
Research Article
Complexity of Deep Convolutional Neural Networks in
Mobile Computing

Saad Naeem,1 Noreen Jamil ,1 Habib Ullah Khan ,2 and Shah Nazir 3

1Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan
2Department of Accounting & Information Systems, College of Business & Economics, Qatar University, Doha, Qatar
3Department of Computer Science, University of Swabi, Swabi, Pakistan

Correspondence should be addressed to Habib Ullah Khan; habib.khan@qu.edu.qa

Received 17 July 2020; Revised 2 September 2020; Accepted 6 September 2020; Published 17 September 2020

Academic Editor: Atif Khan

Copyright © 2020 Saad Naeem et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neural networks employ massive interconnection of simple computing units called neurons to compute the problems that are
highly nonlinear and could not be hard coded into a program. +ese neural networks are computation-intensive, and training
them requires a lot of training data. Each training example requires heavy computations. We look at different ways in which we
can reduce the heavy computation requirement and possibly make them work on mobile devices. In this paper, we survey various
techniques that can be matched and combined in order to improve the training time of neural networks. Additionally, we also
review some extra recommendations to make the process work for mobile devices as well. We finally survey deep compression
technique that tries to solve the problem by network pruning, quantization, and encoding the network weights. Deep compression
reduces the time required for training the network by first pruning the irrelevant connections, i.e., the pruning stage, which is then
followed by quantizing the network weights via choosing centroids for each layer. Finally, at the third stage, it employs Huffman
encoding algorithm to deal with the storage issue of the remaining weights.

1. Introduction

Neural networks, as the name suggests, are modeled after the
human brain that has complex interconnections called
synapses [1], and the human brain does not stay static as it
learns from its environment and continuously updates its
knowledge.

Neural network works at the same principles; it can be
considered as a massively parallel distributed processor that
is made up of simpler computing units called neurons that
can store huge amounts of knowledge in the form of weights;
it is similar to a human brain, in that it stores the knowledge
gained from its environment and stores this knowledge via
interneuron connection strength that is also called synaptic
weights.

+e most common applications of these networks are
pattern recognition and object recognition; as their strength
comes from their adaptive nature, they are able to change
and adjust their synaptic weights as their surrounding

environment changes. +ere are various types of networks
and they employ different algorithms to match the problem
statement; for example, CNNs also known as convolutional
neural networks are better at image recognition whereas feed
forward neural networks are better at predicting the results
[2–4].

+ese neural networks employ a variety of algorithms
and different network architectures like back propagation,
feed forward, reinforcement learning, deterministic
annealing, and hill climbing techniques that suit the problem
scenario and learn the features from their environment and
store this knowledge. Storing the knowledge and applying it
require a large number of neurons and the connections
between these neurons to be stored and called upon later.
+is is where the issue of training the networks comes into
play.

Training the network requires the system to provide
huge amounts of training data to the network; each training
example requires the network to learn and adjust its weights

Hindawi
Complexity
Volume 2020, Article ID 3853780, 8 pages
https://doi.org/10.1155/2020/3853780

mailto:habib.khan@qu.edu.qa
https://orcid.org/0000-0003-0697-9187
https://orcid.org/0000-0001-8373-2781
https://orcid.org/0000-0003-0126-9944
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3853780


and its respective interneuron connections which is a time-
consuming task [1, 5].

As we know that neural networks are computation-in-
tensive and training them requires a lot of training data and
each training example requires heavy computations, we look
at the ways in which we can reduce the heavy computation
requirement and possibly make them work on mobile
devices.

+ere are lots of angles that can be looked at in order to
tackle the above problem.

Almost all of the work that is being done can be cate-
gorized logically by their type, for example, model com-
pression, compression, efficiency via proper parameters,
knowledge transfer, and finally all these techniques com-
bined in different ways plus extra consideration for mobile
devices.

2. Literature Review

2.1. Related Work

2.1.1. Model Compression. Using model compression
techniques [4], we can greatly reduce the number of pa-
rameters provided to the network; instead of a domain
expert hand picking the features, we can use AutoML that
uses reinforcement learning to search the design space and
improve it.

