive to the reflected and emitted 

electromagnetic radiation from the benthic cover and other features on the earth. 

Radiation passes through two media, the atmosphere and the water, and then back to the 

sensor (Figure 1 ). The radiation received by an optical remote sensor from the benthic 

cover is the result of the biotic/abiotic nature of the benthic environment combined with 

the influence of both the atmospheric and water column components. 

Every substrate on the surface of the earth is characterized by its spectral reflectance 

signature which is the amount of the reflected electromagnetic radiation [2]. Different 

substances can be distinguished from each other by their spectral characteristics. Hence, 

it is possible to distinguish different types ofbenthic cover using satellite imagery, when 

proper correction techniques are applied and the data is validated using in situ (ground 

truth) data [3]. 

2.2 WorldView-2 (WV2) satellite 

Worldview-2 satellite was launched by DigitalGlobe in October 2009. It orbits the earth 

in a sun synchronous orbit at an orbital altitude of 770 km. WV2 has an orbit period of 

about 100 minutes. On average, it can revisit any point on the globe every 1.1 days and 

able to capture about 1 million km2 of area per day. WV2 has passive sensors that can 

detect the reflected energy when the source of energy is sun only. Therefore it cannot 
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be used at night because sun is not illuminating the earth at that time, unlike the active 

sensors that provide their own energy source for illumination by emitting radiation 

toward a target object, and then capture the radiation reflected from that target [ 4]. WV2 

has a high spectral resolution sensor with 8-multispectral bands and one panchromatic 

band (Tablel). WV2 has a high spatial resolution of 1.8 min the multispectral mode 

and 46 em in the panchromatic mode, with a dynamic range of 11 bits per pixel [5]. 

WV2 

.. ---···· ,.· .. -·· <U / . 
.......... B :' fa-... 

l : \!_; . . 
Atmosph~r~ :If : 

..... i(D' " 
,l • u . . 

Sea surface 
/ : . . .· . 

SeZI 

Ad acent Pixel Target Pixel 
2 2m 

Band l 1 3 4 ; 6 7 S 
Pixel value I I l I I I I I l 

1. lrradiance 

2. Atmospheric effect on irradiance 

{scattenn(tl absorption) 

3. Sunffhnt I Water column effect on 1rradiance 

{scattering / absorption) 

4. Radu~nc~ 

!t. Wat~r column effect on tad.ance 

(scattenng,l absorption) 

6. Atmospl eric effect on the radiance 

7. Radiance received by WV2 from the target 

puce I 

8 Adjacent effect· radiance from adjacent pixel 

Figure 1 The effect of the water column and the atmosphere on the amount of radiance reaching the sensor 
over a water mass. (borrowed from Edward {1999}; own elaboration) 

2.2.1 WorldView-2 spectral bands 

WV2 provides a high resolution panchromatic band ( 450 - 800 nm) and eight spectral 

bands that range from visible to near-infrared (400- 1040 nm); the eight spectral 

bands include four traditional bands, and four new additional bands (Tablet). WV2 

spectral bands are designed to improve the segmentation and classification of 
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atmospheric, terrestrial and water features. The table below gives an overview of the 

role of each spectral band [5]. 

Table 1 : WorldView-2 traditional and new bands, band wavelengths (nm) and usefulness of each spectral band 

T raditional Bands I New Bands Band Edge (om) usefulness 
Coastal blue [ 400- 4501 Vegetative analysis 

Bathymetric studies 
Improves atmospheric correction techniques 

Blue [ 442-515 J Detecting regions of water 

"' 
Green [ 510 - 580 J Vegetation analysis 

'0 Yellow [ 585 - 625 J Feature classification = c! Detects the "yellowness of particular vegetation, 
'; on land and in water ... .... 
t Red [ 630 -690 J Vegetation analysis c. rn Red Edge {705 - 745 J Measuring plant health 

N 

> Vegetation analysis 
~ 

Near Infrared 1 [770 - 895 ] Estimation of moisture content and plant biomass 
(NIRl) Classification of vegetation types 

Classification of soil types 

Near Infrared 2 [ 860 - 1040 ] Broad vegetation analysis 
(NIR2) Biomass studies 

2.3 Image pre-processing 

In benthic remote sensing, environmental conditions at the time when the image was 

taken and the characteristics of the water column have an effect on the intensity of the 

object's radiance received by the sensor. Therefore, in order to obtain a relatively 

0 accurate spectral response of the object of interest, the satellite imagery should be pre-

processed, and the effect of these components should be removed [3]. 

0 The main techniques for the pre-processing steps are presented below: 

2.3.1 Radiometric Calibration 

Radiometric calibration is classified into two types; absolute and relative calibration. 

Relative radiometric calibration accounts for sensor characteristics, whereas absolute 

calibration accounts for illumination geometry and atmospheric effects. 
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2.3.1.1 Relative Radiometric Calibration: 

Digital numbers recorded by a satellite must undergo a relative radiometric correction. 

In fact, many deficiencies in the imagery can occur due to variability in detector 

response, variability in electronic gain and offset, lens falloff, and particulate 

contamination on the focal plane [6]. These deficiencies can be shown in the form of 

streaks and banding in imagery. 

