
Journal of Parallel and Distributed Computing 156 (2021) 119–130

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Hadoop Perfect File: A fast and memory-efficient metadata access

archive file to face small files problem in HDFS

Yanlong Zhai a,∗, Jude Tchaye-Kondi b,∗, Kwei-Jay Lin c, Liehuang Zhu a, Wenjun Tao b,
Xiaojiang Du d, Mohsen Guizani e

a School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100081, China
b School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
c Department of Electrical Engineering and Computer Science, University of California, Irvine 92697, CA, USA
d Department of Computer and Information Sciences, Temple University, Philadelphia, USA
e Department of Computer Science and Engineering, Qatar University, Qatar

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 September 2020
Received in revised form 7 April 2021
Accepted 26 May 2021
Available online 6 June 2021

Keywords:
Distributed file system
Massive small files
Fast access
HDFS

HDFS faces several issues when it comes to handling a large number of small files. These issues are well
addressed by archive systems, which combine small files into larger ones. They use index files to hold
relevant information for retrieving a small file content from the big archive file. However, existing archive-
based solutions require significant overheads when retrieving a file content since additional processing
and I/Os are needed to acquire the retrieval information before accessing the actual file content, therefore,
deteriorating the access efficiency. This paper presents a new archive file named Hadoop Perfect File
(HPF). HPF minimizes access overheads by directly accessing metadata from the part of the index file
containing the information. It consequently reduces the additional processing and I/Os needed and
improves the access efficiency from archive files. Our index system uses two hash functions. Metadata
records are distributed across index files using a dynamic hash function. We further build an order-
preserving perfect hash function that memorizes the position of a small file’s metadata record within the
index file.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The main purpose of Hadoop [32] is for efficient and swift stor-
age and processing of big data. Hadoop’s File System (HDFS) [32]
uses a master-slave architecture (see Fig. 1) based on GFS [17] to
store and access data. The entire HDFS is managed by a single
server called the NameNode (NN) as the master and files content
stored on DataNodes (DNs) as slaves. By default, each HDFS data
block size is 128 MB but configurable according to the desired I/O
performance. To store a big file, Hadoop splits it into many data
blocks and stores them in different DNs. With Hadoop’s built-in
replication system, each data block is replicated on several DNs
(3 by default) to avoid data loss in case of a DN failure. HDFS is
very efficient when storing and processing large data files. But for
a large number of small files, HDFS faces the small file problem.
Social networks, e-commerce, digital libraries, healthcare, meteo-
rology, and satellite imagery are only a few examples of applica-

* Corresponding authors.
E-mail addresses: ylzhai@bit.edu.cn (Y. Zhai), tchaye59@gmail.con

(J. Tchaye-Kondi).
https://doi.org/10.1016/j.jpdc.2021.05.011
0743-7315/© 2021 Elsevier Inc. All rights reserved.
tions that produce large amount of data but in the form of small
files. Typically, applications deployed on a server generate many
log files. Depending on its configuration, an application can gener-
ate a log file per hour or daily. Regardless of the size of a website,
log analysis can give direct answers to problems encountered on
websites. Log analysis is useful for performing SEO audits, debug-
ging optimization issues, monitor the health of a website and its
natural referencing. Such data files are often small in size, ranging
from some KB to several MB, but very important for data analysis.

There is no effective DFS (Distributed File System) that works
well for massive small files. Massive small files generate a lot of
metadata in HDFS, and since the NN holds all of its metadata in
memory, this may cause it to run out of memory and hurt its per-
formance. Other issues caused by massive small files, in addition
to NN’s memory overload, include:

1. Long storage time: In our experiment, uploading 400,000 files
with sizes ranging from 1 KB to 10 MB to HDFS took up to 11
hours.

2. Bad processing performance: Processing a large number of
small files requires MapReduce [11] (HDFS processing frame-

https://doi.org/10.1016/j.jpdc.2021.05.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.05.011&domain=pdf
mailto:ylzhai@bit.edu.cn
mailto:tchaye59@gmail.con
https://doi.org/10.1016/j.jpdc.2021.05.011

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
Fig. 1. NameNode stores metadata in memory while DataNode stores the actual con-
tent on hard disks. Before performing any file reading or writing operations, the
client requests metadata from NameNode and obtains DataNodes locations.

work) to perform several reads and writes across different
nodes in a cluster, which takes much longer than reading or
writing a single large file.

3. NameNode performance: When several clients attempt to ac-
cess files at the same time, it hurts the NN resources.

To overcome the small file problem, Hadoop provides archiving
systems such as HAR file [18], SequenceFile [36], and MapFile (see
Fig. 2). These solutions work by combining multiple small files
into large files, in the same way, reducing the amount of meta-
data required by the NN to represent them. The problem with such
archive files is that as a side effect, the access performance of small
files located inside the large ones can become very slow consid-
ering that their metadata previously maintained in NN memory
to ensure fast access is now dump in some index files stored as
regular HDFS files. We identified three access mechanisms after
analyzing file access in HAR, SequenceFile, and MapFile:

• The simplest case is when the archive uses a single index file.
First, all files’ metadata from the index file are loaded back in
memory (usually at the client-side). We then search for the
metadata of the file we are looking for (position in the big
file, file size, etc.). After that, we will have all the required
information to recover the file’s content from the merged file
(e.g. MapFile).

• When the archive uses several index files, it may be necessary
to load them back into memory before retrieving metadata
and recovering a file’s content. This is the case of the HAR
file that uses two index files.

• The worst-case situation is when the archive file does not
use any index file. This archive type generally requires read-
ing the large file from the beginning to the end until finding
the searched file (e.g. SequenceFile).

As observable, provided solutions have extra I/Os and processing
during access which deteriorates their access efficiency. Caching
and prefetching strategies, which consist of keeping all or part of
the metadata in client memory, are used to mitigate this situation;
however, unlike NN and DN servers, client memory size can be
limited and less secure.

In this paper, we present Hadoop Perfect File (HPF), a new de-
sign of index-based archive file. HPF, like other archives, merges
several small files into large ones; however, unlike other solutions,
HPF has less overhead during access and is designed for clusters
with high frequent access. Our proposed solution can directly ac-
cess file metadata within the index file, which mean rather than
loading the whole index files in memory and search for metadata
as done so far, HPF only loads useful information to recover the
file’s content by only looking at the part of the index file contain-
120
ing it. As a result, HPF uses fewer I/Os and processing overheads
during access. With the help of a perfect hash function in its index
system, HPF can compute for any file present in its merged files
the exact offset and limit of where to read the metadata within its
index file. When the offset and limit are known, a simple seek op-
eration in the index file is used to move the reader to the offset
position before reading the metadata information. In HDFS, seeking
to random positions of a file that have its blocks across different
DNs can have some additional network cost. To avoid this cost, we
make sure that each of our index files is stored on a single DN and
occupies at maximum a single HDFS block. This is why we use the
extendible hashing and split the small files’ metadata into several
limited-size index files. Finally, unlike HAR files, HPF allows the
client to add more small files after the archive file has been cre-
ated, and unlike MapFile, HPF does not require the client to order
the files before creating the archive file or adding new files.

The rest of the paper is structured as follows. Section 2 reviews
related work. Section 3 presents the design of HPF. In Section 4
we investigate some issues of our implementation. Section 5 evalu-
ates the performance of our HPF implementation against the native
HDFS, HAR file, MapFile, LHF, and analyzes experimental results. Fi-
nally, the paper is concluded in Section 6.

2. Related work

In this section, we discuss existing threats against small files’
problems in HDFS. We present a brief summary of research efforts,
their methodology, and weaknesses.

Big Data is not only about the Hadoop ecosystem. Massive Par-
allel Processing (MPP) [5] was also widely used before Hadoop
and is becoming less popular. Hadoop is young but widely pre-
ferred over MPP by companies due to its maturity, commodity,
and free nature. The small file problem in HDFS is because the NN
keeps metadata in the memory. Each folder, file, and block gen-
erate metadata. In general, a file’s metadata takes up about 250
bytes of memory. For each block with 3 default replicas, its meta-
data can consume about 368 bytes. Suppose 24 million files are in
HDFS. The NN will require 16 GB of memory for storing metadata
[31]. Early works on handling small files in HDFS can be classified
into three main classes.