2.1.2. Compression, Sparsity, and Redundant Calculations.
Discrete cosine transform [6] is a mathematical technique
that can be used for pattern recognition where instead of
processing the whole image it recognizes the patterns in
image by reducing the dimensionality of image. Deep
compression [2] tackles this issue by using a combination of
pruning the network, i.e., taking out the network branches
that are not relevant to our decision making, quantization,
i.e., limiting the number of weights needed to store by
sharing the weights between different connections, and fi-
nally encoding these weights using Huffman encoding.
Although neural network-based compression [3] on top of
image and video compression using compression techniques
such as JPEG and discrete cosine transform and HEVC for
video compression solves the high storage cost, it still suffers
from intensive computations needed to perform the
compression.

2.1.3. Accuracy and Efficiency via Proper Parameters
(YOLO). +e issue of initializing the network with proper
and accurate parameters that reduces the training time for
high accuracy networks is obvious but critical [5]. Using the
YOLO platform (“you only look once”) that divides the
images into regions, more accuracy (97.8%) can be achieved
than the conventional networks in a relatively lesser time
and is proven to be more efficient [7].

2.1.4. Knowledge Transfer. Tianqui Chen et al. worked on a
technique called accelerating learning via knowledge
transfer as shown in Figure 1. Instead of training a system

from scratch, they transferred the knowledge from a pre-
vious network that was already trained for performing a
similar task and added a layer on top of the new network and
trained it. +is saved extra training time and extensive
computations required to train the new network. But in turn
the resultant network got deeper and grew in number of
layers [1].

2.1.5. Mobile Devices. With the advent of 5G, the latency and
high bandwidth problem is solved up to some extent, which
made it easier to send the data back to the cloud platform for
computations. But training the network and running it
locally still remains a big issue [8].

Distributed network architecture technique [9] sends the
heavy computation load to a central server that performs the
computations and sends the results back to the mobile
device; this technique requires efficient workload distribu-
tion, but it is just sending away the load from mobile device
and not really performing on-board computations; none-
theless, this technique is still deployed in many scenarios and
does perform reliably.

Light-weight CNNS [10] leverages separable convolution
concept to train the system faster where the amount of
computations required reduces significantly. But the process
still involves heavy amount of computation to be done on a
mobile device so the network is still trained on a system that
can handle this computation-hungry algorithm; then after
the system is trained, it is deployed on a mobile edge device.
ShuffleNet Architecture [11] designed for mobile devices
uses channel shuffling and point-wise convolutions to re-
duce the number of computations to be performed; although
the technique works better than the techniques in the cat-
egory of mobile devices, it still remains applicable for
problems of relatively lower complexity. Quantized con-
volutional networks [12] for mobile devices are most
promising so far as they attempt to reduce both the com-
putation cost and the storage cost by compression of pa-
rameters and using mathematical models for prediction
results as shown in Figure 2. Minimizing the estimation
error is the key driver behind this technique.

Figure 2 shows the impact of quantization process in
terms of storage and time requirements where the quantized
network requires significantly less storage for the weights
and is faster to train (shown in blue).

2.2. Critical Review

2.2.1. Accelerated Learning via Knowledge Transfer.
Accelerated learning via knowledge transfer technique
comes under the category of network initialization tech-
niques which attempts to cut off the network training time
via initialization of a new network by a previously trained
network doing a similar task. +e trained network is named
as teacher network and the new network which is being
initialized is called the student network. +is technique was
named Net2Net by Chen et al. [1].

Although the Net2Net technique does reduce the net-
work training time significantly and accelerates the learning

2 Complexity



process, it also introduces additional layers in the network
that are required to fine-tune the newly initialized network
for doing the task specific to the student network; this makes
the student network much deeper than the teacher network
at least by a factor of 1.5 which in turn introduces redundant
calculations at each layer. +e authors demonstrated their
work by training two networks side by side; one was trained
from scratch and the second network was trained using
Net2Net technique and the results were compared by
clocking the training times for both techniques; the results
showed that the training time was almost reduced to half.

2.2.2. Discrete Cosine Transform. Discrete cosine transform
is a mathematical technique for pattern recognition that can
be applied in signal processing as well that reduces the
feature space and tries to solve the dimensionality reduction
problems. Ahmed et al. [6] argue that for pattern recognition
problems discrete cosine transform would lend itself better
for signal processing than Fourier Transform; they dem-
onstrated this via testing against the system applying Fourier
Transform to the dimensionality reduction problem; the
results showed that cosine transform extracts the feature
space much better by extracting the most relevant patterns.

