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a b s t r a c t

The emergence of Autonomous Vehicles (AVs) could provoke unexpected challenges
in urban traffic environments. One such crucial challenge is the conflicts between
pedestrians and AVs, particularly on unsignalized mid-block crosswalks (UMC), where
pedestrians are exposed to the AV flow. This study investigates the efficiency and
safety performance of a UMC in the presence of both AVs and pedestrians consid-
ering the diversities in their behaviors. Through empirical analyses, two pedestrians’
crossing decision models are built and four groups of speed profiles are classified.
Meanwhile, based on previous literature, defensive and competitive driving strategies
are assumed for AVs. The simulation is implemented on an agent-based framework
that can dynamically reproduce the kinematic interactions between pedestrians and
vehicles. Results indicated that with a reasonable safety margin (2.5 s), percentages of
low post encroachment time events for competitive AVs with different pedestrian types
are smaller than defensive AVs with differences of 0.2% to 2.9%. The average delays of
competitive AVs for all pedestrian types are smaller than defensive AVs with a maximum
estimated difference of 39 s. Moreover, the analysis showed that lowering the speed
limit may reduce the crash rate of competitive AV up to 0%. It is also found that the
pedestrians who make reckless crossing decisions and change their speed drastically
during the crossing process are more likely to incur crashes with competitive AVs.
Therefore, if pedestrian behaviors can be regulated reasonably, competitive AVs with
appropriate parameter settings are most suitable for UMC in the future.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Statistics suggest that more than 50% of the traffic fatalities are related to vulnerable road users including pedestrians,
yclists, and motorists in 2020 [1]. Installing a refuge island in the middle of the crosswalk is a common approach for
mproving safety [2]. Federal Highway Administration [3] pointed out that the UMC with refuge island (UMCR) allows
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edestrians who have crossed the first half crosswalk to wait in protected areas when the latter half is unsafe. On UMCRs,
edestrians only confronts with AVs from one direction and occlusion impacts by opposing vehicles are almost negligible.
herefore, interactions between pedestrians and AVs are simplified so that UMCRs are recognized as the most effective
easure to accommodate AVs [4].
However, AVs’ performance (especially the safety) in urban areas is a controversial topic [5]. There are some critical

ssues that must be addressed before AVs can be fully accommodated on UMCRs. The major concern will be the
nteractions between AVs and pedestrians. To provide suggestions on AVs’ behavioral settings, the verification of different
riving strategies on UMCRs considering practical problems on UMCRs (e.g., diverse crossing behaviors of pedestrians) are
till an open issue in the current research.
Regarding pedestrians, their crossing behaviors are different. For example, reckless pedestrians may cross in a

angerous situation where the vehicle is near and driving at a fast speed, while cautious pedestrians only cross when
he vehicle is far away and driving at a slow speed. Pedestrians may cross using a running or walking mode. Previous
tudies indicated that the average crossing speeds of pedestrians vary in a large range between 0.5 m/s–5.9 m/s [6–8].
urthermore, some pedestrians may even change their speed drastically, i.e., suddenly switching between walking and
unning [9]. On the other hand, AVs are driving machines that strictly follow programs that have been established in their
ontrol cores. Their safety performance is determined by the behavioral setting. According to [10], AVs may be designed
o have defensive or competitive driving strategies. On UMCRs, defensive AVs treat any approaching pedestrians as a
otential danger, while competitive AVs tend to find the possibility of quickly passing through without crashes. Possible
afety hazards and efficiency problems may exist in scenarios combining various pedestrian behaviors and AV settings.
y knowing the reasons for typical issues, corresponding countermeasures can be developed. Therefore, it is necessary to
imulate and evaluate AV’s driving strategies considering different pedestrian crossing behaviors on UMCRs.
This paper aims to provide suggestions and evidence for the proper AV settings from the viewpoint of practice

pplications on UMCRs. The safety and efficiency performance of combination scenarios of different AV settings and
edestrians’ crossing behaviors will be investigated by simulation experiments. Through this process, the key factors
hat may incur severe conflict events or even crashes between AVs and pedestrians will be identified. That evidence will
elp indicate the preferred driving strategy of AVs on UMCRs. Furthermore, corresponding treatments for pedestrians and
rosswalks to further ensure basic safety will be proposed.
Three main difficulties to achieve the research objectives should be overcome. First, realistic crossing behaviors of

edestrians, including crossing decisions and crossing speed, should be modeled. Second, reasonable and predictive
ssumptions on AVs should be given since the current technology of AVs’ driving control is still under development.
hird, the dynamic pedestrian–vehicle interaction (PVI) should be modeled based on their kinematic relationship.
This paper is structured as follows. Related previous studies are summarized in Section 2. Modeling of pedestrians’ and

Vs’ behaviors are created in Section 3. The PVI framework is described in Section 3 as well. The simulation platform that
an realize the proposed framework and scenario settings are introduced in Section 4. The results of experimental data
re analyzed in Section 5. In addition, the specific reasons for typical crashes between AVs and pedestrians at UMCRs are
iscussed in Section 6. Finally, Section 7 summarizes the conclusions, limitations, and future work. Fig. 1 introduces the
verall research activity of this study.