2.1. Combining small files into large files

The first class of solutions consists of combining several small
files into one large file. By doing so, only the metadata of the large
file is needed in NN’s memory. Combining small files efficiently
reduces the NN’s memory overheads and is the main concept be-
hind HDFS’s default archive files: HAR file, SequenceFile, MapFile.
HAR [18] file is an archive file that holds metadata through two
index files: _index and _masterindex. As shown by Fig. 2 the small
files’ content is stored in large part-* files. The weakness of HAR
files is that they are immutable. Once created, it is not possible to
modify their content and add more files. This functionality is nec-
essary when files are generated continuously. Furthermore, HAR
offers relatively poor access performance.

Hadoop first proposed the SequenceFile to solve the binary log
problem [36]. In this format, the data is recorded as a sequence
of key-value pairs (see Fig. 2). The well-known limitation of Se-
quenceFile is that when searching for a file, it needs to traverse
the pairs one by one. That has the worst-case complexity of O(n).
To overcome SequenceFile limitation, MapFile was proposed. Map-
File is a sorted SequenceFile with an index to permit lookups by
key (see Fig. 2). The pairs in MapFile are sorted by the key (name)
and MapFile used binary search during lookup to bring down the
complexity to O (logn). The fact that MapFile sorts keys to allows

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
Fig. 2. The HAR file is actually a folder in which files’ content is located into large
part-* files, and the metadata in the _masterindex and _index files. The Sequence
file stores data as a sequence of key-value pairs which doesn’t support arbitrary file
access. The MapFile is a folder with two sequence files storing respectively files’
content and their metadata.

fast lookup is also its weakness, because, once the archive is cre-
ated, it is not possible to add files with arbitrary names. Hadoop’s
default solutions are limited. Some offer poor access efficiency,
while others make adding new files difficult or impossible. Many
researches addressed the small files issue in HDFS by proposing
new designs and solutions. Tong Zheng et al. introduced a method
for storing file metadata in the HBase database [39]. They further
used prefetching based on access log analysis and cached meta-
data of regularly accessed files in the client’s memory. Unlike HAR,
NHAR [35] (New HAR) merges small files into large ones and dis-
tributes their metadata in a fixed number of index files using
hashing. NHAR and the HAR still suffer from the slowness during
the archive creations since they require a prior upload of the small
files to HDFS. Kyoungsoo Bok et al. proposed a distributed caching
scheme to efficiently access small files in HDFS [8]. Bo Dong et al.
developed a novel method for improving the efficiency of storing
and accessing small files on HDFS in the BlueSky system [12] (one
of the most widely used eLearning resources sharing systems in
China). In their solution, all correlated PPT files are merged into a
larger file. They also introduced a two-level prefetching mechanism
to improve access efficiency. OMSS (Optimized MapFile based Stor-
age of Small files) [30] was proposed to merge files based on the
worst fit strategy. The strategy helps in reducing internal fragmen-
tation in data blocks hence leads to fewer data block consumption.
TLB-MapFile [25] is designed base on MapFile to provide more ac-
cess efficiency. TLB-MapFile adds a fast table structure (TLB) in
DataNode to improve retrieval efficiency by mapping information
between data blocks and small files. Since OMSS and TLB-MapFile
are MapFile-based, they require sorted keys, therefore, not opti-
mize for random file add and access. Some suggested solutions
include altering HDFS by adding hardware to speed up small file
processing or letting HDFS automatically combine small files be-
fore storage. Peng et al. proposed the Small Hadoop Distributed
File System (SHDFS) [28], which is based on the original HDFS
but includes a merging and caching module. The merging module
employs a correlated files model to identify and merge correlated
files using user-based collaborative filtering. A Log-linear model is
used in the caching module to find out frequently accessed hot-
spot data. They then create a special memory subsystem to cache
these hot-spot data and improve access. To solve the small file
problem, Hou et al. suggest using additional hardware called SFS
[20] (Small File Server) between clients and HDFS. Their solution
includes a file merging algorithm based on temporal continuity, an
index structure to retrieve small files, and a prefetching mecha-
nism to improve file reading and writing. Some of these archiving
systems, such as LHF [34], DQSF [21], [19], [9], before merging the
files classify them or rely on some distributions criteria that help
to optimize the storage or access efficiency. In case the proposed
121
solution is built on top HDFS, it is easy to migrate to the latest
version of HDFS. It is not desirable when a solution modifies HDFS,
because it makes maintenance and upgrades challenging and costly
for companies.

2.2. Special DFS for small files

The second class consists of building DFS specialized only in
the processing of small files. As example we can cite Taobao’s
TFS [1], Facebook’s Haystack [6], Twitter’s Cassandra [24]. Face-
book must process over a million images per second. To ensure
a good user experience, Facebook sets up its Haystack architecture.
In this architecture, users’ pictures are combined in big files, and
their metadata for retrieval is stored in index files. The Haystack
maintains all the images’ metadata main memory in order to min-
imize the number of disk operations to the only one necessary for
reading the file content. Taobao, one of China’s largest online mar-
ketplaces, also has to deal with small file issues. Taobao generates
about 28.6 billion photos with average size of 17.45 KB [15]. To
provide high availability, reliability, and performance, Taobao cre-
ates TFS (Taobao File System) [1], a distributed file system designed
for small files less than 1 MB in size. TFS is based on IFLATLFS [15]
a Flat Lightweight File System and is similar to GFS. Unlike other
file systems IFLATLFS aims to reduce the metadata size needed to
manage files to a very small size to maintain them all in memory.

2.3. Better processing framework

The third class of solutions concentrates only on building a bet-
ter accessing and processing framework for small files. Priyanka et
al. have designed a CombineFileInputFormat to improve small file
processing using MapReduce framework [29]. A map task takes as
input a split that is a block of data. For small files, as the file size is
smaller than the block size, the map task receives a small amount
of input data. To solve this issue, the CombineFileInputFormat com-
bines several small files into big splits before providing them as
input to the map task. This approach has then been improved by
Chang Choi et al. in [10]. They integrate the CombineFileInput-
Format and the reuse feature of the Java Virtual Machine (JVM).
This integration allows reusing a JVM to run multiple mappers. In
[27][22] researchers have attempted to modify the OS file system
to improve access efficiency. [27] designed the stuffed inode for
small files that embeds the content of small files in the inodes’
metadata in a variant of HDFS with distributed metadata called
HopsFS [26]. [22] modified both the in-memory and on-disk inode
structure of the existing filesystem and were able to dramatically
reduce the amount of write and access I/Os.

2.4. Comparison

Together these earlier studies provide valuable insights to the
small file problem. However, none of them seems to satisfy all the
requirements to be used as the only solution for big data storage
systems including both small files and big files. The perfect solu-
tion should comply with the following characteristics: a short build
time, generates less metadata for the NN, and provides fast file ac-
cess. Combining small files into large files effectively reduces the
NN memory consumption, but at the same time, it badly deteri-
orates the file access performance since some extra IO operations
are required to retrieve metadata. Specialized DFS for small files
does not work very well or does not support large files. Only im-
proving the small file processing framework or underlining file
system brings no advance to the NN memory overload. As sum-
marized in Table 1, the detailed comparison of HPF with some ex-
isting solutions shows that HPF gives the best access performance.
Our work focused on designing a storage solution that reduces the

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130

Table 1
Comparison of solutions to small files problem.

