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A mechanical system, in general, undergoes vibrational motion when the system is subjected to a tension or an 
external force. One of the examples of such a system is a cantilever beam when it is exposed to a bending action. 
When the tension is released, the cantilever beam suffers from the oscillations until the strain energy is totally 
released through the damping characteristics of the cantilever beam. Depending on the stiffness and damping 
factors of the beam, the vibrational motion can be non-linear; in which case, the analytical solution becomes 
challenging formulating the flexural characteristics of the beam. Although numerical solution for the non-linear 
problem is possible, the analytical solution provides useful information between the mechanical response and 
the cantilever beam characteristics. In the present study, the analytical solution of the non-linear equations 
governing the motion of the cantilever beam is presented. The governing equation is linearized incorporating 
the Lie-Tresse linearization method. The closed form solution for the displacement of the cantilever beam is 
reduced to a linear solution after introducing the appropriate beam characteristics. The dynamic behavior of the 
flexural motion due to non-linear and linear cantilever beams are compared.
1. Introduction

Cantilever beams are widely used in mechanical systems [1] and 
building constructions [2] because of their unique flexural character-

istics. Depending on the beam material properties and its structural 
homogeneity, damping and stiffness characteristics of the cantilever 
beam change. In some cases, variable damping and stiffness param-

eters of the beam are designed to damp and release the mechanical 
energy within the desired time frame. This arrangement requires fab-

ricating a non-linear cantilever beam with varying damping coefficient 
and stiffness. In general, the cantilever beam is anchored at one end 
and carries the load to the support where it is forced against by mo-

ment and shear stress. The non-linear properties of the beam results in 
the flexural motion of the beam with high damping rate when the load 
is released from the edge, which is under tension. Although a numeri-

cal solution of the flexural characteristics of the cantilever beam with a 
non-linear damping and stiffness is possible, the closed form solution to 
the problem offers several advantages. Firstly, the closed form solution 
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provides the functional relation between the non-linear properties of the 
beam and the flexural characteristics. Secondly, it reduces the compu-

tational efforts required for the solution. Since the governing equation 
of motion describing the flexural performance of the non-linear can-

tilever beam is in a non-linear form, the closed form elucidation of the 
problem becomes challenging for the general solution of the problem. 
Consequently, study into analytical solution of the flexural character-

istics of non-linear cantilever beam becomes essential. Considerable 
research studies were carried out to examine analytically solution for 
the flexural characteristics of the non-linear cantilever beams. The lo-

cation of a grazing in the constrained motion of a nonlinear cantilever 
beam was studied by Dick et al. [3]. They presented the non-linear 
phenomenon by using phase portraits, Poincare’ sections, and spectral 
analysis. They indicated that for off-resonance excitation at two and 
a half times the fundamental frequency, the response of the oscillat-

ing cantilever experienced a period doubling as the separation distance 
or clearance between the beam axis and the contact surface was de-
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creased. Non-linear parametric amplification and attenuation in a base-

excited cantilever beam were investigated by Kumar et al. [4]. They 
demonstrated that with the proper selection of various system parame-

ters, both vibration amplification and attenuation could be efficiently 
achieved. Nonlinear normal modes of a parametrically excited can-

tilever beam were examined by Yabuno and Nayfeh [5]. They showed 
that the system had nonlinear modes, as defined by Rosenberg, even 
in the presence of the parametric excitation. In addition, they deter-

mined the spatial correction to the linear mode shape due to the effects 
of the inertia and curvature nonlinearities and the parametric excita-

tion. Non-linear vibration of a magneto-elastic cantilever beam with tip 
mass was studied by Pratiher et al. [6]. They used the method of mul-

tiple scales to determine the instability region and frequency response 
curves of the system. Higher-harmonic effects of a slender vertical can-

tilever beam to fully nonlinear regular wave forcing was investigated 
by Bredmose et al. [7]. They conducted the parametric studies of the 
response dependence to relative forcing period and demonstrated that 
for waves with a maximum height of 85%, the third-harmonic response 
increased significantly when the depth was decreased from deep depth 
conditions into moderate depth. Nonlinear vibration control of a can-

tilever beam by a nonlinear energy sink was examined by Ahmadabadi 
and Khadem [8]. Their findings revealed that the realization of non-

linear vibration control through one-way irreversible nonlinear energy 
pumping and optimizing the system parameters resulted in acquiring 
up to 89% dissipation of the ungrounded system energy imposed by 
a shock excitation. Some approximate solutions for the large deflection 
nonlinear problem of a cantilever beam subjected to a terminal follower 
force and non-linear pendulum model were presented by Vazquez-Leal 
et al. [9]. They used nonlinearities distribution homotopy perturba-

