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Abstract: Under weak conditions on the kernels, we obtain sharp Lp bounds for rough parabolic
maximal integral operators over surfaces of revolution. By virtue of these bounds along with Yano’s
extrapolation argument, we confirm the Lp boundedness of these maximal operators under weaker
conditions on the kernels. Our obtained results represent substantial extensions and improvements
of some known results on maximal operators with rough kernels on symmetric spaces.

Keywords: extrapolation; boundedness; mixed homogeneity; rough kernels; maximal integrals

1. Introduction

Throughout this work, we assume that Sn−1, n ≥ 2, is the unit sphere in Rn equipped
with the normalized Lebesgue surface measure dσ = dσn(·). Furthermore, we assume that
q′ denotes the exponent conjugate to q defined by 1/q′ + 1/q = 1.

For j ∈ {1, 2, · · · , n}, let αj be fixed real numbers in the interval [1,+∞). Consider

the function Ψ : R+ × Rn → R defined by Ψ(ρ, z) =
n
∑

j=1

z2
j

ρ
2αj

with z = (z1, z2, . . . , zn) ∈ Rn.

For a fixed z ∈ Rn, we denote the unique solution to the equation Ψ(ρ, z) = 1 by ρ ≡ ρ(z).
The metric space (Rn, ρ) is called the mixed homogeneity space related to {αj}n

j=1. Let Dρ

with ρ > 0 be the diagonal n× n matrix:

Dρ =

ρα1 0
. . .

0 ραn

.

The change of variables regarding the space (Rn, ρ) is presented as follows:
z1 = ρα1 cos ϑ1 · · · cos ϑn−2 cos ϑn−1,
z2 = ρα2 cos ϑ1 · · · cos ϑn−2 sin ϑn−1,
...
zn−1 = ραn−1 cos ϑ1 sin ϑ2,
zn = ραn sin ϑ1.

This gives that dz = ρα−1 J(z′)dρdσ(z′), where

α =
n

∑
j=1

αj, J(z′) =
n

∑
j=1

αj(z′j)
2, z′ = Dρ−1 z ∈ Sn−1,

and ρα−1 J(z′) is the Jacobian of our transformation.
It was proven in [1] that J(z′) is in C∞(Sn−1) and

1 ≤ J(z′) ≤ C for some C ≥ 1.
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Let h be a measurable function on R+ and Θ ∈ L1(Sn−1), which satisfies the conditions∫
Sn−1

Θ(z′)J(z′)dσ(z′) = 0, (1)

Θ(Dρz) = Θ(z), ∀ρ > 0. (2)

For an appropriate function ϕ : R+ → R, we define the class of maximal operators
MP,Θ,ϕ initially for C∞

0 functions on the symmetric space Rn+1 by

MP,Θ,ϕ( f )(z, zn+1) = sup
h∈L2(R+)

∣∣∣TP,Θ,h,ϕ( f )(z, zn+1)
∣∣∣, (3)

where

TP,Θ,h,ϕ( f )(z, zn+1) =
∫

Rn
eiP(y) f (z− y, zn+1 − ϕ(ρ(y)))

Θ(y)h(ρ(y))
ρ(y)α

dy, (4)

L2(R+) (γ ≥ 1) is the set of all h ∈ L2(R+, dρ
ρ ) with ‖h‖

Lγ(R+ , dρ
ρ )
≤ 1, and P : Rn → R is a

real-valued polynomial.
When α1 = · · · = αn = 1, we have α = n, ρ(y) = |y| and (Rn, ρ) = (Rn, | · |),

and hence, we denote MP,Θ,ϕ by Mc
P,Θ,ϕ. In addition, when P(y) = 0 and ϕ(t) = t,

then Mc
P,Θ,ϕ is reduced to be the classical maximal operator Mc

Θ, which was introduced
by Chen and Lin in [2]. Subsequently, the Lp boundedness of Mc

Θ has received a wide
amount of attention by many researchers. For instance, Al-Salman in [3] proved that the
operator Mc

Θ is bounded on Lp(Rn+1) for all p ≥ 2 provided that Θ ∈ L(log L)1/2(Sn−1),
and he also showed that the condition Θ ∈ L(log L)1/2(Sn−1) is nearly optimal in the sense
that Mc

Θ may not be bounded on Lp for any p ≥ 2 whenever Θ ∈ L(log L)ν(Sn−1) for
some 0 < ν < 1/2. In [4], Al-Qassem established the Lp boundedness of Mc

0,Θ,ϕ for all

2 ≤ p < +∞ provided that Θ ∈ L(log L)1/2(Sn−1) and ϕ is in C2([0,+∞)), an increasing
and convex function with ϕ(0) = 0. For more information regarding the significance and
the recent advances of the operators Mc

P,Θ,ϕ, readers may consult [5–9], as well as the
references therein.

Later on, the maximal operator Mc
P,Θ,ϕ was introduced in [10] in which the au-

thor proved the Lp (p ≥ 2) boundedness of Mc
P,Θ,ϕ under the conditions ϕ(t) = t and

Θ ∈ B(0,−1/2)
q (Sn−1) ∪ L(log L)1/2(Sn−1) for some q > 1. Recently, the result of [10] was

improved in [11]. In fact, it was proven that Mc
P,Θ,ϕ is bounded on Lp(Rn+1) for all p ≥ 2

provided that Θ ∈ L(log L)1/2(Sn−1) ∪ B(0,−1/2)
q (Sn−1) with q > 1 and ϕ ∈ C2(R+), a

convex and increasing function with ϕ(0) = 0.
Although there are many problems concerning the Lp boundedness of Mc

P,Θ,ϕ that
remain open, the investigation to establish the Lp boundedness of the parabolic maximal op-
erators MP,Θ,ϕ has attracted many mathematicians. For example, it was proven in [12] that

the operator M0,Θ,ϕ is of type (p, p) for all p ≥ 2 if Θ ∈ B(0,−1/2)
q (Sn−1)∪ L(log L)1/2(Sn−1)

for some q > 1 and ϕ is a real-valued polynomial.
In view of the results of [11,12], the Lp boundedness of the maximal operator MP,Θ,ϕ in

the classical setting, as well as in the parabolic setting, a question arises
naturally: Is the operator MP,Θ,ϕ bounded on Lp under certain conditions on ϕ and

Θ ∈ B(0,−1/2)
q (Sn−1) ∪ L(log L)1/2(Sn−1)?

