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ABSTRACT 

 

 

Recently, optimization of the bioreduction reactions by optimization methodologies has gained special interest as 

these reactions are affected by several extrinsic factors that should be optimized for higher yields. An important 

example for these kinds of reactions is the complete cell implications for the bioreduction of prochiral ketones in 

which the culture parameters play crucial roles. Such biocatalysts provide environmentally friendly and clean 

methodology to perform reactions under mild conditions with high conversion rates.  In the present work, at the first 

step the Lactobacillus senmaizuke was isolated from sourdough and the complete cell application of Lactobacillus 

senmaizuke for the bioreduction of acetophenone was optimized by an Artificial Neural networks (ANNs) to achieve 

the highest enantiomeric excess (EE, %). The culture parameters, pH, temperature, incubation period and agitation 

speed were the experimental factors that were optimized to maximize EE (%) by machine learning algorithm of 

Artificial Intelligence modeling and the best conditions to maximize EE (95.5 %) were calculated to be pH of 5.7, 

temperature of 35 ºC, incubation period of 76 h and agitation speed of 240 rpm with very low sum of squared error 

value (0.611236 %) to bioreduce acetophenone using complete cell of Lactobacillus senmaizuke as a sourdough 

isolate GRAS microbial species. Accordingly, The ANN was employed to correctly establish the enantiomeric 

excess values of the specimen with an average absolute error 0.080739 %. 

 

Keywords: Sourdough, Asymmetric bioreduction, Biocatalyst, Chirality, Machine learning, ANNs, 

Biotransformation 
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INTRODUCTION 

 

 

The asymmetric nature of biological macromolecules reveals the importance of chirality for life, technology and 

chemistry to obtain the desired molecular chiral structures using different techniques. In organic chemistry, 

production of enantioselective prochiral ketones is a vital process and using biocatalysts is method of choice 

compared to the chemical synthesis due to important advantages of the process including environmentally friendly 

and cheap reaction conditions. Importantly, enantiomerically pure secondary chiral alcohols are crucial elements 

with respect to synthesize distinct substances used in different industries such as pharmaceutical and agriculture [1-5]. 

There are several examples of drugs produced from these molecules such as Duloxetine and Ezetimibe that are used 

for the treatments of affective disorder, generalized anxiety disorder, fibromyalgia, neuropathic pain and lowering 

plasma cholesterol levels. [6,7] Another example of drug that chiral secondary alcohols play roles for its biosynthesis 

is isoprenaline which is utilized to treat bradycardia. [8] 

There is a growing sales level for the pharmaceutical products with single enantiomeric form increasing yearly. This 

results in the increment in the attempts to explore novel enantioselective routes to acquire single enantiomer of 

substances. Both agriculture and food industries are positively affected from these attempts as these molecules are 

also important for the mentioned industries. The attempts to find new routes to produce enantioselective chiral 

compounds are targeting to produce these molecules more efficiently and more selectively than the current 

methodologies [9-12]. One of these attempts is the use of biocatalysts to produce enantiopure alcohols from prochiral 

ketones in a simple, mild, cost-effective, and ecofriendly conditions. For instance, several reports revealed the fact 

that ketoreductases were excellent biocatalysts to produce enantiopure secondary alcohols using prochiral ketones 
[13-17]. Chemical catalysts can also be used for the production of enantiopure secondary alcohols but they have 

important disadvantages compared to biocatalysts such as their cost levels, low conversion and poor 

enantioselectivity rates and importantly requirement for the harsh circumstances that might result in the formation of 

toxic and undesirable compounds. In comparison to the chemical catalysts, biocatalysts provide environmentally 

friendly and clean methodology to perform reactions under mild conditions with high conversion rates. In terms of 

green technology, use of biocatalysts is an important methodology in order to produce these crucial enantiopure 

secondary alcohols under mild reaction conditions with no detrimental effects to the environment. Two types of 

biocatalytic operations can be industrially applied as asymmetric reduction of prochiral ketones or the resolution of 