tion approach and combinations with Laplace-Pade’ posttreatment to 
provide some approximate solutions for both nonlinear models. They 
showed that the high accuracy of the proposed cantilever solutions were 
consistent with the other reported solutions. The solutions to nonlin-

ear vibration of cantilever beam via homotopy perturbation method 
were presented by Ma et al. [10]. The comparison of the result ob-

tained by the homotopy perturbation method with numerical solutions 
revealed that only the first order approximation leads to a higher accu-

rate solution. Non-linear analysis of a self-excited cantilever beam was 
carried out by Kaneko et al. [11]. They designed a van der Pol type 
self-excited cantilever beam by applying the non-linear feedback pro-

portional to the squared deflection and the velocity while incorporating 
the steady state response of the cantilever beam. Non-linear behavior 
analysis of micro cantilever beam subject to electrostatic loading was 
realized by Liu et al. [12]. They showed that the hybrid differential 
transform approach provides an accurate and efficient computational 
analysis to the complex non-linear performance of both the current 
micro cantilever beam system and other micro-scale electrostatically-

actuated structures.

Analysis of the nonlinear response of a cantilever beam under de-

terministic and random excitation was presented by Benedettini et al. 
[13]. They derived the differential equations of phase and amplitude 
and applied a linearization technique to evaluate the second order 
statistics. The findings were validated through digital simulations on 
a Duffing-Rayleigh oscillator incorporating the cantilever beam with 
tip force. Vibration characteristics of a flexible cantilever beam and 
limitations of an equivalent linearized method were investigated by 
Li et al. [14]. They considered the large deformation and developed 
an equivalent linearization method to calculate the vibrating response 
of the beam. They showed that the changes of measured values of 
the frequency response function were very small when the ratio of 
tip dynamic displacement amplitude to static deformation amplitude 
was less than 10%. Non-linear normal modes of a continuous can-

tilever beam with non-linear energy sink absorber were examined by 
Yong and Yi [15]. They used Galerkin’s and Rausher’s methods to ob-

tain non-linear normal modes analytically and, from the comparison of 
analytical and numerical results, they indicated that the nonlinear nor-
2

mal modes were present. Although non-linear behavior of the damping 
system in relation to nonlinear energy sink was investigated previ-

ously [8], the main focus was the behavior of cantilever beam with 
the external source excitations and various conditions due to the ten-

sion of the free end were left obscure. In addition, numerical studies 
for the cantilever beam flexural characteristics were carried out un-

der different loading characteristics [16, 17, 18]. However, the studies 
were limited to the practical applications and the fundamental solution 
for the non-linear motion was not included. Therefore, in the present 
study, the closed form solution for the non-linear equation of motion 
governing the cantilever beam displacement is presented. Lie-Tresse 
linearization method was used to linearize the governing equation of 
motion. In [21], a new 𝜆-symmetry linearization criteria was estab-

lished for second-order differential equations. In recent years, much 
attention has been done to the 𝜆-symmetry linearization for solving 
nonlinear equations [22, 23]. The analytical study is extended to in-

clude three conditions at which the cantilever beam is subjected to prior 
to the flexural motion. These are: (i) initial displacement and the veloc-

ity for some non-zero instant are known, (ii) initial displacement and 
the non-zero displacement for some non-zero instant are known, and 
(iii) initial displacement and initial velocity are known. The analyti-

cal solution obtained for the cantilever beam displacement is reduced 
to a linear solution after introducing the appropriate beam damping 
and stiffness parameters. The findings of reduced form are compared 
with those presented in the open literature for the linear motion of the 
beam.

2. Mathematical analysis

The cantilever beam with non-linear damping and stiffness parame-

ters undergoes a non-linear flexural motion when the tension at the free 
end is released. Since the cantilever beam under consideration has con-

siderably smaller thickness than its length, the beam can be considered 
to be a thin plate and the non-linear cantilever flexural motion problem 
reduces to one-dimensional form. This situation can also be represented 
as a mass supported by non-linear damper and stiffness as shown in 
Figs. 1(a) and 1(b).