Normally, WV2 products are delivered with relative radiometric correction performed 

on raw data from all detectors in all bands. Relative radiometric correction minimizes 

image artifacts [7]. A further radiometric calibration step is required: Absolute 

radiometric calibration to account for earth-sun distance and azimuth angle. 

2.3 .1.2 Absolute Radiometric Calibration: 

From each spot on the Earth's surface, optical satellites sensors detect the intensity of 

the electromagnetic radiation (EMR) as a digital number (DN), called also pixel value. 

The DN of each image is specific to the type of sensor and is affected by the illumination 

geometry and the atmospheric condition during the image acquisition [8]. The 

conversion of DNs to reflectance values is required in order to obtain reliable 

information from satellite images [9], this process is called absolute radiometric 

calibration of images. Absolute radiometric calibration puts the data on a standard scale 

and makes it compatible with the data acquired from different sensors [10] and hence 

comparable with the data available in the spectral libraries. 

The Absolute calibration is a two-step process: 

1) The conversion ofDN values to Top of atmosphere (TOA) spectral radiance: 

6 



TOA spectral radiance Is the spectral radiance incoming towards the satellite at 

satellite's altitude [11]. 

2) The TOA spectral radiance is then converted into surface reflectance. This conversion 

involves the application of atmospheric correction methods on the TOA radiance values. 

The surface reflectance values provide a standardized measure which makes the 

comparison between images meaningful even if the images were taken by different 

sensors as well as in different time of the day, season or latitude [8]. 

0 2.3.1.2.1 Atmospheric correction: 

The reflectance of the objects recorded by satellite sensors is generally affected by 

atmospheric absorption and scattering. These normally result in alteration of the actual 

reflectance of the objects that subsequently affects the extraction of information from 

images [ 12]. In order to make a meaningful measure of reflectance at the Earth's surface, 

the atmospheric interferences (absorption and scattering) must be removed from the 

data. This process is called "atmospheric correction" [8]. EMR interacts with gas 

molecules in the atmosphere such as greenhouse gases which reduce its intensity. This 

is called absorption. EMR interacts with airborne particulate matter (aerosols) and 

results in a redirection of the incident EMR and hence deflection of the reflected EMR 

from its path [8]. This phenomenon is called scattering. Atmospheric correction 

compensates for both atmospheric absorption and scattering [12]. 

2.3.1.2.1.1 The empirical line method 

The empirical line method can be applied on multispectral satellite imagery to convert 

TOA spectral radiance to surface reflectance [13]. This method establishes a 
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relationship (linear or quadratic) between the TOA spectral radiance and the radiance 

values measured from calibration targets located within the image area. A prediction 

equation is then defined and used to convert the TOA radiance to surface reflectance for 

each band [14]. 

2.3.1.2.1.2 Second Simulation of a Satellite Signal in the Solar Spectrum (6S) 

method 

This method is highly effective for atmospheric correction for turbid coastal 

O environments and shallow waters compared to other atmospheric correction methods. 

6S is an algorithm designed to simulate the reflection of solar radiation by a coupled 

0 

atmosphere-surface system for a wide range of atmospheric correction. In order to run 

6S model, the meteorological visibility data should be available [12]. 

2.3.1.2.1.3 Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) 

FLAASH is another method for atmospheric correction. It is a first-principles 

atmospheric correction tool that operates in the spectral range 

( 400 - 2500 nm ). FLAASH provides basic atmospheric correction with the additional 

option of corrections for light scattered from adjacent pixels [ 15]. 

2.3.2 Water column correction: 

EMR that penetrates water attenuates exponentially when the depth increases. The 

degree of attenuation of EMR is mainly due to two processes, absorption and scattering 

[16]. Absorption occurs when the electromagnetic energy is converted into other forms 

such as chemical energy or heat. Water, Algae, suspended particulate matter and 

Dissolved Organic Compounds (DOC) are highly absorbents of the red part of the 
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spectrum, but have a small effect on the blue part of the spectrum [2]. Scattering occurs 

when EMR interacts with suspended particles in the water column and changes 

direction. Therefore scattering increases in turbid water [3]. The spectra of the same 

stratum changes with depth (Figure 2). Similarly, the spectral signature of one substrate 

at one depth could be very similar to the spectra of another stratum at a different depth. 

Therefore, for benthic habitat classification and mapping it is important to remove the 

influence of water depth, scattering and absorption [2]. 

Blue Green Red Infra-r ed 

0 

Wavelength 

Figure 2: Reflectance of a benthic cover (Seagrass) measured at variant depth [17] 

2.3.2.1 Lyzenga model 

Many studies related to benthic habitats mapping using remote sensing have adopted 

Lyzenga technique to minimize the effect of the water column [2] [18]. Lyzenga 

technique is used to calculate the ratios of attenuation coefficient for two bands and to 

produce a Depth Invariant Index (011) of the bottom type by considering the water 

surface radiance for the used wavelength band pairs. This method is used to distinguish 

different bottom types. It assumes that the radiance ratios of two distinct benthic types 

are independent of water depth as long as the attenuation coefficients are the same in 
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each couple of bands. This method works truly in clear water or where the level of 

turbidity is invariant. DII can then be used for benthic cover classification [2]. 

