
10

Malware Classification Based on Multilayer Perception and

Word2Vec for IoT Security

YANCHEN QIAO, Cyberspace Security Research Center, Peng Cheng Laboratory

WEIZHE ZHANG, School of Computer Science and Technology, Harbin Institute of Technology

XIAOJIANG DU, Temple University

MOHSEN GUIZANI, Qatar University

With the construction of smart cities, the number of Internet of Things (IoT) devices is growing rapidly,
leading to an explosive growth of malware designed for IoT devices. These malware pose a serious threat to
the security of IoT devices. The traditional malware classification methods mainly rely on feature engineering.
To improve accuracy, a large number of different types of features will be extracted from malware files in these
methods. That brings a high complexity to the classification. To solve these issues, a malware classification
method based on Word2Vec and Multilayer Perception (MLP) is proposed in this article. First, for one
malware sample, Word2Vec is used to calculate a word vector for all bytes of the binary file and all instructions
in the assembly file. Second, we combine these vectors into a 256x256x2-dimensional matrix. Finally, we
designed a deep learning network structure based on MLP to train the model. Then the model is used to
classify the testing samples. The experimental results prove that the method has a high accuracy of 99.54%.

CCS Concepts: • Security and privacy→ Malware and its mitigation; Software reverse engineering; Ma-

licious design modifications; • Computing methodologies→ Cross-validation;

Additional Key Words and Phrases: Malware classification, Word2Vec, multilayer perception, IoT

ACM Reference format:

Yanchen Qiao, Weizhe Zhang, Xiaojiang Du, and Mohsen Guizani. 2021. Malware Classification Based on
Multilayer Perception and Word2Vec for IoT Security. ACM Trans. Internet Technol. 22, 1, Article 10 (Septem-
ber 2021), 22 pages.
https://doi.org/10.1145/3436751

Yanchen Qiao and Weizhe Zhang contributed equally to this research.
This work was supported in part by the Key-Area Research and Development Program of Guangdong Province
(2019B010136001), the Basic and Applied Basic Research Major Program for Guangdong Province (2019B030302002), and
the Science and Technology Planning Project of Guangdong Province (LZC0023 and LZC0024).
Authors’ addresses: Y. Qiao, Cyberspace Security Research Center, Peng Cheng Laboratory, No. 2 Xingke 1st Street, Shen-
zhen, China, 518000; email: qiaoych@pcl.ac.cn; W. Zhang, School of Computer Science and Technology, Harbin Institute of
Technology, No. 92, Xidazhi Street, Nangang District, Harbin, China, 150001, Cyberspace Security Research Center, Peng
Cheng Laboratory, No. 2 Xingke 1st Street, Nanshan District, Shenzhen, China, 518000; email: wzzhang@hit.edu.cn; X. Du,
Department of Computer and Information Sciences, Temple University, 1801 N. Broad Street, Philadelphia, USA, PA 19122;
email: dxj@ieee.org; M. Guizani, Department of Compute Science and Engineering, Qatar University, University Street,
Doha, Qatar; email: mguizani@ieee.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1533-5399/2021/09-ART10 $15.00
https://doi.org/10.1145/3436751

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

https://doi.org/10.1145/3436751
mailto:permissions@acm.org
https://doi.org/10.1145/3436751

10:2 Y. Qiao et al.

1 INTRODUCTION

Currently, as the Internet carries more information and property of users, the harm caused by cyber
attacks is increasing. Especially with the construction of smart cities, the number of Internet of

Things (IoT) [27, 29] devices is growing rapidly. The cyber attack aimed at IoT devices will actually
affect people’s lives and safety. The latest statistical result from AV-TEST [12] shows that more than
350,000 malware samples, which brings huge analysis and processing pressure to various security
vendors and emergency departments, are increased every day. As the Advanced Persistent Threat
attack gradually becomes the main trend, the time interval between attackers launching attacks
and detecting attacks is getting longer. The traditional malware detection interval is usually in
days, whereas the Advanced Persistent Threat attack is usually in months and years. An effective
malware classification method can lessen the size of the virus database, improve the efficiency
of malware detection, and discover new malware families. Therefore, there is an urgent need to
develop an effective malware classification method to help security vendors identify and analyze
new malware quickly and accurately.

Security vendors use anti-virus software to defend against malware to protect cyberspace. How-
ever, with the continuous application of new technologies, the security situation is constantly
changing, revealing many new problems. Symantec once misreported the netapi32.dll and lsasrv.dll

of some XP systems as Backdoor.Haxdoor and removed it, resulting in a large-scale system failure
and a blue screen. Some anti-virus software misreports software that is packed or developed with
easy language as a virus, which affects normal use. On May 12, 2017, WannaCry ransomware broke
out globally, and at least 300,000 users were recruited in 150 countries, resulting in losses of $8 bil-
lion, affecting many industries such as finance, energy, and medical treatment. At the time of the
incident, almost all of the anti-virus softwares were underreported. In 2015, after a comprehen-
sive analysis of the malware of the Duqu family, Kaspersky was still successfully attacked into the
company’s intranet by Duqu 2.0. Afterward analysis found that the two have a large number of
similar features and codes. In the early stage of the incident, Kaspersky failed to classify Duqu 2.0
effectively and was successfully attacked. These incidents indicate that the current mainstream
malware detection and classification methods have false positives, false negatives, and problems
of ineffective classification.

The new malware usually has two sources [4]. One is the completely innovative malware, which
is developed by the creator and is different from older malware, and another, on the basis of existing
malware, with the main purpose of avoiding detection, using new means of modifying part of the
code, packing, confusion, and so forth to generate a new malware sample. The malware produced
in the first way represents a new type of malware, which is harmful but has a low frequency. The
malware produced in the second way is usually a variant of the existing malware family. The newly
generated malware is mainly from the second way. Therefore, effectively and correctly classifying
malware variants will help to aggregate new malware, reduce the amount of analysis work, and
improve the defense effect.

The malware classification method mainly uses two types of features: dynamic and static. The
dynamic characteristics are from the host behavior, network behavior, and other data that the mal-
ware runs in the sandbox, such as file operations, registry operations, mutex operations, process
operations, domain name resolution, and URL requests. However, Chen et al. [40] found that more
than 40% of the samples exhibited less malicious behavior under virtual machines. In addition,
Katrenko [13] said that nearly 98% of modern malware used at least one evasive technique. There-
fore, not all malware samples can run in virtual machines and have dynamic features extracted.
Dynamic features often require the execution of malware files, resulting in a limited amount of
analysis of malware per unit of time, greatly increasing the cost of extracting features. Static fea-
tures mainly refer to binary, string, resource, timestamp, and so forth extracted on the basis of

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:3

malware binary file entities, and call flow diagrams, instruction sequences, API sequences, and
so forth extracted based on the reversed assembly code. Static features are more general than dy-
namic features. However, the use of shelling, confusing, and other variant techniques leads to large
differences in the same type of static eigenvalues extracted by different variants of the same fam-
ily, resulting in false positives. Challenges are placed on features that rely on expert experience
extraction.