racemate. In the former application, the enantiomer can be produced with high conversion yields and enantiomeric 

purity. The biocatalysts can be applied as whole cells or purified enzymes to proceed the bioreduction reactions and 

whole cell application has some advantages compared to the purified enzymes such as the presence of the cofactors 

in the cytoplasm of the cell which should be added in the enzyme application and low level of costs compared to the 

purified enzymes [9-12]. It should be also noted that enzymes have important level of increased activity rates and 

stability. With the help of improvements in biotechnological approaches, more chemical compounds will be 

subjected to the bioreduction reaction to produce these compounds from inexpensive basic materials under 

environmentally-kind mild operations. [18] Microorganisms are one of the main examples of biocatalysts and whole 

cell yeast and bacteria applications were successfully shown to perform the asymmetric reduction of the carbonyl 

moiety to chiral alcohols. As mentioned above the extrinsic parameters play crucial roles for the asymmetric 

reduction reactions and examples of these parameters are incubation temperature, incubation pH, incubation period 

and the agitation level during the reactions. [19] These parameters can be tested individually to explore their effects 

for the final enantiomeric excess levels, but it is highly time consuming and very expensive to test these parameters 

individually in which the results of each parameter cannot be linked easily. Therefore, to solve these problems and 

better understand their interactions, several optimization techniques became the method of choice of some 

computational methods.  In this regard, some multivariate statistical analyses such as a machine learning approach 

ANs and relevant chemometrics in general are useful computational tools although they follow fully different 

research approaches. Besides, increasingly applied some computational methods can be used to model biocatalysis 

reactions by orienting experimental planning, consequently modulating; for example, the enzyme activity to change 

microbial metabolic reactions. [20] Therefore, in this study, ANN’s optimization methods were used to optimize more 
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easily and efficiently asymmetrical reduction of acetophenone by employing complete cell of Lactobacillus 

senmaizuke as a biocatalyst in asymmetric reduction of acetophenone to 1-phenyl ethanol.  

 

 

MATERIALS AND METHODS 

 

 

General 

The chemicals and solvents used in this study were from Sigma‐Aldrich (purity of >99%) except the bacterial 

medium (MRS) which was purchased from Merck. Thin‐layer chromatography (TLC) was used to visualize the 

reaction products in TLC plates (aluminum, silica gel 60 F254 Merck, 0.25 mm) and the developing solution was 

hexane: ethyl acetate (4:1, v/v). Column chromatography was used to purify (R)-1-phenylethanol using hexane: 

ethyl acetate (10:1, v/v) as elution solution. High‐performance liquid chromatography (HPLC) analysis was 

performed on an Agilent 1260 systems equipped with a UV and chiral detector. The racemic 2 was obtained by 

reducing the 1 with NaBH4 in methanol at room temperature used as a standard for the determination of the (R)- or 

(S)-enantiomers. Optical rotation was measured with a Bellingham + Stanley, ADP220, 589 nm spectropolarimeter. 

1H and 13C NMR spectra were recorded on Bruker 400 MHz spectrometer in CDCl3. The conversion was 

determined by chromatography on a chiral column on HPLC after filtering the crude product with a column 

containing small silica gel and comparing the alcohol peaks with the ketone peak. Enantiomeric excess was also 

determined by HPLC with the chiral column. 1H- and 13C-NMR, and HPLC spectra can be found in the Supporting 

Information. (R)-1-phenylethanol (2): Colorless oil, Yield 90%, 1H NMR (400 MHz, CDCl3) δ= 7.38-7.33 (m, 4H, 

Ar), 7.31-7.26 (m, 1H, Ar), 4.84 (q, J = 6.45 Hz, 1H, CH), 2.62 (bs, 1H, OH), 1.48 (d, J = 6.5 Hz, 3H, Me); 13C 

NMR (100 MHz, CDCl3) δ= 146.0 (ArC), 128.4 (ArC), 127.3 (ArC), 125.5 (ArC), 70.2 (CCH), 25.2 (CMe); [α]D 

25 = +69.7 (c 1.1, CHCI3), 80% ee; HPLC (Chiralcel OD-H column, n-hexane/i-PrOH, 95:5, flow rate of 1.0 

mL/min, 210 nm) tR (R) 8.8 min, (S) 10.3 min [21]. The HPLC condition of 1: Chiralcel OD-H column, 

hexane/i‐PrOH, 95:5, flow rate of 1.0 mL/min, 210 nm, 5.9 min (Supporting Information). 