2.3.2.2 Bierwirth model 

Bierwirth model is another model that can be implemented for water column correction 

[16]. This model computes the sea bottom reflectance based on the assumption that the 

attenuation coefficient is homogenous across the entire image and it requires the depth 

value for every pixel. 

2.4 Image Classification 

After the pre-processing steps, classification techniques can be applied on the corrected 

image to perform benthic habitat classification. There are two main types of 

classification: unsupervised classification and supervised classification. 

2.4.1 Unsupervised Classification 

Unsupervised classification produces clusters of pixels based on the statistical analyses 

of spectral similarity of pixels. Pixels having similar spectral characteristics are grouped 

together in a distinct cluster. The two most common algorithms for unsupervised 

classification are K-means and ISO-Data. 

2.4.1.1 K-means 

K-means classifier follows the following algorithm [19] (Figure 3): 

1. Class centers of a number of a priori classes are positioned randomly through 

the space of pixels that are being clustered. 

2. Pixels distances from the class centers are calculated and each pixel is assigned 

10 
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to the class with the minimum distance. 

3. The mean of the class is re-calculated taking into account all the pixels in the 

class. 

4. Steps 2 and 3 are repeated until one of three conditions is met: 

o The centers of the classes are moving by a distance below predefined 

threshold. 

o The specified number of iterations reached its maximum 

o The percentage of moving pixels is below a predefined threshold. 

Step 3: The mean of every 

class is recalculated. Step 1: Centers positioned 

randomly in the spectral 

space 

Step Z: Pixels are assigned to 

the class with minimum 

(pixel-class center) distance 

Iteration 

Iteration stops when one 

condition from step 4 is 

met 

Figure 3: Schematic representation of K-means algorithm {19} 

2.4.1.2 Iso-Data 

Iso-Data algorithm works similarly to k-means algorithm with a few differences: 

o The number of clusters is not fixed and the classes are subject to be split or 

merged. 

11 



0 
0 

0 

o More input parameters are required. They are mainly predefined conditions to 

stop the iteration. 

2.4.2 Supervised classification 

Supervised classification allocates pixels in a dataset to classes based on pre-defined 

training data. Predefmed training data can be spectral signatures representing the various 

benthic cover types or Regions Of Interests (ROis) that represent known benthic cover 

classes. The classifier assigns every pixel in the image to a particular benthic type as 

identified during the training process. Among the few available supervised classification 

techniques, Maximum Likelihood Classification (MLC) and Minimum Distance 

Classification (MDC) are the most adopted techniques. 

2.4.2.1 Maximum Likelihood Classification (MLC) 

MLC is a widely used supervised classification method for benthic cover classification. 

It operates based on two principles [22]: 

o It assumes that the statistics for each training class in each band are normally 

distributed 

o It is based on the Bayesian probability theory (probability density function). 

2.4.2.2 Minimum Distance Classification (MDC) 

MDC calculates the mean vectors for every class and evaluates the Euclidean distance 

from each image pixel to the mean vector of every class. First the mean vector for each 

category is determined from the average pixel value in each band for each class. An 

unknown pixel can then be classified by computing the distance from its spectral 

position to each of the means and assigning it to the class with the closest mean. One 

limitation of this technique is that it overlooks the different degrees of variation [22] 
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3.1 Study Area 

Chapter 3 

METHODOLOGY AND PROCESSING 

The study area is a strip section of the North-Eastern Qatari coastline, stretching from 

the North ofRas Laffan to the South of Al Rewais. This is approximately a 35 km stretch 

of coastline, and the total area covers 235 km2 with water depth ranging from 0 to 11 

meters. 

The study area is relatively undisturbed by human activities compared to the rest of the 

eastern coastline that includes major industrial cities. The project incorporates Field 

Data and Remotely Sensed Data. 

3.1.2 Field Data 

This project uses field data from the Ecological Baseline survey carried out by the 

Environmental Studies Center (ESC) of Qatar University in conjunction with 

ExxonMobil Research Qatar (EMRQ). 

The study area was divided into 1 0 transects from the south to the north, running from 

land to the sea and spaced at 3.5 km interval along the shoreline. The survey includes a 

total of 44 stations: Along each transect, 4 stations were surveyed at 250, 1000, 2500 

and 5000 meters from the shoreline. An additional station at 7000 meters was surveyed 

along 4 transects, where the width of the marine area is more than 5 km (Figure 4 ). 

The field data incorporates data on the benthic cover. Scuba video surveys were carried 

out for a period of two months (from March to April2010) along lOOm transects. These 

surveys have been performed by a professional cameraman scuba diver, and a marine 
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biologist. Detailed analysis of the video-transects was further conducted at the ESC by 

a marine biologist and a GIS specialist on benthic community mapping. The field data 

was subsequently imported into GIS software to locate the benthic cover identified at 

each station (Figures 4 and 5). 
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Figure 4 : Distribution of the stations along the marine zone of the study area 

3 .1 .2.1 Benthic Habitats 

Three broad types of benthic habitats have been detected on the videos: 

• Seagrass: includes Seagrass meadows and seaweeds 

• Coral: represented by live coral 

• Algae: includes Macroalgae bed, the most encountered Macroalgae are brown 

In the areas where there is no biological cover, the bottom type is sand or sand mixed 

with dead coral. 
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The percentage of each benthic cover type encountered on the videos was assigned 

according to the following classification. 
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Figure 5 : Type and percentage of benthic cover identified at each station 

3.1.3 Imagery 

WV2 Multispectral images were available for the study area. The metadata of the 

images as delivered is shown in Table 2. The image data set covering the study area 

contained 12 WV2 images (tiles) (Figure 6) with pixel resolution of 2m X 2m. 