Since the governing equation of the motion is non-linear, a lineariza-

tion scheme needs to be introduced for the solution of the problem. For 
the linearization problem of second order ordinary differential equation 
(ODE)’s via point transformations, Lie [19] showed that any second-

order ODE

𝑦′′ = 𝑓 (𝑥, 𝑦, 𝑦′) (1)

obtainable from the free particle equation

𝑢𝑡𝑡 = 0

by change of variables

𝑡 = 𝜙 (𝑥, 𝑦) , 𝑢 = 𝜓 (𝑥, 𝑦) , 𝐽 = 𝜙𝑥𝜓𝑦 − 𝜙𝑦𝜓𝑥 ≠ 0, (2)

should be at most cubic in the first derivative, i.e. it has the form

𝑦′′ + 𝐹3(𝑥, 𝑦)𝑦′ 3 + 𝐹2(𝑥, 𝑦)𝑦′ 2 + 𝐹1(𝑥, 𝑦)𝑦′ + 𝐹 (𝑥, 𝑦) = 0, (3)

with the coefficients 𝐹 (𝑥, 𝑦), 𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦) and 𝐹3(𝑥, 𝑦) satisfying the 
following system of partial differential equations

𝐹3(𝑥, 𝑦) =𝐴, 𝐹2(𝑥, 𝑦) = 𝐵 + 2𝑤, 𝐹1(𝑥, 𝑦) = 𝑃 + 2𝑧, 𝐹 (𝑥, 𝑦) =𝑄,

where

𝐴 = 𝜙𝑦𝜓𝑦𝑦−𝜓𝑦𝜙𝑦𝑦
𝜙𝑥𝜓𝑦−𝜙𝑦𝜓𝑥

, 𝐵 = 𝜙𝑥𝜓𝑦𝑦−𝜓𝑥𝜙𝑦𝑦
𝜙𝑥𝜓𝑦−𝜙𝑦𝜓𝑥

, 𝑤 = 𝜙𝑦𝜓𝑥𝑦−𝜓𝑦𝜙𝑥𝑦
𝜙𝑥𝜓𝑦−𝜙𝑦𝜓𝑥

,

𝑄 = 𝜙𝑥𝜓𝑥𝑥−𝜓𝑥𝜙𝑥𝑥
𝜙 𝜓 −𝜙 𝜓

, 𝑧 = 𝜙𝑥𝜓𝑥𝑦−𝜓𝑥𝜙𝑥𝑦
𝜙 𝜓 −𝜙 𝜓

, 𝑃 = 𝜙𝑦𝜓𝑥𝑥−𝜓𝑦𝜙𝑥𝑥
𝜙 𝜓 −𝜙 𝜓

.

𝑥 𝑦 𝑦 𝑥 𝑥 𝑦 𝑦 𝑥 𝑥 𝑦 𝑦 𝑥
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Fig. 1. A schematic view of a cantilever beam and its equivalency as the mechanical system.
Lie [19] also found the following over-determined system of four equa-

tions

𝑤𝑥 = 𝑧𝑤− 𝐹𝐹3 −
1
3
𝜕𝐹1
𝜕𝑦

+ 2
3
𝜕𝐹2
𝜕𝑥
,

𝑤𝑦 = −𝑤2 + 𝐹2𝑤+ 𝐹3𝑧+
𝜕𝐹3
𝜕𝑥

− 𝐹1𝐹3,

𝑧𝑥 = 𝑧2 − 𝐹1𝑧− 𝐹𝑤+ 𝜕𝐹

𝜕𝑦
+ 𝐹𝐹2,

𝑧𝑦 = −𝑧𝑤+ 𝐹𝐹3 −
1
3
𝜕𝐹2
𝜕𝑥

+ 2
3
𝜕𝐹1
𝜕𝑦
,

(4)

which are called the Lie conditions. The compatibility of Lie’s condi-

tions gives the following well known Lie-Tressé linearization test for 
the ODEs of the form (3), viz.

𝜕2𝐹1
𝜕𝑦2

− 2 𝜕
2𝐹2
𝜕𝑦𝜕𝑥

+ 3 𝜕
2𝐹3
𝜕𝑥2

− 3 𝜕𝐹1
𝜕𝑥
𝐹3 − 3𝐹1

𝜕𝐹3
𝜕𝑥

+ 6 𝜕𝐹
𝜕𝑦
𝐹3 + 3𝐹 𝜕𝐹3

𝜕𝑦
− 𝐹2

𝜕𝐹1
𝜕𝑦

+ 2𝐹2
𝜕𝐹2
𝜕𝑥

= 0
𝜕2𝐹2
𝜕𝑥2

− 2 𝜕
2𝐹1
𝜕𝑦𝜕𝑥

+ 3 𝜕
2𝐹
𝜕𝑦2

+ 3 𝜕𝐹
𝜕𝑦
𝐹2 + 3𝐹 𝜕𝐹2

𝜕𝑦
− 3 𝜕𝐹

𝜕𝑥
𝐹3 − 6𝐹 𝜕𝐹3

𝜕𝑥
+ 𝐹1

𝜕𝐹2
𝜕𝑥

− 2𝐹1
𝜕𝐹1
𝜕𝑦

= 0.