The main focus of the article is to answer the above question in the affirmative. Our
conditions assumed on ϕ are those considered in [13]. More precisely, we say that ϕ
satisfies the hypothesis I whenever ϕ is a nonnegative C1 function on (0,+∞) such that
ϕ′(ρ) is monotone and ϕ is strictly increasing on (0,+∞); ϕ(2ρ) ≥ C1 ϕ(ρ) for some fixed
C1 > 1 and ϕ(2ρ) ≤ C2 ϕ(ρ) for some constant C2 ≥ C1; ρϕ′(ρ) ≥ C3 ϕ(ρ) on (0,+∞)
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for some fixed 0 < C3 < log(C2). We say that ϕ satisfies the hypothesis D whenever
ϕ is a nonnegative C1 function on (0,+∞) such that ϕ′(ρ) is monotone and ϕ is strictly
decreasing on (0,+∞); ϕ(ρ) ≥ C1 ϕ(2ρ) for some fixed C1 > 1 and ϕ(ρ) ≤ C2 ϕ(2ρ) for
some constant C2 ≥ C1; |ρϕ′(ρ)| ≥ C3 ϕ(ρ) on (0,+∞) for some fixed 0 < C3 < log(C2).

Sample functions for ϕ to satisfy the hypothesis D are ϕ(ρ) = ρ−ae−bρ for a ≥ 0 and
b ≥ 0 and for the ϕ to satisfy the hypothesis I are ϕ(ρ) = ρaebρ for a ≥ 0 and b ≥ 0.

The main result of this paper is formulated as follows:

Theorem 1. Let Θ satisfy the conditions (1) and (2) and belong to Lq(Sn−1) for some q > 1 with
‖Θ‖L1(Sn−1) ≤ 1. Assume that MP,Θ,ϕ is given by (3) and ϕ(·) satisfies the hypothesis D or I.
Then, there exists a positive constant Cp,q such that∥∥MP,Θ,ϕ( f )

∥∥
Lp(Rn+1)

≤ Cp,q

(
1 + θ1/2

)
‖ f ‖Lp(Rn+1) (5)

for all 2 ≤ p < +∞, where θ = log(e + ‖Θ‖Lq(Sn−1)), Cp,q = 21/q′

21/q′−1
Cp, and Cp > 0 is a

constant that is independent of q, ϕ, Θ, and the coefficients of the polynomial P; however, it may
depend on the degree of P.

Here and henceforth, the letter C refers to a positive constant whose value may vary
at each occurrence, but independent of the fundamental variables.

2. Preparation

In this section, we give some preliminary lemmas that we shall need to prove Theorem 1.

Lemma 1. Let Θ, ϕ, and θ be given as in Theorem 1. For j ∈ Z, define Uϕ,j : Rn+1 → R by

Uϕ,j(ζ, ζn+1) =
∫ 22θ

1

∣∣∣∣∣∣
∫

Sn−1

Θ(v)J(v)Hϕ,j(ρ, v, ζ, ζn+1)dσ(v)

∣∣∣∣∣∣
2

dρ

ρ
,

where
Hϕ,j(ρ, v, ζ, ζn+1) = e−i[(2−(j+1)θ)Dρv·ζ+ϕ(2−(j+1)θρ)ζn+1].

Then, a constant C > 0 exists such that

Uϕ,j(ζ, ζn+1) ≤ Cθ min{
∣∣∣D2−(j+1)θ ρζ

∣∣∣− κ
4sθ ,
∣∣∣D2−(j+1)θ ρζ

∣∣∣ κ
4sθ },

where s is denoted to be the distinct numbers of {αj} and 0 < κ < 2s/q′.

Proof. It is easy to see that
Uϕ,j(ζ, ζn+1) ≤ Cθ. (6)

Furthermore, by using [14], Lemma 2.2, it is easy to obtain

∣∣∣∣∣22θ∫
1
Hϕ,j,(ρ, v, ζ, ζn+1)Hϕ,j,(ρ, w, ζ, ζn+1)

dρ
ρ

∣∣∣∣∣ ≤ C
∣∣{D2−(j+1)θ (v− w) · ζ

}∣∣− 1
4s

≤ C
(
|(v− w) · ξ|

∣∣D2−(j+1)θ ζ
∣∣)− 1

4s ,

(7)

where ξ =
D

2−(j+1)θ ζ∣∣∣D
2−(j+1)θ ζ

∣∣∣ . Combining (7) with the trivial estimate:

∣∣∣∣∣∣∣
22θ∫
1

Hϕ,j,(ρ, v, ζ, ζn+1)Hϕ,j,(ρ, w, ζ, ζn+1)
dρ

ρ

∣∣∣∣∣∣∣ ≤ Cθ (8)
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gives that, for any κ ∈ (0, 1],∣∣∣∣∣∣∣
22θ∫
1

Hϕ,j,(ρ, v, ζ, ζn+1)Hϕ,j,(ρ, w, ζ, ζn+1)
dρ

ρ

∣∣∣∣∣∣∣ ≤ C
(
|(v− w) · ξ|

∣∣D2−(j+1)θ ζ
∣∣)− κ

4s θ1−κ . (9)

By Hölder’s inequality, we obtain that

(
Uϕ,j(ζ, ζn+1)

)q′ ≤ C‖Θ‖2q′

Lq(Sn−1)

∫∫
(Sn−1)2

∣∣∣∣∣∣∣
22θ∫
1

Hϕ,j,(ρ, v, ζ, ζn+1)

× Hϕ,j,(ρ, w, ζ, ζn+1)
dρ

ρ

∣∣∣∣q′dσ(v)dσ(w).