Images with smaller sizes allow software packages such as ENVI, IDL and ArcMap to 

import and process the images [25]. 

Table 2 Metadata of the satellite imagery 
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Acquisition Date Acquisition Time Sun Elevation Sun Azimuth 

26/4/2010 7:21 :35 69.4° 123.5° 

Figure 6 : WorldView-2 satellite images of the area of study delivered from DigitaiGiobe as 
adjacent/overlapping tiles 

3.2 ENVI Image Processing Software 

Cloud Cover 

0% 

The satellite data was processed using ENVI (5.1) software. ENVI (ENvironment for 

Visualizing Images) is a software designed to process and analyze satellite imagery. 

ENVI package includes a number of scientific algorithms for image processing. 

IDL (Interactive Data Language), is a programming language that can be used in ENVI 

environment to develop functions and procedures for pre-processing and processing 

satellite imagery. The ENVI Platform fully integrates with ArcMap, which increases the 

efficiency of image processing and data validation. 
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3.3 Image Processing Overview 

The flowchart of the general methodology applied in this project is shown in Figure 7. 

Hi&h Resolutoon Classification 

Pre-Processine 

Figure 7: The flowchart of the general methodology applied in this project 

The first step involved acquiring the WV2 multispectral satellite imagery for the area of 

study. The land area was masked out from all the tiles to improve the contrast in digital 

numbers (DNs) for non-land areas. Then absolute radiometric calibration and correction 

were performed on the raw imagery and resulted in converting raw DNs to top of 

atmosphere (TOA) spectral radiance. FLAASH atmospheric correction was then applied 

to convert TOA spectral radiance to surface spectral reflectance. Seamless mosaicking 

was applied to bind the tiles of reflectance images in one single image representing the 

area of study. The image was resampled to reduce its size and allow further processing. 

Eight spectral subsets were then created from the filtered reflectance image. Each subset 

displays the image in one band. 

In order to remove the effect of the water column, a script for Lyzenga's water column 

correction model was written in IDL and executed on a 48 different pairs of spectral 

subsets and generated 48 depth-invariant-index images. Previous researches and visual 

interpretation were used to identify the band combinations of the spectral subsets that 

are appropriate to extract benthic cover features. The resultant images were filtered 
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using Bit errors filtering technique in ENVI (5.1) to remove the salt and pepper 

appearance. The field data showing the benthic cover (type and percentage of coverage) 

identified at 44 stations was stored in Excel (.csv) format and imported into ArcMap as 

GIS layers. The 44-station data points were randomly divided into two sets for 

classification and accuracy assessment: Accordingly, 22 data points were used as 

training data for implementing Maximum Likelihood Classification (MLC) and the 

remammg data points were used for accuracy assessment and for calculation of 

confusion matrix. And finally, maps of benthic cover classification: Seagrass, 

Macroalgae, coral and sand cover, were produced. 

3.3.1 Image Pre-processing 

WV2 images are typically delivered relatively radiometric-calibrated and the intensity 

of the electromagnetic radiation is recorded as DNs. The land area was masked out then 

absolute radiometric calibration and FLAASH atmospheric correction were applied. 

3.3.1.1 Masking 

Polygons were drawn to cover the land area in the original WV2 images. Pixels covered 

by the polygons were masked out to exclude them from the image processing. Masking 

was applied on all the tiles that contain land surface. This was done by using two features 

in ENVI 5.1: "Masking" and "Region of interest" (ROI) (Figure 8). 

Satellite image, before applying ROI created using polygons Mask created for the land 
the mask that cover the land 

Figure 8 : Masking the land area from o tile 

Satellite image, after applying 
the mask 
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3.3.1.2 Radiometric Calibration 

ENVI 5.1 has a specific absolute radiometric calibration utility for WV2 images. This 

utility was used to produce TOA radiance images in units of 
2 

JLW • This utility 
em xsrxnm 

uses information in the metadata file of the image provided by DigitalGlobe and applies 

Gains and Offsets method. The equation used is this conversion is: 

Lsat = DN X Gain+ Offset (EQ 1) 

Where Lsat is the spectral radiance that enters the satellite, DN is the digital number 

0 recorded by the sensor and Gain and 0 f f set are calibration parameters specific to the 

sensor [20]. 

In this step, the image format was converted from Band Sequential (BSQ) to Band 

Interleaved by Line (BIL) format, to create a radiance image with required settings for 

input into FLAASH atmospheric correction module (Figure 8). 

