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ABSTRACT One of the key solutions to address the issue of energy efficiency and sustainable mobility is to
integrate plug-in electric vehicle (EV) infrastructure and photovoltaic (PV) systems. The research proposes
a comprehensive EV infrastructure planning and analysis tool (EVI-PAT) with solar power generation for
micro-scale projects for the deployment of EV Charging Stations (EVCS). For the evaluation of the proposed
infrastructure, a case study of Qatar University (QU) campus is chosen for the integration of the EV charging
infrastructure and PV power generation to evaluate the performance of the presented framework. The model
estimates the EV adoption and the number of vehicles based on the inputs related to the country’s EV
adoption, campus vehicle count, and driving behavior. Economic and environmental indicators are used for
evaluating policy choices. The findings in the paper show that the proposed planning framework can find the
optimum staging plan for EV and PV infrastructure based on the policy choices. The staging plan optimizes
the sizes and times of installing EVCSs combined with solar PV keeping the EV-PV project at maximum
economic and environmental targets. The optimum policy can affect the optimum power infrastructure limit
to maximize the economic benefit by the solar tariff.

INDEX TERMS Causal loopmapping, energy consumption estimation, EV adoption, solar PV, infrastructure
planning, work charging.

I. INTRODUCTION
With the exhaustion of fossil fuel reservoirs, the experts
are formulating policies over the globe for emission reduc-
tion considering transportation electrification. Consequently,
relevant sector stakeholders are becoming interested in
incorporating diverse transportation fueling in preparation for
transportation electrification [1].

The policies on the adaptation stage of EV technology are
not yet fully mature and practical, and the market mechanism
of electric vehicles has not yet been formulated. Therefore,
the number of electric vehicles still accounts for a low
proportion of total vehicles, and the EV industry relies on
government subsidies and advocacy. Because of this early
stage, any initial investment in the charging stations to
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address all issues related to charging may lead to unnecessary
financial expenditure [2].

The installation of EV charging stations in a power
system without a suitable framework may cause undesirable
effects on the network performance (i.e., grid violations)
or on user convenience (i.e., long waiting time) [3]. When
planning for the future number of charging infrastructure,
overestimating the number of chargers can lead to grid
violations, while underestimating can cause a risk of EV
users’ inconvenience [3]. These risks can affect the EV
adoption and market, thus affecting the investments in
infrastructure that may be used inefficiently.

The related problems associated with charging are some-
how addressed in the literature under EV infrastructure
planning, charging station placement and sizing, and charging
management [4]. Determining an optimum number of
chargers per location depends on the charger cost, annual
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operating cost, user’s time value, depreciable life, and the
average wait time [5]. Reducing the number of chargers
can cause an insufficient installation for the EV demands
leading to user inconvenience. On the other hand, installing
many chargers can lead to network congestion, and this is
why it is necessary to estimate the charging demand when
planning for EV infrastructure. The vehicle charging demand
depends on the number of vehicles, user driving distance,
charging habits, and charging network [6], [7]. The demand
for EV infrastructure is classified based on socioeconomic
indicators, including income, hybrid ownership, tenure, and
dwelling type [8]. The necessary charging infrastructure
varies according to the geographical parameters and can
be explored through software such as the Electric Vehicle
Infrastructure Projection Tool (EVI-Pro) using a bottom-up
simulation [9], [10].

There are obstacles when it comes to large-scale EV
adoption, including infrastructure, battery size and price,
model availability, policy, and public awareness [8]. The
main obstacles in deploying green technologies in the region
are the lack of tools to evaluate policy planning. LEAPP,
E3MLab, Panel Data Analysis model, and energy supply
modeling are a few tools that have been proposed in
the Middle-East and North-Africa (MENA) region to help
with energy transition [11]. They are, however, economic-
based modeling tools that overlook social and environmental
aspects of the region.

Most of the studies in the literature are related to the plan-
ning for public charging station infrastructure. At the same
time, a more specific method in [12] proposed a deployment
strategy at a university campus. The authors define a flexible
planning model using the queueing theory and the analytic
hierarchy process to find optimum sizes and locations of
EVCSs on the campus. The study does not propose a planning
framework for infrastructure installation, policy evaluation,
or infrastructure impact on the EV deployment. Furthermore,
according to a study in [13], universities play a vital role in
EV network expansion.

The main contribution of this research is developing a
framework for planning and analyzing EV projects with
solar energy generation. The outcome can give the annual
penetration of EVs on campus with the required number
of charging ports and optimum solar PV infrastructure.
Other outcomes of this study include recommendations and
guidelines for installing EV charging infrastructure over
several different policies and charging fees. The model
analyzes multiple case studies to obtain optimal solutions
for customized case studies. This research uses a Qatar
University case study to implement the model, and the
output is compared with international universities’ EV
infrastructure.

The main highlights of this paper are:

1) Define the affecting attributes on the future growth of
campus EV and combine a data-set collection valuable
for future research.

2) Model a system-dynamic-based tool for EV infrastruc-
ture planning and analysis

3) Combine solar PV and EV technologies for economic
optimization.

4) Construct a casual loop for EV-PV policy analysis.
The remaining part of this paper is structured as fol-

lows: section 2 is a background on EV planning and
the relation between charging stations and EV adoption.
Section 3 presents the methods and the case study.
Section 4 includes model validation and simulation results,
discusses the proposed framework outputs, evaluates the
model with a real-life case study, and discusses current
policies. Finally, section 5 concludes the paper, gives policy
implications, discusses limitations and recommendations for
future work.

II. BACKGROUND & RELATED WORK
Accurately modeling an EV infrastructure planning frame-
work requires EV adoption to be known [14]. Forecasting
is necessary for EV production planning, policy-making,
power generation, and supply equilibrium. Multiple methods
for EV forecasting have been proposed, but these studies,
in [14]–[16], are designed for large-scale country adoption
and cannot perform well for the comprehensive models for
campus EV infrastructure planning.