Now, choose κ ∈ (0, 2s/q′) to obtain that

Uϕ,j(ζ, ζn+1) ≤ C
∣∣D2−(j+1)θ ζ

∣∣− κ
4s ‖Θ‖2

L1(Sn−1)θ
1−κ .

By combining the last estimate with the estimate (6), we deduce that

Uϕ,j(ζ, ζn+1) ≤ Cθ
∣∣D2−(j+1)θ ζ

∣∣− κ
4sθ . (10)

On the other hand, by using the cancellation condition (1), we obtain that∣∣∣∣∣∣
∫

Sn−1

Θ(v)Hϕ,j(ρ, v, ζ, ζn+1)J(v)dσ(v)

∣∣∣∣∣∣ ≤ C
∫

Sn−1

∣∣∣e−i2−(j+1)θ Dρv·ζ − 1
∣∣∣|Θ(v)|dσ(v)

≤ C‖Θ‖L1(Sn−1)

∣∣∣D2−(j+1)θ ρζ
∣∣∣,

which when combined with the estimate∣∣∣∣∣∣
∫

Sn−1

Θ(v)Hϕ,j(ρ, v, ζ, ζn+1)J(v)dσ(v)

∣∣∣∣∣∣ ≤ C‖Θ‖L1(Sn−1)

leads to ∣∣∣∣∣∣
∫

Sn−1

Θ(v)Hϕ,j(ρ, v, ζ, ζn+1)J(v)dσ(v)

∣∣∣∣∣∣ ≤ C‖Θ‖L1(Sn−1)

∣∣∣D2−(j+1)θ ρζ
∣∣∣ κ

4sθ .

Therefore,

Uϕ,j(ζ, ζn+1) ≤ Cθ
∣∣∣D2−(j+1)θ ρζ

∣∣∣ κ
4sθ . (11)

Consequently, by (10) and (11), we finish the proof of the lemma.

The following lemma is from [15]; it will play a significant role in the proof of
Theorem 1.

Lemma 2. Assume that α′js and v′js are fixed numbers and that Pv : R+ → Rn is a function given
by Pv(ρ) = (v1ρα1 , · · · , vnραn). Define the maximal function related to Pv by

MPv f (z) = sup
υ>0

1
υ

∫ υ

0
| f (z− Pv(ρ))|dρ.
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Then, there exists a constant Cp > 0 (independent of f and v′js) such that

‖MPv( f )‖Lp(Rn) ≤ Cp‖ f ‖Lp(Rn)

for all 1 < p ≤ +∞.

The next lemma can be derived by employing a similar technique used in the proof
of [16], Lemma 3.4; we omit the details.

Lemma 3. Let ϕ satisfy the hypothesis D or I, and let Mϕ be the maximal function defined on R by

Mϕ( f )(t) = sup
j∈Z

∣∣∣∣∣
∫ 2j+1

2j
f (t− ϕ(ρ))

dρ

ρ

∣∣∣∣∣.
Then, for all p ∈ (1,+∞], there is a constant Cp > 0 such that∥∥Mϕ( f )

∥∥
Lp(R)

≤ Cp‖ f ‖Lp(R).

Now, we are ready to prove the Lp boundedness of the maximal function, which is
related to the operator MP,Θ,ϕ. Similar approaches utilized in [17], Lemma 3.6, lead to the
following result.

Lemma 4. Suppose that ϕ is given as in Theorem 1 and Mϕ,v is the maximal function defined on
Rn+1 by

Mϕ,v f (z, zn+1) = sup
j∈Z

∣∣∣∣∣
∫ 2j+1

2j
f (z− Dρv, zn+1 − ϕ(ρ))

dρ

ρ

∣∣∣∣∣.
Then, for f ∈ Lp( Rn+1) with p ∈ (1,+∞], we have∥∥Mϕ,v( f )

∥∥
Lp(Rn+1)

≤ Cp‖ f ‖Lp(Rn+1).

Proof. Let j ∈ Z, and let µj be the measure defined by

µ̂j(ζ, ζn+1) =

2j+1∫
2j

e−i(ζ·Dρv+ζn+1 ϕ(ρ)) dρ

ρ
.

Then, we have that
Mϕ,v( f )(z, zn+1) = sup

j∈Z

∣∣µj ∗ f (z, zn+1)
∣∣.

Let ψ be a smooth function with the properties ψ̂(ζ) = 0 for ρ(ζ) ≥ 1 and ψ̂(ζ) = 1 for
ρ(ζ) ≤ 1

2 . Let ψρ(ζ) = ρ−nψ(Dρ−1 ζ). Define the sequence of measure ηj on Rn × R by

η̂j(ζ, ζn+1) = µ̂j(ζ, ζn+1)− ψ̂2j(ζ)µ̂j(0, ζn+1)

and its corresponding maximal function by

η∗( f )(z, zn+1) = sup
j∈Z

∣∣ηj ∗ f (z, zn+1)
∣∣.