. Literature review

.1. AVs’ behaviors

The reaction time and decision logics of AVs are totally different from human driven vehicles [11]. According to the
efinition of the National Highway Safety Administration [12], AVs are classified into five levels. Level 5 AVs fully take
ver the vehicles’ operation and can drive in all road conditions, including UMCRs. However, such technologies are far
rom being achieved. Therefore, the behavior of AVs in this study is assumed based on information from the literature.

In recent years, there has been an active discussion on whether the AV should be defensive or competitive. Camara
t al. [13,14] summarized related models that can be applied in AVs for achieving safe interaction processes between
edestrians and AVs. They pointed out that sensing and tracking pedestrians’ movements are basic functions for AVs while
redicting human maneuvers are advanced models for AVs. If such technologies are good enough to anticipate pedestrian
ovements, competitive driving will be a possible choice. Otherwise, only defensive driving can be available. Another

eview study by Zhao et al. [15] compared the competitive and defensive driving strategies. They pointed out that the
efensive AVs will be more inclined to give up the right-of-way for ensuring safety and such behavior could lead to poor
erformance in traffic efficiency, which is in accordance with the results of Pan et al. [16]. On the other hand, competitive
Vs will be able to find more passing opportunities by predicting pedestrians’ movements. This strategy includes a high
isk since pedestrians may behave in ways that defy the anticipation model. Balancing the performance of the two
trategies will be the main difficulty for applying AVs to UMCRs. Wang et al. [17] discussed the challenges of putting
Vs into practice for pedestrians walking areas. Red lights running, jaywalker, and distraction are major traffic safety
roblems that should be carefully considered. These issues highlight the necessity to evaluate defensive and competitive
trategies for AVs considering the uncertainty of pedestrian behaviors.
2
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Fig. 1. Conceptual map.

.2. Pedestrians’ behaviors

Understanding how pedestrians walk across the crosswalk (walking speed and decision-making behavior) is the basic
tep to reproduce conflicts between pedestrians and vehicles. In existing PVI models, pedestrians’ walking speeds are
sually defined as constant and uniform values for simplification (Gupta et al. 2019). However, Pala et al. [18] analyzed
treet-crossing behaviors through laboratory experiments by use of the CAVE simulator and the head-mounted display.
heir results indicate that the average crossing speed of young participants was 19% greater than old participants.
eanwhile, Iryo-Asano et al. [19], Iryo-Asano and Alhajyaseen [9] modeled the pedestrians speed profiles on crosswalks

or reproducing potential conflicts with vehicles. They found that events such as flashing green may trigger pedestrians’
peed changes and such behaviors may impact distributions of post encroachment time (PET).
Besides pedestrian speed, the crossing decision has also been widely studied. Alver et al. [20] investigated pedestrians’

ap acceptance on UMCs in Izmir city. They found that the critical gaps differed on three survey sites and the maximal
ifference was 2.1 s. Holland and Hill [21] investigated unsafe crossing behaviors through a simulation study. The results
evealed that pedestrians who had driving experience were more likely to take the unsafe cross with a small margin
ime. Fu et al. [22] established a procedure to evaluate pedestrian safety at UMCs and pointed that the pedestrian’s yield
ecision was highly related to the vehicle’s braking distance. Zhang et al. [23,24] surveyed 12 UMCs in China. They found
hat for multilane crosswalks, the critical gap and PET distributions on each lane are significantly different. From the above
tudies, it can be concluded that the diversity of pedestrians’ behaviors are important and necessary for analyzing safety
ssues on UMCs.

.3. PVI modeling

The majority of existing PVI frameworks are based on empirical decision models. Meanwhile, theoretical decision
odels that reflect the kinematic interactions among multi-agents are limited [25]. Lu et al. [26] proposed a cellular
utomaton model to simulate the PVI at UMCs. The decision-making models of pedestrians and vehicles were based on two
ogistic models whose parameters were calibrated with empirical observations. Zhao et al. [27] modeled gap acceptance
ehaviors for pedestrians by logit models based on the data from 13 UMC in Shanghai. Then, a PVI model based on
he proposed logit models was established in a following study [10]. The new PVI model could reproduce the average
edestrian delay with a relative error of 7.8%. The PVI models used in the above studies performed well in reproducing
edestrian and vehicle delays. They cannot, however, simulate real-world conflicts because their decision-making models
re all one-kick decision types. Further, the decisions of agents cannot be adjusted over time to account for changing
inematic situations.
There are limited studies on dynamic decision-making procedures of pedestrians and vehicles. For instance, Feliciani

t al. [28] improved gap acceptance models by introducing reaction time as an adjustment factor and created a simulation

ramework for UMCs with dynamic decision modules. This model could reasonably estimate the collision times under

3
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ifferent conditions. However, as the reaction time was defined as a parameter on the observed gap, crashes caused by
elayed actions could not be reproduced. Zhu et al. [29] proposed an agent-based framework for evaluating pedestrian
afety on UMCs which composed of several modules. This model could dynamically update the agents’ decisions
onsidering the kinematic interaction between pedestrians and vehicles. Furthermore, the influence of reaction time and
isibility could also be reproduced. As the framework is very flexible, each module can be replaced to achieve different
esearch objectives. The current study enhances that framework by including modules on various pedestrian and AV
riving behaviors.