(5)

It was Tressé [20] who first obtained the invariant criteria (5).

In [21], new 𝜆-symmetry linearization criteria for second order 
ODEs have been provided as follows

Theorem. A scalar second-order ODE (1) is linearizable via point trans-

formations (2) if and only if it has the cubic in first derivative form

(3) with the 𝜆-symmetries equivalent to the canonical pair ( 𝜕
𝜕𝑦
, 𝜆1) for 

𝜆1 = −𝐹3 𝑦′ 2 −
(
𝐹2 −𝑤

)
𝑦′ − 𝑧 and the transformations 𝜙 and 𝜓 satisfy-

ing the system

𝑆𝑦𝑦 +
(
2𝑤− 𝐹2

)
𝑆𝑦 + 𝐹3𝑆𝑥 = 0

𝑆𝑥𝑦 +𝑤𝑆𝑥 − 𝑧 𝑆𝑦 = 0

𝑆𝑥𝑥 +
(
𝐹1 − 2𝑧

)
𝑆𝑥 − 𝐹 𝑆𝑦 = 0

(6)

where 𝑤 and 𝑧 are auxiliary functions.

In general, the approach of obtaining the general local linearization 
transformations for nonlinear ODE of the form (3) is given as follows 
[21]:

1. Check if the coefficients of the ODE (3) satisfy the Lie linearization 
test (5).

2. Find any particular solution for 𝑤(𝑥, 𝑦) and 𝑧(𝑥, 𝑦) of the system (4).

3. Find the values of 𝜙 and 𝜓 satisfy the system (6) for the evaluated 
𝑤(𝑥, 𝑦) and 𝑧(𝑥, 𝑦).

4. Since the free particle equation 𝑢𝑡𝑡 = 0 has the general solution 
𝑢(𝑡) = 𝑠1𝑡 + 𝑠2, then the local transformations (2) lead to the fol-

lowing general solution of the ODE (3)

𝜓(𝑥, 𝑦) = 𝑠1𝜙(𝑥, 𝑦) + 𝑠2.
3

3. Analysis

The nonlinear ODE

𝑚𝑦′′ + 𝑐 𝑦′ + 𝑘𝑦 = 0 (7)

where 𝑐 = 𝑐0 + 𝑐1𝑦, and 𝑘 = 𝑘1 + 𝑘2𝑦 + 𝑘3𝑦2, satisfies the Lie linearization 
test (5) if and only if 𝑘2 =

𝑐0 𝑐1
3𝑚 , and 𝑘3 =

𝑐21
9𝑚 . It should be noted that 

in the case of metallic materials, the damping coefficient and stiffness 
can be simplified through a polynomial form of displacement. In this 
case, the following are considered for simplicity to resemble flexural 
properties of a cantilever beam. Hence, we will approximate the values 
of 𝑘2 and 𝑘3 to make the ODE (7) linearizable, so that it can be written 
as

𝑦′′ +
(
𝑐0 + 𝑐1𝑦

)
𝑚

𝑦′ +
𝑘1𝑦

𝑚
+
𝑐1𝑐0𝑦

2

3𝑚2 +
𝑐21𝑦

3

9𝑚2 = 0

and the Lie condition system (4) becomes as follows.

𝑤𝑥 − 𝑧𝑤+
𝑐1
3𝑚

= 0

𝑤𝑦 +𝑤2 = 0

9𝑧𝑥 𝑚2 +
(
𝑦3𝑐21 + 9𝑦𝑘1𝑚+ 3𝑦2𝑐1𝑐0

)
𝑤− 9𝑧𝑚2 + 9𝑚

(
𝑐0 + 𝑐1𝑦

)
𝑧− 3 𝑐21𝑦

2

− 6 𝑐1𝑐0𝑦− 9𝑘1𝑚 = 0

𝑧𝑦 + 𝑧𝑤−
2 𝑐1
3𝑚

= 0

This system has a particular solution 𝑤(𝑥, 𝑦) = 1
𝑦
, 𝑧(𝑥, 𝑦) = 𝑐1𝑦

3𝑚 . Then the 
system (6) becomes

𝑦𝑠𝑦𝑦 + 2𝑠𝑦 = 0

3 𝑠𝑥𝑦 𝑦𝑚+ 3 𝑠𝑥𝑚− 𝑐1𝑦2𝑠𝑦 = 0

𝑠𝑥𝑥 +
(
𝑐0 + 𝑐1𝑦
𝑚

−
2𝑐1𝑦
3𝑚

)
𝑠𝑥 −

(
𝑘1𝑦

𝑚
+
𝑐0𝑐1𝑦

2

3𝑚2 +
𝑐21𝑦

3

9𝑚2

)
𝑠𝑦 = 0

This system has two solutions with nonzero Jacobian for our considered 
parameters that provide the point transformations as