A study in [14] uses a logistic growth model to predict
long-term sales forecasts using vehicle sales historical data
from 2010 to 2018. The author did not consider historical data
related to other technology sales such as solar photovoltaics
or technology development trends such as battery size or EV
range. The growth in the EV numbers is affected by many
factors classified as antecedents, mediators, moderators, con-
sequences, and socio-demographic variables [17]. Only a few
studies address the repercussions variables of environmental,
social, and economic impacts. Other related variables were
investigated in the literature, such as the influence of EV
infrastructure (fast charging) on EV attractiveness [15].
The charging infrastructure type affects EV adoption for a
country-size case study performed in the United Kingdom
(UK). The case study in [15] is for a macro-scale adoption
and may not be suitable for smaller-scale projects such as
university or work charging. Furthermore, EV adoption could
increase with the increasing number of chargers instead.
Therefore, the study in [16] investigates the casual relation
between charging station installation and EV purchases for
public charging in the United States of America (USA).
There is no evidence of a feedback relation for public
charging because most charging occurs at home. On the other
hand, there is a relation between installing charging stations
at workplaces and the purchases of EVs for commuting
areas, and both EV adoption and work infrastructure have a
feedback relation [16]. The study does not cover the effect of
increasing the number of chargers at one working place on
the charging behavior or the EV adoption.

Charging price-related policies affect how people charge
and use the infrastructure, and EV adoption is affected
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differently with different policies and charging infrastruc-
ture [8]. Variable charging prices such as Time-of-Use
(TOU) affect users’ charging patterns and behavior. For
example, low charging price at night makes home charging
attractive and convenient for single-users. Even though home
charging will be attractive given a policy such as TOU,
other policies such as free charging at work may affect the
charging behavior and affect the peak demand on the power
network.

Many works in the literature apply the system-dynamic
approach for EV deployment, planning; however, very
few consider combining EV infrastructure with solar PV
installation with the consequences variables listed in [17].
Some studies propose a system dynamic approach to solve
real-life situations practically because it can combine multi-
ple variables with feedback relations. For instance, the study
in [18] presents a novel system dynamic model to predict EV
evolution in China. The study quantified the purchase share
of EV numbers in China and did not include infrastructure
quantity, solar PV potential, or policy implications on the
output. The study focuses on EV shares, and no planning
strategy for EV infrastructure was proposed. At the same
time, another study uses a similar approach but uses themodel
for impact studies such as oil prices and quantifying emission
reduction [19]. Both studies are performed over a country
scale and are unsuitable for micro-scale projects such as work
charging (institution charging).

Up to the author’s knowledge, the previous literature
shows a research gap in combining both the technical,
economic, and environmental aspects for solar PV and EV
technologies together, including policy evaluation. Further-
more, the feedback loops between the number of chargers,
EV adoption, charging behavior, and charging demand are
not investigated. Moreover, the previous literature does not
cover a campus-scale problem combined with solar for EV
infrastructure planning.

The previous system dynamic approaches do not imple-
ment an optimization method for infrastructure and give only
single solutions [18], [19]. Also, mainly EV planning is not
combined with solar PV planning. For instance, the study
in [20] solves for EV charger placement in an IEEE-33 bus
system with solar but does not propose a staging plan.

The proposed work applies system dynamics combined
with optimization for obtaining an economical charging
infrastructure installation plan with solar. The optimization
stage obtains EV infrastructure sizes for charging with solar
PV projects for every year. In summary, in the proposed
planning analysis tool, the estimation for EV adoption is the
central part of the proposed model. The relation between
infrastructure and EV adoption concluded in [8] is modeled
within the tool. Also, where policy affects the adoption and
investment choices, the proposed tool’s primary use is to
analyze policy effect on the staging plan economically and
environmentally to obtain the staging plan. The following
section explains the method used in developing the suggested
tool.

FIGURE 1. Proposed methodology flowchart.

III. METHODOLOGY
The first step in the proposed framework is to define
the parameters for the EV infrastructure model, initialize
the system’s components such as boundaries, input, and
output variables, and then model the system mathematically,
analytically, or empirically through a graphical relation
representation. The main steps followed are summarized
in Figure 1. The second step involves the collection and
preparation of the required data

The data classification process divides the data into
either dependent or independent variables. In the third step,
we define case studies for different dependent variables
to explore the technical, environmental, and economic
indices. Then we build scenarios from different case study
combinations. The fourth step is performing sensitivity study,
optimization, and obtaining the results using system dynamic
software STELLA [21]. Finally, we analyze the results and
propose optimal recommendations to plan for on-campus EV
infrastructure staging.

A. PROPOSED MODEL
The model solves for the forecasted annual number of EVs
on campus, recommends the optimal number of chargers
to install every year, solar power plants sizes, and required
policy to achieve a set of user-defined objectives. The inputs
of the model are the loads, resources, and drivers, which are
detailed below:

1) LOADS
two types of loads are input to the study; building loads on the
campus and the EV charging loads. The available charging
capacity is a percentage of total free capacity in the network
(infrastructure %).

2) RESOURCES
two energy sources are in the study; conventional utility
power and grid-connected solar PV power. The variable is
the ratio of solar PV to the charger capacity (PV %).
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FIGURE 2. System dynamic model definition.

3) DRIVERS
are the objectives to achieve the optimization goals such as
maximizing EV adoption, minimizing costs, and minimizing
emission.

4) SOLUTIONS
the solutions are the variables considered in the sensitivity
analysis that achieve the set goals in the study cases and
scenarios. The solutions are reached targets, installation
timings, system component sizes, and recommended energy
policies (charging prices, feed-in tariffs, and EV incentives).

The model seeks to promote EV deployment and provide
insight on the possible behaviors of the system with different
policy scenarios and PV plans. The variables that influence
policy choices and motivate the promotion of EV uptake are
GHG, economic growth, saving, and reputation. The system
maps the complete relation between technical, economic,
social, and environmental policies related to EV and PV
planning.

B. PROPOSED HYPOTHESIS
The model uses a system-dynamic approach initially devel-
oped by Jay Forrest and colleagues at MIT in the 1950s [22].
System dynamics studies the time-behavior of a system
and allows one to study the system’s behavior without
experimenting on the existing system [23]. The basis of our
proposed model is presented as a connection web between
the variables to illustrate the complex system in Figure 2. The
system cause and effect relations are circular and not linear
because of the feedback loops.

The casual loop diagram (CLD) starts with a diagram
of variables and arrows showing the structure of a system
(our case in Figure 3). Arrows (loops) transmit information
through the main flow either positively as a reinforcing
loop (R) or negatively as a balancing loop (B). The CLD
consists of balancing loops and reinforcing loops detailed in
the subsections below.