. Methodologies

.1. PVI framework

This study enhances the basic agent-based framework that was proposed in the authors’ previous article [29]. At every
ime step, each agent obtains the status information (location, speed, acceleration, etc.) from other agents, evaluates
otential conflicts, and makes decisions. Agents update decisions with the newly observed information considering
he kinematic relationship between pedestrians and AVs. Meanwhile, agents’ statuses are determined by the decisions
ade before. Therefore, the decisions from multiple agents are interactive with each other over time. Moreover, the
ction is delayed than the corresponding decision with a reaction time. Reaction times for pedestrian and AV agents are
ymbolized as τp and τ , respectively. According to findings of Gorrini et al. [30], pedestrians’ crossing can be represented
y three phases: approaching, appraising (evaluation of the distance and speed of oncoming vehicles) and crossing. In
his framework, pedestrians and AVs behaviors are modeled based on following assumptions.

• Pedestrian agents can decide either to stop or continue walking in every time span when they are in the sidewalk.
During crossing, the pedestrian will response to a pre-recorded speed profile. This study does not consider
pedestrians’ emergency evading behaviors such as stepping back and sudden acceleration in the crosswalk area.

• AVs apply a certain logic to update their decisions (acceleration value) in every time step before passing through
the zebra cross based on the current kinematic situation.

ithin the framework of this study, new modules are developed for pedestrians’ speed profile, pedestrians’ stop/go
ecision, AVs’ perception, and AVs’ yielding decision.

.2. Pedestrian agents

For pedestrians on UMCRs, the whole crossing process can be divided into two parts. The first is from the sidewalk to
he refuge island followed by the second part from the refuge island to the sidewalk. As shown in Fig. 2, each crossing
from the sidewalk to the median or from the median to the sidewalk) includes three stages, i.e., before the waiting area,
n the waiting area, and on the crosswalk. Speed profile module takes effects in stages of ‘‘before the waiting area’’ and
‘on the crosswalk’’. When pedestrians are in the waiting area, perception, stop/go decision module, and speed profile
odule initiate. In order to reproduce realistic behaviors, the speed profile and stop/go decision modules for pedestrian
gents are created based on real-world data. For this purpose, field speed data was extracted by image processing from
UMCR in Yaizu City, Japan on November 15th, 2016 (between 14:10–16:30) as shown in Fig. 3. During observation,

he road section volume is 868 veh/h (all observed vehicles are not AVs: 495 veh/h from east and 373 veh/h from west).
edestrian volume during the observation was 270 ped/h (151 veh/h from north and 119 veh/h from south). Since the
urvey site was near Yaizu railway station, the speed of pedestrian groups varies greatly. Some elder pedestrians walk
lowly while some pedestrians ran extremely fast for catching up with trains.

.2.1. Speed profile module
Extracted spot speeds for 200 pedestrians plotted on space axis with an interval of 0.2 m are shown in Fig. 3(b). This

tudy let each pedestrian agent takes the same speed profile as one of the profiles in Fig. 3(b). The collected pedestrian
rofiles are classified into four groups based on the speed fluctuations as shown in Fig. 3(c). Great speed difference (GD)
s the group of speed profiles in which the difference between the maximum and minimum values of the pedestrian
rossing speed is high. The other samples belong to the small speed difference group (SD). The threshold of the speed
ifference between the two group is 1.535 m/s, which is the 85th percentile value of all populations. 85% of samples
re in the SD group SD and 15% are in the GD group. Furthermore, samples in SD are further classified into Low speed
LS) group, Mid-level speed (MS) group, and High speed (HS) group based on the average speed of each speed profile as
hown in Fig. 3(d). The two thresholds between these three groups are the 85th percentile value (1.1 m/s) and the 15th
ercentile value (1.6 m/s) respectively. Therefore, the speed profiles in the SD group are classified as 15% in LS, 70% in
S, and 15% in HS.
4
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Fig. 2. Modules of pedestrian agents in one crossing (from the sidewalk to the median or from the median to the sidewalk).

Fig. 3. Survey site and observed speed profiles.

3.2.2. Pedestrian perception and Stop/go decision module
This study does not discuss the impact of visual obstacles. It is assumed that pedestrian agents can perceive other

objects within a certain radius. The radius is considered as humans’ sight distance (dp). The Vap, (the speed of approaching
ehicle) and D (distance between the pedestrian and the approaching vehicle) at the moment when the subject pedestrian
rrived at the waiting area were recorded. The observed points are plotted as shown in Fig. 4. Obviously, pedestrians decide
o cross (green points) or wait (red crosses) based on the status of the approaching vehicle. It can be observed that the
ed crosses are located in the upper left part of Fig. 4, where the V is high and D is short. Whereas, the green points are
ap

5
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Fig. 4. Traffic conditions (Vap and D) when pedestrians are making decisions.

ocated in the lower right part of Fig. 4, where the Vap is low and D is long. For better understanding pedestrians’ decision-
aking behaviors, two reference distance values are defined: (a) Dcross(Vap) is the traveling distance of the approaching
ehicle with speed Vap from now until the pedestrian can complete crossing as in Eq. (1); (b) Dstop(Vap) is the braking
istance needed for the approaching vehicle with speed Vap to complete stop as in Eq. (2).