 

Experimental design and general bioreduction reactions 

The Enantiomeric excess (%) (EE) values of the study conducted by Colak et al. [21] reported the optimization 

strategy for asymmetric bioreduction of acetophenone using whole cell of Lactobacillus senmaizukei by Response 

surface methodology (RSM).  The data set were analyzed and optimized using machine-learning algorithm of 

Artificial Intelligence modeling procedures. The EE values describes the purity used for chiral substances and 

highest EE values reflects the formation of one type of enantiomer from the reaction. In the aforementioned study, 

whole cell of Lactobacillus senmaizukei was used for the bioreduction of acetophenone and the EE values were 

obtained and then used as the template to apply the optimization of the reaction by machine learning approach in the 

present study.  

The optimized reaction conditions were also tested to investigate the actual EE values for the bioreduction of 

acetophenone. For this purpose, Lactobacillus senmaizukei was inoculated to 10 ml MRS broth and incubated 2 days 

at 37 °C followed by the inoculation of grown cells at 10% concentration to 50 ml MRS broth with a pH of 4.79. 

Following the incubation under agitation for 2 h, 0.5 mmol substrate was added to the MRS and the incubation was 

conducted under agitation (150 rpm) at 25 °C for 70 h. After the incubation, the supernatant was obtained and 

saturated with NaCl, then extracted with diethyl ether. The diethyl ether extracts were combined and dried over 

Na2SO4. After removal of the solvent under reduced pressure, the crude product was identified by NMR analysis. 

The absolute configuration was determined by sign of specific rotation and comparison with the literature. The 

enantiomeric excess of the seconder alcohol was determined by chiral HPLC analysis. 

In this study, whole cells of Lactobacillus senmaizukei were used as a bioreduction agent that was previously 

isolated from sourdough. For this, serial dilutions were prepared from the traditional sourdoughs and were plated to 

MRS agar plates that were incubated at 37°C for 48 h and random colonies were selected from agar plates which 

were then subjected to 16S rRNA gene amplification by PCR analysis and this strain was identified as described 

previously[22].  

 

Statistical analysis and machine learning 

Machine learning is one of the sub-disciplines of Artificial Intelligence for using data available in particular 

environment to predict outcomes identifying (discovering) patterns in data and decision making. It describes the 
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process of how computers are ‘learning’ through human input (experimental data) and training them to obtain 

certain outcomes by ANNs. ANNs are modelling and computing systems capable of deep learning and composed of 

a set of basic high-degree interconnecting elements for data handling. In the present work, the back-propagation 

multilayer perceptron (BPMLP) algorithm was employed for estimating the levels of culture (input) parameters that 

would maximize the EE. The BPMLP performs a particular non-linear mapping, which could be stated with respect 

to a known group of input parameters (Table 1) obtained from experimental measurements such as pH (3.5–7.5, x1), 

temperature (20–40 °C, x2), incubation period (0–96 h, x3) and agitation speed (50–250 rpm, x4), the output 

parameter is the enantiomeric excess (EE, %, y). The BPMLP algorithm employs the steepest descent algorithm for 

minimization of the mean squared error of given data. It also employs the Levenberg-Marquardt (LM) approach as 

an optimization method to solve problems on non-linear least squares. The learning performance of this algorithm is 

based on adapting all synaptic weights in that the incompatibility amidst the actual output data of EE (%) and the 

targeted data (the outcomes of ANNs) might be as low as possible as their average is taken for over all the learning 

samples. The following steps were used for the training process of LM algorithm. Initially, randomly generated 

initial weights were uploaded in the ANNs to estimate the total error (SSE) of the networks. 