1) BALANCING LOOPS (B)
Balancing loops have a resting effect on the system by
introducing negative feedback. There are five main balancing
loops in the model in Figure 3; each has a balancing effect as
follows:
B1: when the number of EVs increase, the number of

ICE vehicles decrease in which the total number of vehicles
remains constant over the simulation time.

B2:when installed chargers cannot cover the necessary EV
demand, the usage rate increases and the consumer attraction
to buy reduces. The usage ratio is the percentage of required
EV chargers compared with installed.

According to NREL [10], coverage infrastructure require-
ment has a push and pull relation with the charging demand.
The number of stations is proportional to the charging
demand, which in turn is coverage-based. When EVs are
poorly available, it will be hard to justify investment
feasibility, and low-value sales cause a gap in utilization.
This gap requires infrastructure installation even though it is
unfeasible to affect the consumer’s attraction.
B3: the usage rate increases with the increase in

EV demand and decreases with the increase in charger
installations.
B4: the net income reduces with the installation of

solar infrastructure because it is an added value to the
EV infrastructure project. This loop allows the model for
investigating the effect of policy decisions such as dedicated
electricity prices for solar generation and project installation
incentives to increase net income. The price of on-campus
electric charging is a variable that will affect the net
income. Therefore, we consider this value for different
scenarios.
B5: GHG emission increases with EV charging from the

grid and reduces with solar PV generation. The net emission
is the difference between the increasing emissions from
conventional power generation consumed by EV load and the
reduction from green energy generation from solar PV. Solar
PV reduces the net emissions as well as the EV commute
length compared with conventional vehicles.

2) REINFORCING LOOPS (R)
Reinforcing loops are positive feedback loops that amplify
and reinforce the outcome. There are three main reinforcing
loops, in Figure 3, that are explained below:
R1: increasing deployment has a social effect on con-

sumers to buy. Hence, the increased number of EVs reinforces
the attraction factor bounded by the usage rate presented in
loop B3.
R2: the awareness of the environmental effect of EV

deployment and the actual benefit from the emission
reduction will attract users to buy EVs. Thus, the emission
reduction increases attraction.
R3: The increasing number of EVs increases the electricity

demand reinforcing the need for EV infrastructure. In addi-
tion, it increases the net emission produced from burning
the fossil fuel used while generating electricity for charging.
The charging load causes an increase in the charging profit,
increasing infrastructure investments. Therefore, it reinforces
the installation of more chargers as the required demand
increases.

The main output of the model is the number of EVs
deployed per year. The main affecting component is the
attraction factor comprising price attraction, usage rate, and
campus adoption.
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FIGURE 3. High-level mapping of the dynamic hypothesis for EV-PV infrastructure planning tool (EVI-PAT).

C. CASE STUDY
We apply our model to a real-world case educational institute
QU. The university spreads over 81 square kilometers of
land and is located on the Northern outskirts of the capital
Doha. Investigating new technologies as well as addressing
sustainable environments are part of QU’s research priority.
There are 32 parking areas and 6,116 available parking spaces
at QU, which are the potential areas for PV installation [24].

D. DATA COLLECTION
The collected data for the case study are from local
references Qatar University website, QU statistics booklet,
Qatar Mobility Innovations Center (QMIC), Qatar Trans-
portation and Traffic Safety Studies Center, Qatari electric
vehicle providers in 2020 (websites), and the ministry
of electricity KAHRAMAA. The data is classified into
data-set groups A to G, detailed in Table 1. The primary
inputs, which are independent variables, are summarized
in Table 2, and the dependent variables’ equations are in
Table 3.

The independent variables are the main inputs obtained
by collection method, observation, archival research, survey,
calculation, and assumption. References from the literature

TABLE 1. Classification of collected data.

cover some of these assumptions in Table 2. Only few
variables are set by model tuning obtained through trial
and error. The justification of each variable is explained
under its relevant section. Generally, the variables set by

VOLUME 10, 2022 17499



H. M. Abdullah et al.: Planning and Optimizing Electric-Vehicle Charging Infrastructure Through System Dynamics

assumptions require investigation through surveys, question-
naires, or travel behavior characterizing studies.

1) DRIVING BEHAVIOR DATA (DATASET-A)
This group covers data related to driving behavior into the
QU campus. In general, most of the population in Qatar
has an average driving distance (round trip) of 40-100 km
(2-3 hours) [25]. The number of students, faculty, and staff
is 25,067 [24]. The percentage of visitors entering QU at
noontime is set to 20%, where this figure is found in a study
performed for UAE Sharjah University City [26]. This case
is considered because of the similarity in the travel behavior
found between these two counties (Gulf region countries).

The cumulative daily number of cars that use the parking
area at QU for 30 minutes is 14,005 vehicles, and the average
parking hours is approximately 2 hrs. The study assumes 20%
wasted time and space at the chargers. The idle time wasted
at the charging port can exceed 50% of the overall time [27].

The vehicle life span variable in the model means how
long (years) an individual’s vehicle is in use on campus.
Through logic knowledge, faculty members are available on
campus for longer years than students, and students may
be at campus for min 4 years and to 7 years. Accordingly,
an assumption of 6 years vehicle life span is set for students
and 10 years for the faculty, and this variable can be adjusted
through a survey in future work.

2) EV AND CHARGER TECHNICAL DATA (DATASET-B)
This data-set is related to EV technical data, including
range, battery size, and available charging rates. A survey on
passenger vehicle providers in Qatar that sell battery vehicles
in the Qatari market in 2020 shows only four vehicle makes.
Their median range is 518 km nearest to the Chevrolet Bolt,
and its technical specification is chosen in this study. The
general EV range is expected to reach 643 km in 2030 [46],
which is a 24% increase for Qatar from 518 km in 2020 to
643 km in 2030. The annual range increase will be 2.4%
for the coming 10 years. EV development increases with
the development of battery sizes in Europe [31]. There is a
rapid increase in the EV range between 2020 and 2025 from
350 km to 537 km, and then it starts to settle between 620 km
to 660 km in 2050 because the development of battery size
saturates at around 100-120 kWh [31]. For work charging,
the grid provider KAHRAMAA recommends the maximum
charging rates are 11 kW, 22kW, and 20-25 KW-DC with
16A, 32A, and 32A, respectively [32]. The study considers
22 kW chargers for validating the model results.