The malware classification technology is always a research hotspot in the industry. The research
points mainly focus on three aspects. First, the feature selection: the feature selection is mainly
based on an expert experience to extract features combined with the technologies such as data
mining, machine learning, and other methods. This method relies not only an expert experience
but also the data, which makes the process complex. Second, the problem of high feature dimension:
to avoid missing important features, the features are extracted as many as possible for classification
model construction, resulting in high dimensionality and computational complexity. The third
problem is over-fitting: due to the deviation of the data sample set, it usually leads to over-fitting
and poor classification for some family samples.

To deal with these existing problems, we have done some research on malware and the neu-
ral network [18]. A malware classification method using Word2Vec and Multilayer Perception

(MLP) is proposed in this article. Word2Vec [19], which was developed by Tomas Mikolov in 2013
at Google, is one of the most popular techniques for learning word embedding using the neural
network. As we all know, there are a lot of bytes ranging from 0x00 to 0xFF in hexadecimal form
in a malware binary sample. When we treat bytes as words, each malware binary file could be
regarded as a document written by bytes. An assembly file could be obtained by reversing the
malware executable file using reverse tools. When we treat assembly instructions as words, each
assembly file of a malware binary file could be considered as a document written by instructions.
For a document, we could use Word2Vec to obtain word vectors of all words. Therefore, Word2Vec
can also be used to train on the binary file. Then we use the trained model to obtain the word
vectors of the bytes of malware binary samples and the assembly instructions of assembly files.
Finally, for each sample, after connecting all the vectors together, we get a new feature vector. We
use MLP to train the classification model on these new feature vectors. Then we classify the testing
samples using the trained model. This method uses no expert experience and no data dependence

in the feature extraction stage. Our method also avoids the over-fitting while reducing the feature
dimension. The method is tested on the public sample set of BIG 2015 [31]. The results show that
the method has a high accuracy.

The contributions of this article mainly focus on the following three aspects:

(1) We propose a malware feature representation method based on natural language processing
methods, i.e., Word2Vec.

(2) We experimentally prove the word vector of binary bytes and assembly instructions in mal-
ware samples has significant differences between different malware families.

(3) We apply a deep learning algorithm to classify the vectorized malware, which achieves good
results.

(4) We propose a malware classification method, which could detect IoT malware to guarantee
the safety of IoT devices.

2 RELATED WORKS

Han et al. [10] proposed a method for converting the opcode sequence reversed from malware to
RGB map using SimHash [3] and djb2 in 2013, in which SimHash is used to obtain the coordinate
points in the graph. Finally, the method of random selection region matching is used to determine

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:4 Y. Qiao et al.

whether they belong to the same family, and the accuracy of the method is 98.4%. In 2015, Shaid
[34] proposed a method to visualize the malware behavior to a color map, expressing the risk level
of different API calls in different colors, and each malware was formed into a color map. Ding
and Zhu [6] proposed a malware detection method based on the Deep Belief Network in 2017.
Based on the same n-gram assembly instruction sequence features, the accuracy of this method is
significantly better than SVM, decision tree, and the K-nearest neighbor algorithm. In 2017, Kebede
et al. [14] proposed a malware classification method using an automatic decoder based on a deep
learning architecture. They converted the malware file into a 512x16 grayscale image, constructed
a deep learning network using a multi-layer decoder and a Softmax layer, and input the training
set to construct a classifier. The accuracy of the method was verified by experiments to be 99.15%.

Schultz et al. [33] proposed a malware variant detection method based on data mining in 2001.
They used the static analysis method to extract the dynamic link library list from an import table,
API list, API call frequency, strings, and byte sequences from the binary file, and then used the
naive Bayes classifier for learning and classifying, and the accuracy rate reached 97.11%. Kolter
and Maloof [16] improved the non-overlapping byte sequence to an n-gram byte sequence in 2004
and then used the decision tree to train the classifier. In 2008, Tian et al. [36] proposed a mal-
ware classification method using function length. They used the frequency of the function length
(the number of bytes in the binary program) in the sample as a feature. Experiments show that
the method could be fast and effective to classify Trojans. In 2012, Salehi et al. [32] used API in
malware and API parameters as classification features, then used the dimensionality reduction
method and multivariate classifier to classify malware. The test result showed that the accuracy
rate reached 98.4%. Dahl et al. [5] proposed to use the stochastic prediction method to reduce the
feature dimension, then used the neural network algorithm to achieve the classification of mal-
ware; the classification false positive was only 0.42%. Qiao et al. [24] proposed a malware binary
file multi-channel visualization method, as well as a malware classification method based on deep
learning. They use LeNet5 [11] to train the classification model. Qiao et al. [25] proposed a malware
classification method based on the word vector of bytes in the malware sample and MLP.

Nari and Ghorbani [20] proposed a malware classification method based on network behavior
in 2013. They obtained network packets by executing malware, built a network interaction flow
chart based on data packets, and obtained the number of nodes, root out-degree, average out-
degree, maximum out-degree from the graph, and other characteristics. Next, each sample could
be converted into a vector, and finally they could use the classification algorithm to classify the
malware. In 2013, Park et al. [21] proposed a method for detecting and classifying malware based
on the common system call path. The experimental results showed that the false positive rate was
close to 0%. In 2015, Pascanu et al. [22] regarded the instructions and APIs of malware dynamic
execution as the language of malware, then used the cyclic neural network algorithm to classify
malware, and the accuracy rate reached 98.3%. Giannella and Bloedorn [9] proposed a clustering
method based on spectral clustering in 2015. The features used include dynamic information such
as call graph of malware execution and HTTP. In 2016, Huang and Stokes [39] proposed a binary
malware classification technology based on the multi-task deep learning framework, with 4.5 mil-
lion samples as the training set and 2 million samples as the test set. The detection false-positive
rate was only 0.358%, and the malware family classification error rate was only 2.94%.

Malware features mainly include dynamic and static. Dynamic features are mainly obtained
by running samples in the sandbox. However, a lot of samples could not enter the main process
[44], so the extracted dynamic features do not have unique family attributes. Therefore, although
dynamic analysis can deal with code packing and confusion effectively (of which static methods
have no such competence), its code coverage is not as good as static analysis. The static features
used in the current classification methods mainly include import tables, strings, n-gram binary

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:5

sequences, APIs [41], assembly instructions, call graphs [38, 43], and so forth. Due to encryption
and confusion, among others, features extraction is more difficult. The value of n in the n-gram is
usually set to 2 or 3 in consideration of performance and does not well express the characteristics
of the sample.