3.3.1.2.1 FLAASH atmospheric correction 

FLAASH atmospheric correction module was applied to remove the effects of the 

atmosphere and to convert the TOA radiance images into surface reflectance images 

(Figure 9). The calibrated radiance images were used as input and the scene 

characteristics were retrieved from the metadata file and entered in FLAASH 

Atmospheric Correction Model. The Tropical atmospheric model and the Urban aerosol 

model were selected for image analysis using FLAASH. 
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WV2 satellite 1ma1e delivered by 
OlgltaiGlobe 

Relative radiometric correction 

Digital numbers In 
BSQformat 

Radiometric calibration 
al1orithm (Utility In ENVI) 

Absolute radiometric correction 

TOA spectral Radiance In BIL format 

FLAASH atmospheric correction 
al1orithm (Utili ty in EN VI) 

Atmospheric correction 

Surface Reflectance In BIL 
format 

Figure 9 : WorldView-2 image (at the left) delivered by DigitaiGiobe with relative radiometric correction 
undergoes absolute radiometric correction and FLAASH atmospheric correction by applying two utilities in ENVI 

3.3.1.3 Mosaicking 

Seamless Mosaic tool in ENVI 5.1 was used to assemble the 12 tiles of images into one 

single composite image that covers the area of study (Figure I 0). While applying the 

mosaic tool, color correction was performed to remove the differences in the color and 

tone of the images along the edges of any two adjacent tiles. To accomplish this, one 

tile having a balanced color and tone was chosen as a reference. 

Figure 10 : Twelve tiles of atmospherically corrected image (at the left} assembled in a single composite image 
(at the right} after applying seamless mosaic 
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3.3.1.4 Resampling 

After removing the effect of the atmospheric components, the image was resampled to 

reduce its size and allow further processing. This was done by applying the Resize 

feature in ENVI 5.1 and multiplying the image dimensions by a scale factor of0.3. The 

values of the image pixels were recalculated using nearest neighbor resampling. 

3.3.1.5 Water Column Correction 

In order to remove light scattering and absorption effects within the water body, 

Lyzenga method was applied on the atmospherically corrected images resulting in a 

depth-invariant index (DII) calculated and assigned for every pixel. 

The DII method is a 3-steps procedure [21][23]. 

First step: Linearization of the depth/ radiance relationship 

Radiance attenuates exponentially with depth. It is possible to linearize the 

dependence of radiance on depth using a natural logarithmic transformation for the 

chosen pair of bands (Figure 11): 

-=. 
2 Sand 

5 Sand • • ~ 
~ IV 
ft "6 
'6 e C't « ~ dJ) 

Figure 11 : Graphical representation of the linearization of the depth/radiance relationship for a homogenous 
bottom type: Sand {24] {17] 

(EQ 2) (EQ 3) 

Where, 
Li and Lj are the pixel radiance for bands i and j respectively 
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Xi and Xi are the transformed radiance for bands i and j respectively 

Second step: Calculation of the attenuation coefficient between pairs of bands 

Bi-plots are created for each pair of spectral bands (Xi is plotted against Xi). The slope 

of the regression line represents the attenuation coefficient for those bands (Figure 12) 

and is calculated using equations from previous research [17]. 

5and 
regression line 

x, 

- · ••cr.tllflll"'Crrl 

Figure 12: The regression line of the bi-plot (Xi against Xj} for a homogenous bottom type: Sand. The slope of 
the regression line represents the attenuation coefficient between the pair of bands i and j [24] {17} 

(EQ4) 

Where, 

ki is the attenuation coefficient between pairs of bands i and j, 
kj 

(EQ 5) 

Where ai and ai are the variances of bands i and j respectively and aii is the 

covariance of both bands i and j [26] 

(EQ6) 

Third step: Generation of the depth-invariant index for a homogenous bottom type. 

By plotting Xi againstXi, the index of a homogenous bottom type relating to two bands 

is represented by the intersection value with they- axis. 
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If different bottom types are considered the result of the third step will be represented 

by two parallel lines with different y- intercepts (Figure 13). 

--

L 8 nd J) 

X; 

ex 

011 of the band pairs i and j for sand 

bottom tvoe 

Dll ofthe band pairs i and j for sand 

bottom tvoe 

Figure 13 : Different bottom types have the same attenuation coefficient (slope of the regression line) but a 
different depth invariant index (y - intercept of the regression line) for the same pair of bands i and j {24} {17} 

Each pair of spectral band delivers a single 011 using the equation: 

depth invariant index = Xi - [ (:;) Xi] (EQ 6) 

In a previous research Lyzenga's equation which is originally written in radiance was 

written in terms of reflectance [27]. This has the advantage of obtaining values of 

atmospherically corrected data. 

depth invariant index = ln(Ra - [ (:~) ln(Rj)] (EQ 7) 

This is equivalent to calculating Xi and Xi in the first step as following: 

(EQ 8) (EQ 9) 

Where Ri represents the pixel reflection for band i, and Ri represents the pixel reflection 

forbandj. 

To implement Lyzenga's model on the resampled image and produce index images, a 

script was written using Interactive Data Language (IDL) (Annex A). 

The following steps were considered: 
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1) Eight spectral subsets were generated from the resampled image resulting in 8 images, 

each displaying one single band. 

2) Spectral subsets were exported to IDL and assigned to new IDL variables. 

3) Two spectral subsets were used as parameters with every run of the algorithms. 