Paper Name/Feature Type NameNode
Memory usage

Support Append Use extra
System

HDFS pre-upload
required

Creation
Overhead

Reading
Efficiency

HDFS DFS Very High Yes – Yes Very High High
HAR Archive&Index Based Low No No Yes Very High Low
MapFile Archive&Index Based Very Low For special keys No No Moderate High(O(logn))
SequenceFile Archive Based Very Low Yes No No Low Low(O(n))
BlueSky [12] Archive&Index Based Low Yes No No High High
T. Zheng et al. [39] Archive&HBase Based Low Yes Yes No High High
NHAR [35] Archive&Index Based Low Yes No Yes High High
OMSS [30], TLB-MapFile [25] MapFile Based Very Low For special keys No No Moderate High
SHDFS [28] Archive&Index Based Low Yes Yes No High High
SFS [20] Archive&Index Based Low Yes Yes No High High
LHF [34] Archive&Index Based Low Yes No No Moderate High
DQSF [21], He [19], Cai [9],

Kyoungsoo [8]
Archive&Index Based Low Yes No No High High

HPF Archive&Index Based Low Yes No No Moderate Very High(O(1))

Fig. 3. During merging, the client’s device concurrently appends small files to large part-* files located on HDFS. To build the index files, extendible hashing splits metadata
into buckets, and the MMPH memorizes the records writing order within the index file.
NN memory load and still allows good access performance. HPF is
built on top of HDFS and doesn’t require any modification of this
one. In the meantime, HPF supports file append functionality with
little cost and allows HDFS to be very efficient with small files and
large files.

3. HPF design

HPF is a new index-based archive file proposed as a solution
to Hadoop’s small file problem. Our goal is to make metadata
queries faster with fewer I/Os, memory, and processing overheads.
Besides, HPF supports HDFS’s new file appending functionality as
well as file-level compression. The most important feature of HPF
is its direct metadata access ability within index files. This fea-
ture prevents HPF from loading the whole index files in memory
for just retrieving a single file’s metadata information, which is
the main cause of slowness during accesses. This feature also en-
ables constant-time metadata lookup, and improves the processing
and accessing efficiency of small files. HPF has been redesigned
from scratch and is different from LHF that we suggested in [34].
Unlike HPF, LHF does not support compression, direct access to
metadata, and parallel files merging during creation.

The HPF file creation, as displayed in Fig. 3, consists of four
steps:
122
1. The merging step: Concurrently, the client merges small files
to make larger part-* files and collects the needed information
to retrieve each file’s content, which we refer to as meta-
data record. It is implemented using multiple threads, each of
which operates on a single part-* file.

2. Buckets creation: When the merging process is completed, the
metadata records are arranged into buckets using extendible
hashing.

3. Order memorization: An order-preserving minimal perfect
hash function (OPMPHF) memorizes for each bucket the order
in which metadata records will be written in the correspond-
ing index file.

4. Writing to index file: Finally, the metadata records and the
OPMPHF are written into the corresponding index file with the
OPMPHF first, followed by metadata records.

The final result of the HPF file creation is a folder (see Fig. 4)
containing index-* files (index-0, index-1, etc.), part-* files (part-0,
part-1, etc.), and one _names file. The index-* files contain all nec-
essary information to retrieve a file’s content except its full name.
For the sake of making each metadata record fixed size within the
index file, we move file names that cannot have fixed size to the
_names files. The _names file is there only for listing purposes and

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
Fig. 4. Transformation to HPF folder.

only stores files’ names, while the part-* files hold the actual file
content.

3.1. File merging process

Fig. 3’s first block illustrates HPF’s merging step At this stage,
small files are combined into large part-* files that have the ef-
fect of reducing the metadata size needed by the NN to represent
them. Merging is performed in parallel by several threads, with
each thread appending data to just one part file. HPF uses two
threads by default, and starts by creating two empty files (part-
0 and part-1). The first thread appends files to the part-0, while
the second appends them to the part-1. To append a file, we first
load its content into memory, compress it if compression is en-
abled, then transfer the content from the client device to HDFS
and append it to a part file. After appending, we retrieve all the
needed information to recover the appended content referred to
as metadata record. Our experimental HPF prototype uses the LZ4
[16] compression algorithm, which is incredibly fast and able to
achieve a compression rate of more than 500 MB/s per core and a
decompression rate of multiple GB/s per core.

Before building the index files, our system needs the merging
process to fully complete in order to be in possession of all meta-
data records. Furthermore, just keeping these records in memory
while waiting for the merging to complete is not secure because if
the merging fails due to possible network errors, we will have to
restart everything. To avoid that, metadata records are temporarily
stored in a temporary index file (_temporaryIndex). When a file is
appended to a part file, its metadata is also appended to the tem-
porary index file as well. Therefore, the temporary index file holds
metadata records during the entire merging process and is also
used to ensure recovery in case of failures. When all small files are
merged, the merging stops, and the index file creation step dis-
cussed in the section below, starts.

3.2. Index files building process

The metadata of each file has a fixed size and contains the fol-
lowing information:

• File name hash: A unique integer derived by submitting the
file name to the hash function. This hash value uniquely iden-
tifies a small file within the archive file.

• Part file position: This field identifies the part file storing the
small file. For example, a value of 0 indicates that the small
file is saved in part-0.

• Offset: The exact offset to read the small file’s content from
the part file.

• Size: The file’s size.

Each of these fields has a fixed size. The file name is hashed to a
128-byte integer, which is large enough to avoid collisions. A sin-
123
Table 2
Metadata fields information.

Field Size (bytes)

File Name Hash 128
Data Part File Position 16
offset 16
Size 16
Total Size 176

gle metadata record occupies exactly 176 bytes from the index file
(see Table 2). Let recall that the maximum size of our index file
is restricted to the HDFS block. So, if the index file’s block size is
128 MB, the maximum number of records that can be stored in
it would be 128 ∗ 1024 ∗ 1024/176 = 762, 600, which is not large
enough for practical purposes since small files in Hadoop can grow
in quantity of millions. For the HPF archive to support more than
762,600 small files without the index file exceeding the block size,
our workaround is to split metadata records into multiple index
files using an extendible hashing mechanism. Limiting the size of
the index file to the HDFS block has the benefit of preventing the
deterioration of seek operations during random metadata lookups.
The seek operation is used to move the reader to a specified offset
in a file. When the client accesses multiple files, HPF seeks differ-
ent offsets of the index files to read their metadata. Let’s assume
that the index file is too large and occupies several HDFS blocks lo-
cated on distinct DNs. Every time the seek operation is performed
on a different data block, the client needs to establish a new con-
nection to the DN. This operation becomes expensive for random
seeks between different blocks of the same file, as it takes time to
establish a new connection with the DN.

The extendible hashing technique has been specially chosen
in our design because of its ability to easily split an overflowed
bucket by creating a new one and provides constant access time to
them. The bucket represents an index file when stored on HDFS. A
second hash function called the order-preserving minimal perfect
hash function (OPMPHF) is built for each bucket and is responsible
for memorizing the records writing order before they are written
into the corresponding index file. Since a metadata record is of
fixed size and the OPMPHF is there to give us its position within
the index file, it is very easy to estimate the exact part of the index
files to read a file’s metadata information (offset and limit). In Sec-
tion 3.2.1 and Section 3.2.2, we discuss how we use the extendible
hash function and the OPMPHF.

One known problem with HAR is that it employs a two-level
index, which degrades access efficiency. HPF has a single-level in-
dex, but it splits the information into several index files. As shown
earlier, a small file’s metadata contains the minimal information
required to restore the file’s content from one of the part files. The
HPF index system uses two hash functions to identify a metadata
location. Every small file’s metadata is stored in one of the index
files, and the extendible hashing [13][38] helps to determine that
index-* file. Moreover, the OPMPHF [14] helps to quickly find the
exact location of the metadata information within that index file.

3.2.1. Index file access
An Extendible Hash Table (EHT) [13][38] is a dynamic hashing

technique. As defined in [37]:

Definition 1. An EHT is a hash table in which the hash function is
the last few bits of the key and the table refers to buckets. Table
entries with the same final bits may use the same bucket. If a
bucket overflows, it splits, and if only one entry referred to it, the
table doubles in size. If a bucket is emptied by deletion, entries
using it are changed to refer to an adjoining bucket, and the table
may be halved.

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
Fig. 5. To insert a record, extendible hashing selects the last bits of hash(key) ac-
cording to the global depth and looks for the corresponding bucket from its pointers
directory.

Fig. 6. Bucket split.