𝜓(𝑥, 𝑦) = e−
𝑐0𝑥
2𝑚

6𝑘1𝑚𝑦

(
𝑐1

√
4𝑘1𝑚− 𝑐20 𝑦 cos(𝜔) +

(
𝑐1𝑐0𝑦+ 6𝑘1𝑚

)
sin(𝜔)

)

and

𝜙(𝑥, 𝑦) = e−
𝑐0𝑥
2𝑚

6𝑘1𝑚𝑦

((
𝑐0𝑐1𝑦+ 6𝑘1𝑚

)
cos(𝜔) − 𝑐1

√
4𝑘1𝑚− 𝑐20 𝑦 sin(𝜔)

)

where

𝜔 =

√
4𝑘1𝑚− 𝑐20
2𝑚

𝑥0. (8)

The nonzero Jacobian
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𝐽 =
e−

𝑐0𝑥
𝑚

√
4𝑘1𝑚− 𝑐20

2𝑚𝑦3

transforms the ODE (7) to the free particle equation 𝑢𝑡𝑡 = 0. So, the 
general solution of ODE (7) can be written as

𝑦(𝑥) =

−
6𝑘1𝑚

(
𝑠1 cos(𝜔) − sin(𝜔)

)
(
𝑠1𝑐0𝑐1 − 𝑐1

√
4𝑘1𝑚− 𝑐20

)
cos(𝜔) −

(
𝑐0𝑐1 + 𝑠1𝑐1

√
4𝑘1𝑚− 𝑐20

)
sin(𝜔) − 6𝑘1𝑠2𝑚𝑒

𝑐0𝑥
2𝑚

(9)

where 𝜔 is defined in (8), 𝑠1 and 𝑠2 are arbitrary constants.

One can see that general solution of equation (7) in the linear case 
when 𝑐1 = 0 can be obtained as a constant multiple of that solution given 
by substituting 𝑐1 = 0 in equation (9) after relabeling the constants as 
follows:

𝑦(𝑥) = e−
𝑐0𝑥
2𝑚 (𝐴 cos(𝜔)) +𝐵 sin(𝜔))

Now, we will provide the values of 𝑠1 and 𝑠2 for the two following 
cases:

Case1: (Initial displacement and the velocity for some non-zero instant)

For the conditions 𝑦(0) = 0, 𝑦′(𝑥0) = 0, 𝑥0 ≠ 0, the values of 𝑠1 and 𝑠2 can 
be given as

𝑠1 = 0

and

𝑠2 =
𝑐1e

− 𝑐0𝑥0
2𝑚

(
𝑐20 − 4𝑘1𝑚

)
6𝑘1𝑚

(√
4𝑘1𝑚− 𝑐20 cos(𝜔) − 𝑐0 sin(𝜔))

)

Note that in the linear case 𝑦 = 0.

Case2: (Initial displacement and the non-zero displacement for some 
non-zero instant)

For the conditions 𝑦(0) = 0, 𝑦(𝑥0) = 𝑦0, 𝑥0 ≠ 0, 𝑦0 ≠ 0, the values of 𝑠1 and 
𝑠2 can be given as

𝑠1 = 0

𝑠2 = − e−
𝑐0𝑥0
2𝑚

6𝑦0𝑘1𝑚

(
6𝑚𝑘1 sin(𝜔) + 𝑐1𝑦0

√
4𝑘1𝑚− 𝑐20 cos(𝜔) + 𝑐0𝑐1𝑦0 sin(𝜔)

)

Moreover, in the linear case

𝑠1 = 0

𝑠2 = −e−
𝑐0𝑥0
2𝑚

𝑦0
sin(𝜔)

Case3: (Initial displacement and initial velocity)

For the conditions 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1, the values of 𝑠1 and 𝑠2 can be 
given as

𝑠1 = −
3
√

4𝑘1𝑚− 𝑐20𝑦0

6𝑦1𝑚+ 3𝑐0𝑦0 + 2𝑐1𝑦20

𝑠2 = −

(
𝑐21𝑦

2
0 +

(
3𝑦1𝑚+ 3𝑐0𝑦0

)
𝑐1 + 9𝑘1𝑚

)√
4𝑘1𝑚− 𝑐20

3𝑘1𝑚
(
6𝑦1𝑚+ 3𝑐0𝑦0 + 2𝑐1𝑦20

)
In the linear case:

𝑠1 = −

√
4𝑘1𝑚− 𝑐20𝑦0
2𝑦1𝑚+ 𝑐0𝑦0

𝑠2 = −

√
4𝑘1𝑚− 𝑐20
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Table 1. Properties used in the 
simulations.