Therefore, it is easy to obtain that∣∣η̂j(ζ, ζn+1)
∣∣ ≤ ∣∣A2j v · ζ

∣∣. (12)
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However, by using Lemma 1 (see also [18], Lemma 2.4), we obtain that for any ε ∈ (0, 1),∣∣η̂j(ζ, ζn+1)
∣∣ ≤ ∣∣A2j v · ζ

∣∣−ε. (13)

It is clear that

η∗( f )(z, zn+1) ≤
(

∑
j

∣∣ηj ∗ f (z, zn+1)
∣∣2)1/2

+ C
(
(MPv ⊗ idR) ◦ Vϕ

)
( f (z, zn+1)) (14)

and

Mϕ,v( f )(z, zn+1) ≤
(

∑
j

∣∣ηj ∗ f (z, zn+1)
∣∣2)1/2

+ 2C
(
(MPv ⊗ idR) ◦ Vϕ

)
( f (z, zn+1)), (15)

where

Vϕ f (z, zn+1) = sup
j∈Z

∣∣∣∣∣
∫ 2j+1

2j
f (z, zn+1 − ϕ(ρ))

dρ

ρ

∣∣∣∣∣.
The lemma is proven by (12) and (15), Lemmas 2 and 3, and following the bootstrapping
argument employed in [17] (see also [19], Proposition 14).

An important step toward proving Theorem 1 is to prove the following lemma.

Lemma 5. Let Θ, ϕ, and θ be given as in Lemma 1. Then, the inequality:∥∥M0,Θ,ϕ( f )
∥∥

Lp(Rn+1)
≤ Cp,q

(
1 + θ1/2

)
‖ f ‖Lp(Rn+1) (16)

holds for 2 ≤ p < +∞.

Proof. By the duality,

M0,Θ,ϕ( f )(z, z + 1) =

 +∞∫
0

∣∣∣∣∣∣
∫

Sn−1

J(v) f (z− Dρv, zn+1 − ϕ(ρ))Θ(v)dσ(v)

∣∣∣∣∣∣
2

dρ

ρ


1/2

.

Let
{

µj
}

j∈Z be a collection of smooth functions on (0,+∞) satisfying the following:

supp µj ⊆ Ij,θ =
[
2−(j+1)θ , 2−(j−1)θ

]
; ∑

j∈Z
µj(ρ) = 1;

0 ≤ µj ≤ 1; and

∣∣∣∣∣dkµj(ρ)

dρk

∣∣∣∣∣ ≤ C
ρk .

Consider the multiplier operators Φj defined on Rn+1 by

(̂Φj f )(ζ, ζn+1) = µj(ρ(ζ)) f̂ (ζ, ζn+1) f or (ζ, ζn+1) ∈ Rn × R.

Therefore, by Minkowski’s inequality, we obtain

M0,Θ,ϕ( f )(z, zn+1) ≤ ∑
j∈Z

EΘ,ϕ,j( f )(z, zn+1) (17)

for any f ∈ S(Rn+1), where

EΘ,ϕ,j( f )(z, zn+1) =

(
∑
k∈Z

∫
Ik,θ

∣∣∣Sk+j,ρ f (z, zn+1)
∣∣∣2 dρ

ρ

)1/2

,
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and
Sk,ρ f (z, zn+1) =

∫
Sn−1

J(v)(Φk f )(z− Dρv, zn+1 − ϕ(ρ))Θ(v)dσ(v).

Thus, to satisfy (16), it is enough to show that there exist positive constants Cp and ε so that∥∥EΘ,ϕ,j( f )
∥∥

Lp(Rn+1)
≤ Cp 2−ε|j|

(
1 + θ1/2

)
‖ f ‖Lp(Rn+1) (18)

for all p ≥ 2. On the one hand, let us estimate the L2-norm of EΘ,ϕ,j( f ) as follows:

∥∥EΘ,ϕ,j( f )
∥∥2

L2(Rn+1)
≤ ∑

k∈Z

∫
R

∫
Γj+k

Uϕ,j(ζ, ζn+1)
∣∣∣ f̂ (ζ, ζn+1)

∣∣∣2dζdζn+1

≤ C θ 2
−εκ|j|

4s ∑
j∈Z

∫
R

∫
Γk+j

∣∣∣ f̂ (ζ, ζn+1)
∣∣∣2dζdζn+1

≤ C θ 2
−εκ|j|

4s ‖ f ‖2
L2(Rn+1), (19)

where Γj = {ζ ∈ Rn : ρ(ζ) ∈ Ij,θ}. The last inequality is attained by using Plancherel’s
theorem, Fubini’s theorem, and Lemma 1. Therefore, the inequality (18) is held for p = 2
once we choose ε small as much as we need.

On the other hand, the Lp-norm of EΘ,ϕ,j( f ) for 2 < p < +∞ is estimated as follows:
By the duality, there exists g ∈ L(p/2)′(Rn+1) such that ‖g‖L(p/2)′ (Rn+1)

≤ 1 and

∥∥EΘ,ϕ,j( f )
∥∥2

Lp(Rn+1)
= ∑

k∈Z

∫
Rn+1

∫
Ik,θ

∣∣∣Sk+j,ρ f (z, zn+1)
∣∣∣2 dρ

ρ
|g(z, zn+1)|dzdzn+1.