The EHT, first, helps to know which index files hold information
about a file in constant time and saves from searching through all
index files. And secondly, when an index file’s size becomes larger
and exceeds its maximum capacity, the EHT provides a mechanism
to split it and move some of its contents in a new index file. EHT
has three key components: The global depth, a directory contain-
ing pointers to buckets, and buckets’ local depth. The global depth
and pointers directory are used to select the bucket where to insert
a key and the buckets’ local depth is used to split a full bucket by
creating a new one. Assume that the hash(key) function returns a
string of bits. The first k bits of each string will be used as indices
to decide which bucket the key will be put in using the pointers’
directory (see Fig. 5). k is the global depth and is chosen small
such that the index of every item in the table is unique. More de-
tail about extendible hashing can be found in [13]. So, a metadata
record is inserted in the bucket by using the file name hash value
as a key and the described process. Only one bucket is available
when the HPF archive file is newly created. When the bucket is
full, a new bucket is created by calling the EHT split operation as
illustrated by Fig. 6. When a bucket reaches its maximum capacity,
EHT’s split mechanism is used to dynamically increase the num-
ber of buckets (index files) while maintaining direct access during
lookups. The first step in bucket splitting is to create a new bucket,
and the second is to redistribute data from the old bucket to the
new one. Bucket data relocation is performed as follows: we recal-
culate all records’ positions from the old bucket and move those
whose locations have changed to the new one. Finally, the EHT
is serialized and stored as an extended attribute [2] of the final
archive file. At this stage, the metadata records are in memory but
arranged in buckets. The next step will be to determine the order
in which the records should be written into the index file.
124
Fig. 7. We sort the records, build the OPMPHF, and write data to the index file.

3.2.2. Index file structure
HPF does not directly save bucket records in the index file, if

we do so, we will have to load the entire index file during access
before obtaining a metadata record, something we absolutely want
to avoid. Instead, we’ll employ a hash function to tell us where
to save and search for metadata inside the index file. Notice that
the metadata of two different files cannot be at the same posi-
tion in the index file, therefore, the hash function we need must
not present a collision risk. This restriction makes it impossible to
use standard hashing techniques such as linear hashing, extendible
hashing, etc. Fortunately, there are so-called perfect hash functions
that are collision-free and meet our requirements. A perfect hash
function maps a static set of n keys to a set of m integer num-
bers without collisions, where m is greater than or equal to n. If m
equals n, the function is known as the minimal perfect hash func-
tion (MPHF) and is a bijection function. One special type of the
MPHF is the order-preserving MPHF (OPMPHF) [14]. In [33], the
perfect hash function is defined as order-preserving if the keys are
arranged in a given order and the function preserves this order in
the hash table, as illustrated in Fig. 7. If the order is lexicographic,
the OPMPHF is called Monotone Minimal Perfect Hash Function [7]
(MMPHF).

As displayed in Fig. 7, we firstly sort each bucket keys lexi-
cographically, and then we use these keys to build the OPMPHF.
The OPMPHF takes a key and returns its order among all keys,
so OPMPHF(keyk) will return k if a keyk is at position k. Finally,
we persist the OPMPHF and the bucket’s records within the index
file with the OPMPHF on top followed with metadata records by
preserving the ordering. The creation of the HPF file ends when
all index files are built, and the temporary index file is deleted.
Algorithm 1 condenses the entire creation process. The OPMPHF
doesn’t take much space. Its size depends on the total number of
keys in the bucket. HPF uses the file name as the key, and it is
interesting to note that OPMPHF algorithms don’t need the entire
key. Generally, perfect hash functions require less than 3 bits per
key during their building. According to [7], for a set S of n ele-
ments out of a universe of 2w elements, O (n log log w) bits are
sufficient to hash monotonically with evaluation time O (log w).
We can get O (n log w) bits for space and O (1) query time. This
implies that a sorted table can be searched using just O (1) table
accesses.

3.3. File access & append

The example in Fig. 8 shows the 4 steps of the file’s access in
HPF:

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
Algorithm 1: The first loop sequentially shows instructions
used by each thread for merging. The second loop process
each bucket to get the final index file.

1 f iles = A set of small files;
2 buckets = EHF buckets;
3 Create the data part and the temporaryIndex file;
4 Create one bucket and add it to buckets;
/* Files merging */

5 for f in f iles do
6 Merge f with part file;
7 Get f metadata;
8 Append the metadata to the temporaryIndex file;
9 Append the f name to the names file;

10 bucket = Get from buckets using EHF;
11 Add f metadata bucket;
12 if bucket is full then
13 new Bucket = Create new bucket and it index file;
14 Redistribute data to new Bucket using EHF;
15 Add the new Bucket to buckets;
16 end
17 end

/* Building index files */
18 for b in buckets do
19 Sort b’s metadata records;
20 Build the OPMPHF;
21 Create an empty index file to HDFS;
22 Write the OPMPHF to the index file;
23 Write the metadata records to the index file;
24 end

Fig. 8. The extendible hashing determines the index file containing a metadata
record. After the OPMPHF determines the exact offset of the metadata information
within the index file.

(1) Firstly, we derive from the file name provided by the client
the corresponding hash value.

(2) Secondly, from the hash value, the EHF gives the bucket
position, which also corresponds to the index file containing the
metadata. If EHF returns i, the metadata can be found in the index
file named index-i.

(3) Thirdly, from the hash value, OPMPHF retrieves the meta-
data record position within the index file. Since each file’s meta-
data occupies 176 bytes, we get the exact metadata of f set from
Equation (1) and then read the metadata information from of f set
to of f set + 176bytes of the index file.

of f set = ϒ + O P M P H F (f ile_key) ∗ 24B ytes,

Where: (1)

ϒ = OPMPHF size in index file,

f ile_key = file name hash code value.

(4) Finally, having the small file metadata (filename hash, part
file, offset, file size), we compare the derived file name hash value
125
Fig. 9. After merging the files, the index files that receive new metadata records are
rebuilt.

with the one present in the metadata information. If they are not
equal, this means the file we are looking for doesn’t exist in the
archive. In case they are equal, we access the part file and read
the file’s content. As a result, metadata lookups in the HPF are
guaranteed to take O (1) time.

Adding new files to the HPF is almost identical to the creation
process. Whenever the client wants to add more files, we provide
as in Fig. 9:

(1) The client uses multiple threads for merging small files and,
temporarily saves their metadata records to a temporary index file.

(2) After the merging, the newly added files metadata records
are distributed into existing buckets using the EHF.

(3, 4, 5) The only difference from the creation process is that
before rebuilding the OPMPHF, we have to reload into the buckets
that have new records the content of their associated index file.
For each of these buckets, build again their OPMPHF and overwrite
the contents of their index file.

Adding new files is the weakest point of HPF as it requires re-
building certain index files. This is because an ordering must be
maintained to optimize access. Since accesses are more frequent
than adding new files, HPF’s current design prioritizes access time
over new files adding efficiency. Unlike the MapFile, HPF does not
require the client to sort the files before the archive creation or
when adding more files. For this reason, if the client adds new
files, we must rebuild the concerned index files. The goal of HPF is
to optimize for file accesses with fewer I/Os, memory, and process-
ing in counterpart adding more files to the archive files is possible
but requires more overhead since it can involve the reconstruction
of some of the index files.

4. Additional implementation issues

4.1. Recovery from failures

Waiting for the merging to complete before building the in-
dex files is risky, there are benefits and disadvantages to doing
so. As benefit, the creation of the HPF file becomes faster since it
avoids the multiple network communications that might occur be-
tween the client and nodes of the cluster. As a disadvantage, the
client could be unreliable and crash at any moment. A crash can
interrupt the HPF file creation or files appending operation. When
building index files, buckets containing metadata records, and all
information concerning our hash functions are built at the client-
side. If the client crashes during the process, those information will
be lost and, it will be impossible to restore files appended to big
part files. Because of this problem, we have implemented a recov-
ery mechanism that enables us to prevent losing these important

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
Fig. 10. HDFS block Writing&Replication process [23].

information in case of client failure. Our recovery mechanism uses
a temporary index file. During the merging process, every time a
file is appended file to a part file, its metadata record is directly
added to the temporary index file. So even if the client crashes
during the merging, we can easily restore the merging state be-
fore the crash as the already processed files’ metadata will be in
the temporary index file, there is no information loss. HPF offers
a second option that moves the index file construction process to
the NN side in order to benefit from its High availability. Once this
option is specified, after the merging, a signal is sent to the NN
that uses the temporary index file to build the index files. This
high availability of the NN can also help to face the problems that
could happen in the case of client failure, but since the temporary
index file is this time on HDFS, the merging step requires addi-
tional network calls from the client to HDFS to add the metadata
to the temporary index file.