15

10

5

0
AlexNet CNN-S

400

300

200

100

0
AlexNet CNN-S

500

400

300

200

100

0
AlexNet CNN-S

25

20

15

10

5

0
AlexNet CNN-S

Time consumption (s) Storage consumption (MB)

Memory consumption (MB) Top-5 error rate (%)

Original
Q-CNN

Original
Q-CNN

Original
Q-CNN

Original
Q-CNN

Figure 2: Alex Net versus the quantized convolutional network (blue) demonstrating the significant savings in storage and time complexity.

Traditional workflow Net2Net workflow
Initial design Rebuild the model

Training Training

Initial design Reuse the model

Training

Training

Net2Net operator

Figure 1: +e traditional training process versus the Net2Net workflow where the training model is reused to train the student network.

Complexity 3



And the distortion in the results was much less as compared
to Fourier Transform.

2.2.3. Deep Compression. Deep compression takes the whole
development pipeline of neural network into consideration
starting from pruning, then reducing the number of network
weights, and finally encoding the weights using the process
shown in Figure 3. Implementing these three-staged pipe
lines requires significant amount of work and strictly follows
the model specification, since missing any of which could
lead to loss in accuracy.

Han et al. [2] were able to demonstrate the training
speed-up using a smaller network efficiently but as the
network size grows larger this technique starts suffering
from scaling problem and the network accuracy is lost
significantly.

2.2.4. Neural Network-Based Compression. Neural network-
based compression is proposed to compress the audio-visual
data using neural networks so that subsequent training time
could be reduced using the compressed data. Neural net-
work-based compression requires a trained network for a
specific type of data to extract the important features but
suffers from generalization problem; i.e., this technique does
not generalize well when the data varies significantly in its
features leading to inefficient compression and even missing
important features that should have been considered. To
tackle this problem, a domain expert is required to fine-tune
the extraction process which could be considered a draw-
back of this technique. Using homogeneous data, Siwei Ma
et al. [3] were able to compress the data using neural nets but
failed to do so without any intervention from domain expert.

2.2.5. Mobile Devices. Mobile devices suffer from bandwidth
and latency issues and are not able to handle large amount of
neural network computations on board. Ahmed and
Rehmani [8] tried to tackle this problem by sending the
computation load to the servers via network and getting the
results back from servers and displayed the results. Although
they tackled the problem, this technique did not solve the
problem of running the neural network on board chip. +e
major drawback of this technique is that it requires network
connection and consumes significant amount of bandwidth.
+ey demonstrated this by sending the computation load to
the remote server and clocking the response time; the results
showed a significant speed-up as compared to when they
tried to run. +e same computations on board resulted in
system halt, therefore, proving that mobile devices cannot
handle these kinds of computations when performed on
board.

2.2.6. Model Compression. Model compression attempts to
speed up the neural networks by determining the optimal
compression policy; it does so by looking at the sparsity at
each layer and outputs sparsity ratio which is then used as an
input for compression but the problem is that every layer has
different redundancies in it and is not constant.

Using reinforcement learning technique, a pertained
network is required that scans the problem space and then
only outputs an optimal compression ratio which is then
used to perform network pruning. Another issue that has to
be dealt with using AutoML technique is that in order to
make the exploration process of the design space faster the
final accuracy is tested without fine-tuning the reward ac-
curacy for the agent and the argument being that this ac-
curacy is an approximation to the final accuracy after the
reward accuracy is fine-tuned.

+en, finally there is the learning agent itself which needs
to be trained for different situations, i.e., whether the agent
will get any reward for going below the budgeted constraints
and what kind of tradeoffs the agent should balance, i.e.,
between time, space, and accuracy.

+e reward function also needs to be tweaked manually
in order to arrive at the compression ratio that suits the
problem; for example, if there are no time constraints, then
the reward function is adjusted to arrive at the optimal
compression policy without any loss of accuracy but mostly
this might not be the case as most of the times the agent is
working under some sort of time or space constraints which
usually results in the loss of accuracy.