Hence, thanks to Hölder’s inequality and Lemma 4, we obtain

∥∥EΘ,ϕ,j( f )
∥∥2

Lp(Rn+1)
≤ ∑

k∈Z

∫
Rn+1

22θ∫
1

∫
Sn−1

|Θ(z)|
∣∣∣Φk+j f (z, zn+1)

∣∣∣2

×
∣∣∣g(z + D2−(j+k+1)θ ρv, zn+1 + ϕ(2−(j+k+1)θρ))

∣∣∣dσ(v)
dρ

ρ
dzdzn+1

≤ C‖Θ‖L1(Sn−1)

∥∥∥Mϕ,2−(j+k+1)θ v(g̃)
∥∥∥

L(p/2)′ (Rn+1)

∥∥∥∥∥∑
j∈Z

∣∣∣Φj+k f
∣∣∣2∥∥∥∥∥

L(p/2)(Rn+1)

≤ Cpθ‖g̃‖L(p/2)′ (Rn+1)

∥∥∥∥∥∑
j∈Z

∣∣∣Φj+k f
∣∣∣2∥∥∥∥∥

L(p/2)(Rn+1)

,

where g̃(u, un+1) = g(−u,−un+1). Thus, by the assumptions on g and the Littlewood-
Paley theory, we deduce that∥∥EΘ,ϕ,j( f )

∥∥
Lp(Rn+1)

≤ Cp

(
1 + θ1/2

)
‖ f ‖Lp(Rn+1),

which when combined with (19) gives that there exists 0 < ε < 1 such that for all p ≥ 2,∥∥∥EΘ,ϕ,k( f )
∥∥∥

Lp(Rn+1)
≤ C2−ε|k|

(
1 + θ1/2

)
‖ f ‖Lp(Rn+1). (20)

Consequently, by (17), (20), and taking ε small enough, we complete the proof of
this lemma.

We end this section with the following result.
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Lemma 6. Let θ, Θ, ϕ, s, andHϕ,j be given as in Lemma 1. Assume that P(v) = ∑
|β|≤k

λβvβ is a

polynomial of degree k > 1 such that ∑
|λ|=k

∣∣λβ

∣∣ = 1 and |v|k is not one of its terms. For j ∈ Z, we

let
GP

ϕ,j(ρ, v, ζ, ζn+1) = e−i[P((2−(j+1)θ)Dρv·ζ)]Hϕ,j(ρ, v, ζ, ζn+1)

and

SP
ϕ,j(ζ, ζn+1) =

∫ 22θ

1

∣∣∣∣∣∣
∫

Sn−1

Θ(v)J(v)GP
ϕ,j(ρ, v, ζ, ζn+1)dσ(v)

∣∣∣∣∣∣
2

dρ

ρ
.

Then, there exists a constant C > 0, so that

sup
ζ×ζn+1∈Rn+1

SP
ϕ,j(ζ, ζn+1) ≤ Cθ2

(j+1)
4τq′ .

Proof. The proof of this lemma can be obtained by following the same technique employed
in the proof of Lemma 1. Therefore, we shall only give a sketch of the proof of this lemma.
One can easily deduce the trivial estimate∣∣∣∣∣

∫ 22θ

1
GP

ϕ,j(ρ, v, ζ, ζn+1)GP
ϕ,j(ρ, u, ζ, ζn+1)

dρ

ρ

∣∣∣∣∣ ≤ Cθ (21)

and that

P
(

2−(j+1)θ Dρv · ζ
)
+ 2−(j+1)θ Dρv · ζ − P

(
2−(j+1)θ Dρ · u

)
− 2−(j+1)θ Dρu · ζ

= 2
−k(j+1)θ

ρr

 ∑
|β|=k

λβ

(
vβ − uβ

)
· ζ

+ 2−(j+1)θ Dρ(v− u) · ζ +R,

where
dr

dρrR = 0, r = τk, and τ = max{α1, α2, . . . , αn}. Hence, we obtain that

∣∣∣∣∣
∫ 22θ

1
GP

ϕ,j(ρ, v, ζ, ζn+1)GP
ϕ,j(ρ, u, ζ, ζn+1)

dρ

ρ

∣∣∣∣∣
≤ Cr

∣∣∣2−(j+1)kθ{P(v)− P(u)} · ζ
∣∣∣−1/r

. (22)

Therefore, we can reach the desired result by imitating the proof of Lemma 1.

3. Proof of the Main Result

To prove Theorem 1, we follow the similar arguments to those appearing in the proof
of [10], Theorem 1.1. Precisely, we use the induction on the degree of the polynomial P. It is
clear that when the degree of P equals 0, then by the duality and Lemma 5, we obtain that∥∥MP,Θ,ϕ( f )

∥∥
Lp(Rn+1)

≤ Cp‖ f ‖Lp(Rn+1)

(
1 + θ1/2

)
(23)

for p ≥ 2. Now, when the degree of P equals 1, that is P(v) = a +
−→
b · v, then set ω(v) =

e−iP(v) f (v). Therefore, by (23), we conclude∥∥MP,Θ,ϕ( f )
∥∥

Lp(Rn+1)
≤ Cp‖ω‖Lp(Rn+1)

(
1 + θ1/2

)
≤ Cp‖ f ‖Lp(Rn+1)

(
1 + θ1/2

)
. (24)
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Next, we assume that our result is true for any polynomial whose degree is k or less
with k ≥ 1. Therefore, we need to prove that our result is still true whenever the degree of
the polynomial is k+ 1. Without loss of generality, we may assume that P(v) = ∑

|β|≤k+1
λβvβ

is a polynomial of degree k + 1 such that P does not contain |v|k+1 as one of its terms and
∑

|β|=k+1

∣∣λβ

∣∣ = 1. Let
{

Υj
}

j∈Z is a collection of smooth functions defined on (0,+∞) with

the following conditions:

supp Υj ⊆ Ij,θ =
[
2−(j+1)θ , 2−(j−1)θ

]
;

∑
j∈Z

Υj(ρ) = 1; 0 ≤ Υj ≤ 1; and

∣∣∣∣∣dlΥj(ρ)

dρl

∣∣∣∣∣ ≤ Cl

ρl .