If the initial training process is not successful enough, the weights are updated using Eq. (8). 

 

Table 1. Data set used for ANN algorithm and the outcomes a 

 

 Experimental factors Response Machine learning 

Runs pH, (x1) 

Temperature 

(ºC) 

(x2) 

Incubation 

period (h) 

(x3) 

Agitation 

speed (rpm) 

(x4) 

Enantiomeric 

Excess (%) 

(y) 

ANN 

outcomes 

ANN 

Error 

ANN 

Error (%) 

1 4.5 35 72 200 45 44.9311 0.0689 0.02845 

2 6.5 25 72 200 47 46.8127 0.1873 0.07733 

3 5.5 30 48 150 56 55.9895 0.0105 0.00433 

4 7.5 30 48 150 64 64.0106 -0.0106 -0.00440 

5 5.5 30 48 150 56 55.9895 0.0105 0.00433 

6 6.5 25 24 200 64 64.0000 0.0000 0.00000 

7 4.5 35 72 100 56 56.0167 -0.0167 -0.00690 

8 5.5 30 96 150 51 51.2961 -0.2961 -0.12220 

9 6.5 35 24 200 27 27.0052 -0.0052 -0.00210 

10 5.5 40 48 150 19 19.0359 -0.0359 -0.01480 

11 4.5 25 24 200 48 47.9906 0.0094 0.00388 

12 4.5 35 24 200 83 83.1334 -0.1334 -0.05510 

13 5.5 30 48 50 68 68.0123 -0.0123 -0.00510 

14 5.5 30 48 150 56 55.9895 0.0105 0.00433 

15 5.5 20 48 150 66 66.2651 -0.2651 -0.10940 

16 3.5 30 48 150 50 49.9809 0.0191 0.00789 

17 6.5 35 24 100 70 70.4139 -0.4139 -0.17090 

18 6.5 35 72 100 52 51.9914 0.0086 0.00355 

19 5.5 30 48 150 56 55.9895 0.0105 0.00433 

20 5.5 30 48 150 56 55.9895 0.0105 0.00433 
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21 4.5 25 72 100 94 93.8474 0.1526 0.06300 

22 5.5 30 48 250 92 91.9938 0.0062 0.00256 

23 4.5 25 72 200 48 48.0072 -0.0072 -0.00300 

24 5.5 30 48 150 56 55.9895 0.0105 0.00433 

25 6.5 25 24 100 59 59.0314 -0.0314 -0.01300 

26 5.5 30 0 150 0.5 0.50016 -0.0002 -7E-05 

27 6.5 35 72 200 22 22.2461 -0.2461 -0.10160 

28 6.5 25 72 100 55 54.6342 0.3658 0.15102 

29 4.5 25 24 100 71 70.9787 0.0213 0.00879 

30 4.5 35 24 100 56 55.9541 0.0459 0.01895 

The experimental data whose mean values were previously reported in the previous study (Colak et al., 2019) were 

used to perform machine modeling algorithm in this study. 

 

 

Then the total error is evaluated using the new weights, if the present total error is augmented in consequence of the 

updated data, then the combination coefficient δ is increased by a factor. If the outcomes are not satisfying, then the 

initial step is reacted, and an update was tried again. 

If the present total error is reduced by virtue of the update, in this case admit the step (for example, sustain the new 

weight vector as the present one) and reduce the combination coefficient δ by a factor of 10 or by the same factor as 

in the following step. 

Go to the second step with the new weights by the time the present total error is lower than the targeted value. 