Word2Vec is a framework developed by Google’s Mikolov et al. [19] to calculate word vectors.
It is widely used in the study of text categorization [8], sentiment analysis [42], and other natural
language processing [26, 28]. At present, there are also many works that Word2Vec and other nat-
ural language processing methods for malware detection and classification. Popov [23] proposed
a malware detection method based on Word2Vec and machine learning in 2017. He regarded the
assembly instruction sequence as a sentence in a document, treated a single assembly instruction
as a word, and then used Word2Vec to calculate word vector of different instruction on the sam-
ple set. Next, he took the first n instructions of each sample, constructed each into a matrix, and
finally constructed a classification model using a Convolutional Neural Network (CNN). The
test results showed that the method had 96% accuracy. In 2017, Tran and Sato [37] proposed a
malware classification method based on Natural Language Processing and API. They first used dy-
namic analysis technology to obtain the API call sequence of malware, then used n-gram, Doc2Vec
[17], TF-IDF, and other natural language processing methods to convert the API call sequence into
a vector. Second, they constructed a classification model using SVM, K-nearest neighbor, MLP,
the RF algorithm, and so forth. The test results showed that the accuracy was between 90% and
96%. Cakir and Dogdu [2] proposed a method of malware classification based on deep learning
in 2018. The process of sample matrixing was similar to that of Popov [23] and then used GBM
(Gradient Boosting Machine) [7] to construct a classification model; they achieved an accuracy of
96%.

An in-depth study of Word2Vec reveals that the word vector calculated by Word2Vec has a good
ability to represent the language characteristics of the corpus. Under the same model, the word
vectors calculated by the same word in the same category corpus are similar. However, in different
categories, the word vectors calculated on the corpus differ greatly.

3 THEORETICAL BASIS

3.1 Word2Vec Principle

The early word vector is one-hot form, and it is the simplest one in the word vector forms—for a
thesaurus, first countingV words contained in the dictionary, then fixing the order of theV words,
and sorting according to letters, frequency, or order of appearance, and so forth. Finally, each word
can be represented by aV -dimensional sparse vector, where only the position has the word 1, but
all other positions are 0. Since the word vector is generally around 100,000, the dimension of the
one-hot formal word vector will be large, which usually causes dimensionality disaster.

To solve the problem of one-hot word vector, a form of distributed word vector is proposed
whose dimension is fixed and the values of all elements in the vector are arbitrary real numbers.
At present, Word2Vec [19] is a kind of framework for calculating all the distributed word vectors.
In this framework, the word vector is a by-product of the Continuous Bag-of-Words (CBOW)

neural network model and Skip-gram. The model structure is shown in Figure 1. In the CBOW
model, the input layer is the first n and the last n words of the word w (t), the projection layer
accumulates all the vectors of the input layer, and the output layer is a large binary tree containing
all of the corpus. The initial value of all word vectors in the CBOW model can be a random specific
dimension vector. The ultimate goal of training is to passw (t −n),w (t −n+ 1), . . . ,w (t − 1),w (t +
1), . . . ,w (t + n − 1),w (t + n) to the model and output w (t).

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:6 Y. Qiao et al.

Fig. 1. CBOW and skip-gram of Word2Vec.

Fig. 2. General usage of Word2Vec.

3.2 Two Usages of Word2Vec

In general, the usage of Word2Vec is shown in Figure 2. The word vector of each word is calcu-
lated on a corpus, and the distance between vectors can be used to obtain the similar word set of
each word. Then, the word vector is used for text matrixing. Finally, text clustering or labeling of
the training classifier is based on the categories that the text already has. The advantage of this
usage is that the word vector is calculated in advance. When converting text into a matrix, it is
only necessary to combine the word vectors into a matrix in order. However, this method ignores
the language characteristics of different categories of texts, and the language characteristics of dif-
ferent authors, functions, and types that have different language characteristics. All of these may
lead to false positives in classifying and clustering.

In this article, the usage of Word2Vec is shown in Figure 3. Each text in the corpus is treated as
a corpus. Word2Vec is used to calculate the word vector of each word appearing in the text. Then,
a sequence of a fixed number of fixed orders is filtered out in the entire corpus. These sequences
of words are then combined into a matrix according to the sequence of words and the word vec-
tors calculated on the text. Finally, a classification or a clustering can be performed on the full
corpus.

There are 10,868 files belonging to nine families in BIG 2015 [31]. First, Word2Vec was used to get
the word vector of all bytes on the sample belong to BIG 2015. Then we calculated the distribution
of the cosine similarity of the word vector of the bytes belonging to the same and different families.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:7

Fig. 3. The usage of Word2Vec in this article.

Fig. 4. The similarity distribution of word vectors of bytes of the same family and different family samples.

The result is shown in Figure 4. It can be seen from Figure 4 that the cosine similarity of the word
vectors of 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, and so on, of the same family sample is much larger
than the cosine similarity of different family samples.

We also calculated the word vector of all assembly instructions on each sample, then the distri-
bution of the cosine similarity of the word vector of the assembly instructions belonging to the
same and different families. The result is shown in Figure 5. It can be seen from Figure 5 that the
cosine similarity of the word vectors ofpush,mov ,pop, xor , call , cmp, and so on, of the same family
sample is much larger than the cosine similarity of different family samples.

The results in Figure 4 and Figure 5 show that word vector of bytes and assembly instructions
calculated on each sample by Word2Vec has good family characteristics.

3.3 MLP

MLP is the most intuitive and simplest deep neural network. The basic structure is shown in
Figure 6. An important feature is the full connection between the layers and the multi-layer struc-
ture. The first layer is the input layer, the middle layer is the hidden layer, and the last layer is the
output layer. The hidden layer of MLP is not fixed, and the number of neurons in each layer of
the hidden layer and the output layer is not fixed. In addition to the input layer, neurons of each

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:8 Y. Qiao et al.

Fig. 5. The similarity distribution of word vectors of assembly instructions of the same family and different

family samples.

Fig. 6. The basic structure of MLP.

layer use an activation function. The ReLU function relu (x) = max (0,x) generally is used as the
activation function of the hidden layer, and the Softmax function so f tmax (x j) =

x j∑K
k=1 xk

is used

as the activation function of the output layer.
Figure 7 shows the model of the neuron in the hidden layer of the Multilayer Perceptron. The

output of the neuron is y = f (
∑K

i=1wi · xi + b) = f (WX + b), where wi represents weights, W
represents weight matrix, xi represents input,X represents the input matrix, b represents bias, and
f (·) represents activation function.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:9

Fig. 7. The model of the neuron in the hidden layer of MLP.