2.2.7. Accuracy and Efficiency via Proper Parameters.
Accuracy and efficiency via proper parameters is more of a
heuristic than a technique that emphasizes initializing the
network with appropriate parameters; doing so significantly
reduces the training time and approaches the accuracy
threshold value and converges faster than a network that is
initialized with irrelevant features because the network
training process spends significant amount of time in
learning the important connection. Radovic et al. [5]
demonstrated this by initializing the network with synthe-
sized and relevant features and only then started the training
process and the time log results showed that the properly
initialized network converged faster than the network
without proper initialization. And the resultant network
recognized the objects using CNN with 98% accuracy which
is an ideal case in object recognition problems.+is heuristic
appeals to the common sense of the developer so it does not
really have a downside to it and the results showed a network
trained in lesser time without any loss of accuracy.

2.2.8. YOLO Platform. YOLO platform implements a
technique called “you only look once”; i.e., instead of few
iterations, the network is shown the training data only once
while extracting only the most relevant and important
features and is expected to recognize the same objects ac-
curately when shown back. +is technique is suitable for
real-time object detection; it looks at what objects are
present in the image as well as where they are. It works in real
time by dividing the whole image into different grids and
looks at what objects are present in each grid as well as where
they are. It does so via only single feed forward propagation
pass on all the grids simultaneously, hence the name “only
look once.” After applying non-max suppression that deals
with getting rid of multiple bounding boxes for a single

4 Complexity



object, it outputs the final prediction along with the box that
shows the boundary around the detected object but as one
might expect there is significant loss in accuracy because of
less training time. Nonetheless, the technique works rela-
tively well for situations where training time is a major
constraint and the type of input data changes frequently.

2.2.9. Light-Weight CNNS. Light-weight CNNS leverages
separable convolution concept to train the system faster
where the amount of computation required reduces sig-
nificantly. But the process still involves a heavy amount of
computation to be done on a mobile device, so the network
is still trained on a system that can handle this computation-
hungry algorithm; i.e., on remote servers, after the system is
trained it is deployed on a mobile edge device.

2.2.10. Distributed Network Architecture. Distributed net-
work architecture is implemented to accurately perform
video surveillance on mobile devices using edge computing.
+e multilayered architecture has to send the work load to
the nearest server for feed analysis.+is architecture requires
significant amount of bandwidth and suffers from latency
issues but Chen et al. [9] and Chen et al. [1] did solve the
initial problem that involved performing real-time com-
putations for facial recognition using mobile devices by
sending the recognition query to the nearest server for
analysis and got back the results over the network that were
as accurate as a system running on full-fledged dedicated
server.

2.2.11. Quantized Convolutional Networks. Wu et al. [12]
reduced the network’s weight storage cost computation
overhead by quantizing the network weight allowing faster

computation results. Amajor drawback comes in the form of
2.5 percent accuracy loss because of the weight quantization
where the weights are quantized using clustering algorithm
which takes all the weights of a single network layer and
calculates their centroid, i.e., mean, and that value is stored
in a separate matrix. Doing so also impacts the performance
while computing the gradient descent. +e authors argue
that the 2.5% accuracy loss is less as compared to the amount
of computational speed-up and the storage cost saved.

2.2.12. ShuffleNet Architecture. ShuffleNet architecture is a
class of convolutional networks designed specifically for
mobile devices like drones and robots that have constraints
on power and computational power; this technique main-
tains its accuracy by cross-channel feature; sharing this
technique increased the performance by 7.8% as compared
to the state-of-the-art Mobile-Net architecture but all of this
under the computation budget of 40 MFLOPs due to ARM
mobile processor; this technique only relates to mobile
processors like Snapdragon and ARM chips that are
designed for mobile platforms and due to power constraints
operate under different specifications than a traditional
processor; this technique is directly tied with mobile
hardware and can improve its performance with the im-
provement in 40 MFLOPs constraint.

2.3. Comparative Study. +e common parameters that are
available between different techniques are shown in the
comparison table but other differences that are not common
are discussed in the paragraph format after the comparison
table:

Initialization means whether the technique is applied at
initialization time

3

1 1

1

1

1

0

0

0

0

3

3

3

2

2 2

3:

2:

1:

0:

Centroids
Fine-tuned
centroids

× Ir

ReduceGroup by

Gradient

Cluster

Cluster index
(2 bit unit)

Weights
(32-bit float)

2.00

1.50

0.00

–1.00

1.96

1.48

–0.04

–0.97

0.04

0.02

0.04

–0.03

–0.03–0.03 0.12 0.02

0.02

0.02

0.02 0.040.04

–0.07

–0.07

–0.02

–0.02

–0.02

–0.02

–0.02 –0.02

0.01

0.01

0.01

0.01 0.12

0.01

0.01

–0.01

–0.01–0.01

–0.01

–0.01

–0.01

0.03

0.03

2.09

0.05

–0.91

1.87

–0.98

–0.14

1.92

0

0

1.48

–1.08

1.53

0.09

2.12

–1.03

1.49

–

Figure 3: +e quantization process where the network weights are compressed via centroid calculation.