4.2. Improving IO performance

4.2.1. Write performance
For creating a file or appending data to an existing one on

HDFS, the client firstly interacts with the NN. The NN provides the
addresses of the DNs on which the client starts writing data. By
default, HDFS performs three replicas for every data block on three
different nodes. As shown in Fig. 10, the client only writes data
on the first DN, this one performs the first replication by copy-
ing on the second DN and the second DN on the third. Once the
replicas are created an acknowledgment is sent to the client be-
fore the client continues writing more data. Replication is done
serially [23] from one DN to another, not in parallel. During the
data blocks writing to the DN storage space, blocks are written as
regular files on the disk. Transferring data through the network
and writing data blocks to disk are the most time-consuming op-
erations of HDFS. For the data transfer, the problem can be the
network state between the client and the first DN because it is of-
ten an external network to the cluster and there is no guarantee of
its reliability. This external network can be slower than the internal
one (between the DNs and the NN) which often is more stable, re-
liable, and high throughput. For slow disk writing, this is because
the majority of Hard Drives are mechanical. Fortunately, Hadoop
comes with another data writing mode or Storage Policy named
the Lazy Persist write [3]. In the Lazy Persist mode, data is written
in each DN in an off-heap memory (Fig. 11) located in the RAM.
Writing in the off-heap memory is faster than writing on the hard
drive, it saves the client from waiting for the data to be written
to the disk. According to [3] the DataNodes will flush in-memory
data to disk asynchronously, thus removing expensive disk IO and
checksum computations from the performance-sensitive IO path.
HDFS provides best-effort persistence guarantees for Lazy Persist
Writes. Rare data loss is possible in the event of a node restart be-
fore replicas get persisted. Unlike HAR and MapFile, HPF support
by default this lazy persists policy. We used the LazyPersist stor-
age policy in our approach to append files to part-* files and speed
up the HPF file creation. The weakness of LazyPersist is that, in
version 2.9.1 of Hadoop that we used to perform our experiment,
files created with the LazyPersist storage policy do not support
the data-append functionality. To maintain the HPF files append-
ing functionality after the creation, we reset the storage policy of
126
Fig. 11. Lazy Persist Writes [3].

all HPF part-* files to the default mode. Our experiments confirm
that the Lazy Persist Writing boosts HPF file creation compared to
other solutions that don’t support this functionality.

4.2.2. Read performances
Even if the HPF file can directly access the part of the index

file that holds a metadata record, we still need some little I/Os
operations to read this information. The primary purpose of HPF
is to improve small file access in its archive as if the files were
saved as normal files on HDFS. It is then important to totally elim-
inate any disk operation related to metadata access. One option is
to cache the metadata in the client or the NN memory but this
will look like bringing back the small file problem we are fight-
ing for. The only option we have left is to find a way and tell the
DN at access time to keep the index files block in memory and not
in disc. This is done by using the Centralized Cache Management
system of HDFS. According to [4], the Centralized cache manage-
ment in HDFS is an explicit caching mechanism that allows users
to specify paths of files to be cached by HDFS. The NameNode will
communicate with DataNodes that have the desired blocks on disk,
and instruct them to cache the blocks in the off-heap caches. This
caching system allows us to tell the DN to maintain our index files’
blocks in the off-heap memory, not on the disk. By doing so, we
avoid additional I/Os operation during metadata lookups, further-
more reducing the disc I/Os to the only one required to read the
file’s content from part files.

4.3. File access performance analysis

Let T M be the time an archive file needed to retrieve a file’s
metadata from its index file(s) and TC , the time needed to restore
file’s content from the merged file. The total time it takes to access
a file (T Access) from the archive file is defined by Equation (2).

T Access = T M + TC (2)

If T Access/H AR , T Access/MapF ile and T Access/H P F are respectively the
access times in the HAR file, MapFile, and HPF files, we will have:

T Access/H AR = T M/H AR + TC/H AR

T Access/MapF ile = T M/MapF ile + TC/MapF ile

T Access/H P F = T M/H P F + TC/H P F

Metadata access from the HAR file and the Map file require to
read and process entirely all the index file(s). Since the HAR

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
file’s index files are bigger and hold much more information than
MapFile’s index file, the metadata access from MapFile is faster
than the metadata access from HAR file: T Acess_metadata/MapF ile <

T Acess_metadata/H AR . Metadata access from HPF index file(s) is direct
and does not require reading and processing the entire index file.
That’s why the HPF file metadata access time is almost negligible
compared to HAR file and MapFile:

T M/H P F < T M/MapF ile < T M/H AR (3)

TC , the time needed to restore a file’s content from the merged file
can be different when the file is accessed from HAR file, MapFile
or HPF files. This time is influenced by several factors like the cost
of the seek operation, the use or not of compression algorithm to
reduce the file size. If we assume that for the same file: TC/H P F =
TC/H AR = TC/MapF ile . According to equation (3),

T Acess/H P F < T Acess/MapF ile < T Acess/H AR (4)

Equation (4) suggests that file’s access in HPF file is faster than
access to files in HAR and MapFile. This is also confirmed by our
experiments presented in Subsection 5.2.1.

5. Experimental evaluation

We have implemented an open-source HPF prototype1 and
compared its performance against LHF, HAR file, MapFile, includ-
ing the native HDFS. Our tests considered metrics such as access
time, creation time, and the NameNode memory utilization.

The experimental environment is built on a cluster of 6 nodes.
One serves as the NameNode, while the other five serve as DataN-
odes. Each node is a server with two CPU cores of 2.13 GHz each,
8 GB for RAM, and 500 GB Hard Disk. The nodes operating system
is Ubuntu. The client on which our datasets are located is a Lap-
top running Microsoft Windows 10 Pro and has 16 GB of RAM, 1
TB of disk, Processor Intel® Core™ i7-6500U. The Hadoop version
is 2.9.1 and the JDK version is jdk1.8.0_102. The number of replicas
is set to 3 and the HDFS block size is set to 512 MB. For the test
purpose, we process small log text files collected from applications
running on different servers.

We use 5 datasets containing respectively 100000, 200000,
300000, and 400000 files. Their total size is respectively 1.44 GB,
2.37 GB, 3.30 GB, and 4.23 GB. Files sizes range from 1 KB to 10
MB. In Hadoop, a file is considered small if its size is less than the
block size. For a file larger than the block size, it is recommended
to directly save it as a normal HDFS file. Archive systems intend
to combine small files into big ones that can take at least one
HDFS block and reduce the amount of metadata needed to rep-
resent them. So, adding large files that already have one or more
HDFS blocks to an archive is not that interesting. The first cate-
gory of our tests is intended to evaluate the archives creation and
the datasets upload time to HDFS. The second category evaluates
access performance in HPF, LHF, HAR, MapFile, as well as their per-
formance when accessed directly from HDFS. We also look at other
aspects such as disk space usage on DNs, the NN memory usage.
For the experience, the maximum capacity of the HPF index file is
set to 200000 records. We run all our tests several times in order
to reduce potential errors that may be due to network congestion
or other factors.

5.1. Archives creation

For each method, we built four archive files, each containing
100000, 200000, 300000, and 400000 small files. We then mea-

1 The source code of Hadoop Perfect File is available at https://github .com /
tchaye59 /Hadoop -Perfect -File.
127
Fig. 12. The performance of creating a new archive file.

sure the time taken by each solution to create the archives and
the time it takes to upload each dataset to HDFS. The collected
results are displayed in Fig. 12. Being the only one to support
LazyPersist during creation, HPF outperforms other solutions as
we were expecting. LHF, MapFile, and HAR follow. As compared
to other solutions, the construction of HAR archives is extremely
slow and cumbersome. The HAR file creation requires a prior up-
load of the datasets on HDFS, which is its biggest bottleneck since
uploading massive small files on HDFS is a slow process as observ-
able in Fig. 12. Furthermore, due to the prior files upload to HDFS,
HAR can easily trigger small file problems before the archive con-
struction process begins. Therefore, we can easily derive that for a
massive quantity of files that the NameNode’s memory can’t han-
dle, constructing the HAR file would be impossible. Once the files
are on HDFS, HAR creates the archive file using a map-reduce job.
We considered the file upload time as part of the HAR file con-
struction time. The fact that HAR does not use compression also
means that it takes more time to write data on the disc and using
MapReduce to create its archive file means a lot of network calls
and data transfer within the cluster’s nodes.