Set

Γ0(ρ) =
+∞

∑
j=1

Υj(ρ) and Γ+∞(ρ) =
0

∑
j=−∞

Υj(ρ).

Let

BP,Θ,ϕ( f )(z, zn+1) =
∫

Sn−1

J(v) eiP(Dρv) f (z− Dρv, zn+1 − ϕ(ρ(v)))Θ(v)dσ(v),

M0
P,Θ,ϕ( f )(z, zn+1) =

 1∫
0

∣∣∣ Γ0(ρ)BP,Θ,ϕ( f )(z, zn+1)
∣∣∣2 dρ

ρ

1/2

and

M+∞
P,Θ,ϕ( f )(z, zn+1) =

 +∞∫
2−θ

∣∣ Γ+∞(ρ)BP,Θ,ϕ( f )(z, zn+1)
∣∣2 dρ

ρ

1/2

.

Thanks to the generalized Minkowski’s inequality, we obtain

MP,Θ,ϕ( f )(z, zn+1) ≤ M0
P,Θ,ϕ( f )(z, zn+1) +M+∞

P,Θ,ϕ( f )(z, zn+1)

≤ M0
P,Θ,ϕ( f )(z, zn+1) +

0

∑
j=−∞

M+∞
P,Θ,ϕ,j( f )(z, zn+1), (25)

where

M+∞
P,Θ,ϕ,j( f )(z, zn+1) =

( ∫
Ij,θ

∣∣BP,Θ,ϕ( f )(z, zn+1)
∣∣2 dρ

ρ

)1/2

.

On one side, we estimate the L2-norm of M+∞
P,Θ,ϕ,j( f ) as follows: by Fubini’s theorem,

Plancherel’s theorem, and Lemma 6, we deduce

∥∥∥M+∞
P,Θ,ϕ,j( f )

∥∥∥
L2(Rn+1)

=

 ∫
Rn+1

∣∣∣ f̂ (ζ, ζn+1)
∣∣∣2SP

ϕ,j(ζ, ζn+1)dζdζn+1

1/2

≤ C2
(j+1)
8τq′ ‖ f ‖L2(Rn+1)

(
1 + θ1/2

)
. (26)

On the other side, we estimate the Lp-norm of M+∞
P,Θ,ϕ,j( f ) (for p > 2) as follows: by

the duality, we obtain that there is a function φ that belongs to L(p/2)′(Rn+1) such that
‖φ‖L(p/2)′ (Rn+1)

= 1 and
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∥∥∥M+∞
P,Θ,ϕ,j( f )

∥∥∥2

Lp(Rn+1)
=

∫
Rn+1

|φ(u, un+1)|
22θ∫
1

∣∣∣∣ ∫Sn−1
GP

ϕ,j(ρ, u, 0, 0)J(v)

× f (u− D2−(j+1)θ ρv, un+1 − ϕ(2−(j+1)θρ))dσ(v)
∣∣∣2 dρ

ρ
dudun+1.

By following the same steps used in estimating the Lp-norm of EΘ,ϕ,j( f ) in Lemma 5, we
immediately obtain that∥∥∥M+∞

P,Θ,ϕ,j( f )
∥∥∥

Lp(Rn+1)
≤ Cp‖ f ‖Lp(Rn+1)

(
1 + θ1/2

)
,

for which when combined with (26), we conclude that there exists ι ∈ (0, 1) such that∥∥∥M+∞
P,Θ,ϕ,j( f )

∥∥∥
Lp(Rn+1)

≤ Cp2
ι
(j+1)
8τq′ ‖ f ‖Lp(Rn+1)

(
1 + θ1/2

)
(27)

for all p ≥ 2. Now, let us estimate
∥∥∥M0

P,Θ,ϕ( f )
∥∥∥

Lp(Rn+1)
with p ≥ 2. Take Q(v) = ∑

|β|≤k
λβvβ.

Therefore, by Minkowski’s inequality, we obtain that

M0
P,Θ,ϕ( f )(z, zn+1) ≤M0

Q,Θ,ϕ( f )(z, zn+1) +M0
P,Q,Θ,φ f (z, zn+1), (28)

where

M0
Q,Θ,ϕ( f )(z, zn+1) =

 1∫
0

∣∣BQ,Θ,ϕ( f )(z, zn+1)
∣∣2 dρ

ρ

1/2

and

M0
P,Q,Θ,ϕ f (z, zn+1) =

 1∫
0

∣∣BP,Θ,ϕ( f )(z, zn+1)−BQ,Θ,ϕ( f )(z, zn+1)
∣∣2 dρ

ρ

1/2

.

Since the degree of the polynomial Q(v) is less than or equal to k, then we have that∥∥∥M0
Q,Θ,ϕ( f )

∥∥∥
Lp(Rn+1)

≤ Cp‖ f ‖Lp(Rn+1)

(
1 + θ1/2

)
(29)

for all p ≥ 2; since∣∣∣eiP(Dρv) − eiQ(Dρv)
∣∣∣ ≤ ∣∣P(Dρv)−Q(Dρv)

∣∣ ≤ ρτ(k+1),

then by the Cauchy–Schwartz inequality, we obtain that

M0
P,Q,Θ,ϕ( f )(z, zn+1) ≤

C

 1∫
0

∫
Sn−1

ρ2τ(k+1)|Θ(u)|
∣∣ f (z− Dρv, zn+1 − ϕ(ρ))

∣∣2dσ(v)
dρ

ρ

1/2

≤

+∞

∑
j=1

2−j(2τ(k+1))
2−j+1∫
2−j

∫
Sn−1

|Θ(v)|
∣∣ f (z− Dρv, zn+1 − ϕ(ρ))