Property Numerical value

𝑐0 0.42 Ns/m

𝑐1 368 Ns/m2

𝑘1 875 N/m

𝑘2 416.323 N/m2

𝑘3 1.216 × 105 N/m3

𝑚 0.12375 kg

𝑦0 0.04 m

𝑦1 10 m/s

𝑥0 0.5 s

. 2. Displacement with time for case 1; for the condition 𝑦(0) = 0, 𝑦′(𝑥0) = 0, 
0.

A computer code is developed to simulate the non-linear flexural 
racteristics of the cantilever beam for three cases considered. The 
sical properties used in the simulations are given in Table 1.

Results and discussion

The closed form solution for the non-linear equation of motion 
erning the cantilever beam displacement is obtained using the Lie-

sse linearization method through linearizing the governing equation 
otion. The analytical study covers three conditions associated with 

 initial and boundary conditions of the cantilever beam prior to the 
ural motion. These conditions include:

Case 1: initial displacement and the velocity are known for some 
non-zero instant of time.

Case 2: initial displacement is non-zero and the displacement is 
known for some instant of time other than zero.

Case 3: initial displacement and initial velocity are known.

 linear motion of the cantilever beam is also considered and the 
lytical solution obtained for three conditions is reduced to a linear 
tion after introducing the appropriate beam damping and stiffness 

ameters.

Fig. 2 shows displacement with time curves for non-linear and lin-

 behavior of the cantilever beam for the first case. It should be noted 
t the conditions for the case 1 are 𝑦(0) = 0, 𝑦′(𝑥0) = 0, 𝑥0 ≠ 0, which 
resent the zero initial displacement and non-zero velocity at instant 
time other than the initial time. Oscillation of the cantilever beam 

ps at a faster rate in the early periods and as the period progresses, 
 rate of damping reduces. This is associated with the damping coef-

ent and stiffness of the cantilever beam incorporated in the analysis, 
ich are in the form of 𝑐 = 𝑐0 + 𝑐1𝑦, and 𝑘 = 𝑘1 + 𝑘2𝑦 + 𝑘3𝑦2. Since the 
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Fig. 3. Displacement with time for case 2; for the condition 𝑦(0) = 0, 𝑦(𝑥0) = 𝑦0 , 
𝑥0 ≠ 0, 𝑦0 ≠ 0.

value of c1 is much larger than c𝑜, the damping rate becomes larger dur-

ing the early periods where the amplitude is large (y). Since the linear 
and the quadratic forms of damping coefficient and stiffness are consid-

ered in the analysis, no sudden jump in the amplitude is observed during 
the oscillation. Despite the behavior of the beam is non-linear, the dis-

placement characteristics appear to be linear in the figure because of 
the continuous functional relation between the damping coefficient and 
the displacement. In the case of a linear cantilever beam, the beam does 
not respond to the conditions introduced in the analysis; in which case, 
amplitude remains zero for all the periods incorporated in the analysis.

Fig. 3 shows displacement characteristics of the cantilever beam for 
the case 2; in which case, 𝑦(0) = 0, 𝑦(𝑥0) = 𝑦0, 𝑥0 ≠ 0, 𝑦0 ≠ 0 conditions 
are imposed. These conditions represent that initially the beam is in rest 
and displacement is zero; at any instant of time, which is different from 
the initial time, displacement is known (y𝑜) and all times other than the 
initial time, displacement is not zero. Similar to the previous behavior 
as shown in Fig. 2, the rate of damping is high during the early periods 
and amplitude decays gradually with the progressing period. The lin-

ear behavior of the beam results in lower amplitude than the non-linear 
beam; provided that as the time progresses the oscillation becomes al-

most the same for non-linear and linear characteristics of the cantilever 
beam. This is attributed to the low values of amplitude (y) at long os-

cillation durations; hence, the effect of 𝑐1𝑦 on the damping coefficient 
becomes less and the cantilever beam behaves like a linear beam. More-

over, the effects of non-linear characteristics of the cantilever beam are 
more pronounced on the amplitude of oscillation as compared to the 
frequency. This is again because of the linear and quadratic variation of 
the damping constant and the stiffness of the cantilever beam with the 
displacement. Therefore, no frequency shift or jump is observed during 
the oscillation of the non-linear cantilever beam.