3) EV ADOPTION (DATASET-C)
There are two significant adoption rates in this study: general
adoption Radop and campus adoption R′adop. The model
obtains the final attraction amount in years and the value of
R′adop is based on that year (final attraction) and its value
from Radop plot. An energy transition report in [31], projects
passenger EVs in the Middle East and North Africa (MEA)
region to reach 10% by 2030, 40% by 2040, and 90% by

2050. In the Gulf region, United Arab Emirates, the Supreme
Council of Energy has set a 10%mandate on all new vehicles
to be green by 2030 [47]. Therefore, in this paper, we consider
50% adoption by 2050, taking into account the effect of the
COVID-19 pandemic on the oil prices, which will reduce the
attractiveness of adopting EVs [48].

The projection percentages for the campus EV adoption
are presented by the worldwide adoption-related by the
attraction factor. The attraction factor for faculty is −5 and
students is −7, without a significant difference because both
follow the country’s adoption rate at the beginning of the
simulation (the first year 2020) of campus EV adoption.
Faculty members would have a slightly higher attraction
because of the environmental awareness and their ability to
purchase at the beginning years of low adoption [49]. These
values are set by tuning the model to fit the country’s current
adoption percentage best. Furthermore, these variables can be
adjusted through a survey in future work.

The buying effect variable reflects how vehicle purchasing
in the gulf region is highly affected by others [50]. Especially
with the emerging social media platforms, these platforms
significantly affect the impact of automobile purchasing
decisions in the oil countries in the Middle East [51]. In the
model, the buyer effect from EV adoption is set to 10, and this
figure is assumed for the case study to reflect a high value, and
this value can be changed based on questionnaires.

4) BOUNDARIES AND CONSTRAINTS (DATASET-D)
EV charger expansion is constrained by the power system
infrastructure and available parking spots covered under
dataset-D. The charging capacity at the campus is limited to
available free power in the transformers at the QU distribution
system. QU is a 39-bus the voltage level at buses is 11KV
(±6%), the network is fed from the utility with 67 MW
through four transformers (40 MW each). A load flow
simulation obtains the free capacity (15,378 kW) dedicated
for the EV infrastructure project.

Another constraint is the available parking spots that limit
the number of chargers. The parking at QU can accommodate
6,116 vehicles. PV installation is constrained by area. Parking
areas and building rooftops are proposed for PV installation,
and the parking area per slot is 12 square meters [33].

5) EV ENERGY REQUIREMENT (DATASET-E)
The energy consumption of the vehicle Ev [kWh] depends
on the commute length traveled dc [km] in dataset-A, and is
calculated by equation (1) in Table 3. The vehicle’s efficiency
ηbat [km/kWh] is related to the EV’s technical data in dataset-
B, item (7) in Table 2. The charging demand per vehicle dv
in km is dependent on the distance the user drives per day
affected by EV range coefficient βrange, charging policies
ρpolicy and commute length dc. The policy affects the EV
user’s decision to charge on campus and thus the annual
demand, see equation (2). The total charging demand in kWh
on campus Et dependent on the number of EV’s connected
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TABLE 2. The independent input data and assumptions used in the model – base case.

simultaneously on campus Nv and their required charging
energy Ev (equation (3)).

6) NUMBER OF DESIRED CHARGERS (DATASET-E)
Number of desired chargers Nch is the number of chargers
required to cover the total charging energy on campus Et ,
by equation (4). This variable is dependent on the energy of a
single charger Ech that depends on the charger rate and hours
used from item (9) in Table 2.

The idle effect derates the total charging demand by
20% from item (10) in Table 2; see equation (5). The
charging mechanism is an essential factor in planning for EV
infrastructure. The peak power for EV charging depends on
the number of EVs charging simultaneously. The base case is

an uncontrolled charging setting with a charging time set to
one hour (1 hr.). In the study, the annual load for charging
considers 261 calendar days per year based on the QU’s
academic calendar [52].

7) NUMBER OF INSTALLED CHARGERS (DATASET-E)
The total installed chargers Nt on-campus for the ith year is
the net installation of chargers at year i, see equation (6). The
usage rate λ is the capacity factor of the EV charger usage in
equation (7).

8) SOLAR PV GENERATION (DATASET-F)
Dataset-F consists of the environment-related data such as
PV power generation and the emission count in the model.
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TABLE 3. The dependent data in the model.

The total generation of a PV array EAin kWh for a whole
year is calculated using the Peak Sun Hour (PSH) approach,
in equation (8). Where (PSH )i is the value PSH for day i,
and Po is the nominal array power under the standard test
conditions (STC) [53].

The capacity factor of commercial PV projects depends on
system configuration (fixed tilt or single-axis tracking angle)
and the installation location (irradiance level). In the USA, for
example, low irradiance areas have an average CF of 12.9%
(Seattle, WA), and in higher irradiance, the average CF is
19.5% (Daggett, CA). In the MENA region; Kuwait has an
average daily global irradiance of 5.319 kWh/m2, and the
capacity factor is 19.5 % [36]. Similar to Kuwait, the global
solar radiation inQatar is 5.5 kWh/m2, and therefore the same
CF is considered [34].

9) EMISSIONS (DATASET-F)
The Net emission (emisnet ) is the sum of emissions produced
from EV charging (emisch), emission reduced from EV
driving (emisd ), and emission reduced from PV generation
(emisPV ), in equation (10) of Table 3.

The consumed energy demand Ech from EV charging
indirectly burns fossil fuels resulting in carbon emission mea-
sured by an emission rate known as the grid emission factor
(EFgrid ), see equation (11). This factor is country-specific,
defined by the International Energy Agency (IEA). The
average grid emission factor in theWorld is 0.507tCO2/MWh
and in the Middle East is 0.678 tCO2/MWh, item (19) in
Table 2.

The Carbon dioxide CO2 is the global warming potential
considered 95% to 99% of the EV operating emission
counting for the carbon dioxide equivalent CO2-eq [54].
The average energy efficiency of light-duty ICE vehicles
between 2005 and 2018 is around 7.2 Liters of gasoline per
100 km [40]. Consequently, a gasoline vehicle emits 1.4 tons
of CO2 every driven km (EF ICE = 1.4 tCO2/km).
The advantage of battery electric vehicles is that no

emission is involved during EV operation compared to an
ICE, and this difference is called the driving carbon emission
saving (emisd ), equation (12) in Table 3.