With forward propagation, the output of the five neurons in the first layer of the hidden layer
in Figure 6 is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1
1 = f (u1

1) = f (
∑K

i=1w
1i
1 · xi + b

1
1) = f (w11

1 x1 +w
12
1 x2 +w

13
1 x3 + b

1
1)

y2
1 = f (u2

1) = f (
∑K

i=1w
2i
1 · xi + b

2
1) = f (w21

1 x1 +w
22
1 x2 +w

23
1 x3 + b

2
1)

y3
1 = f (u3

1) = f (
∑K

i=1w
3i
1 · xi + b

3
1) = f (w31

1 x1 +w
32
1 x2 +w

33
1 x3 + b

3
1)

y4
1 = f (u4

1) = f (
∑K

i=1w
4i
1 · xi + b

4
1) = f (w41

1 x1 +w
42
1 x2 +w

43
1 x3 + b

4
1)

y5
1 = f (u5

1) = f (
∑K

i=1w
5i
1 · xi + b

5
1) = f (w51

1 x1 +w
52
1 x2 +w

53
1 x3 + b

5
1).

(1)

The subscript indicates the layer where it is located, and the superscript indicates the location of
the neuron. For example, y1

1 indicates the output of the first neuron in the first layer. Then the
preceding expression is converted into a matrix:

Y1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
1

y2
1

y3
1

y4
1

y5
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f

�

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11
1 w12

1 w13
1

w21
1 w22

1 w23
1

w31
1 w32

1 w33
1

w41
1 w42

1 w43
1

w51
1 w52

1 w53
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
1

b2
1

b3
1

b4
1

b5
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�������
�

= f (W1 · X + B1). (2)

Y1 represents the output of the first layer, W1 represents the weight matrix of the first layer, and
B1 represents the offset matrix of the first layer. To extend the forward propagation calculation
process of layer 1 to any layer in the network, such as layer l , then

⎧⎪⎪⎪⎨⎪⎪⎪⎩

y j

l
= f (u j

l
)

u j

l
=
∑

i ∈Ll−1
w ji

l
yi

l−1 + b
j

l
Yl = f (Ul) = f (Wlyl−1 + Bl).

(3)

Ll represents the neuron of the layer l , the output of this layer is Yl , the output of the j-th neuron
of this layer is y j

l
, and the input of this node is u j

l
. The weight matrix connecting layer 1 and layer

l − 1 isWl , and the weight of the i-th node of layer l − 1 to the j-th node of layer l is w ji

l
.

After the network structure of the MLP is completed, all that is done during training is to use the
back propagation of the loss from the back network layer to the front network layer to complete
the parameter update. In this work, the MLP is used for classification. There are multiple neurons
in the output layer, and each neuron corresponds to a classification. Let the input sample be X =
[x1,x2, . . . ,xn] and its classification is Y = [y1,y2, . . . ,ym]. According to Equation (3), for the last
layer of the network (assumed to be the k-th layer), namely the output layer, the loss function is

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:10 Y. Qiao et al.

defined as

L(Y ,Yk) =
m∑

i=1

l (yi ,yki). (4)

To minimize the loss function, it is derived by gradient

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂L

∂w
ji

l

= ∂L

∂y
j

l

· ∂y
j

l

∂w
ji

l

= ∂L

∂y
j

l

· ∂y
j

l

∂u
j

l

· ∂u
j

l

∂w
ji

l

∂L

∂b
j

l

= ∂L

∂y
j

l

· ∂y
j

l

∂b
j

l

= ∂L

∂y
j

l

· ∂y
j

l

∂u
j

l

· ∂u
j

l

∂b
j

l

.
(5)

According to the previous definition,
∂y

j

l

∂u
j

l

= f ′(u j

l
),

∂u
j

l

∂w
ji

l

= yi
l−1,

∂u
j

l

∂b
j

l

= 1, and therefore Equation (5)

can be converted to
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂L

∂w
ji

l

= ∂L

∂y
j

l

· ∂y
j

l

∂w
ji

l

= ∂L

∂y
j

l

· f ′(u j

l
) · yi

l−1

∂L

∂b
j

l

= ∂L

∂y
j

l

· ∂y
j

l

∂b
j

l

= ∂L

∂y
j

l

· f ′(u j

l
).

(6)

According to the network structure, the input of the neuron in layer l + 1 is the output of layer l ,
and hence the loss function can be regarded as the function of the input of each neuron in layer
l + 1, then

∂L

∂y j

l

=
∑

k ∈Ll+1

∂L

∂yk
l+1

·
∂yk

l+1

∂uk
l+1

·wk j

l+1. (7)

The sensitivity of the node is defined as the rate of change of the error to the input: δ = ∂L
∂u

, then
the sensitivity of the j-th neuron in the layer l is

δ j

l
=
∂L

∂u j

l

=
∂L

∂y j

l

f ′(u j

l
) = f ′(u j

l
)
∑

k ∈Ll+1

δk
l+1w

k j

l+1
. (8)

Therefore, the gradient of the loss function to each parameter is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂L

∂w
ji

l

= ∂L

∂u
j

l

· ∂u
j

l

∂w
ji

l

= δ j

l
yi

l−1

∂L

∂b
j

l

= ∂L

∂u
j

l

· ∂u
j

l

∂b
j

l

= δ j

l
.

(9)

To express all nodes of each layer in a matrix way, the update formula of parameters of each layer
is

⎧⎪⎨⎪⎩
Wl :=Wl − η ∂L

∂Wl
=Wl − ηδlY

T
l−1

Bl := Bl − η ∂L
∂Bl
= Bl − ηδl .

(10)

η ∈ R is the learning rate. The network parameter update depends on the learning rate. The larger
the learning rate, the larger the parameter update step, and the smaller the learning rate, the smaller
the parameter update step.

4 CLASSIFICATION METHOD

A malware classification method based on Word2Vec and MLP is proposed in this article. First,
for one malware sample, Word2Vec is used to calculate a word vector for all bytes of the binary
file and all instructions in the assembly file. Second, we combine these vectors into a 256x256x2-
dimensional matrix. Finally, we designed a deep learning network structure based on MLP to train
the model.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:11

Fig. 8. Bytes in one malware binary file.

4.1 Word Vector of Bytes

There is an enormous number of bytes ranging from 0x00 to 0xFF in hexadecimal form in a mal-
ware binary sample, as shown in Figure 8.