Complexity 5



Compression means whether network compression
was applied
Quantization means whether the weights were
quantized
Speed-up refers to whether training time could be
reduced or not
Onboard means whether the computations are being
performed on the device

2.3.1. Other Differences between the Techniques. Other than
the differences between common parameters in the tech-
niques as shown in Table 1, there are some architectural
differences as well which are given and compared below.

(1) Accelerated Learning via Knowledge Transfer. +is
technique is unique from others in a sense that it attempts to
accelerate the learning process via knowledge transfer
whereas other techniques like discrete cosine transform [6]
are a mathematical based approach for pattern recognition
and they attempt to solve the network speed-up problem
from a different mathematical point of view.

(2) Discrete Cosine Transform. +is technique comes
under the category of mathematical techniques that can be
used for pattern recognition where instead of processing the
whole image it recognizes the patterns in image by reducing
the dimensionality of image whereas other techniques like
accelerated learning (1) attempt to tackle the speed-up and
accuracy from purely a computer science perspective and
devise a clever technique to reduce the training time via
network initialization.

(3) Deep Compression. +is technique stands out from
other techniques by developing a complete pipeline from
network initialization to training. It tackles this issue by
using a combination of pruning the network, i.e., taking out
the network branches that are not relevant to our decision
making, quantization, i.e., limiting the number of weights
needed to store by sharing the weights between different
connections, and finally encoding these weights using
Huffman encoding. +is achieves relatively better speed-up
than all the other techniques at the cost accuracy loss.

(4) Neural Network-Based Compression. +is technique is
used on top of image and video compression using com-
pression techniques such as JPEG and discrete cosine
transform and HEVC for video compression: although this
technique solves high storage cost, it still suffers from in-
tensive computations needed to perform the compression.
+is technique differs significantly from deep compression
(3) because it attempts to perform automated compression
using neural networks whereas deep compression performs
the same process with the help of domain expert.

(5) Mobile Devices. +is technique takes a different
approach than all the other techniques; instead of per-
forming the computations on board it sends the compu-
tation load to a remote server. With the advent of 5G, the
latency and high bandwidth problem is solved to some
extent, which made it easier to send the data back to the

cloud platform for computations. But training the network
and running it locally still remains a big issue.+is technique
employs the same architecture as that employed by dis-
tributed network architecture (10) that also sends its load to a
remote server.

(6) Model Compression. +is technique comes under net-
work initialization category; in addition to this, an additional
benefit of automated compression is there. It uses the same
heuristics that are used by neural network-based compression
(4); i.e., we can greatly reduce the number of parameters
provided to the network; instead of a domain expert
handpicking the features, we can use AutoML that uses
reinforcement learning to search the design space and im-
prove it. +is technique is different from other techniques in
a sense that it tries to minimize the human factor that is
involved in handpicking the features that are redundant and
then prunes it. +is technique like only few others sits in the
category of initial optimization techniques that are applied
before the network is even initialized like (1) Net2Net
technique. It tries to solve the speed-up problem from a
different angle instead of looking at avoiding redundant
calculations at the run time like deep compression (3); it tries
to solve the problem by handling it at the initialization time
via pruning the redundant channels in the network auto-
matically without human intervention; this trait also sets this
technique apart from other techniques which tries to handle
the speed-up problem from different angles like compres-
sion and encoding.

(7) Accuracy and Efficiency via Proper Parameters. +is
technique comes under the category of heuristics. It is not
really a technique but a common sense, although obvious
but critical is the issue of initializing the network with proper
and accurate parameters that reduces the training time for
high accuracy networks; other techniques like YOLO plat-
form (8) extensively employs this heuristic in its imple-
mentation. Z. Ullah et al. employed a similar technique in
their networks to significantly reduce the training time.