Fig. 4 shows oscillation characteristics of linear and non-linear can-

tilever beams for the conditions introduced in case 3. The conditions 
incorporated for the case 3 are 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1; in which case, ini-

tially the displacement is assumed to be non-zero (y𝑜) and the initial 
velocity (𝑦′(0)) is also considered to be non-zero. In this case, the am-

plitude of non-linear behavior of the cantilever beam becomes less than 
that corresponding to the linear cantilever beam. This is associated with 
the high values of the damping coefficient during the initial oscilla-

tion of the non-linear cantilever beam. Therefore, the linear variation 
of damping coefficient with the amplitude as well as the parabolic be-

havior of stiffness acts as constraints on the oscillation of the non-linear 
cantilever beam. This behavior lowers the decay rate of damping of the 
oscillation with the progressing period. Therefore, energy dissipation 
through a non-linear cantilever beam becomes slower than that of the 
linear beam. Moreover, as similar to those observed for Figs. 2 and 3, no 
frequency shift takes place between the linear and non-linear cantilever 
beam behaviors. The non-linear effect appears to be significant only for 
5

Fig. 4. Displacement with time for case 3; for the condition 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1 .

the amplitude of the oscillation. This behavior is associated with the 
linear variation of the damping coefficient of the non-linear cantilever 
beam.

In general, the linear/nonlinear case responses y can be written/ap-

proximated as 𝑦 = e−𝑐𝑥[𝐴1 sin(𝜔𝑑𝑥) +𝐴2 cos(𝜔𝑑𝑥)], where A1 and A2 are 
initial condition-dependent constants, c is damping factor controlling 
response decay or envelope, and 𝜔𝑑 is frequency of damped response. 
For the two cases (Cases 2 and 3), it appears that the frequency of 
damped response 𝜔𝑑 is same for both the linear and nonlinear mod-

els. As for the decay of response, the damping factor c is greater for the 
nonlinear model than the linear one, causing the nonlinear response to 
attenuate with greater rate than the linear response.

Declarations

Author contribution statement

B.S. Yilbas and M. Sunar: Analyzed and interpreted the data; Con-

tributed reagents, materials, analysis tools or data; Wrote the paper.

Raed Ali Marabeh; Ahmad Y Al-Dweik: Contributed reagents, mate-

rials, analysis tools or data; Wrote the paper.

Funding statement

The Open Access funding for this article was provided by the Qatar 
National Library.

Data availability statement

No data was used for the research described in the article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The open Access funding of this article is provided by Qatar National 
Library. The authors are thankful to Qatar University and King Fahd 
University of Petroleum and Minerals for their continuous support and 
excellent research facilities.



R.A. Mara’Beh, A.Y. Al-Dweik, B.S. Yilbas et al. Heliyon 8 (2022) e11673
References

[1] A. Fereidoona, M. Ghadimib, A. Bararic, H.D. Kalijid, G. Domairry, Nonlinear vibra-

tion of oscillation systems using frequency-amplitude formulation, Shock Vib. 19 
(2012) 323–332.

[2] B.K. Lee, C.E. Park, Elasticas of cantilever beam with constant volume, KSCE J. Civ. 
Eng. 17 (1) (2013) 164–172.

[3] A. Dick, B. Balachandran, H. Yabuno, M. Numatsu, K. Hayashi, M. Kuroda, K. 
Ashida, Utilizing nonlinear phenomena to locate grazing in the constrained motion 
of a cantilever beam, Nonlinear Dyn. 57 (3) (2009) 335–349.

[4] V. Kumar, J.K. Miller, Jacob J.F. Rhoads, Nonlinear parametric amplification and 
attenuation in a base-excited cantilever beam, J. Sound Vib. 330 (22) (2011) 
5401–5409.

[5] H. Yabuno, A.H. Nayfeh, Nonlinear normal modes of a parametrically excited can-

tilever beam, Nonlinear Dyn. 25 (1–3) (2001) 65–77.

[6] B. Pratiher, S. Dwivedy, K. Santosha, Nonlinear vibration of a magneto-elastic can-

tilever beam with tip mass, J. Vib. Acoust. Trans. ASME 131 (2) (2009) 0210111.

[7] H. Bredmose, S. Schler, B.T. Paulsen, Higher-harmonic response of a slender can-

tilever beam to fully nonlinear regular wave forcing, in: Proceedings of the Inter-

national Conference on Offshore Mechanics and Arctic Engineering - OMAE, vol. 4, 
2012, pp. 469–478.