Unlike HAR, HPF, LHF, and MapFile do not require the datasets
to be uploaded to HDFS prior to building their archives. Rather,
the small file’s content is directly appended from the client de-
vice to the archive files on HDFS. This is the reason why they are
faster. MapFile and HPF files have better use of the bandwidth
since the data are compressed before being transmitted over the
network. HPF applies the compression at file level, while MapFile
compresses both files and blocks. HDFS encourages archives cre-
ation to be a one-time operation. The majority of the time, once
the archive is created, only accesses are performed. The reason
why access efficiency presented in the following section, is the key
metric used to measure the performance of each solution.

5.2. Access efficiency

To evaluate the file access efficiency within the archives, for
each dataset, we randomly choose 100 files and measure the time
each solution takes to recover their content. We also measure the
time it takes to retrieve these files when they are stored on HDFS
as regular files. As stated in Section 2, LHF, MapFile, and HAR use
some caching techniques to improve their access efficiency. To get
a sense of their true performance when compared to the HPF file,
we first evaluated the access performance without considering the
caching effect, then by considering the caching effect.

5.2.1. Without the caching effect
The comparison results are displayed in Fig. 13. Without the

caching effect, HAR gives the worst performance which degrades
linearly with the size of the dataset. HPF is the fastest, even faster

https://github.com/tchaye59/Hadoop-Perfect-File
https://github.com/tchaye59/Hadoop-Perfect-File

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
Fig. 13. The access performance without caching.

than the original HDFS, with HDFS, MapFile, LHF, and HAR follow-
ing closely behind. Small file access in HPF is estimated to be about
40% faster than in the initial HDFS, 535% faster than LHF, 179%
faster than MapFile, and 11294% faster than HAR. Before the tests,
we expected HPF to be faster than MapFile, HAR, and LHF, but not
HDFS. How is this possible, one may wonder? These are some of
the reasons we noticed:

• Since we manage to disable their caching effect, each file ac-
cess requires MapFile, LHF, and HAR to read and process the
entire index file(s) for metadata lookup. They then take much
more time to recover the actual file’s content.

• MapFile compresses each small file and block of its data file.
Therefore, during access, it needs two levels of decompression.
It means during access MapFile needs to decompress a whole
HDFS block and after the accessed small file. This strategy is
not optimal for random file accesses since accessing randomly
can require jumping from one block of the data file to an-
other. HPF applies compression only at the file level, therefore,
requires one level of decompression, and is well suited to ran-
dom accesses.

• HDFS keeps its metadata in memory of NN, while HPF keeps
its index files in memory of DNs using the Hadoop central-
ized cache management system. So, why is HPF access slightly
faster than HDFS? We noticed that this is due to the communi-
cation protocols. With HDFS, the communication between the
client and the NN to get the file metadata is done by using the
RPC (Remote Procedure Call) protocol. But to get the file meta-
data with HPF, the communication is done between the client
and the DN by using sockets that are faster than RPC calls.
HDFS read and write files on DNs discs using sockets while
HPF just performs a file read operation on a small part of the
index file to get metadata.

5.2.2. With the caching effect
The previous tests are repeated, but this time the caching effect

is taken into account. The results are displays by Fig. 14. We ob-
serve a major improvement with LHF, HAR, and MapFile but, there
is no much difference with HPF and HAR. Despite these improve-
ments, HPF continues to perform better, followed by LHF, MapFile,
HDFS, and HAR. One important thing to notice is that, except HAR,
all other solutions outperform HDFS. File access in HPF is about
48%, 17%, 35%, 105% faster than the original HDFS, LHF, MapFile
and HAR if we consider the caching effect.

5.3. NameNode’s Memory usage

To have a visual perception of the small file problem, it is im-
portant to plot the quantity of memory it costs to the NN when the
128
Fig. 14. The access performance with caching.

Fig. 15. NameNode Memory usage.

Fig. 16. Sizes comparison.

datasets are directly stored on HDFS or stored using an archive so-
lution as done in Fig. 15. This Figure shows the importance of the
archive files systems in HDFS. They are more efficient than HDFS
at storing small files. They occupy less memory on the NameN-
ode than native HDFS. That is why they are the primary solution
to HDFS’s small file problem. From Fig. 15b we can observe that
MapFile uses less metadata than all other files. Compared to other
approaches, MapFiles is only composed of two files (data file, index
file), and its data file is highly compressed. With two-level com-
pression, MapFile consumes fewer HDFS blocks for storage than
other solutions. After the MapFile file, HPF, HAR, LHF follow re-
spectively.

5.4. Archive files sizes after creation

Finally, we measured archives sizes which gives us an idea of
the disk space used from the DNs (see Fig. 16). Since the HAR and

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
LHF do not use compression, their sizes are almost equal to the
size of the datasets when stored directly on HDFS. The size of the
HPF and MapFile is reduced due to compression. According to our
analysis, MapFile saved about 42% of disk space and HPF about
11%.

6. Conclusion

HDFS was designed to provide the best performance with large
files rather than small files. To deal with the small file issue in
HDFS, the best archiving systems must consider the NN’s memory
overflow while still ensuring fast access to small files. The previ-
ous works mainly focus on reducing NN’s memory overflow. They
effectively reduce the metadata load in NN’s memory, but at the
cost of poor access efficiency. This paper represented HPF, a new
type of index-based archiving system. HPF is specially designed to
greatly reduce the extra I/Os and computations caused by index
file processing during access. Our experiment confirms that our
solution outperforms other file systems such as LHF, HAR, Map-
File, and the original HDFS when it comes to file access. We have
made our design and implementation open source so that other
researchers can use it to improve their systems of small files in
HDFS.

CRediT authorship contribution statement

Yanlong Zhai: Conceptualization, Resources, Writing – review
& editing. Jude Tchaye-Kondi: Software, Writing – original draft,
Writing – review & editing. Kwei-Jay Lin: Validation, Writing –
review & editing. Liehuang Zhu: Resources, Supervision. Wenjun
Tao: Data curation. Xiaojiang Du: Supervision. Mohsen Guizani:
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors thank the anonymous reviewers for their insightful
suggestions. This work is supported by the National Natural Sci-
ence Foundation of China (Grant No. 61602037).

References

[1] Alibaba, alibaba/tfs, https://github .com /alibaba /tfs, 2021.
[2] Apache Hadoop, Extended attributes in hdfs, https://hadoop .apache .org /docs /

r2 .9 .2 /hadoop -project -dist /hadoop -hdfs /ExtendedAttributes .html, 2021.
[3] Apache Hadoop, Memory storage support in hdfs, http://hadoop .apache .org /

docs /stable /hadoop -project -dist /hadoop -hdfs /MemoryStorage .html, 2021.
[4] Apache Hadoop, Centralized cache management in hdfs, http://

hadoop .apache .org /docs /stable /hadoop -project -dist /hadoop -hdfs /
CentralizedCacheManagement .html, 2021.

[5] K. Batcher, Design of a massively parallel processor, IEEE Trans. Comput. 29
(1980) 836–840, https://doi .org /10 .1109 /TC .1980 .1675684.

[6] D. Beaver, S. Kumar, H.C. Li, J. Sobel, P. Vajgel, et al., Finding a needle in
haystack: Facebook’s photo storage, in: OSDI, vol. 10, 2010, pp. 1–8.

[7] D. Belazzougui, P. Boldi, R. Pagh, S. Vigna, Monotone minimal perfect hash-
ing: searching a sorted table with o (1) accesses, in: Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2009,
pp. 785–794.

[8] K. Bok, H. Oh, J. Lim, Y. Pae, H. Choi, B. Lee, J. Yoo, An efficient distributed
caching for accessing small files in hdfs, Clust. Comput. 20 (2017) 3579–3592.