Dcross
(
Vap
)

=
(
Tcross + βp

)
Vap (1)

here Tcross is the required time for the pedestrian to leave the conflict zone, and the margin time βp is the minimum
cceptable safe gap time for pedestrians between the pedestrian’s leaving the conflict zone and the vehicle’s entering the
onflict zone. In this study, βp is assumed to be 1.5 s [31,32].

Dstop
(
Vap
)

= s0 + τVap +
V 2
ap

2b
(2)

where s0 is the minimum stopping distance (m) and b is the braking deceleration (m/s2). s0 is 2 m amd b is 4.5 m/s2
33,34].

In Fig. 4, Curve of Dstop(Vap) was plotted assuming τ of human drivers to be 0.7 s [35]. Meanwhile, for each pedestrian
he Tcross is different. Therefore, Curves of Dcross(Vap) were drawn with the 15th percentile Tcross, the average Tcross, and the
5th percentile Tcross of total samples, respectively.
As in Fig. 4, it can be observed that the way that pedestrians make decisions differs significantly depending on the

tatuses of the vehicles. Firstly, only red crosses are distributed above Dstop(Vap), which represents that approaching
ehicles are near and fast. It is impossible to cross safely under such traffic situations. Secondly, several green points
nd red crosses are located between Dcross(Vap) (15th percentile Tcross) and Dstop(Vap). Stepping into the crosswalk under
hese conditions may force approaching vehicles to take emergency brakes, which is a risky decision. Thirdly, only some
reen points are under Dcross(Vap) (85th percentile Tcross). They represent the situations when the approaching vehicles
re far and slow. Pedestrians can complete crossing before the vehicle arrives, which is a safe decision. Based on these
indings, three domains are delimited as in Fig. 5. They are Domain A: must wait (the area above Dstop(Vap)); Domain B:
ilemma condition (the area below Dstop(Vap) and above Dcross(Vap)); Domain C: safe to cross (the area below Dcross(Vap)).
hen, two stop/go decision modules are assumed according to the three domains as shown below.

• High priority sense (HPS) module
These pedestrians think that they are endowed with high priorities on the crosswalk. They decide to cross once they

onfirmed that the status of the approaching vehicle is in the domain of ‘dilemma condition’ or ‘safe to cross’, as shown
n Fig. 5(a).

• Conservative (C) module
This type of pedestrian makes cautious decisions. Pedestrians keep waiting unless they confirmed that the approaching

ehicles in the domain of ‘safe to cross’ as shown in Fig. 5(b).

.3. AV agents

As shown in Fig. 6, after AVs passed the crosswalk, they only need to follow the leading vehicle ahead. Therefore,
nly the car following module comes into play in this stage. In the stage of ‘‘before passing the crosswalk’’, four modules
ake effect. Two types of AVs are assumed, namely the defensive AVs that tend to prevent all potential danger against
ncertainties, and the competitive AVs that are always seeking the possibility of increasing driving efficiency. The main
ifference between them is considered in yielding decision modules.
6
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Fig. 5. Diagram of pedestrian stop/go decision modules.

Fig. 6. Modules of AV agents.

3.3.1. Car following module
A car following module was introduced in the driving mode to ensure the safe headway to the leading vehicle. The

Intelligent driver model (IDM) [34] was selected in this study due to its robustness. The simplest form of the IDM is
described in Eqs. (3) and (4).⎧⎪⎪⎪⎨⎪⎪⎪⎩

dxIDM (t + τ)

dt
= vIDM (t)

dvIDM (t + τ)

dt
= a

(
1 −

(
v (t)
v0

)δ

−

(
s∗ (v (t) , ∆v (t))

s (t)

)2
) (3)

s ∗ (v (t) , ∆v (t)) = s0 + v (t) T +
v (t) ∆v (t)

2
√
ab

(4)

where a is the maximum vehicle acceleration (m/s2); ∆v(t) is the speed difference between the subject and leading vehicle
at time t (m/s); T is the minimum time headway (s), v0 is the desired speed and equal the road speed limits in this study
and δ is the acceleration exponent.

3.3.2. AV perception module
The main task of the AV perception module is to obtain pedestrians’ status within the detection radius (dAV ). The size,

speed, and position of AVs and pedestrians will be reconstructed in a two-dimensional space as shown in Fig. 7. Firstly, if
the AV is not the first vehicle before the stop line, the AV simply follows the leading vehicle. Secondly, a judgment area
that includes the whole crosswalk and a certain area of the sidewalk is defined for AVs. Pedestrians who are detected in
the judgment area will be further considered for the yielding decision module.

3.3.3. Yielding decision module
The safety situation of each pedestrian will be evaluated based on the obtained information from the AV perception

module. Two types of yielding decision modules are built for representing defensive and competitive driving strategies. It
7
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Fig. 7. Two-dimensional coordinate in AV perception module.
Notes At time t, coordinates of the pedestrian and the AV are (xp(t), yp(t)) and (x(t), y(t)). For the pedestrian, the vertical length is lp (m), the
horizontal width is wp (m) and the speed is vp(t). For the AV, the length is l (m), the width is w (m), and the speed is v(t).