We see many consecutive 0xCC and consecutive 0x00 in the malware binary sample. In exe-
cutable files, especially PE files, the byte 0xCC usually indicates an interrupt instruction, whereas
consecutive 0xCC is usually used for alignment. Continuous 0x00 is mainly used to separate sec-
tions in the executable file. In this work, we treat 256 bytes as words used for writing the document,
and the same consecutive bytes are treated as delimiters, thus cutting a document into multiple
sentences. In the long-term malware analysis work, five or more consecutive 0x00 or 0xCC are
meaningless bytes. After removing them from the binary file, each malware example can be con-
verted into a document comprised of many sentences written by bytes.

Then the Word2Vec algorithm is used to train the document converted from a malware binary
file. For each byte, we could get a word vector. In this work, the dimension of the word vector is
set to be 256, and hence the word vector of bytes can be represented as

W i
S = (x i

1,x
i
2, . . . ,x

i
256), i ∈ [0x00, 0x f f]. (11)

In the preceding equation, W i
S

represents the i-th byte’s word vector in the malware file S . Then

a 256x256 matrix M
Byte

S
could be converted by combining the word vectors of all 256 bytes in

ascending order, as follows. This method was first proposed by Qiao et al. [25].

M
Byte

S
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W 0x00
S

W 0x01
S

W 0x02
S
...

W
0xf f

S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x0x00
1 · · · x0x00

256
...

. . .
...

x
0xf f
1 · · · x

0xf f
256

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(12)

The values in the word vector calculated by the Word2Vec algorithm are mostly decimal and neg-

ative, as well as the values in M
Byte

S
. We want to confirm again at the image level whether this

method has obvious class discrimination. Hence, we need to normalize MByte

S
, as follows:

M ′
Byte

S
= int �

�
M

Byte

S
−min(M

Byte

S
)

max(M
Byte

S
) −min(M

Byte

S
)
× 255�

�
. (13)

We convert the matrix M ′
Byte

S
to a grayscale image, as shown in Figure 9. As we all can see

from the figure, there is a significant difference among the grayscale images converted from

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:12 Y. Qiao et al.

Fig. 9. Grayscale images converted from word vectors of bytes.

different malware families, whereas the similarity among the grayscale images converted from
the same malware family is very high. This proves that the word vector of byte has obvious class
discrimination.

4.2 Word Vector of Assembly Instructions

The assembly file could be reversed from the executable malware sample. An assembly file consists
of many functions, which starts with “proc near/far” and ends with “endp”. A function is typically
comprised of several code blocks separated by “loc_xxx”, as shown in Figure 10.

We have found in a lot of malware analysis work that for a function, even if the same compilation
tool is used and the same compilation options are set, if the function’s position in the source code
is different, the function’s jump position in the assembly code will also different. To eliminate the
effects of position differences, the constant parameters in the assembly file are deleted, and only
the assembly instruction sequence is retained, as in the method of Shankarapani et al. [35].

In summary, the assembly code documentation process is as follows:

• We reverse a executable file to an assembly file.
• The assembly file is split into functions according to “proc near/far” and “endp”.
• The assembly instruction sequence are extracted from the function by removing parameters.
• An article written by assembly instructions is converted from the assembly file of a malware

sample.

We collected 213 commonly used assembly instructions, such as mov, push, xor, and cmp. They
are sorted alphabetically and represented as I = {ins1, ins2, . . . , ins213}. Then the word vectors of
assembly instructions are calculated using the CBOW model of Word2Vec, for all malware samples.
The dimension of the word vector is also set to be 256. The word vector of an assembly instruction

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:13

Fig. 10. Example of a function in an assembly file.

is represented asW insi
s = [x insi

1 ,x insi

2 , . . . ,x insi

256], insi ∈ I , whereW insi

S
indicates the word vector

of the assembly instruction insi in the malware file S .
All word vectors of the instructions of one malware file are combined into a matrix in alpha-

betical order. There may be some instructions that some samples do not contain. For them, a 256-
dimensional zero vector, denoted as �0, is filled. We fill 43 (256 – 213 = 43) zero vectors in the end.
Finally, every assembly file of malware is converted into a matrix, as follows. This method was
first proposed by Qiao et al. [24].

M Ins
S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W ins1
S
...

W ins213
S
�0214

...
�0256

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x ins1
1 · · · x ins1

256
...

. . .
...

0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(14)

We also want to confirm again at the image level whether this method has obvious class discrimi-
nation. Hence, we need to normalize M Ins

S
as follows:

M ′Ins
S = int �

�
M Ins

S
−min(M Ins

S
)

max(M Ins
S

) −min(M Ins
S

)
× 255�

�
. (15)

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:14 Y. Qiao et al.

Fig. 11. Grayscale images converted from word vectors of assembly instructions.

We convert the matrix M ′Ins
S into a grayscale image, as shown in Figure 11. As we all can see from

the figure, there is a significant difference among the grayscale images converted from different
malware families, whereas the similarity among the grayscale images converted from the same
malware family is very high. This proves that word vector of assembly instruction has obvious
class discrimination.

4.3 Deep Learning Network Structure

After the preceding two steps, for each malware sample, the matrixes MByte

S
and M Ins

S
are com-

bined into a 256x256x2-dimensional matrix MS .

MS = [MByte

S
,M Ins

S] (16)

The structure of the neural network in this article is designed based on MLP adding the
DROPOUT. The details of the network structure are shown in Figure 12, and each layer’s func-
tions are as follows: INPUT : Input layer; each malware is pre-processed, converted into a matrix
of 256x256x2 dimensions, and expanded into a vector of 131,072 dimensions, so the input dimen-
sion is 131,072.

FC1: Fully connected layer; this layer includes 512 units, and using the ReLU activation function,
each unit is fully connected with the input feature vector. DROPOUT is used to reduce over-fitting,
and the probability of DROPOUT sets to 0.2.

FC2: Fully connected layer; this layer includes 512 units, and using the ReLU activation function,
each unit is fully connected with the feature vector output by the FC1 layer. DROPOUT is used to
reduce over-fitting, and the probability of DROPOUT sets to 0.2.

OUTPUT : Output layer; this layer is fully connected with the previous layer FC2. The length
of the output corresponds to the total number of classes. We use Softmax as the classification
function.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:15

Fig. 12. Deep network structure of this work.