[9] X. Cai, C. Chen, Y. Liang, An optimization strategy of massive small files storage
based on hdfs, in: 2018 Joint International Advanced Engineering and Technol-
ogy Research Conference (JIAET 2018), Atlantis Press, 2018.
129
[10] C. Choi, C. Choi, J. Choi, P. Kim, Improved performance optimization for mas-
sive small files in cloud computing environment, Ann. Oper. Res. 265 (2018)
305–317.

[11] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Commun. ACM 51 (2008) 107–113.

[12] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, Y. Li, A novel approach to improving
the efficiency of storing and accessing small files on hadoop: a case study by
powerpoint files, in: 2010 IEEE International Conference on Services Computing
(SCC), IEEE, 2010, pp. 65–72.

[13] R. Fagin, J. Nievergelt, N. Pippenger, H.R. Strong, Extendible hashing—a fast ac-
cess method for dynamic files, ACM Trans. Database Syst. 4 (1979) 315–344,
https://doi .org /10 .1145 /320083 .320092.

[14] E.A. Fox, Q.F. Chen, A.M. Daoud, L.S. Heath, Order preserving minimal perfect
hash functions and information retrieval, in: Proceedings of the 13th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, ACM, 1989, pp. 279–311.

[15] S. Fu, L. He, C. Huang, X. Liao, K. Li, Performance optimization for managing
massive numbers of small files in distributed file systems, IEEE Trans. Parallel
Distrib. Syst. 26 (2015) 3433–3448.

[16] G. lz4, lz4/lz4, https://github .com /lz4 /lz4, 2021.
[17] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google File System, vol. 37, ACM,

2003.
[18] Hadoop, Hadoop archives guide, https://hadoop .apache .org /docs /r2 .7.5 /hadoop -

archives /HadoopArchives .html, 2021.
[19] H. He, Z. Du, W. Zhang, A. Chen, Optimization strategy of hadoop small file

storage for big data in healthcare, J. Supercomput. 72 (2016) 3696–3707.
[20] Y. Huo, Z. Wang, X. Zeng, Y. Yang, W. Li, C. Zhong, Sfs: a massive small file

processing middleware in hadoop, in: Network Operations and Management
Symposium (APNOMS), 2016 18th Asia-Pacific, IEEE, 2016, pp. 1–4.

[21] W. Jing, D. Tong, G. Chen, C. Zhao, L. Zhu, An optimized method of hdfs for
massive small files storage, Comput. Sci. Inf. Syst. 15 (2018) 533–548.

[22] H. Kim, H. Yeom, Improving small file i/o performance for massive digital
archives, in: 2017 IEEE 13th International Conference on e-Science (e-Science),
IEEE, 2017, pp. 256–265.

[23] H. Kuang, K. Shvachko, N. Sze, S. Radia, R. Chansler, Append/hflush/read design,
Yahoo! HDFS Team, 2009.

[24] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system,
Oper. Syst. Rev. 44 (2010) 35–40.

[25] B. Meng, W.-b. Guo, G.-s. Fan, N.-w. Qian, A novel approach for efficient ac-
cessing of small files in hdfs: Tlb-mapfile, in: 2016 17th IEEE/ACIS Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), IEEE, 2016, pp. 681–686.

[26] S. Niazi, M. Ismail, S. Haridi, J. Dowling, S. Grohsschmiedt, M. Ronström,
Hopsfs: scaling hierarchical file system metadata using newsql databases, in:
FAST, 2017, pp. 89–104.

[27] S. Niazi, M. Ronström, S. Haridi, J. Dowling, Size matters: improving the per-
formance of small files in hadoop, in: Proceedings of the 19th International
Middleware Conference, ACM, 2018, pp. 26–39.

[28] J.-f. Peng, W.-g. Wei, H.-m. Zhao, Q.-y. Dai, G.-y. Xie, J. Cai, K.-j. He, Hadoop
massive small file merging technology based on visiting hot-spot and associ-
ated file optimization, in: International Conference on Brain Inspired Cognitive
Systems, Springer, 2018, pp. 517–524.

[29] P. Phakade, S. Raut, An innovative strategy for improved processing of small
files in hadoop, Int. J. Appl. Innov. Eng. Manag. (2014) 278–280.

[30] S. Sheoran, D. Sethia, H. Saran, Optimized mapfile based storage of small files
in hadoop, in: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), IEEE, 2017, pp. 906–912.

[31] K. Shvachko, Name-node memory size estimates and optimization proposal,
Apache Hadoop Common Issues, HADOOP-1687, 2007.

[32] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file sys-
tem, in: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), IEEE, 2010, pp. 1–10.

[33] sourceforge, Minimal perfect hash functions - introduction, http://cmph .
sourceforge .net /concepts .html, 2021.

[34] W. Tao, Y. Zhai, J. Tchaye-Kondi, Lhf: a new archive based approach to acceler-
ate massive small files access performance in hdfs, in: Proceedings of the Fifth
IEEE International Conference on Big Data Service and Applications, 2019.

[35] C. Vorapongkitipun, N. Nupairoj, Improving performance of small-file accessing
in hadoop, in: 2014 11th International Joint Conference on Computer Science
and Software Engineering (JCSSE), IEEE, 2014, pp. 200–205.

[36] T. White, Hadoop: The Definitive Guide, 4th ed., O’Reilly, Beijing, 2015,
https://www.safaribooksonline .com /library /view /hadoop -the -definitive /
9781491901687/.

[37] xlinux, https://xlinux .nist .gov /dads /HTML /extendibleHashing .html, 2021.
[38] D. Zhang, Y. Manolopoulos, Y. Theodoridis, V.J. Tsotras, Extendible hashing, in:

Encyclopedia of Database Systems, Springer, 2009, pp. 1093–1095.
[39] T. Zheng, W. Guo, G. Fan, A method to improve the performance for storing

massive small files in hadoop, in: 7th International Conference on Computer
Engineering and Networks, 2017.