4) All the combination of2 bands were used resulting in a number of P: - 8 (48) depth­

invariant images. 

3.3.1.6 Image Filtering 

Bit error filters (an algorithm in ENVI 5.1) was applied on the depth-invariant-index 

images to suppress the noise that gives the image a salt-and-pepper appearance. Bit Error 

removal maintains image sharpness and detail while removing noise. 

3.3.2 Image processing 

Field investigations and video transects revealed four benthic cover types: 

• Seagrass: includes Seagrass meadows and Seaweeds characterized by a green 

color 

• Coral: includes live coral 

• Macroalgae: includes Macroalgae bed, the most encountered Macroalgae are 

brown 

• Sand: soft bottom dominated by sand 

These cover types were selected to extract training data for image processing. A 

supervised classification procedure was applied and subsequently, an accuracy 

assessment of the classification results was achieved by calculating confusion matrix 

using the validation ground truth data. 
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3.3.2.1 Supervised Classification 

IDL pre-defined Color table was used to display the depth invariant index image in 

pseudocolor scale instead of grey luminance scale, in order to increase the level of 

discrimination of different classes within the image. As a result, 4 out of the 48 

preprocessed images were selected to undergo supervised classification because they 

showed distinguishable classes based on visual interpretation. The 4 selected images 

differ in the bands of the pair of spectral subsets used while applying the water column 

correction algorithm: Red edge-Blue, Green - Yell ow, Green - Infrared2 and Blue­

Green. 

Supervised classification algorithm needs to be fed by statistics generated for regions of 

interests that represent known benthic cover classes. Regions of interests were 

represented by polygons. Polygons were drawn to cover a group of neighboring pixels 

that appear fairly homogeneous on the image (determined by similarity in tone and 

color) and was assigned to one of the pre-defined classes, if a polygon covers more than 

one coverage type, it was attributed with the dominant one. The choice of the belonging 

class and the location of the polygon was aided by photointerpretation of the GIS layer 

that represents the training data. MLC was then applied to perform class assignments 

based on the pixel Index values of the classification units. 

MLC calculates mean values, variance and covariance of the classes providing the 

probability function). Statistical probability is calculated for a given pixel using mean 

vectors and variance-covariance values (probability density functions). This is then used 

to classify an unknown pixel by calculating for each class, the probability that it lies in 

that class. The pixel is then assigned to the most likely class or if its probability value 
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fails to reach any close defined threshold in any of the classes, it will be labelled as 

unclassified [22][28] (Figure 14). MLC algorithm produced a new pseudocolor image 

where each class is assigned a color. 

Figure 14 :Schematic representation of pixels classified using Maximum Likelihood Classification [19] 

3.3.2.2 Validation and Accuracy Assessment 

Ground truth pixels were grouped into 4 different categories based on the data recorded 

by the field survey. These categories are: 

• ROI coral 

• ROI Seagrass 

• ROI Algae 

• ROI sand 

As described in paragraph 3.3.2.1, MLC algorithm assigned one of the 4 pre-defined 

benthic classes (Seagrass, Coral, Algae and Sand) to every pixel in the image, hence 

each ground-truth pixel was also assigned a class. 
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Assessing the accuracy of the classification is based on calculating ratios and 

probabilities that reflect how much the categories of the ground-truth pixels are 

matching with the classes assigned to these pixels. A ground-truth pixel is correctly 

classified when its category and its class are the same. The classification is considered 

100% accurate if all the ground pixels are correctly classified. ENVI 5.1 has a feature 

that generates two types of confusion matrix (or error matrix), three types of accuracy, 

two types of errors 

1) Ground-truth matrix (pixel): Each column represents the category of the ground-

truth pixel (ROI Seagrass, ROI Algae, ROI coral, ROI sand), and every raw represents 

a pre-defined class (Seagrass, Algae, coral and sand). The value Pii of the element 

positioned in the i1h row and ph column represents the number of ground-truth pixels 

belonging to category U) and attributed to class (i). N is the number of classes (4 for 

the current classification) and n represents the number of ground-truth pixels (22 for 

this project) 

2) Ground-truth matrix (percent): It shows for every ground-truth category, the 

percentage of pixels assigned to each of the 4 pre-defined classes. 

3) Overall accuracy: It represents the percentage of correctly classified pixels: 

L~=1Pkk Overall accuracy = ........;.;;.~__;_,;_ 
n 

2) User accuracy for a class i: It determines the accuracy of classification for a benthic 

class i: 

p .. 
User accuracy for class i = LN u 

j=l pij 
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3) Producer accuracy for a category j: It represents the probability that any pixel 

belonging to a category j has been correctly classified: 

p .. 
Producer accuracy for category j = L.(V llp .. 

t=l l] 

4) Commission error for a class i: It occurs when the classifier assigns class i to a 

ground-truth pixel belonging to a category different than i: 

p .. 
C .. fl. 1 u omtsswn error or c ass l = - "'N 

.L.j=l pij 

5) Omission error for a class : It occurs when the classification excludes from class j a 

ground-truth pixel belonging to category j: 

p .. 
Omission error for class j = 1- LN 11 

i=l pij 
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Chapter 4 

IMPLEMENTATION AND RESULTS 

4.1 Water column correction 

Figure 15 shows 4 results of depth- invariant-index images, each generated from a 

different band ratio (Blue - Green , Red edge - Blue, Green - Infra red2 , Green -

Yellow). 