Table 1. Experimental Results of This Method

Order Precision Recall F1 Score
1 99.27% 99.26% 99.25%
2 99.26% 99.26% 99.26%
3 99.54% 99.54% 99.53%
4 99.08% 99.07% 99.07%
5 98.88% 98.80% 98.80%
6 99.01% 98.98% 98.98%
7 97.96% 97.78% 97.77%
8 99.18% 99.17% 99.16%
9 99.09% 99.07% 99.07%
10 98.82% 98.70% 98.73%

5 EXPERIMENTAL EVALUATION

5.1 Experiment on Traditional Malware

5.1.1 Traditional Malware Dataset. In this work, the dataset BIG 2015 [31] is used for exper-
iments. The Microsoft Malware Classification Challenge was announced in 2015 along with a
publication of a huge dataset, consisting of disassembly and bytecode of more than 20K malware
samples. The dataset has become a standard benchmark for research on modeling malware behav-
ior. The training set of BIG 2015 contains 10,868 samples belonging to nine families. There are two
types of files for each sample in the dataset: a binary file and an assembly file. This work uses both
files.

5.1.2 Experimental Results. This work uses 10-fold cross validation for experiments. We scram-
ble the entire dataset and then divide it into 10 subsets to ensure that each subset contains samples
of each family. In each experiment, one of them is used as the test set, one is used as the verifi-
cation set, and the other eight are combined as the training set. Table 1 shows the results of 10
experiments. As we all can see from Table 1, the average precision rate of 10 experiments is 99.01%.
This shows that the precision of our method is very high.

We put the detailed results from one experiment in Table 2. In this experiment, the accuracy
rate is 99.54%. Then we draw the confusion matrix for this experiment.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:16 Y. Qiao et al.

Table 2. The Results of One Experiment

Malware Family Precision Recall F1 Score Support

Ramnit 0.9938 0.9938 0.9938 161
Lollipop 1.0000 1.0000 1.0000 264
Kelihos_ver3 1.0000 1.0000 1.0000 260
Vundo 1.0000 0.9756 0.9877 41
Simda 1.0000 0.7500 0.8571 4
Tracur 0.9875 0.9875 0.9875 80
Kelihos_ver1 1.0000 1.0000 1.0000 35
Obfuscator.ACY 0.9760 0.9919 0.9839 123
Gatak 1.0000 1.0000 1.0000 113
Avg./total 0.9954 0.9954 0.9953 1,081

Fig. 13. Confusion matrix for multi-classification using MLP model.

The confusion matrix of the experiment for the MLP multi-class classifier is shown in Figure 13.
The blocks represent the scores of malware samples belonging to the malware family on the ver-
tical axis, and they are classified into malware families on the horizontal axis, where 0 represents
white and 1 represents black. As can be seen from Figure 13, almost all malware families have
achieved high classification accuracy.

Figure 14 shows the ROC curve for multi-classification of the method in this article. It can be
seen that the area under the curve is up to almost 1.0000.

5.2 Experiment on IoT Malware

5.2.1 IoT Malware Dataset. Thousands of IoT malware files, which were in Executable and

Linkable Format (ELF), were collected and were labeled by VirusTotal [1]. VirusTotal inspects

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:17

Fig. 14. ROC curve for multi-classification using the MLP model.

Table 3. Details of the IoT Malware Dataset

Family Name Family Tag Number of Samples
Mirai 0 4,688

Gafgyt 1 2,817
Tsunami 2 383
Ganiw 3 228
Dofloo 4 205

Mayday 5 137

items with more than 70 anti-virus scanners and URL/domain blacklisting services, in addition
to myriad tools to extract signals from the studied content. The results are widely accepted by
scientific research and industry. Among them, we selected 8,458 files from six IoT malware families,
as shown in Table 3. For the binary ELF file, we used reverse tools to get its assembly code. Finally,
we have the binary ELF file and assembly file for every malware sample.

5.2.2 Experimental Results. We also use 10-fold cross validation for experiments on IoT mal-
ware. As we all can see from Table 4, the average precision rate of 10 experiments is 98.41%. The
precision is very high, and it is basically equal to the results of experiments on traditional malware,
shown in Table 1.

We put the results of all classes of one experiment in Table 2. It can be seen from Table 5 that
the accuracy rate of five IoT malware families is 96.67%, the average recall rate is 96.57%, and the
average F1 score is 96.49%.

The confusion matrix for the MLP multi-class classifier on IoT malware is shown in Figure 15.
As can be seen ine Figure 15, almost all malware families achieve high classification accuracy.

Figure 16 shows the ROC curve for multi-classification on IoT malware of the method in this
article. It can be seen that the area under the curve is 0.9979.

5.3 Work Comparison

Kim [15] proposed a method for analyzing images through artificial intelligence deep learning in
2018, and protecting big data by quickly detecting malware. Kim [15] also performed experiments
on the training set of the Microsoft Malware Classification Challenge (BIG 2015) [31], and the
highest accuracy was 91.76%. Rahul et al. [30] also converted malware binary files into grayscale

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:18 Y. Qiao et al.

Table 4. Experimental Results of This

Method on IoT Malware

Order Precision Recall F1 Score
1 96.67% 96.57% 96.49%
2 99.39% 97.63% 97.57%
3 99.94% 97.98% 97.92%
4 94.17% 97.51% 97.49%
5 99.64% 96.80% 96.69%
6 99.28% 96.80% 96.72%
7 99.56% 98.34% 98.28%
8 99.63% 96.56% 96.46%
9 97.86% 97.51% 97.57%
10 98.19% 97.04% 96.97%

Table 5. Results of One Experiment on IoT Malware

Malware Family Precision Recall F1 Score Support

Mirai 0.9716 0.9917 0.9816 483
Gafgyt 0.9593 0.9557 0.9575 271
Tsunami 1.0000 0.7000 0.8235 30
Ganiw 1.0000 0.8462 0.9167 26
Dofloo 0.8571 1.0000 0.9231 24
Mayday 1.0000 1.0000 1.0000 12
Weighted avg. 0.9667 0.9657 0.9649 846

images and then used deep learning methods for classification. They also tested on the BIG 2015
[31] dataset, and the average accuracy rate reached 94.91%. The results of the work comparison
are shown in Table 6. Among the three works, the work of this article has the highest accuracy.

5.4 Discussion

Based on the preceding two experiments, our method’s average classification accuracy for tradi-
tional malware reached 99.54%, and the average classification accuracy for IoT malware was as
high as 98.41%. They show that this method not only effectively classifies traditional malware but
also accurately classifies IoT malware. This work is an extension of our previous work [25]. The
previous work only used the features based on the word vector of bytes in the malware binary file,
and its performance on IoT malware is slightly worse. This work is also an extension of our other
previous work [24]. In this work, another byte feature is used, and experiments have shown that
this feature has no positive effect on the classification results. In addition, this previous work uses
the CNN, and it has been shown that the CNN does not improve accuracy but reduces efficiency.