In this study, we have obtained the following results for the training process of ten iterations. Figure 1 (a) shows the 

weight distribution allocated for obtaining the minimum error. Figure 1 (b) shows the self organizing Map (SOM), 

which is a learning algorithm depicting the input data of ANN used for visualization and analysis of enantiomeric 

excess. SOM is a topology maintaining technique to keep the neighborhood relations in its mapping 

presentation.  Random distribution of weights causes much iteration for achieving the best learning performance; 

however, SOM can arrive at a map of stable zones for training of ANNs easily, and interpretation of data can be 

done by human. SOM is still a great machine learning technique to present the invisible patterns in the data. It 

constitutes a lexical chart where counterpart examples can be mapped close together and different ones apart. 

 

 
 

Figure 1. Synaptic weights of ANN for training process 

 

On the other hand, the LM algorithm ensures a numerical solution to the problem of minimization of the non-linear 

relations. The steepest descent algorithm goes by the name of the error Backpropagation (EBP) Algorithm and 

considered as one of the most important advancements for the training of ANNs. However, the disadvantage of this 

algorithm is the slow convergence which could be remarkably enhanced by the Gauss–Newton algorithm. It is 
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possible for Gauss–Newton algorithm to get suitable step magnitudes for every aspect and converge too rapid when 

the second-order derivatives of error function is employed to analyse the curvature of error surface. When the error 

function has a quadratic surface, the algorithm is able to converge easily and directly after some iteration (see Figure 

2). Two minimization methods are combined by LM algorithm; the Steepest Descent method and the Gauss–Newton 

algorithm to fit the error curve. These parameters are updated in the Steepest Descent direction, which makes this 

combination to reduce the sum of the squared errors. Figure 2 depicts the sum of the squared errors decreased by 

supposing the least squares function, being locally quadratic to find the minimum of the error.  

 

 
 

Figure 2.  The types of errors occurred for the initial (a) and final (b) training of ANNs 

 

Steepest descent algorithm 

The first-order algorithm is also known as the steepest descent algorithm, which employs the first-order derivative of 

total error function in order to calculate the minimum in error space.  [23] Generally, gradient g is described as the 

first-order derivative of total error function (see Eq. (1)): 

 

1 2

      ...    

T

N

E(x,w) E E E
g

w w w w

    
   

    

                                                                       (1) 

 

With the gradient g, the update rule of the steepest descent algorithm can be expressed as given in Eq. (2). 

 

wk+1 =wk-αgk                                                                                            (2) 

 

where α is the learning constant. The steepest descent algorithm has the training process which is a asymptotic 

convergence. For solution, all the elements of gradient vector will be tiny and weight change will be very small.  

 

Gauss Newton algorithm 

When Newton’s method is implicated to update weight to obtain the Hessian matrix (H), the second-order 

derivatives of total error function is computed in too complicated way. For simplification of the computing process, 

a Jacobian matrix J could be utilized. As Gauss -Newton method assumes that all the gradient components g1, g2,…, 

gN are functions of weights and all weights are linearly independent, the elements of gradient vector could be 

computed as given in Eq.(3). 
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g = Je                                                                                                                     (3) 

 

where error vector e has the form, e1,1, e1,2,…,ep,M. On the other hand, the element at ith row and jth column of 

Hessian matrix could be computed as given in Eq.(4).   

 

p m

1 1
S

p M p,m ,

i, j i, jp m
i

e e
h

w wi 

 
 

 
                                                                                                     (4) 

 

The error function (Si,j ) is close to zero in Eq. (3), hence the link amidst Hessian matrix H and Jacobian matrix J 

could be retyped as it is given in Eq. (5). 

 

H=JTJ                                                                                                   (5) 

 

When Newton’s equations and elements of gradient vector are combined, the update rule of the Gauss–Newton 

algorithm can be given as shown in Eq. (6). 

 

 
1

1 k k

T

k k k kw w J J J e


                                                                                (6) 

 

The obvious benefit of the Gauss–Newton algorithm is that the computation of the second-order derivatives of the 

total error function is not required, by employing the Jacobian matrix J. 

 

Levenberg –Marquardt (LM) Algorithm 

Since the Hessian matrix JTJ is invertible, LM algorithm offers alternative approach to Hessian matrix presented in 

Eq. (7). 