Fig. 8. L1 yielding decision module.

s important to note that the modules in the following sessions are introduced taking one pedestrian as an example.
owever, AVs may encounter multiple pedestrians simultaneously on the UMCRs. In this study, AVs will repeat the
ame calculation for all detected pedestrians and evaluate the safety for each of them. Then decisions are made for the
edestrian who is in the most risky situation for the AVs.
In some situations, pedestrians will give way to AVs. It will be unnecessary and meaningless for AVs to yield for those

edestrians. In this study, such a situation happens if the following two conditions are satisfied: (a) the pedestrian is on
he sidewalk or refuge island; (b) The approaching speed and distance of the AV to the pedestrian are in the domain of
must wait’ as in Figure . Then the algorithm will shift to the car following module instead.

• Level 1 (L1): defensive AVs
The majority of current AVs are operated by applying defensive driving strategies [13]. In this study, if the considered

edestrian is walking toward or on the crosswalk, the pedestrian will be marked as an unsafe pedestrian. This alert will
ot be relieved until the pedestrian finishes crossing. As shown in Fig. 8, specific alert areas are delineated for pedestrians
rom near-side and far-side crosswalks separately. If AVs find any pedestrian walking in such areas, AVs will stop.

• Level 2 (L2): competitive AVs
The safety margin based decision module, previously proposed by Zhu et al. [29], reproduces the decision-making

ehaviors of drivers who compete for the right of way with pedestrians on UMCs. This module is introduced to simulate
he yielding decision module of competitive AVs. The yielding decision module of L2 AV will generate two options as
8
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ell: yield or not yield. For each pedestrian, the conflict zone is the area enclosed by extension lines of the AV’s and the
edestrian’s borders as in Fig. 7. In this study, the L2 AVs are always finding the fastest path to pass all conflict zones
hile keeping basic safety margins with approaching pedestrians.
An approximate optimization iteration procedure [36] is adopted to achieve this objective. At each time step, AVs

valuate the feasibility of full-speed driving. If the path of full-speed driving is in conflict with any anticipated pedestrian
rajectory, AVs implement the stop strategy module. Otherwise, they initiate the car-following module. This procedure
epeats again in every time step until the AV passes the crosswalk. The kinematic situations between pedestrians and AVs
hange dynamically over time. AVs may find opportunities to leave in another time step when they are braking to yield.
imilarly, the chance of quickly passing that has been obtained before may become invalid in the other time step as well.
The margin time βAV is the defined minimum acceptable safe buffer time between trajectories of AV and pedestrian.

f the time interval between the anticipated occupying time of the pedestrian and the AV is larger than the safety margin
ime βAV , it means the assumed full speed passing path is feasible. This logic is described through Equations (5) and (6). If
oth Equations (5) and (6) are satisfied, the algorithm will shift to the car following module. Otherwise, the stop strategy
odule will be implemented.

tantAV ,leave (t) + βAV ≥ tantped,enter (t) (5)

tantped,leave (t) + βAV ≥ tantAV ,enter (t) (6)

Where tantAV ,enter (t) and tantAV ,leave(t) are the time for the AV to enter and leave the conflict zone which is anticipated by the
AV at time t assuming it drives in the full-speed mode (s); tantped,enter (t) and tantped,leave(t) are the time for the pedestrian to
enter and leave the conflict zone which is anticipated by the AV at time t assuming the pedestrian does not change the
walking speed (s). For the detailed calculation process of the four values, please refer to [29].

3.3.4. Stop strategy module
The stop strategy mainly considers the impacts of pedestrians and leading vehicles. Regarding the first issue, AVs will

slow down gently as much as possible for ensuring the comfort of passengers. Also, for avoiding interfering with the
pedestrian flow, AVs will attempt to stop at the stop line. However, if the distance is insufficient, the AV will implement
an emergency brake with a deceleration rate b. As for the second issue, AVs’ deceleration should not be smaller than the
value required by the car-following module. The stop strategy is defined through Eqs. (7) and (8).

dec (t + τ) = max
(

−
dvIDM (t + τ)

dt
, decped (t)

)
(7)

decped (t) =

⎧⎨⎩
v (t)2

2 (dsl (t) − τv (t))
dsl (t) > τv (t)

b dsl (t) ≤ τv (t)
(8)

here dec(t) is AV’s deceleration at time t; decped(t) is the required deceleration for the AV to yield approaching
edestrians t; dsl(t) is the distance between the AV’s front bumper and the stop line at time t.

4. Simulation experiments

4.1. Simulation platform

A platform was built for the surveyed UMCR as shown in Fig. 9. In order to create a high possibility of conflicts between
AVs and pedestrians, heavy pedestrian volume is assumed. The AV volume is low for avoiding long queues at the stop line.
Agents’ behaviors reproduced through the Simulation of Urban MObility (SUMO) 1.7.0 [37] and Python 3.8. The simulation
step length is 0.1 s. In every step, the speed and position of all agents will be uploaded from SUMO to Python by a traffic
control interface function (TraCI). The algorithm of each module is calculated in Python and the action indication will
be sent back to SUMO through TraCI. SUMO implements action orders and updates agents’ statuses in the next step.
Meanwhile, trajectories of all agents will be recorded and evaluation indexes such as the PET can be calculated.