The results of the work’s comparison with our previous works are shown in Table 7. Among
the three works, the work of this article has the highest accuracy and better efficiency.

6 CONCLUSION AND FUTURE WORK

As the types of features used in current malware classification methods continue to increase, the
difficulty of feature extraction is increasing. As a result, the complexity of classification becomes

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:19

Fig. 15. Confusion matrix for multi-classification on IoT malware using the MLP model.

Fig. 16. ROC curve for multi-classification on IoT malware using the MLP model.

Table 6. Work Comparison

Word Feature Method Accuracy
Kim [15] File grayscale CNN 91.76%

Rahul et al. [30] File grayscale CNN 94.91%
This work Word vectors of bytes and assembly instructions MLP 99.54%

higher and higher. However, the accuracy has not improved significantly. Malware designed for
IoT devices poses a serious threat to the security of IoT devices. A malware classification method
based on word vector of bytes and MLP is proposed in this article. The key idea of this method
is that the relationship of bytes and assembly instructions in the same family sample is similar,

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:20 Y. Qiao et al.

Table 7. Comparison with Our Previous Works

Work Feature Method Accuracy
Previous work 1 [24] Multi-channel image LeNet5 98.76%
Previous work 2 [25] Word vectors of bytes MLP 98.89%

This work Word vectors of bytes and assembly instructions MLP 99.54%

and the relationship of bytes and assembly instructions in different family samples is distinctly
different. Therefore, the word vector of bytes and assembly instructions has the ability to describe
the characteristics of the malware family. It is feasible to classify malware families based on word
vectors of bytes and assembly instructions. IoT malware could also be accurately detected and
classified. This will greatly improve the efficiency of malware analysts and guarantee the safety of
IoT devices. With the construction of smart cities, the number of IoT devices is growing rapidly,
leading to an explosive growth of malware designed for IoT devices. These malware pose a seri-
ous threat to the security of IoT devices. In the future, we will conduct in-depth research on IoT
malware detection and classification.

REFERENCES

[1] Bernardo Quintero, Emiliano Martínez, Víctor Manuel Álvarez, Karl Hiramoto, Julio Canto, Alejandro Bermúdez, and
Juan A. Infantes. 2020. VirusTotal. Retrieved July 29, 2021 from https://www.virustotal.com/.

[2] Bugra Cakir and Erdogan Dogdu. 2018. Malware classification using deep learning methods. In Proceedings of the

ACMSE 2018 Conference (ACMSE’18). Article 10, 5 pages. https://doi.org/10.1145/3190645.3190692
[3] Moses S. Charikar. 2002. Similarity estimation techniques from rounding algorithms. In Proceedings of the 34th ACM

Symposium on Theory of Computing.
[4] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren. 2020. Android HIV: A study of repackaging

malware for evading machine-learning detection. IEEE Transactions on Information Forensics and Security 15 (2020),
987–1001.

[5] George E. Dahl, Jack W. Stokes, Li Deng, and Dong Yu. 2013. Large-scale malware classification using random pro-
jections and neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal

Processing. IEEE, Los Alamitos, CA, 3422–3426.
[6] Yuxin Ding and Siyi Zhu. 2017. Malware detection based on deep learning algorithm. Neural Computing & Applications

1 (2017), 1–12.
[7] Jerome H. Friedman. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 5

(2001), 1189–1232.
[8] Jin Gao, Yahao He, Xiaoyan Zhang, and Yamei Xia. 2017. Duplicate short text detection based on Word2vec. In Pro-

ceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS’17).
[9] Chris Giannella and Eric Bloedorn. 2015. Spectral malware behavior clustering. In Proceedings of the 2015 IEEE Inter-

national Conference on Intelligence and Security Informatics (ISI’15). IEEE, Los Alamitos, CA, 7–12.
[10] Kyoung Soo Han, Jae Hyun Lim, Eul Gyu Im, Kyoung Soo Han, Jae Hyun Lim, and Eul Gyu Im. 2013. Malware

analysis method using visualization of binary files. In Proceedings of the 2013 Research in Adaptive and Convergent

Systems (RACS’13). 317–321.
[11] Simon Haykin and Bart Kosko. 2009. Gradient-based learning applied to document recognition. Proceedings of the

IEEE 86, 11 (1998), 2278–2324.
[12] AV-TEST Institute. 2020. Malware Statistics & Trends Report. Retrieved July 29, 2021 from http://www.av-test.org/en/

statistics/malware/.
[13] Anna Katrenko. 2020. Malware Sandbox Evasion: Techniques, Principles & Solutions. Retrieved July 29, 2021 from

https://www.apriorit.com/dev-blog/545-sandbox-evading-malware.
[14] T. M. Kebede, O. Djaneye-Boundjou, B. N. Narayanan, A. Ralescu, and D. Kapp. 2017. Classification of malware pro-

grams using autoencoders based deep learning architecture and its application to the Microsoft malware classifi-
cation challenge (BIG 2015) dataset. In Proceedings of the 2017 IEEE National Aerospace and Electronics Conference

(NAECON’17). 70–75. https://doi.org/10.1109/NAECON.2017.8268747
[15] Hae Jung Kim. 2018. Image-based malware classification using convolutional neural network. In Advances in Computer

Science and Ubiquitous Computing. Lecture Notes in Computer Science, Vol. 474. Springer, 1352–1357. https://doi.org/
10.1007/978-981-10-7605-3_215

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

https://www.virustotal.com/
https://doi.org/10.1145/3190645.3190692
http://www.av-test.org/en/statistics/malware/
https://www.apriorit.com/dev-blog/545-sandbox-evading-malware
https://doi.org/10.1109/NAECON.2017.8268747
https://doi.org/10.1007/978-981-10-7605-3_215

Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security 10:21

[16] Jeremy Z. Kolter and Marcus A. Maloof. 2004. Learning to detect malicious executables in the wild. In Proceedings

of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY,
470–478.

[17] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In Proceedings of the

International Conference on Machine Learning. 1188–1196.
[18] G. Lin, S. Wen, Q. L. Han, J. Zhang, and Y. Xiang. 2020. Software vulnerability detection using deep neural networks:

A survey. Proceedings of the IEEE 108, 10 (2020), 1825–1848.
[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector

space. arXiv:1301.3781.
[20] Saeed Nari and Ali A. Ghorbani. 2013. Automated malware classification based on network behavior. In Proceedings

of the 2013 International Conference on Computing, Networking, and Communications (ICNC’13). IEEE, Los Alamitos,
CA, 642–647.

[21] Younghee Park, Douglas S. Reeves, and Mark Stamp. 2013. Deriving common malware behavior through graph clus-
tering. Computers & Security 39 (2013), 419–430.