 
TH J J δ I                                                                                      (7) 

 

where, δ  is a positive combination coefficient,  I is the identity matrix from Eq. (7), in which the elements of the 

Hessian matrix will be bigger than zero and is always invertible. If the Eq. 6 and Eq. (7) are combined, the updated 

rule of LM algorithm could be given as in Eq. (8). 

 

 
1

1 k k

T

k k k kw w J J δ I J e


                                                                           (8) 

 

As LM algorithm combines the steepest descent algorithm and the Gauss–Newton algorithm, it switches between 

the two algorithms during the training process and gains the advantages of both. Selecting a very small (nearly zero) 

combination coefficient δ, Eq. (8) will approach to the Eq. (6) and Gauss–Newton algorithm will be employed. 

Conversely, if combination coefficient δ is selected very large, Eq. (8) will approximate to Eq. (7) and the steepest 

descent method will be employed. A large combination coefficient δ  in Eq. (8), is inferred as the learning 

coefficient in the steepest descent method. [24, 25] The learning coefficient is 1α
δ

 the inverse of combination 

coefficient.                                                                                                                                      

Implementing the LM algorithm for training of pH (3.5–7.5), temperature (20–40 °C), incubation period (0–96 h) 

and agitation speed (50–250 rpm), and the output parameter enantiomeric excess (EE, %) with  ANNs, two 

problems have to be solved; the calculation of the Jacobian matrix, and organization of the training process 

iteratively for the weight updating. Considering a neuron j with ni, inputs, as presented in Figure 3, neuron j is in the 

first layer, all its inputs are connected to the inputs of the network. On the other hand, its inputs are connected to 

outputs of neurons. As an important and flexible Node; y (enantiomeric excess), can be presented as yj,i, which 

means it is the ith input of neuron j. It could be also employed as yj to describe the output of neuron j. The output 

node of neuron j is calculated as given in Eq. (9).  
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 j j jy f net                                                                                   (9) 

 

where fj is the activation function of neuron j and net value netj is the sum of weighted input nodes of neuron j which 

can be presented by Eq.(10). 

 

1

ni

j j,i j,i j,oi
net w y w


                                                                    (10) 

where, yj,i is the ith input node of neuron j, weighted by wj,i, and  wj,o.  

 

 

RESULTS AND DISCUSSION 

 

 

In organic chemistry, the bioreduction of acetophenone to the corresponding (R)‐ or (S)‐1‐phenylethanol as 

acetophenone is one of the main bioreduction reactions. Its substituted derivatives could be employed as significant 

resources for the synthesis of many pharmaceutical substances [26-28]. In a similar way, use of whole microbial cells 

in bioreduction reaction is considered as one of the critical methods. [26] Up to now, the potentials of some strains to 

bioreduce have been examined and they were proved to be influential entire cell biocatalysts. [26, 29,30] However, 

some cultural parameters for example, pH, temperature, incubation period and agitation speed remarkably influence 

the success of complete cell implications, which reveals to necessitate for their optimization with respect to get the 

highest yield of EE (%). [26-28, 31, 32] It is also important to choose the most suitable strain in terms of achieving proper 

bioreduction and safety. Lactic Acid Bacteria (LAB) are of GRAS status, which makes them one of the significant 

microbial species regarding whole cell implementations. [29]  

In the present work, machine learning algorithm was implemented for the optimization of the experimental factors; 

e.g. pH, temperature, incubation period, and agitation level as input values to maximize the enantiomeric excess 

(EE) values using a previously obtained data set with the whole cell biocatalyst Lactobacillus senmaizukei as a 

sourdough isolate LAB that was employed to bioreduce acetophenone [21]. Table 1 indicates the empirical layout for 

the factors to be evaluated and enantiomeric excess (EE) values acquired in each experimental run determined 

previously [21]. These runs in the machine learning approach were pH of 4.5–7.5, incubation temperature of 25–40 