{1) 
N 

A 
N 

A 

{2) 

0 3 6 12 --Kilo mete~ 

{4) 

J 6 12 18 0 2.5 5 10 15 20 
0 3 6 12 ---- Kilometers Kilometers Kilometers 

Figure 15 :Atmospherically corrected image in RGB {1}, results of the final depth invariant index image for one 
band ratio: Red edge- Blue {2}, Green-Yellow {3}, Green-Infra red2 {4}, Blue-Green {5} 

4.2 Supervised Classification 

Maximum Likelihood classification was applied on four pre-processed images that 

differentiate in the band ratio used for the water column correction (as explained in 

chapter 3.3.2.1) using 22 training data for four main classes: Algae, Seagrass, Coral and 

Sand. The resulting classified images are displayed in Figure 16. 
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Figure 16 : Classification Results of MLC applied on 4 pre-processed images with different band ratios: Red edge 
-Blue {1}, Green-yellow (2), Green-Infra red2 {3}, Blue-Green {4) 

Close-ups of these classifications are included in Annex B for a better visualization. 

4.3 Accuracy Assessment 

1 

The accuracy of the 4 classification results was assessed using the same set of 22 

ground-truth data pixels. The classification results show that processing the depth 
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invariant image with band ratio (Green - Yellow) reflects to a large degree actual 

benthic cover. Whereas the depth invariant images with band ratios (Red edge - Blue, 

Green-Infra red2 and Blue-Green) show low overall accuracy (Table 3). Producer and 

user accuracies and errors of commission and omission for the processed image with 

band ratio (green-yellow) were computed (Table 4). 

Table 3: Overall accuracy of the classification results after processing 4 index images 

Band pair Overall Accuracy 

Green - Yellow 81 .8% 

Red edge - Blue 63.64% 

Green - Infra red2 45.45% 

Blue-Green 40.91% 

Table 4 : Confusion matrix calculated for the classification results of the index image with band ratio (green-
yellow} 

Class ROI ROI ROI ROI Total 
Algae Sea grass Coral Sand 

Algae 5 0 0 0 5 
Seagrass 0 0 0 0 0 

Coral 1 1 1 0 3 
Sand 1 0 1 12 14 
Total 7 1 2 12 22 

Table 5 : Producer and user accuracies and errors of commission and omission calculated for the classification 
results of the index image with band ratio {Green-Yellow} 

Class Commission Omission (%) Producer User Accuracy 
(%) Accuracy (%) (%) 

Algae 0 28.57 71.43 100 

Seagrass 0 100 0 0 

Coral 66.67 50 50 33.33 

Sand 14.29 0 100 85.71 
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DISCUSSION AND LIMITATION 

5.1 Water Column Correction algorithm 

Depth invariant index method was applied to reduce the effect of the water column and 

generate index images. Other water column correction techniques, such as Bierwirth 

model, could be used to generate reflectance image, which would allow to benefit from 

spectral libraries (libraries of spectral signatures containing lists ofbenthic habitats and 

their reflectance). However, the lack of spectral measurements of the benthic features 

and the lack of data about the depth value of every pixel made the choice of water 

column correction methodology very limited. The classification of the index images 

produced 4 a-priori broad benthic types (Algae, Seagrass, Coral and Sand). The visual 

interpretation of index images showed that some band pairs have high potential to 

discriminate different benthic types (Red edge-Blue, Green-Infra red2, Blue-Green, 

Green-Yellow), therefore index images with these bands were selected for further 

classification (Figure 16). 

5.2 Field data 

Out of 44 station data, a set of 22 station data was used as training data for Maximum 

Likelihood classification and the remaining 22 station data was incorporated for 

accuracy assessment. More reference points dispersed along the entire area of study, at 

all depths and for all types of cover could improve the classification results and allow 

more accuracy assessment. 
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5.3 Classification and accuracy assessment 

After applying MLC on 4 selected index images, it was noticed that the band pair that 

has achieved the highest accuracy was Green-Yell ow, with an overall accuracy of 81.8% 

(Table 3). More ground truth data could have produced a better accuracy assessment 

which will be helpful in future research. 

The band pair (green-yellow) was found to be the most appropriate to discriminate 

between different benthic cover types. This conclusion helps validate the research done 

by (Loomis, 2009) and (Lee et al, 2011) [32][33]. 

The user and producer accuracies were high for Algae and Sand, whereas for coral 

classification the user accuracy was low (33.33%) and the producer accuracy was fair 

(50%) (Table 5), this is probably due to two main reasons: 

• When corals bleach or become stressed they lose their pigmentation and they 

change their spectral profile which makes them confused with sand cover. 

• Some live coral species have spectral signatures similar to that of Seagrass or 

Algae [29][30][31]. 