[22] Razvan Pascanu, Jack W. Stokes, Hermineh Sanossian, Mady Marinescu, and Anil Thomas. 2015. Malware classifica-
tion with recurrent networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP’15). IEEE, Los Alamitos, CA, 1916–1920.
[23] Igor Popov. 2017. Malware detection using machine learning based on Word2Vec embeddings of machine code instruc-

tions. In Proceedings of the 2017 Siberian Symposium on Data Science and Engineering (SSDSE’17). IEEE, Los Alamitos,
CA, 1–4.

[24] Yanchen Qiao, Qingshan Jiang, Zhenchao Jiang, and Liang Gu. 2019. A multi-channel visualization method for mal-
ware classification based on deep learning. In Proceedings of the 2019 18th IEEE International Conference on Trust,

Security, and Privacy in Computing and Communications and the 13th IEEE International Conference on Big Data Sci-

ence and Engineering (TrustCom/BigDataSE’19). IEEE, Los Alamitos, CA, 757–762.
[25] Y. Qiao, B. Zhang, and W. Zhang. 2020. Malware classification method based on word vector of bytes and multilayer

perception. In Proceedings of the 2020 IEEE International Conference on Communications (ICC’20). IEEE, Los Alamitos,
CA, 1–6.

[26] Youyang Qu, Longxiang Gao, Tom H. Luan, Yong Xiang, Shui Yu, Bai Li, and Gavin Zheng. 2020. Decentralized privacy
using blockchain-enabled federated learning in fog computing. IEEE Internet of Things Journal 7, 6 (2020), 5171–5183.

[27] Youyang Qu, Shui Yu, Longxiang Gao, Wanlei Zhou, and Sancheng Peng. 2018. A hybrid privacy protection scheme
in cyber-physical social networks. IEEE Transactions on Computational Social Systems 5, 3 (2018), 773–784.

[28] Youyang Qu, Shui Yu, Jingwen Zhang, Huynh Thi Thanh Binh, Longxiang Gao, and Wanlei Zhou. 2019. GAN-DP:
Generative adversarial net driven differentially privacy-preserving big data publishing. In Proceedings of the IEEE

International Conference on Communications (ICC’19). IEEE, Los Alamitos, CA, 1–6.
[29] Youyang Qu, Shui Yu, Wanlei Zhou, Sancheng Peng, Guojun Wang, and Ke Xiao. 2018. Privacy of things: Emerging

challenges and opportunities in wireless Internet of Things. IEEE Wireless Communications 25, 6 (2018), 91–97.
[30] R. K. Rahul, T. Anjali, Vijay Krishna Menon, and K. P. Soman. 2017. Deep learning for network flow analysis and

malware classification. In Proceedings of the International Symposium on Security in Computing and Communication.
226–235.

[31] Royi Ronen, Marian Radu, Corina Feuerstein, Elad Yom-Tov, and Mansour Ahmadi. 2018. Microsoft malware classifi-
cation challenge. arXiv:1802.10135.

[32] Zahra Salehi, Mahboobeh Ghiasi, and Ashkan Sami. 2012. A miner for malware detection based on API function calls
and their arguments. In Proceedings of the 2012 16th CSI International Symposium on Artificial Intelligence and Signal

Processing (AISP’12). IEEE, Los Alamitos, CA, 563–568.
[33] Matthew G. Schultz, Eleazar Eskin, F. Zadok, and Salvatore J. Stolfo. 2001. Data mining methods for detection of new

malicious executables. In Proceedings of the 2001 IEEE Symposium on Security and Privacy (S&P’01). IEEE, Los Alamitos,
CA, 38–49.

[34] Syed Zainudeen Mohd Shaid. 2015. Malware behavior image for malware variant identification. In Proceedings of the

International Symposium on Biometrics and Security Technologies. 238–243.
[35] Madhu K. Shankarapani, Subbu Ramamoorthy, Ram S. Movva, and Srinivas Mukkamala. 2011. Malware detection

using assembly and API call sequences. Journal in Computer Virology 7, 2 (2011), 107–119.
[36] Ronghua Tian, Lynn Margaret Batten, and S. C. Versteeg. 2008. Function length as a tool for malware classification.

In Proceedings of the 2008 3rd International Conference on Malicious and Unwanted Software (MALWARE’08). IEEE, Los
Alamitos, CA, 69–76.

[37] Trung Kien Tran and Hiroshi Sato. 2017. NLP-based approaches for malware classification from API sequences. In
Proceedings of the 2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES’17). IEEE, Los Alamitos,
CA, 101–105.

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

10:22 Y. Qiao et al.

[38] Huanran Wang, Hui He, and Weizhe Zhang. 2018. Demadroid: Object reference graph-based malware detection in
Android. Security and Communication Networks 2018 (2018), Article 7064131.

[39] Wenyi Huang and Jack W. Stokes. 2016. MtNet: A multi-task neural network for dynamic malware classification. In
Detection of Intrusions and Malware, and Vulnerability Assessment. Lecture Notes in Computer Science, Vol. 9721.
Springer, 399–418. https://doi.org/10.1007/978-3-319-40667-1_20

[40] Xu Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. 2008. In Proceedings of the 2008 IEEE International Confer-

ence on Dependable Systems and Networks with FTCS and DCC (DSN’08). IEEE, Los Alamitos, CA.
[41] Bin Zhang, Wentao Xiao, Xi Xiao, Arun Kumar Sangaiah, Weizhe Zhang, and Jiajia Zhang. 2020. Ransomware clas-

sification using patch-based CNN and self-attention network on embedded N-grams of opcodes. Future Generation

Computer Systems 110 (2020), 708–720.
[42] Dongwen Zhang, Hua Xu, Zengcai Su, and Yunfeng Xu. 2015. Chinese comments sentiment classification based on

word2vec and SVMperf. Expert Systems with Applications 42, 4 (2015), 1857–1863.
[43] W. Zhang, H. Wang, H. He, and P. Liu. 2020. DAMBA: Detecting Android malware by ORGB analysis. IEEE Transactions

on Reliability 69, 1 (2020), 55–69.
[44] W. Zhang, B. Zhang, Y. Zhou, H. He, and Z. Ding. 2020. An IoT honeynet based on multi-port honeypots for capturing

IoT attacks. IEEE Internet of Things Journal 7, 5 (2020), 3991–3999.

Received May 2020; revised October 2020; accepted November 2020

ACM Transactions on Internet Technology, Vol. 22, No. 1, Article 10. Publication date: September 2021.

https://doi.org/10.1007/978-3-319-40667-1_20