Finally, adding renewable energy to the grid will indirectly
reduce the emissions produced from conventional power
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generating units. The emissions reduced by solar generation
(emisd ) depends on the grid emission factor EFgrid and the
solar energy generated EPV , see equation (13). In this study,
we investigate the role of PV power generation in reducing
the emissions from EV charging as a vital player in the future
charging infrastructure.

10) CHARGER INFRASTRUCTURE ECONOMICS (DATASET-G)
The factors considered in the economic evaluation of EV
charger infrastructure are: capital costs, installation costs,
maintenance and operation costs, and charging revenue.

Hardware costs will decline in the future at the rate of 3%
per year. [43]. Installation costs are a function of the number
of chargers per site, composed of labor, materials, permits,
taxes, and utility upgrades (material costs) [43]. Mainte-
nance and operation costs include electricity consumption,
electricity demand, network fees, maintenance, and station
management.

The source of investment in EV chargers is the energy
exchange price [55] which is the charger revenue. The
investment potential depends on the net present value (NPV)
assessment in equation (14). Where i is the interest rate and
pn is the net cash flow at year n, p0 is the capital expenditure
(CAPEX).

The main parameters determining the investment deci-
sion’s strength are the electricity resale price and the expected
energy selling prices at the EVSE [55]. Very few studies
consider the carbon credit as part of the economic analysis of
EV charging infrastructure. For instance, chargers powered
with 100% renewable energy could generate carbon credit
revenue of approximately $0.01 per kilowatt-hour sold [56].

Finally, the base case assumption is no charging fee
through the campus charging infrastructure as practiced in
some universities worldwide [41]. This study considers other
charging prices for policy analysis, see Table 4.

11) SOLAR PV ECONOMICS (DATASET-G)
The PV life cycle cost considers the initial costs, installation
and engineering of the PV plant, operation & maintenance,
equipment replacement, and salvage. There is an annual
decrease in the price of commercial PV, including CAPEX
and operation and maintenance (O&M) costs. The National
Renewable Energy Laboratory (NREL) projects the CAPEX
of commercial PV systems from 2020 to 2050 in [44]
and [45]. The projection of both O&M and CAPEX are
correlated, and their ratio is 0.7:100 based on historical
data [37].

The performance of the PV plant has an annual degradation
rate of less than 0.7%/yr. with no assumption of improve-
ment [37]. The PV plant degradation is linear 10% for the
first (10) years and 10% for the remaining 15 years. The
economic analysis considers the energy generated during
PV lifespan. All. Every payment which occurs in the future
Cf is at its present value using the present value multiplier P,
in equation (15).

TABLE 4. Case studies’ variables.

E. SCENARIOS
For planning and analyzing EV infrastructure, multiple case
studies are developed and combined for sensitivity analysis
and objective optimization. The variables of the base case
are in Table 2. The other cases consider changing the
variables included in Table 4. The flexible parameters in
the model include university power infrastructure, PV power
parameters, and energy policy. The investigated parameters
are EV adoption, energy demand, and costs of RE technology,
economic and environmental indicators. The model output
undergoes sensitivity analysis to relate the components of the
system and use the set of effecting variables into the multi-
stage optimization, in Figure 4

Optimizing for both NPV and adoption rate is based
on the chosen wight ratio to solve the multi-objective
optimization problem [53]. The solution will be the charging
rate, power network for EVCSs, NPV, net emissions and
adoption rate. The optimization method used is the Evolution
Optimization [54], [55] with the following parameters;
seed = 0, cr=0.2, population size = 20, generation = 40,
cross over type = bin, recombine type = rand.
The final outputs in the staging plan are the number of

chargers and corresponding installation years, the size of PV
projects, and the corresponding installation years.

IV. RESULTS & DISCUSSION
This section includes sensitivity analysis, model validation,
optimization results, staging plan, and behavior validation.

A. SENSITIVITY ANALYSIS & MODEL VALIDATION
Structure validity suggested originally by Forrester and Senge
in 1980 involves verifying the structure, parameters, extreme
conditions, boundaries, and model dimensions [55]. The
proposed system dynamic model structure is divided into the
substructures defined in Figure 3.

Each sub-structure is consistent with state-of-the-art mod-
els governed mathematically through logic knowledge by
the equations in Table 3. The dimensions correspond to real
systems and are consistent where each structure is relevant to
the descriptive knowledge found in the literature. The output
should follow a logical behavior for a valid model when
parameters are adjusted to their extremes.

The remaining of this section presents the simulations
results with a sensitivity study performed according to the
cases in Table 4. Further analysis is performed to see whether
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FIGURE 4. Proposed optimization of the planning framework.

adjusting parameters such as the policy for charging prices
is endogenous to the system, covered in the economic and
environment sensitivity analysis results.

1) EV ADOPTION WITH POWER NETWORK BOUNDARIES
The infrastructure cases Run1 to Run10 are (1, 12, 23, 34,
45, 56, 67, 78, 89, 100)% respectively. Limiting the installed
chargers on campus limits the allowed charging infrastructure

FIGURE 5. Limitation of charger installation affected by % of available
power capacity.

FIGURE 6. Installation chargers versus desired chargers.

even with the increasing requirement of charging, see
Figure 5 and Figure 6.

2) EV ADOPTION WITH CHARGING PRICES
The power network constraint affects how adoption changes
(increase or decrease) by limiting the installation of desired
chargers, discussed in the previous section. This section
investigates the effect of different charging rates on the
EV deployment, with the power infrastructure limit and the
charging rate cases in Table 4. The results in Figure 7 show
that EV deployment is at (65%) with no charging rate and
reduces as the charging rate increases. At a lower (10%)
infrastructure utilization case in Figure 8, a higher charging
rate from 0 to 0.047 USD/kWh increases the adoption
from 5.98% to 45%, respectively, then stars reducing. The
following sub-section investigates the charging price effect
on the economic study.