https://github.com/alibaba/tfs
https://hadoop.apache.org/docs/r2.9.2/hadoop-project-dist/hadoop-hdfs/ExtendedAttributes.html
https://hadoop.apache.org/docs/r2.9.2/hadoop-project-dist/hadoop-hdfs/ExtendedAttributes.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/MemoryStorage.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/MemoryStorage.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/CentralizedCacheManagement.html
https://doi.org/10.1109/TC.1980.1675684
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib0E7FB278320EB863311B22E1726D5982s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib0E7FB278320EB863311B22E1726D5982s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB600AA0DADA10F1FFBDC707D5770FD6Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB600AA0DADA10F1FFBDC707D5770FD6Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB600AA0DADA10F1FFBDC707D5770FD6Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB600AA0DADA10F1FFBDC707D5770FD6Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib56139A5483B49D32E8314B87DBF89006s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib56139A5483B49D32E8314B87DBF89006s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibCC166D3B0A245DD172DAE78FA0BFB277s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibCC166D3B0A245DD172DAE78FA0BFB277s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibCC166D3B0A245DD172DAE78FA0BFB277s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib8A757C9F9B957E823879FE33990F474Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib8A757C9F9B957E823879FE33990F474Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib8A757C9F9B957E823879FE33990F474Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib28876D780338AA63E7BC91BCB9F3EC9Es1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib28876D780338AA63E7BC91BCB9F3EC9Es1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib94744933255EAEF24C9FE4F45497E0FDs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib94744933255EAEF24C9FE4F45497E0FDs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib94744933255EAEF24C9FE4F45497E0FDs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib94744933255EAEF24C9FE4F45497E0FDs1
https://doi.org/10.1145/320083.320092
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib10CEFF85C02C9553E8F4B503D9C46535s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib10CEFF85C02C9553E8F4B503D9C46535s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib10CEFF85C02C9553E8F4B503D9C46535s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib10CEFF85C02C9553E8F4B503D9C46535s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibC960CCED191ED8EC551FDE9B5B7E4C73s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibC960CCED191ED8EC551FDE9B5B7E4C73s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibC960CCED191ED8EC551FDE9B5B7E4C73s1
https://github.com/lz4/lz4
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib5591A10A11F6ED53737C98C7166D2B72s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib5591A10A11F6ED53737C98C7166D2B72s1
https://hadoop.apache.org/docs/r2.7.5/hadoop-archives/HadoopArchives.html
https://hadoop.apache.org/docs/r2.7.5/hadoop-archives/HadoopArchives.html
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib4BA0C08E4710A1E028D27CDE63432FDAs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib4BA0C08E4710A1E028D27CDE63432FDAs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD10370BC465A2DD9E6D013F7108CE890s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD10370BC465A2DD9E6D013F7108CE890s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD10370BC465A2DD9E6D013F7108CE890s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib54E6F6C2D267BFED507F99DE522847B9s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib54E6F6C2D267BFED507F99DE522847B9s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib919684455D161A6F7D5F6CC1AFCA43A5s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib919684455D161A6F7D5F6CC1AFCA43A5s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib919684455D161A6F7D5F6CC1AFCA43A5s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibBD6864FA433C2FA7DD9E3FEA5651FC25s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibBD6864FA433C2FA7DD9E3FEA5651FC25s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib1A22AC524657F256EAFB623AD29B3EE1s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib1A22AC524657F256EAFB623AD29B3EE1s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD491BD537D20B1C9D9BE72E3571E9205s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD491BD537D20B1C9D9BE72E3571E9205s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD491BD537D20B1C9D9BE72E3571E9205s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD491BD537D20B1C9D9BE72E3571E9205s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB692BFEB246A705F5D11BA61650019EEs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB692BFEB246A705F5D11BA61650019EEs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB692BFEB246A705F5D11BA61650019EEs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibC89A32689360B531FC81A7EF6110145Fs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibC89A32689360B531FC81A7EF6110145Fs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibC89A32689360B531FC81A7EF6110145Fs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib964CFC25D3CD9B85750123E0AB886F05s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib964CFC25D3CD9B85750123E0AB886F05s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib964CFC25D3CD9B85750123E0AB886F05s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib964CFC25D3CD9B85750123E0AB886F05s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib47ED4B8822BADE3555B966A9E458FC9Fs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib47ED4B8822BADE3555B966A9E458FC9Fs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib406B6CA93ED91C9C7BE63703E6C38BA3s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib406B6CA93ED91C9C7BE63703E6C38BA3s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib406B6CA93ED91C9C7BE63703E6C38BA3s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib320BE118C47E0072D979337E5E9F0D3Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib320BE118C47E0072D979337E5E9F0D3Cs1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib320BE118C47E0072D979337E5E9F0D3Cs1
http://cmph.sourceforge.net/concepts.html
http://cmph.sourceforge.net/concepts.html
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD5985F02777DD17FF97E01869CDAA2F0s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD5985F02777DD17FF97E01869CDAA2F0s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibD5985F02777DD17FF97E01869CDAA2F0s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB2E3BA27DCDB6841011E2F1F30BC93D3s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB2E3BA27DCDB6841011E2F1F30BC93D3s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB2E3BA27DCDB6841011E2F1F30BC93D3s1
https://www.safaribooksonline.com/library/view/hadoop-the-definitive/9781491901687/
https://www.safaribooksonline.com/library/view/hadoop-the-definitive/9781491901687/
https://xlinux.nist.gov/dads/HTML/extendibleHashing.html
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB08DA9254CD392F4AE9EAEC3C0CCD288s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bibB08DA9254CD392F4AE9EAEC3C0CCD288s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib9F76EC5E92079C02AF7A75EA3934D929s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib9F76EC5E92079C02AF7A75EA3934D929s1
http://refhub.elsevier.com/S0743-7315(21)00123-4/bib9F76EC5E92079C02AF7A75EA3934D929s1

Y. Zhai, J. Tchaye-Kondi, K.-J. Lin et al. Journal of Parallel and Distributed Computing 156 (2021) 119–130
Yanlong Zhai received the B.Eng. degree and Ph.D.
degree in computer science from Beijing Institute of
Technology, Beijing, China, in 2004 and 2010. He is
an Assistant Professor in the School of Computer Sci-
ence, Beijing Institute of Technology. He was a Visiting
Scholar in the Department of Electrical Engineering
and Computer Science, University of California, Irvine.
His research interests include cloud computing and
big data.

Jude Tchaye-Kondi received the BS degree from
the Department of Computer Science, Catholic Uni-
versity of West Africa. He joins in 2017 Beijing Insti-
tute of Technology, China as a graduate student and
is currently pursuing his Ph.D. His research interest
includes parallel and distributed computing, edge in-
telligence, machine learning.

Kwei-Jay Lin is a Professor in the University of
California, Irvine. He is a Chief Scientist at the NTU
IoX Research Center at the National Taiwan Univer-
sity, Taipei. He is an IEEE Fellow, and Editor-In-Chief
of the Springer Journal on Service-Oriented Comput-
ing and Applications (SOCA). He was the Co-Chair of
the IEEE Technical Committee on Business Informat-
ics and Systems (TCBIS) until 2012. He has served
on many international conferences. His research inter-

est includes service-oriented systems, IoT systems, middleware, real-time
computing, and distributed computing.

Liehuang Zhu received the B.Eng. and Master De-
grees in computer application from Wuhan University,
Wuhan, Hubei, China, in 1998 and 2001 respectively.
He received the Ph.D. degree in computer application
from Beijing Institute of Technology, Beijing, China, in
2004. He is currently a Professor in the Department of
Computer Science, Beijing Institute of Technology, Bei-
jing, China. He is selected into the Program for New
Century Excellent Talents in University from Ministry

of Education, China. His research interests include internet of things, cloud
computing security, internet, and mobile security.

Wenjun Tao joins in 2016 Beijing Institute of
Technology, China as a graduate student. His research
interest includes big data and cloud computing.

Xiaojiang Du received the B.S. and M.S. degree in
electrical engineering from Tsinghua University, Bei-
jing, China, in 1996 and 1998, respectively, and the
M.S. and Ph.D. degrees in electrical engineering from
the University of Maryland, College Park, MD, USA, in
2002 and 2003, respectively. He was an Assistant Pro-
fessor in the Department of Computer Science, North
Dakota State University, between August 2004 and
July 2009. He is currently a Professor in the Depart-

ment of Computer and Information Sciences, Temple University, Philadel-
phia, PA, USA. He is a Life Member of the ACM. He received the Excellence
in Research Award at North Dakota State University in May 2009. His re-
search interests include security, wireless networks, computer networks,
and systems. He has published more than 200 journal and conference pa-
pers in these areas.

Mohsen Guizani received the B.S. (with distinc-
tion) and M.S. degrees in electrical engineering and
the M.S. and Ph.D. degrees in computer engineering
from Syracuse University, Syracuse, NY, USA, in 1984,
1986, 1987, and 1990, respectively. He was an Asso-
ciate Vice President with Qatar University, the Chair in
the Computer Science Department, Western Michigan
University, the Chair in the Computer Science Depart-
ment, University of West Florida, and the Director of

graduate studies with the University of Missouri-Columbia. He is currently
a Professor in the Department of Computer Science and Engineering, Qatar
University, Qatar. He is the author/coauthor of nine books and more than
450 publications in refereed journals and conferences. His research inter-
ests include wireless communications and mobile computing, smart grid,
cloud computing, and security.
130

	Hadoop Perfect File: A fast and memory-efficient metadata access archive file to face small files problem in HDFS
	1 Introduction
	2 Related work
	2.1 Combining small files into large files
	2.2 Special DFS for small files
	2.3 Better processing framework
	2.4 Comparison

	3 HPF design
	3.1 File merging process
	3.2 Index files building process
	3.2.1 Index file access
	3.2.2 Index file structure

	3.3 File access & append

	4 Additional implementation issues
	4.1 Recovery from failures
	4.2 Improving IO performance
	4.2.1 Write performance
	4.2.2 Read performances

	4.3 File access performance analysis

	5 Experimental evaluation
	5.1 Archives creation
	5.2 Access efficiency
	5.2.1 Without the caching effect
	5.2.2 With the caching effect

	5.3 NameNode’s Memory usage
	5.4 Archive files sizes after creation

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