4.2. Scenario settings

Parameters of AV and pedestrian agents are given in Tables 1 and 2. The choice set for pedestrian types includes eight
options (HPS(GD), HPS(HS), HPS(MS), HPS(LS), C(GD), C(HS), C(MS), and C(LS)). The choice set for AV types includes three
options (L1, L2(1.5 s), and L2(2.5 s)). Meanwhile, two levels of speed limits (30 and 40 km/h) are assumed for the UMCR.
In total, 48 (8 × 3×2) scenarios were created for simulation experiments. For each scenario, three simulation repetitions
were performed and each round lasts for 2.5 h. The first 30 min were warm-up time and the subsequent 2 h were the
measurement period. The final result of each scenario considered the average values of the three rounds.
9
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Fig. 9. Simulation platform.

Table 1
Parameters or AV agents (see [13,14,33,34,38]).

Table 2
Parameters for pedestrian agents (see [28,31,32,35]).

5. Simulation results

5.1. Yield rates and hard yield rates

The conflict events between pedestrians and approaching AVs (conflict event, hereinafter) are determined based on
he following requirements. (a) Each event happened between one pedestrian and one AV; (b) the AV should be the first
pproaching vehicle on the near-side lane of the pedestrian; (c) the pedestrian should be ahead of the AV and within AV’s
etection range. Since vehicles and pedestrians were randomly generated, the number of conflict events for each scenario
s around 4200 (between 4151 to 4276). The yield rate is defined as the ratio of ‘‘the total number of conflict events in
hich the pedestrian crosses before the AVs’’ to ‘‘the total number of conflict events’’.
Firstly, it can be observed that yield rates of L1 AVs to all types of pedestrians are almost 100% which is in accordance

ith the settings of the defensive strategy, as shown in Table 3. L2 may compete for the right of way with pedestrians so
hat the yield rates of all L2 scenarios are lower than L1. Secondly, in L2 scenarios, yield rates to C type pedestrians are
ower than HPS (Table 3). By checking the simulation record, it is found that, unlike HPS pedestrians’ reckless crossing
10
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Table 3
Results of yield rates.

Table 4
Results of hard yield rates.

decision, C pedestrians may hesitate to cross in some situations which may give the passing opportunity to L2 AVs. Such
phenomena frequently happen when the speed limit is 40 km/h. Thirdly, the result also indicates that yield rates of L2
(2.5 s) scenarios are higher than L2 (1.5 s). This can be explained that as the safety margin (βAV ) of the AV reduces the
umber of events where the AV should yield to pedestrians also reduces. This finding also reveals that by enlarging the
AV of AVs the yield rate can be increased. Moreover, especially with C pedestrians, yield rates become lower as the speed
f pedestrians reduces from HS to LS in L2 scenarios. The reason is that competitive AVs may find the passing chance more
asily as LS pedestrians spend more time on the sidewalk.
The yielding can be divided into hard and soft yielding. Hard yielding refers to the event where the vehicle stops

ompletely for giving way to pedestrians. Soft yielding refers to the event that the vehicle yields to pedestrians without
complete stop. The hard yield rate is the ratio of ‘‘the number of hard yield events’’ to ‘‘the total number of conflict
vents’’. As shown in Table 4, for both speed limits of 40 km/h and 30 km/h, L1’s hard yielding rate is extremely larger
han the one of L2. The hard yielding rate of L2 (2.5 s) is higher than the one of L2 (1.5 s). Furthermore, with the increase
f the pedestrian speed, the hard yield rates of L2 AVs to HPS increase slightly. This is because high pedestrian speed
eads to more yielding events (Table 3), which drives the increase of hard yield events as well. HS and HPS pedestrians
pent less time in the sidewalk and made reckless crossing decisions even when L2 AVs is near. Such aggressive behaviors
eft less buffer time for L2 AVs to change motion plans and catch them off guard. Therefore, cases, where AVs applied
mergent brakes to evade crashes with pedestrians, happened more frequently. In contrast, the hard yielding rates in L1
cenarios increases as the pedestrian speed decreases. For L1 AV, the yield rate is already saturated for L1 AVs. Whereas,
s low-speed pedestrians spend more time in the alert area of L1 AVs letting more AVs stop until the pedestrian passed
o that hard yield rates increases.

.2. Average vehicle delay and pedestrian waiting time

Vehicle delay is the time difference between the actual travel time and the travel time under ideal road conditions
no pedestrian influence, maximal speed) for the assumed roadway (200 m). The results of the average vehicle delay are
hown in Table 5. It can be observed that the average delay of the L1 AV is significantly higher than L2 AV whereas the
elay of L2 (2.5 s) is slightly higher than L2 (1.5 s) with an average difference of 1.5 s. Meanwhile, the average delay of
cenarios with a speed limit of 30 km/h is higher than those with a 40 km/h speed limit. Their average difference between
hem is 5.5 s which almost equals the delay caused by the different speed limits. In addition, the average delay of the
1 AV with C type pedestrians is higher than that with HPS. C pedestrians may wait longer on the sidewalk until the AV

lows down to the speed that satisfies pedestrians’ crossing requirements. In this regard, C pedestrians spend more time

11
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Table 5
Results of average vehicle delay.