B. EV ADOPTION AND NET PRESENT VALUE WITH
CHARGING PRICE AND POWER INFRASTRUCTURE
The case studies for different charging prices and power
infrastructure from Table 4 are combined to construct a
combination of 60 scenarios in Figure 9. The parameters of
60 scenarios are inputs to the EV planning model to obtain
the adoption and NPV.
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TABLE 5. NPV (million USD) for different charging prices and PV size ratios, power infrastructure 100%.

FIGURE 7. Prices effect on adoption (100% infrastructure).

FIGURE 8. Prices effect on adoption (10% infrastructure).

Maximum NPV can reach 12.14 million USD at a
charging price of 0.047 USD/kWh, and 100% infras-
tructure and adoption is 56%, Figure 9 and Table 5
(No PV).

A multi-objective optimization solves optimum EV adop-
tion and NPV values with different charging rates and
infrastructure utilization percentages in sub-section B.

In Table 6, limiting the power infrastructure (10%)
constraint reduces the NPV where for the same case, the
NPV is 1.74 million USD, and adoption 45.28% Figure 8
(in orange).

FIGURE 9. Adoption and NPV with power infrastructure and charging
prices.

FIGURE 10. Net emission for different charging prices. Run1=0,
Run2=0.032, Run3=0.047, Run4=0.057, Run5=0.088,
Run6=0.13 USD/kWh (No PV).

C. EMISSION REDUCTION WITH EV AND PV
The environmental analysis starts with obtaining the effect
of decarbonizing the vehicles on campus as a percentage of
base case ICE vehicles emissions, Table 7. Next, emissions
are obtained for different cases such as commute distances,
charging prices, and infrastructure limits. Net cumulative
emission from EVs is lowest at low adoption and commute
distance because of the grid’s reduction in charging burden
(Figure 10).
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TABLE 6. NPV (million USD) for different charging prices and PV size ratios, power infrastructure 10%.

TABLE 7. Average emissions from campus ICE with different commute
distances.

At the base case with different charging prices, maximum
emission is approximately 4%, and it is lowest 0.07% at
0.13 USD/kWh (65 % and 17% adoption, respectively). Total
emission on campus from passenger vehicles will be the sum
emissions from ICE and EV.

Figure 11 shows the variation in EV net emissions with
solar PV installations. Negative values of net emissions mean
that the EV-PV project contributed to emission mitigation.
The cases at which this occurs are when PV sizes are
30% and above. The year for net-zero emissions is at
the project’s third year, and emission saving is very low
until EV uptake increases after 2037 (EV adoption effect).
In conclusion, the emission reduction depends on the
general EV adoption, charging rate, infrastructure limit, and
PV installation.

1) EFFECT OF POLICY ON ECONOMIC AND
ENVIRONMENTAL INDICATORS
Three variables present policy in this study: the electricity
rate, solar tariff, and charger incentives. The economic and
environmental indicators for the cases of different feed-in
tariffs, charging rates, power network limitation, and PV
sizes, as in Table 8.

At 100% infrastructure (case 8) to (case 5), the NPV
decreases from 17.8 to -1.78 million USD/kWh (unfeasible)
even with different PV installations. Increasing feed-in tariff
to 0.12 makes the project feasible; (case 5) changed to
(case1). At 10% infrastructure and 15% solar, increasing
the charging rate (case 8) to (case 5) increases NPV to
3.48 million USD then decreases it to 2.83 million USD.
In this case, adding solar PV can make the EV-PV project

FIGURE 11. Net emission from EV charging as a percentage of bases
cases (ICE vehicles) at different PV sizes, No charging rate. Run1=0,
Run2=10m Run3=15, Run4=30, Run5=50, and Run6=100%.

profitable at the same feed-in tariff. Changing the project to
feasible can be done by increasing the feed-in tariff and solar-
PV and sometimes the charging rate depending on the power
infrastructure limit.

The results in Table 8 show that the EV net emission
project with 15% PV does not reach net zero. Cases with low
charging rates have higher emissions than cases with higher
rates (lower adoption). Increasing NPV by reducing the
charging price for EV-PV projects increases EV adoption and
charging emissions. In conclusion, achieving an economic
goal has an undesired environmental impact.

For EV-PV planning, the optimum EV infrastructure size
and PV size depend on the economic and environmental
goals, and policy choices affect these goals. Therefore,
the following section solves a multi-stage multi-objective
optimization to find the EV-PV staging plan and design
parameters.

D. OPTIMIZATION RESULTS OF ECONOMIC AND
ENVIRONMENTAL GOALS
The previous cases cover only limited scenarios and are not
enough to find the optimum solution for combined targets
such as the economic and environmental goals. In this section,
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TABLE 8. Effect of policy on the economic and environmental analysis with solar PV.

the cases increase to cover more data: network utilization
percentage from 1 to 100 with step size 1, and charging prices
0 to 0.13 with step size 0.001.

1) MAXIMIZE EV ADOPTION
The variables in this simulation are charging prices and
power infrastructure to find optimum charging price for
maximum EV adoption. The maximum adoption is 66.6%,
in Figure 12, when the infrastructure limit is 100%, and
the charging price is 0.001 USD/kWh. The solutions are
almost similar to the exact solution (zero charging rate
and 65.6% adoption) from the sensitivity study in Figure 9
(NPV = −0.08).

2) MAXIMIZE NPV
The variables in this simulation are charging prices and
power infrastructure results in Table 5. In Figure 13, when
the infrastructure limit is 100% and the charging price is
0.057 USD/kWh, the maximumNPV is 13.313 million USD,
and the result is validated in Table 5.

FIGURE 12. Optimizing over electric vehicle adoption (%).

3) MAXIMIZE EV ADOPTION AND NPV
The variables included in this simulation are the charging
prices and power network constraints. This simulation solves
two objectives in a multi-objective optimization problem and
the NPV adoption weights of each objective are in Table 9.

This situation; (case A) assumes that the electricity bill of
chargers is not considered and is paid off by an incentive from
the grid provider. When the campus goal is to deploy EVs,
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TABLE 9. Optimization of EV adoption and net present value for (Case A: with charging incentives).

TABLE 10. Optimization of EV adoption and net present value for (Case B: no charging incentives).

FIGURE 13. Optimizing over net present value (million USD).

the weight of EV adoption is high but not be higher than the
NPV for investment attraction and vice versa. The maximum
values from the previous optimization results are base values
to normalize the NPV and EV adoption to a percentage of
their maximums.