ºC, incubation period of 24–96 h and agitation level 50–200 (Table 1). In this study, machine learning algorithms 

were used to optimize for bioreduction of acetophenone asymmetrically employing entire cell of Lactobacillus 

senmaizuke as explained below. In this respect, finding the most suitable solution is of primary importance, in terms 

of improvement of the solution. As the solution improves, the combination coefficient, δ  is decreased, the LM 

method approaches the Gauss-Newton method, and the solution usually accelerates to the local minimum. [33,34] As it 

appears in Figure 4, the LM algorithm carries out a combined training process: around the area with complex 

curvature, the LM algorithm switches to the steepest descent algorithm till the local curvature is suitable to provide a 

quadratic approximation; then it approximately becomes the Gauss–Newton algorithm, which can accelerate the 

convergence importantly. Sum square error (SSE) method was employed to analyse the training process. For all 

training patterns and network outputs, the SSE is computed by Eq. (11). 

 

  2

1 1

1

2

p M

p,mp m
E x,w e

 
                                                                                                  (11) 

 

Where, x is the input vector of pH (3.5–7.5), temperature (20–40 °C), incubation period (0–96 h) and agitation speed 

(50–250 rpm), w is the weight vector, ep,m is the training error at output m when applying pattern p and it is defined 

as in Eq. (12), m is the index of outputs, from 1 to M, where M is the number of outputs.  

 

p,m p,m p,me d o                                                                       (12) 



International Journal of Ecosystems and Ecology Science (IJEES)                           Vol. 10 (1): 123-136 (2020) 

https://doi.org/10.31407/ijees                                                                          https://doi.org/10.31407/ijees10.1 

 

 
131 

 

where, d is the desired output vector for Enantiomeric excess (%), o is the actual output vector for Enantiomeric 

excess (%). Considering the nodes and the links between the output node yj of a hidden neuron j and network output 

om, a complex nonlinear relationship (see Figure 3) exists that can be defined simply om Fm, j(yj), where om is the 

mth actual output of the network representing the enantiomeric excess (EE, %). Fm, j(yj) is a complex nonlinear 

function, its complexity depends on the number of other neurons which are amidst neuron j and network output 

m.[24,25] 

 
 

Figure 3. The neurons and nodes representing ANNs of inputs for Enantiomeric excess (%) 

 

The training process was initiated as shown in Figure 2 (a) and the final training was carried out as it appears in 

Figure 2(b). The training, testing and validation were converged at the 3 Epochs with the validation performance of 

92.3206. The outcome is comprehensible due to the succeeding assessments that the final mean-square error and the 

absolute are small, it seems after training they fall to 0.611236% and 0.080739%, respectively.  It is also clear that 

the test set error and the validation set error have similar characteristics, for instance, no significant over-fitting has 

occurred by iteration thirteen where the best validation performance has occurred. On the other hand, Figure 4 

indicates that the output tracks the targets for training correlation coefficient (R), testing R and validation R; the 

value of R is 1 for training, and 0.91227 for validation of training. Similarly, the value of R for testing is 0.97948, 

and 0.98103 for validation.  

 

 
Figure 4.  The regression plots for the output in terms of training, validation, and test data 
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It should be noted here that a too large value of the correlation coefficient (R) of determination does not essentially 

connote that the factor values were calculated with big certainty. The high value of R purely designates that the fit 

has a high degree of correlation with the data. In this study high R value is due to comparatively small measuring 

noise (data values obtained from experiments) and a fit that runs through the data points. It also depicts that these 

parameters have a high degree of correlation with one another, implicating that a shift in one factor will 

approximately lead to alterations in the other factors. 

 

A histogram of the divergence amidst the data values and the curve-fit is indicated in Figure 5. It depicts a normally 

distributed histogram for training, testing and validation data. It is very suitable and appropriate to employ the best 

available prediction of the targeted factors as the beginning estimation. In default of tangible understanding for a 

curve-fitting problem, a comprehensible beginning estimation might be obtained by roughly categorizing the factor 

space and calculating the most suitable combination of factor values. 