Table 6
Results of pedestrian waiting time.

on decision-making than HPS. However, L1 AVs’ will always wait for the whole crossing process, which contributes to a
lot of delay for themselves. On the contrary, the average delay of the L2 AV with C pedestrians is lower than it with HPS.
This is because the yield rate of L2 to C pedestrians is lower than it to HPS. In addition, it can be observed that the delay of
L1 AV with LS pedestrian is extremely larger compared to other scenarios. LS pedestrians spend more time on crosswalks.
Therefore, there is a high probability that new pedestrians will arrive during the crossing of the last pedestrian and L1
AV may Table 5. Results of average vehicle delay wait for multiple consecutive pedestrians. Considering this finding, we
infer that applying the defensive strategies may lead to heavy congestions at UMCRs.

The average pedestrian waiting time is the accumulative time when the pedestrian speed is 0 m/s. The result is shown
n Table 6. It can be found that the average pedestrian waiting time in L1 scenarios is lower than 1 s and extremely
maller than it in L2 scenarios. As for the L2 scenarios, the average pedestrian waiting time in L2 (2.5 s) is lower than
hat in L2 (1.5 s). It indicates that for the interferences from AV to pedestrians, L2(1.5 s)>L2(2.5 s)>L1. In addition, for L2
cenarios, the average waiting time of C pedestrians is 1.5–3.0 s longer than it of HPS pedestrians, which reveals that the
nterferences from L2 AVs to C pedestrian are greater than HPS.

.3. Percentage of short post encroachment time (%SPET)

At the UMCR, PET is defined as the global time difference between the next vehicle entering the conflict zone and the
ubject pedestrian leaving the conflict zone. As the PET becomes smaller, the conflict is more likely to cause a crash. As
n example, PET distributions of HPS(GD) pedestrians with all types of AV are illustrated in Fig. 10. It is found that the
ET distribution of L2 (2.5 s) is similar to the distribution of L1. The distribution of L2 (1.5 s) is obviously located leftward
f those two, especially when PETs is between 1.5 s and 3 s.
Low PET cases should be paid more attention. It has been widely recognized in previous studies, e.g., [39]; Zhang et al.

017, that PET = 2 s is an important threshold for analyzing conflicts between pedestrians and vehicles. The cumulative
robabilities of low PET events (PET ≤ 2 s) are abbreviated as %SPET and the results are shown in Table 7. Firstly, it can be

observed that there is almost no difference in scenarios with L1 AVs (%SPETs of most cases are smaller than 3%). Secondly,
for scenarios of L2 AVs, %SPET s of HPS are higher than the %SPET s of C. Also, among the three AV types, the %SPETs of
L2(2.5 s) are the lowest, and those of L2(1.5 s) are the highest. Especially in scenarios with C pedestrians, %SPETs of L2(2.5
s) are smaller than 1%, whereas, %SPETs of HPS(GD)-L2(1.5 s) are 10.2% (speed limit is 40 km/h) and 8.9% (speed limit is
30 km/h). This finding indicates that by enlarging the β , AVs’ safety performance can be improved. It also means for
AV

12
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Fig. 10. Example of PET distributions (pedestrians: HPS(GD)).

Table 7
Results of %SPET.

competitive AVs with a small safety margin, pedestrians who make reckless crossing decisions and change their speed
drastically are the most contributing to severe conflicts with AVs. In addition, it can be observed that %SPETs of scenarios
with the 40 km/h speed limit are higher than those under the 30 km/h speed limit for the majority of scenarios (except
C(HS)-L1, HPS(LS)-L1, HPS(LS)-L2(2.5 s), HPS(MS)-L2(2.5 s), and HPS(HS)-L2(2.5 s)), which reveals that speed reduction
can be a possible treatment to improve safety.

6. Discussion on crashes

6.1. Crash rate

The crash rate is defined as the ratio of ‘‘the number of crashes’’ to ‘‘the number of pedestrian crossings’’ and that
an be considered as an important index for evaluating pedestrian safety. Table 8 compares the observed crash rates in
he simulation runs. Based on the simulation data, crashes happened only in the scenarios of HPS(GD)-L2(2.5 s)-40 km/h,
PS(GD)-L2(1.5 s)-30 km/h, and HPS(GD)-L2(1.5 s)-40 km/h. All these scenarios are with L2 AVs and HPS(GD) pedestrians.
t reveals that reckless crossing decisions, changing speed greatly, and competitive driving strategy may cause crashes.
oreover, crash rates of HPS(GD)-L2(1.5 s)-30 km/h and (HPS(GD)-L2(2.5 s)-40 km/h are 50% lower than HPS(GD)-L2(1.5
)-40 km/h. Meanwhile, the crash rate of HPS(GD)-L2(2.5 s)-30 km/h is zero. It indicates that reducing speed limits and
arge safety margin time can be effective methods to avoid crashes for competitive AVs.

.2. Crash reasons in simulation

The process of the typical crash in the simulation is analyzed and illustrated in Fig. 11. In the beginning, there is
pedestrian walks slowly toward the crosswalk. The approaching AV decides to keep the current speed (40 km/h) for
assing through the conflict zone before the pedestrian. In this plan, the safety margin between AVs’ leaving time and
edestrian’s entering time will be 1.9 s (>1.5 s). At time t1, the pedestrian steps into the waiting area. She/he decides to
ross since the pedestrian perceives that the AV will yield and give the right of way on time. Therefore, at time t (τ after
2 p

13
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Table 8
Results of accident rate.