[8] Z.N. Ahmadabadi, S.E. Khadem, Nonlinear vibration control of a cantilever beam by 
a nonlinear energy sink, Mech. Mach. Theory 50 (2012) 134–149.

[9] H. Vázquez-Leal, Y. Khan, A.L. Herrera-May, U. Filobello-Nino, A. Sarmiento-Reyes, 
V.M. Jiménez-Fernández, D. Pereyra-Díaz, A. Perez-Sesma, R. Castaneda-Sheissa, A. 
Díaz-Sanchez, J. Huerta-Chua, Approximations for large deflection of a cantilever 
beam under a terminal follower force and nonlinear pendulum, Math. Probl. Eng. 
2013 (2013).

[10] X. Ma, L. Chang, Y. Pan, Accurate solutions to nonlinear vibration of cantilever beam 
via homotopy perturbation method, Proc. Eng. 15 (2011) 4768–4773.

[11] H. Kaneko, H. Yabuno, M. Kuroda, Nonlinear analysis of a self-excited cantilever 
beam, in: Proceedings of the ASME International Design Engineering Technical Con-

ferences and Computers and Information in Engineering Conference - DETC2005, 
vol. 6 C, 2005, pp. 2037–2044.

[12] C.-C. Liu, S.-C. Yang, C.-K. Chen, Nonlinear dynamic analysis of micro cantilever 
beam under electrostatic loading, J. Mech. 28 (1) (2012) 63–70.

[13] F. Benedettini, D. Zulli, M. Vasta, Analysis of the nonlinear response of a cantilever 
beam under deterministic and random excitation, in: Proceedings of the ASME 2003 
International Mechanical Engineering Congress and Exposition. Applied Mechanics 
and Biomedical Technology, vol. 254, 2003, pp. 215–221.

[14] B. Li, X. Wang, W. Dong, Vibration characteristics of a flexible cantilever beam and 
limitations of equivalent linearized method, Acta Aeronaut. Astronaut. Sin. 34 (9) 
(2013) 2150–2160.

[15] C. Yong, X. Yi, Nonlinear normal modes of a continuous cantilever beam with non-

linear energy sink absorber, Appl. Mech. Mater. 325–326 (2013) 214–217.

[16] I.T. Alzaharnah, B.S. Yilbas, S.A. Al-Kaabi, Flexural characteristics of a laser welded 
cantilever plate: influence of speed of the heating source, Lasers Eng. 18 (5–6) 
(2008) 337–350.

[17] I.T. Alzaharnah, B.S. Yilbas, Investigation into flexural characteristics of a bar sub-

jected to local heating: the effect of heat source location, Proc. Inst. Mech. Eng., B 
J. Eng. Manuf. 222 (B11) (2008) 1355–1362.

[18] B.S. Yilbas, M. Faisal, Flexural waves generated due to pressure force during laser 
induced evaporation process, J. Laser Appl. 13 (2001) 118–124.

[19] S. Lie, Klassifikation und Integration von gewöhnlichen Differentialgleichungen 
zwischen x, y, die eine Gruppe von Transformationen gestatten. III’, Arch. Math. 
Naturvidensk. 8 (1924) (Kristiania, 1883), 371–458 [reprinted in Lie’s Gessammelte 
Abhandlundgen 5, 1924, paper XIV, 362–427].

[20] A.M. Tressé, Sur les Invariants Diff’erentiels des Groupes Continus de Transforma-

tions, Acta Math. 18 (1894) 1–88.

[21] Ahmad Y. Al-Dweik, M.T. Mustafa, Raed A. Mara’Beh, F.M. Mahomed, An alterna-

tive proof of Lie’s linearization theorem using a new 𝜆-symmetry criterion, Commun. 
Nonlinear Sci. Numer. Simul. 26 (1–3) (2015) 45–51.

[22] C. Muriel, J.L. Romero, Evolution of the concept of 𝜆-symmetry and main ap-

plications, in: Nonlinear Systems and Their Remarkable Mathematical Structures, 
Chapman and Hall/CRC, 2019, pp. 158–187.

[23] Andronikos Paliathanasis, Projective collineations of decomposable spacetimes gen-

erated by the Lie point symmetries of geodesic equations, Symmetry 13 (6) (2021) 
1018.
6

http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(22)02961-9/bib37693CFC748049E45D87B8C7D8B9AACDs1

	Closed form solution of nonlinear oscillation of a cantilever beam using λ-symmetry linearization criteria
	1 Introduction
	2 Mathematical analysis
	3 Analysis
	4 Results and discussion
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	Acknowledgements
	References