With objective payoff weights (0.8 for EV adoption)
and (0.2 for NPV): the multi-objective solution is 100%
infrastructure and 0.033 USD/kWh; the maximized objective
is 90.59, in Table 9. With objective payoff weights (0.4 for
EV adoption) and (0.6 for NPV): The solution is 100%
infrastructure and 0.048 USD/kWh, and the maximized
objective is 92.4882. A similar solution is when the
adoption and NPV are equally important (wights are 0.5),
Table 9.

Finally, the best economic solution is case 6, 0.057
USD/kWh when payoff weights are (0.2 for EV adoption)
and (0.8 for NPV), in Table 9.

4) MAXIMIZE NPV AND EV ADOPTION WITH POLICY
CONSIDERATION
The previous studies cover (case A) with charging incentives.
Scenarios under (case B) consider no incentives, and the
charging burden is on the campus. For the cases without solar
PV, results for maximum adoption and NPV for different
charging prices and infrastructure are in Table 10. Most of
the results are in negative values (not feasible projects).

(Case B) becomes feasible (NPV=0.677 million USD,
adoption rate = 29.9%) at a high charging rate of 0.107
USD/kWh and 36% power limit when (adoption weight
w1 = 0).
While in (case 6), the optimum charging rate reduces

to 0.098 USD/kWh for a higher adoption (w1 > 0)
adoption=35%, NPV=0.471 million USD, and 48% power
limit when (Adoption weight w1 = 0.2). The infrastructure
limit increased with a higher adoption while NPV reduced
when increasing the adoption objective. The optimum
network size depends on the required set policies, such as the
tradeoff between the adoption and economic goals.

5) MAXIMIZE FOR NPV WITH SOLAR PV%
This section optimizes NPV for solar size and power network
percentage, with different charging rates, see Table 11.
First, the maximum NPV for (case A-1) is 119.58 million
USD. Previously in Table 5, increasing the charging rate to
0.047 USD/kWh increased the NPV. But for the case with
solar PV, as the charging rate increases, the NPV is reduced,
and consequently, the recommended charging infrastructure
reduces indirectly. For instance, (case A-1 to A-3) show
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TABLE 11. Economic goal optimum PV size and power infrastructure for each charging rate.

infrastructure reduction from 100% to 69%, and NPV from
119.58 USD to 29.013 USD. The reduction is due to the
decrease in the adoption, and therefore forecasted charging
demand is reduced. However, the NPV is not affected by
the infrastructure size with higher solar tariffs and can
accommodate a more extensive power limit as in CaseA-10
86% power infrastructure and NPV=72.57 USD.

Second, for (case B), solar PV always benefits the EV
project because of the PV power generation revenue that
reduces the charging bills. For instance, in (case5) of
Table 11, the optimum PV and charging infrastructure sizes
are 0% PV and 60% power (case A). It means the EV project
does not need a solar project to increase its revenue. However,
with no incentives (case B), a 100% PV will always benefit
the EV-PV project because of the solar tariff.

E. SIMULATION & COMPARISON ANALYSIS
The proposed tool is a system-dynamic model that can obtain
the estimated EV adoption rate based on the selected policy
and solves the optimum EV plan for maximum economic and
environmental benefit. The other way around is that themodel
analyzes the effect of policy on the existing EV infrastructure
plan. Economic and environmental indices are the validating
measures to compare the case studies defined in Table 12.

First, the solution plan is obtained as the annual chargers
per year Figure 14, and cumulative chargers installed
Figure 15, annual solar PV installation in Figure 16, and
cumulative solar installation to the year 2050 Figure 17.

In Run1 and Run2, the power infrastructure limit 55% and
39% limited the net chargers to 385 and 273, respectively.
At the same time, the number of chargers can reach 699 for
the case study at 100% infrastructure in Run3 and Run4.

TABLE 12. Cases input to the proposed tool (model).

FIGURE 14. Annual charger installation.

The power infrastructure available for EV charging on QU
campus is 15,378 kW.

For the results obtained by the proposed model, the total
EV adoption on the QU campus case study is plotted in Figure
18. For the comparative cases (1 to 4), adoption is 53.6%,
52.7%, 65.6% and 65.6% respectively. Similarly, the number
of EV users for cases (1 to 4) are 7.25k, 7.13k, 8.89k, 8.89k,
respectively. The chargers reach a maximum at the year 2039
(699 chargers) for 2.39k users, Figure 15, and the charger to
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FIGURE 15. Cumulative installed chargers on campus.

FIGURE 16. Annual solar PV installation.

FIGURE 17. Commutative installed solar PV projects.

EV ratio is 1 to 10. A charger in this study has 22 kW that can
charge 3 vehicles considering a single-vehicle user’s average
charging as (6.6 kW), and consequently, 699 chargers serve
2,097 charging sessions per hour.

Finally, the staging plan obtains the number of chargers and
solar sizes to be installed at years n. The initial costs for the
annual installation of the EVCSs and PV solar installations
for every year n, are in Figure 19 and Figure 20, respectively.
The total NPV of the cases (1 to 4) for 30 years is 23.78,
12.62, 119.58, and 83.16, respectively, see Table 11.

FIGURE 18. Estimated electric vehicle adoption at QU campus.

FIGURE 19. Initial costs EV infrastructure staging plan – case study QU
campus.

Cases without charging incentives have lower NPV even
if solar PV is installed at 1:1 ratio with EV infrastructure
(PV=100%). The cases of 100% infrastructure and 100% PV
(no charging rate) have high initial costs exceeding 3 million
(Run3 and Run4). The choice to limit the annual budget is
kept for future work, which can be added to the EVI-PAT
dynamic model. Reducing the annual budgeting results with
reducing the NPV as in Run1 and Run2 compared with Run3
and Run4.

1) BEHAVIOR VALIDATION
Behavior validity assesses how themodel-generated behavior
mimics the observed behavior of the real system to achieve
the overall validity of the model or to build confidence
in the model [57]. The methodology includes finding the
overall behavior similarity in the output shape such as growth,
oscillation or specific patterns such as in inflection points,
periods.

Real-life campus charging infrastructure installations
at The University of Massachusetts (UMass) Medical
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FIGURE 20. Initial costs for solar projects associated with EV
infrastructure staging plan – case study QU campus.