Fig. 11. Process of a typical crash.

he time t1), the pedestrian boosts her/his speed suddenly and steps into the crosswalk. The AV detects that it will have a
rash with the pedestrian. Even though the AV implements the emergency brake, it is already too late to avoid the crash.
The occurrence of such crashes is also because this framework only considered the pedestrians’ decisions in the waiting

rea. In reality, when pedestrians are on the crosswalk, they may change their speed or even step back after they notice
he danger. However, it is inevitable that some pedestrians may fail to react appropriately to avoid the crash due to
istraction or other reasons, or even due to their belief in the AVs’ abilities to stop even in such critical situations. Those
edestrians may have insufficient observations when they are on the crosswalk. For preventing crashes from happening,
he following treatments are proposed for the pedestrian sides: (1) delimiting auxiliary decision area with color pavement
14
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if AVs are running toward the crosswalk in such area, pedestrians are suggested to wait); (2) Educating pedestrians not
o switch between running and walking arbitrarily during the crossing.

. Conclusions and future work

This study aims to provide suggestions and evidence for the proper AV settings on UMCRs considering various crossing
ehaviors of pedestrians. Two driving strategies were assumed, namely defensive and competitive driving strategies,
or AVs on UMCRs. Also, different pedestrian behaviors including decision-making and speed profiles were modeled
hrough analyzing real-world data. Scenarios combining different AV strategies (i.e., defensive (L1) or competitive (L2)),
edestrians’ crossing decisions (i.e., Cautious (C) or High Priority Sense (HPS)), pedestrians’ crossing speed profiles
i.e., Great speed Difference (GD), Low Speed (LS), Mid-level Speed (MS), or High speed (HS)), and speed limits (40 km/h
r 30 km/h) were designed and compared by simulation experiments.
It is found that defensive AVs (L1) had a good safety performance on the UMCR. That is, the %SPET was around 3% and

he crash rate was 0%. Also, L1 AV was found to have less interference with pedestrians. The average pedestrian waiting
ime was less than 1 s and the yield rate is almost 100%. However, as the result indicated, the key drawback of L1 AVs
as the efficiency. The average vehicle delay was even exceeded 40 s when they encountered slow and conservative
edestrians. Regarding the competitive AV, they displayed good performances in terms of efficiency. The average vehicle
elays were between 1.8 s and 13.9 s for different types of pedestrians. Whereas, competitive AVs with small safety margin
ime were found to be dangerous for pedestrians. Under the speed limit of 40 km/h, the %SPET of L2 (1.5 s) was 10.17%
nd the crash rate was 0.26% when pedestrians were reckless and changed speed drastically. Also, the L2 (1.5 s) had
significant influence on pedestrians’ crossing. The yield rate could even be 28% when pedestrians were conservative
nd walking at low speed. The average pedestrian waiting times were between 4.1 s and 8.7 s for different types of
edestrians. However, if the AV safety margin time is increased to 2.5 s, the safety and efficiency performance could be
ell balanced. For L2 (2.5 s) AV, the average pedestrian waiting times were decreased to between 0.6 s and 3.6 s. Its
SPETs were less than 3.1% which was even better than L1 AVs. Also, its crash rate equals 0% under the speed limits of
0 km/h. Therefore, it can be concluded that competitive AVs with a large safety margin can find safe and proper gaps
o pass through UMCRs which are wasted by defensive AVs. As a result, they can ensure the basic safety requirements
ompared to the competitive AVs with small safety margin and have a better efficiency performance than the defensive
Vs.
These findings indicate that competitive AVs with appropriate parameters are more suitable for UMCs than defensive

Vs in the future. Finally, a typical crash process in the simulation was analyzed to identify the critical factors leading
o safety hazards. Corresponding treatments were proposed for further enhancing the safety performance of competitive
Vs: (1) for AV side, firstly is to increase safety margin time; secondly to decrease the road speed limit; thirdly advanced
etection technology that can help AV identify risky pedestrians are expected to be applied, such as artificial intelligence
40]; (2) for pedestrian side, firstly guiding pedestrians to make the right decisions, for example, delimiting the risk area
n the roadway before the crosswalk in which if AVs are running toward the crosswalk, pedestrians are suggested to wait
nd secondly to educate pedestrians for avoiding drastic behavioral changes while crossing such sudden crossing with
igh speed.
Still, there are several limitations in this study such as the realism of pedestrian behaviors should be further considered

or reproducing more real conflicts. Firstly, pedestrians’ visual fields and AVs’ scanning areas may be obscured by objects in
he surrounding environment (such as trees, poles, and buildings) and bodies of opposing vehicles. In such circumstances,
nfluenced visibility may increase the crashes as well. Therefore, the occlusion effect is also an important aspect that
hould be included for testing the feasibility of driving strategies. Secondly, in the crosswalk area, the speed profile
odel only applied the pre-recorded projection speed in the crossing direction and those data profiles were collected

rom one crosswalk with typical geometry in Japan. On one hand, pedestrians’ lateral movements and speed changes when
eacting to approaching vehicles during crossing may also influence the safety performance. For this sake, a comprehensive
edestrian behavior model considering interaction force and psychological factors should be developed [41–44]. On the
ther hand, unsignalized crosswalks are seldomly used in Japan and the majority of unsignalized crosswalks only have
ne lane in each direction. It is quite challenging for us to have diverse data currently. Therefore, we also plan to seek
nternational cooperation to expand our database for achieving data diversification in the future.
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