∣∣2dσ(v)
dρ

ρ


1/2

≤ C
(
Mϕ,v

(
| f |2

))1/2
.
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Hence, by Lemma 4, we obtain that∥∥∥M0
P,Q,Θ,ϕ( f )

∥∥∥
Lp(Rn+1)

≤ Cp

∥∥∥| f |2∥∥∥1/2

p/2
≤ Cp‖ f ‖Lp(Rn+1)

(
1 + θ1/2

)
(30)

for all p ≥ 2. Therefore, the inequalities (28)–(30) lead to∥∥∥M0
P,Θ,ϕ( f )

∥∥∥
Lp(Rn+1)

≤ Cp‖ f ‖Lp(Rn+1)

(
1 + θ1/2

)
. (31)

Consequently, by (25) and (27) together with (31), we conclude that∥∥MP,Θ,ϕ( f )
∥∥

Lp(Rn+1)
≤ Cp‖ f ‖Lp(Rn+1)

(
1 + θ1/2

)
. (32)

4. Further Results

For γ ∈ [1,+∞), let Lγ(R+) be the class of all functions h : R+ → R, which are
measurable and satisfy that

‖h‖
Lγ(R+ , dρ

ρ )
=

(∫ +∞

0
|h(ρ)|γ dρ

ρ

)1/γ

≤ 1,

and let L∞(R+) = L∞(R+, dρ
ρ ).

It is obvious that Lγ1(R+) ⊆ Lγ2(R+) for 1 ≤ γ2 ≤ γ1 ≤ +∞.
In this section, we establish some further results. Consider the maximal operator:

M
(γ)
P,Θ,ϕ( f )(z, zn+1) = sup

h∈Lγ(R+)

∣∣∣TP,Θ,h,ϕ( f )(z, zn+1)
∣∣∣.

The first result of this section is the following:

Theorem 2. Let Θ ∈ Lq(Sn−1), q > 1 and satisfy the conditions (1) and (2) with ‖Θ‖L1(Sn−1) ≤ 1.
Let P and ϕ be given as in Theorem 1. Then,∥∥∥M(γ)

P,Θ,ϕ( f )
∥∥∥

Lp(Rn+1)
≤ Cp,q

(
1 + θ1/γ′

)
‖ f ‖Lp(Rn+1) (33)

for all p ∈ [γ′,+∞) with γ ∈ (1, 2], and∥∥∥M(1)
P,Θ,ϕ( f )

∥∥∥
L∞(Rn+1)

≤ C‖ f ‖L∞(Rn+1). (34)

Proof. Notice that when γ = 2, we have M
(2)
P,Θ,ϕ = MP,Θ,ϕ. Hence, by Theorem 1, the in-

equality (33) is satisfied for all 2 ≤ p < +∞. Next, when γ = 1, we have h ∈ L1(R+, dρ
ρ )

and f ∈ L∞(Rn+1). This gives that∣∣∣∣∫R+
BP,Θ,ϕ( f )(z, zn+1)h(ρ)

dρ

ρ

∣∣∣∣ ≤ C‖ f ‖L∞(Rn+1)‖h‖L1(R+ , dρ
ρ )

for all (z, zn+1) ∈ Rn+1. Thus, when we take the supermom on both sides over all h with
‖h‖

L1(R+ , dρ
ρ )
≤ 1, we obtain that

M
(1)
P,Θ,ϕ( f )(z, zn+1) ≤ C‖ f ‖L∞(Rn+1)
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for almost everywhere (z, zn+1) ∈ Rn × R. Therefore,∥∥∥M(1)
P,Θ,ϕ( f )

∥∥∥
L∞(Rn+1)

≤ C‖ f ‖L∞(Rn+1). (35)

Finally, when γ ∈ (1, 2), we obtain by the duality that

M
(γ)
P,Θ,ϕ( f )(z, zn+1) =

(∫
R+

∣∣BP,Θ,ϕ( f )(z, zn+1)
∣∣γ′ dρ

ρ

)1/γ′

.

Therefore, ∥∥∥M(γ)
P,Θ,ϕ( f )

∥∥∥
Lp(Rn+1)

=
∥∥BP,Θ,ϕ( f )

∥∥
Lp(Lγ′ (R+ , dρ

ρ ),Rn+1)
.

Consequently, by utilizing the interpolation theorem for the Lebesgue mixed normed
spaces to the inequalities (5) and (35), we instantly acquire (33) and (34). The proof
is complete.

Again, when α1 = · · · = αn = 1, we denote M(γ)
P,Θ,ϕ by M

(γ),c
P,Θ,ϕ, and when P(y) ≡ 0 and

ϕ(t) = t, we denote M
(γ),c
P,Θ,φ by M

(γ),c
Θ . Let us recall some results related to these operators.

Historically, the investigation to obtain the Lp boundedness of M(γ),c
Θ was started in [2],

in which the authors proved that if Θ ∈ C(Sn−1) and h ∈ Lγ(R+) with 1 ≤ γ ≤ 2, then
the Lp boundedness of M(γ),c

Θ holds for (nγ)′ < p < +∞. Later on, Al-Qassem improved
this result in [4], who showed that if Θ ∈ L(log L)1/γ′(Sn−1) and ϕ is C2([0,+∞)), an
increasing and convex function with ϕ(0) = 0, then M

(γ),c
0,Θ,ϕ is bounded on Lp(Rn+1) for

any p ∈ [γ′,+∞) with γ ∈ (1, 2] and bounded on L∞(Rn+1) for γ = 1. Very recently, Ali
and Al-Mohammed in [11] established the Lp(Rn+1) boundedness of M(γ),c

P,Θ,ϕ for any p ≥ γ′

with γ ∈ (1, 2] provided that Θ is in the space L(log L)1/γ′(Sn−1) ∪ B(0,−1/γ)
q (Sn−1) with

q > 1 and ϕ is given as in [4].
On the other side, the investigation of the Lp boundedness of the parabolic maximal

operators M(γ)
P,Θ,φ was started in [20]. In fact, the authors of [20] obtained that the operator

M
(γ)
P,Θ,ϕ is bounded on Lp(Rn+1) for all p ∈ [γ′,+∞) with γ ∈ (1, 2] whenever ϕ(t) = t

and Θ belongs to the space B(0,−1/γ)
q (Sn−1) or belongs to the space L(log L)1/γ′(Sn−1).