School [58], [59] is plotted in Figure 21 and Figure 22.
A plot of the number of charging ports installed versus the
installation year Figure 21. In 2021, the total number of
chargers is 44, 77 charging spaces (ports), and the number of
unique users is more than 50 users, see Figure 22. The average
power drawn per port is 6.6 kW. All stations are set up to be
able to draw voltage from a range of 208-24, and can draw up
to 30 A. There are 80% level 2, 13% level 1, and 7% DC fast
chargers on campus.

For the proposed model’s output, the cumulative charger
installation pattern in Figure 15 is compared with the real-
life situation in Figure 22. The results mimic real-life
campus infrastructure at the University of Massachusetts
Amherst [60] and [61]. The plots show similarities in the
overall S-shape-growth behavior.

F. POLICIES SUPPORTING SOLAR CHARGING
This section discusses the policies supporting solar power
generation for EV charging that promote EV adoption and
maximize EV and PV synergies. Policies related to PV
alone aim to reduce the financial burden to encourage PV
projects into the electricity generation market and facilitate
integration. The current policies related to PV include tax
incentives, feed-in tariffs, Levelized cost of energy (LCOE),
and subsidies [62]. PV-related policies are different between
regions, which in return will require PV projects to undergo
planning studies.

Realizing PV infrastructure combined with EV chargers
is an advantage to reduce CO2 emissions substantially.
A dedicated task by the International Energy Agency
(IEA), namely subtask 2 of Task 17, includes analyzing
the performance of PV-powered charging stations (PVCS)
projects [63]. One of the recommendations from this task
is to perform technical and economic optimization of the
PVCS projects under the local site condition over the entire
lifespan of the PV. Furthermore, the IEA report recommends

FIGURE 21. Annual ports at massachusetts medical school.

FIGURE 22. Cumulative number of ports on campus at
massachusetts (UMass) medical school.

developing new methodologies and tools for optimizing the
PV infrastructure for EV charging [64].

In a recent study by National Renewable Energy Labo-
ratory (NREL), the scope evaluates the utility cost savings
considering the net-metering policy at EV chargers with grid-
connected PV [65]. They recommend reducing the PV and
storage sizes proportionally when the number of EV chargers
is reduced from 6 to 3 in a grid-case scenario (for the case
study). Also, adding PV to EV load alone (no building load)
is not as beneficial as adding the building load to the overall
study.

To realize EV/PV synergy, investigating the correct charg-
ing prices and feed-in tariffs for a particular region is crucial
for a profitable project. An efficient EV/PV synergy requires
certain levels of EV and PV in the system for the same
region [66]. On the other hand, virtual net-metering allows
EVCS to benefit from off-site solar rooftop photovoltaic
(SRTPV) [67]. It means that the energy generated in a
community can offset the energy consumption of an EVCS
at another site. The EVCS has ownership shares of the
STRPV but cannot accommodate the space required for PV
installation on-site.
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Workplace charging initiatives include funding, free charg-
ing, and charger price reduction, which is very helpful in
EV uptake [68]. Combining work charging with solar causes
dips in daytime power and high peaks during night [69].
The smart charging policy allows for flexibility charging
(peak reduction/load shifting) to adopt both the power system
conditions and the vehicle user’s needs. One of the smart
charging policy objectives is to harness renewable energy
while scheduling EV charging [70]. It involves shifting the
charging load to specific times during the day such as during
high solar energy generation. In other words, smart charging
is the core solution to maximize the benefit of solar PV at EV
charging points.

In order to meet smart charging policies, further modifi-
cations and requirements should be placed on EV chargers’
stakeholders, including charging infrastructure operators,
electricity aggregators, and electricity suppliers, and such
requirements can include:

1) Smart meters requirement to allow sending and receiv-
ing information.

2) Mandate smart charging on new EV chargers.
3) Smart functionality includes the ability to increase/

decrease charging rate and change charging times and
duration.

4) Mandate monitoring system requirement on chargers to
calculate exported and imported electricity to allow for
bi-directional flow.

5) Chargers’ internet of things (IoT) devices must include
cyber security as a minimum requirement to protect
against cyber-attacks.

V. CONCLUSION
This paper proposes a model that combines optimization
with system-dynamics for EV infrastructure planning and
analysis of micro-scale projects. The model is validated
with historical data for EV installation on campuses to
illustrate how the model results are practical. The output of
the tool is the sizes and installation times for EV chargers
and solar PV infrastructure. The staging plan is evaluated
with a case study Qatar University, and the evaluation
is done through comparative plots of the economic and
environmental indicators for different staging plans.

The feasibility of EV infrastructure project depends
indirectly on the EV adoption rate of the country. The
charging rate can affect EV adoption where the optimum
case is when the charging rate is almost zero with available
charging incentives and no solar PV. For this case, the project
is not feasible; therefore, installing solar PV is recommended.

Depending on the charging rate, EV-PV project sizes and
years of installations can be chosen using the proposed
method with the economic and environmental assessments.
The economic optimization of the solar size and power
network limit % for the EV-PV infrastructure project is
highly dependent on policy. The recommendation is that if
the EV chargers have no charging rate, the optimum PV
size is 100%, and increasing the charging rate will reduce
the NPV by indirectly reducing the adoption. In this case,

increasing the solar tariff will increase the NPV where
the optimum values can be defined using the proposed
model. When there is no charger incentives policy for
universities, the recommendation is 100% PV installation
with smaller charging infrastructure (at an optimum size) to
reduce the charging burden and benefit the EV-PV project by
maximizing the NPV.

Thus, the model allows for policy analysis where policies
can affect the optimum limit of power infrastructure for
maximum economic benefit by the solar tariff. A project with
a lower solar tariff requires limiting the power infrastructure
as the adoption attraction reduces and vice versa. Solar PV is
not always feasible with EV, depending on the charging rate,
charging incentive, and power infrastructure limit constraint.

Finally, the proposed planning framework finds the
optimum staging plan for EV and PV based on predefined
policy choices. However, the EV infrastructure will be
based on highly uncertain and dynamic polices, and existing
approaches cannot perform well in the future. As a result,
in the future, we aim to research the novel concept of
deep learning (DL) to find more accurate and realistic PV
forecasting to optimally balance the performance.
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