 

 
 

Figure 5. ANNs Error Histogram for Training, Testing and Validation 

 

It is aimed to evaluate unknown samples for enantiomeric excess (EE). A neural network approach was produced by 

employing the same data group utilized to turn out as an ANN training set. The repetitive data was not contained in 

the training set since ANN does not go well with redundant data values. Matlab was used to generate the ANN 

model. The input layer contains the absorbance of each pH (3.5–7.5), temperature (20–40 °C), incubation period (0–

96 h) and agitation speed (50–250 rpm), and the output parameter was the EE. A multilayered perceptron (BPMLP) 

network with 4 inputs, 8 processing units in the hidden layer, and one output was employed for our analysis. The 

network was trained by back-propagation algorithms that use the LM algorithm, which minimize the divergence 

between the input and the output findings. The outcome values predicted by the BPMLP algorithm were converted 

to EE and are recorded in Table 1.  

 

The EE error is reasonable because repetitive data noisy data were not used during training testing and validation. 

60% of data was used for training, 20% for testing and 20% of data was used for validation. Without including the 

outlier, the average absolute error was found 0.080739 %, and the sum of the squared errors was found 0.611236 %. 

The EE error can be further reduced by using a larger training data set. Even with this lowest sum of square error, 

the machine learning algorithm of Artificial Intelligence modeling could be efficiently used to maximize EE values. 

Accordingly, the maximum EE (95.5 %) values could be achieved at the levels of 5.7 of pH, 35.5 ºC of temperature, 

76 h of incubation period and 240 rpm of agitation speed (Table 2).  

http://europepmc.org/articles/PMC2762347/table/T4/
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Table 2. Experimental factors that maximize enantiomeric excess as calculated by machine learning algorithm 

 

 Experimental factors 

Maximization by 

machine learning 

algorithm 

Response  pH, (x1) 
Temperature 

(ºC), (x2) 

Incubation 

period (h), 

(x3) 

Agitation 

speed (rpm), 

(x4) 

Maximum 

Enantiomeri

c excess (%) 
 5.7 35 76 240 95.5 

 

Importantly, the optimized conditions were experimentally tested and validated and similar EE (~ 95.5 %) value was 

obtained, as can be seen in the supporting file HPLC results.  

 

 
 

Figure 6. The enantiomeric excess (EE) outcomes of actual and ANN 

 

Regarding the success and optimization procedure, the ANN method is very fast once the network could be 

established by using a training set, testing and validation set for a particular analysis. Both EE values of unknown 

samples could be accurately provided with a family of chiral hosts and indicator combinations with ANN. Figure 6 

shows the outcomes of actual enantiomeric excess determined in the laboratory and by the ANN program. The 

average error was found 0.080739 % which is very minor; hence the ANN can be used for the estimation of the EE 

where certain inputs are difficult and expensive to determine in the laboratories. 

 

 

CONCLUSION 

 

 

LM is a well assumed optimization method and works enormously well in practice. [23, 24] It is becoming an effective 

optimization tool for medium sized nonlinear modelling problems. The findings depicted that the ANN can be used 

for the estimation of the EE where the inputs are difficult and expensive to be determined in the laboratories, in the 

cases where there are quadratic effects on the experimental factors with respect to pH, temperature, incubation 

period and agitation speed. 
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This study demonstrated that the effects of the culture conditions; namely, pH, temperature, incubation period and 

agitation speed on the EE (%) could be well optimized by machine learning. The ANN results in this study 

demonstrated the significance of each experimental factor. The tested parameters were found to controversially 

influence the EE (%) values based on these factors. For the most optimum bioreduction of the sourdough isolate 

Lactobacillus senmaizuke, the optimized conditions should be adjusted to pH of 5.7, temperature of 35 ºC, 

incubation period of 76 h and agitation speed of 240 rpm, which would result in maximum EE (95.5 %) values. 

These findings are important as they reveal the importance of the optimisation for the whole-cell applications a 

biocatalyst in bioreduction.  
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