Afterward, the Lp boundedness of M
(γ)
P,Θ,ϕ under varied conditions on the kernels has

received attention by many authors. For recent advances on the study of such operators,
the readers are referred to [12,18,21] and the references therein.

By using the conclusion of Theorem 2 and employing Yano’s extrapolation argument
(see also [10,11]), we obtain the following theorem, which improves and extends the results
cited above.

Theorem 3. Assume that P, ϕ, and θ are given as in Theorem 1. Let Θ be in L(log L)1/γ′(Sn−1)

or in B(0,−1/γ)
q (Sn−1) with q ∈ (1,+∞]. Then, M(γ)

P,Θ,ϕ is bounded on Lp(Rn+1) for all p ∈
[γ′,+∞) with γ ∈ (1, 2]; it is bounded on L∞(Rn+1) for γ = 1.

In this article, we are also interested in studying the Lp boundedness of the parabolic
singular integral operator TP,Θ,h,ϕ under certain conditions on the kernels. This operator
was first studied by Fabes and Rivière in [1], who showed that if Θ ∈ C1(Sn−1), then T0,Θ,1,ρ
(ϕ(t) = t, h ≡ 1, and P(y) = 0) is bounded on Lp(Rn) for 1 < p < +∞. Later on, Nagel
Rivière and Wainger improved this result in [22]. In fact, they proved that T0,Θ,1,ρ is still
bounded on Lp(Rn) for 1 < p < +∞ whenever the assumption Θ ∈ C1(Sn−1) is replaced
by a weaker condition Θ ∈ L(log L)(Sn−1). Under certain conditions on the kernels,
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a considerable amount of research has been performed to prove the Lp boundedness of
TP,Θ,h,ϕ; we refer the readers to see [12,17,19,23–25], among others.

By Theorem 3, we obtain the Lp boundedness of the integral operator TP,Θ,h,ϕ, where
the range of p is the full range (1,+∞) whenever 1 < γ ≤ 2. This result is formulated
as follows:

Theorem 4. Let Θ, ϕ, and P be given as in Theorem 3. Suppose that h ∈ Lγ(R+) with γ ∈ (1, 2].
Then, the singular integral operator TP,Θ,h,ϕ is bounded on Lp(Rn+1) for all 1 < p < +∞.

Proof. As an immediate consequence of Theorem 3 and the fact:∣∣∣TP,Θ,h,ϕ( f )(z, zn+1)
∣∣∣ ≤M

(γ)
P,Θ,ϕ( f )(z, zn+1)‖h‖Lγ(R+ , dρ

ρ )
, (36)

we conclude that TP,Θ,h,ϕ is bounded on Lp(Rn+1) for γ′ ≤ p < +∞ with γ ∈ (1, 2].
Furthermore, by a standard duality argument, one can easily establish the Lp boundedness
of TP,Θ,h,ϕ for 1 < p ≤ γ with γ ∈ (1, 2]. Hence, whenever γ = 2, we are done. However,
when γ ∈ (1, 2), then the real interpolation theorem gives that TP,Θ,h,ϕ is bounded on Lp

(γ < p < γ′). This completes the proof.

Let us present a new rough integral operator, which is related to the maximal operator
M

(γ)
P,Θ,ϕ; it is the generalized parabolic Marcinkiewicz integral operator given by

µ
(γ)
P,Θ,ϕ( f )(z, zn+1)

=

∫
R+

∣∣∣∣∣ 1
δ

∫
ρ(y)≤δ

eiP(y) f (z− w, zn+1 − ϕ(ρ(w)))Θ(w)(ρ(w))−α+1dw

∣∣∣∣∣
γ′

dδ

1/γ′

.
(37)

Since, for any 1 ≤ γ ≤ 2,

µ
(γ)
P,Θ,ϕ( f )(z, zn+1) ≤ CM

(γ)
P,Θ,ϕ( f )(z, zn+1),

we obtain the following result.

Theorem 5. Suppose that Θ, ϕ, and P are given as in Theorem 3, and suppose that µ
(γ)
P,Θ,ϕ is given

as in (37) for some γ ∈ [1, 2]. Then, the integral operator µ
(γ)
P,Θ,ϕ is bounded on Lp(Rn+1) for all

p ∈ [γ′,+∞) with γ ∈ (1, 2], and it is bounded in L∞(Rn+1) for γ = 1.

We point out that under some specific constraints, the operator µ
(γ)
P,Θ,ϕ was investigated

in [11,12,26–30].

5. Conclusions

In this paper, we established appropriate Lp estimates for the parabolic operator
M

(γ)
P,Θ,ϕ whenever Θ is in Lq(Sn−1). These estimates were used with Yano’s extrapolation

argument to satisfy the Lp boundedness of M(γ)
P,Θ,ϕ under weaker conditions imposed on

the integral kernels. Then, we presented some results that came from this result. Precisely,
we obtained the boundedness of the parabolic singular integral TP,Θ,h,ϕ, as well as the

generalized parabolic Marcinkiewicz integral operator µ
(γ)
P,Θ,ϕ under very weak assumptions

on the kernels.
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