The confusion matrix (Table 4) shows that there is only one ground-truth point 

belonging to Seagrass category. However, the point had been allocated to coral class 

creating a confusion which might be probably due to the similarity of the spectral 

signature of some live coral species and Seagrass. The user and producer accuracies for 

Seagrass are not reliable due to insufficient ground truth data for Seagrass category. 
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The classification of bottom type can never be 100% accurate due to the fact that 

different types of benthic cover can overlap, creating confusion in benthic cover 

classification. 

This project has produced a benthic habitat cover map for the North-Eastern part of the 

Qatari coastal zone. This map can be used as a stand-alone product to yield useful 

baseline information to the government, stakeholders and researchers. 
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Chapter 6 

CONCLUSION 

In this project, high resolution Worldview-2 data corrected for atmospheric and water 

column effects was used for extracting benthic cover types in the North-Eastern part of 

Qatar. 'Depth-invariant bottom indices' were calculated and formed the basis for 

classification. Training data and ground-truth data from field survey were incorporated 

to implement the supervised classification and the accuracy assessment. The band pair 

(Green-Yellow) was found to be the most appropriate band-pair in WV2 to discriminate 

between the different types of benthic habitats. This conclusion helps validate the 

researches done by (Loomis, 2009) and (Lee et al, 2011) [32][33]. 

Processing High resolution satellite imagery supported with field data can be used to 

classify and map the benthic cover of the coastal marine zone, which can generate 

valuable information of accessible and inaccessible areas for environmental monitoring, 

planning and for scientific studies. 

The approach adopted in this project: integration of remote sensing, GIS, and in-situ 

measurement in studying benthic cover has not been adopted in Qatar before. Therefore, 

this project will generate interests in the development of future research in this field and 

within the scientific community. There are several interesting research ideas for future 

work such as detecting the changes in the benthic cover over time. Further development 

of the water column correction method can be done incorporating additional amount of 

field data to study larger areas and extract more features of benthic cover with a higher 

level of accuracy. 
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Annex A: Algorithm written in IDL to generate the depth-invariant index using Lyzenga method 

Step 1 - Linearization of the depth/ radiance relationship 

FUNCTION Lyzenga_linearization, band_i 
s=SIZE (band i) 
A=Make_Array (s[ l ] ,s [ 2 ] , / FLOAT) 
A=band i 
indices= Where (A NE 0 , count) 
IF count GT 0 THEN A[indices] = alog (band_i[indices]) 

return , A 

END 

Step 2 - Calculation of the attenuation coefficient between pairs of bands 

FUNCTION Lyzenga_calculat~on_Bands , a, b 
vi=var~ance ( a ) 

vj=variance (b ) 
covij=correlate (a,b, / COVARIANCE ) 
result= (vi - v j )/2 *covij 
RETURN, resul t 

END 

FUNCTION Lyzenga_attenuat~on, a 
return , a+sqrt ( a ~ 2 + 1 ) 

END 

Step 3 - Generation of the depth-invariant index 

FUNCTION Lyzenga_DII , band_i, band_j 

e = ENVI (/HEADLESS ) 
a =Lyzenga_linearization (band_i ) 

40 

X, = ln(L,) and .1(1 = ln(L1 ) 

\\.here. 

L, and L1 are the ptxel reflectance for bands i and j respectively 

X, and X1 are the transformed reflectance for bands i and j respecm·ely 

~ =a+ ,) a=+ 1 
k l 

Where, 

~ ts the attenuation coeffictent between pairs of bands i and j , 
k l -

a= a, -.. , 
~ a ,J 

Where u, and u1 are the \'artances of bands i and j respectively and 

u,1 !§. the covartance of both bands i and j 

..., 



b=Lyzenga_linearization (band_j) 

c=lyzenga_calculation_Bands (b and_i , b and_j) 
k=lyzenga_attenuation (c ) 

DII_values= (a- (k* b) ) 

s =SIZE (DI I _va l ues ) 
print, s [ l ),s [2 ] 

; s(l] and s[2] gives the number of columns and the number of rows 

array_value s =Make_Array (s [ l ],s (2 ], / FLOAT ) 

array_values=DII_values 

f ile = FILEPATH ( 'R3Cl_Band2' , ROOT_DIR= 'C:\R3Cl subsets' ) 
ras t er = e. OpenRaster (file) 

dep th irw adant index = ln (R,) - [(:;)In (R1 

X, = ln (R,) and X1 = ln(R, ) 

Where R, represents the plXel reflection for band i , 

and R1 represents the piXel reflect1on for band i . 

ne wFile= 'C:\R3Cl subsets\R3Cl DII Transformed24' 
DII_raster_image~ENVIRaster (array=values, I NHERI TS_FROM=r aster , URI=newFile) 
DII raster_image . Save 

print, 'New file written to: ' 
print, DII_raster_image.uri 

RETURN, ' Done ' 

END 
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Annex B : Maps showing benthic cover classification 

Benthic cover classification of the North-Eastern Part 
of Qatar Marnle Zone. Index Image: Green-Infra red2 
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Benthic cover classification of the North-Eastern Part 
of Qatar Marnle Zone. Index Image: Red edge -Blue 
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Benthic cover classification of the North-Eastern Part 
of Qatar Marnie Zone. Index Image: Green-Yellow 
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Benthic cover classification of the North-Eastern Part 
of Qatar Marnie Zone. Index image: Blue-Green 
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