(8) Using the YOLO Platform (“you only look once”).
+is technique divides the image into regions; an accuracy of
97.8% can be achieved which is less as compared to the
conventional networks but in a relatively lesser time and is
proven to be more efficient than other techniques in terms of
the training time that it requires. +e training time is lesser
in orders of magnitude than the other techniques but still
suffers from accuracy loss; like other techniques, it also
balances between training time and accuracy; i.e., by getting
faster training time, it compromises the accuracy of the
network.

(9) Light-Weight CNNS. +is technique tries to solve the
same problem as attempted by distributed network archi-
tecture (10) and mobile devices (8); it partially solves the
problem via storing the network weights on the mobile
device after training the network on remote servers. By
employing this technique, the system does not suffer from
latency and bandwidth issues like distributed network

6 Complexity



architecture (10) does. Uddin et al. [13] talked about
deploying similar architecture for detecting terrorist activ-
ities in real time.

(10) Distributed Network Architecture. +is technique sends
the heavy computation load to a central server that performs
the computations and sends the results back to the mobile
device; this technique requires efficient workload distribu-
tion, but it is just sending away the load from amobile device
and not really performing onboard computations. Light-
weight CNNs (9) solves the latency and bandwidth issue
more efficiently; nonetheless, this technique is still deployed
in many scenarios and performs reliably.

(11) Quantized Convolutional Networks. +ese techniques
for mobile devices are most promising so far as they attempt
to reduce both the computation cost and the storage cost by
compression of network parameters and using mathematical
models for prediction, where the mathematical modeling
relates to defining some inherent properties in the data
either statistically or by using a function adopted from
classical Hamiltonian and Lagrangian systems that outputs
optimal parameter quantization without much information
loss. Minimizing the estimation error is the key driver be-
hind this technique. +is technique can be easily scaled to
handle bigger computational loads as well. +e quantization
process used in this technique is the same as the one
implemented by deep compression (3) technique.

(12) ShuffleNet Architecture. +is technique designed for
mobile devices uses channel shuffling and point-wise con-
volutions to reduce the number of computations to be
performed although the technique works better than the
techniques in the category of mobile devices (5), but it still
remains applicable for problems of relatively lower
complexity.

3. Possible Ways of Extending the Work

3.1. Via Compression. Most of the storage that is used by a
neural network is in the form of network weights that store
the network knowledge. +e current compression includes
Huffman encoding for efficiently storing the network
weights but the video compression like HDLC is still

inefficient for compression problems. A possible extension
to video compression could be via defining optimal com-
pression ratio. Since a video feed is just a sequence of frames
(like images) and the information between subsequent
frames does not vary as much in its content, an optimal
compression ratio could be computed via CNNs by object
detection to look for variance in a video feed by CNNs; the
frames where the informational content does not vary as
much could be taken out in order to achieve better com-
pression ratio.

3.2. EfficientRAMStorage. +e policy of storing the network
weights in the RAM also has a direct effect on the perfor-
mance of the network; currently, there is no optimal policy
defined for network weight storage in the RAM as they are
brought into the RAM on the basis of usage from secondary
storage. Similar to algorithms that are used for disk
scheduling like FCFS (first come first serve) and SSTF
(shortest seek time first) combined with disk read prediction,
i.e., predicting the weights that could be accessed next based
on the previous history of disk access could be brought into
the RAM and the ones having prediction of above 98.5%
could be brought into the cache for immediate access, these
policies or algorithms could also be optimized using ma-
chine learning. As more time passes, the model becomes
more and more accurate.

3.3. Better Quantization. Currently, the weights are quan-
tized by calculating the weight centroids for each layer and
storing them in a matrix that is half of the original layer size
but there is no calculated relation between the subsequent
layers; perhaps a better strategy would be to calculate the
ratio between the centroids of two subsequent layers and
storing the ratio factor as a weight for the second layer; this
could reduce the storage cost even further by a factor of
2.5%, but one will need to verify whether there would be any
loss in network accuracy.

3.4. Improving Neural Network-Based Compression. A spe-
cific network trained extensively just for the purpose of
compression on massively varying and heterogeneous large
data sets that could predict the optimal compression policy

Table 1: Comparison.

Ref. Techniques/common parameters Initialization Compression Quantization Speed-up Onboard
1(1) Accelerated learning ✔ ✘ ✘ ✔ ✔
2(2) Discrete cosine transform ✔ ✔ ✔ ✘ ✔
3(3) Deep compression ✔ ✔ ✔ ✔ ✔
4(4) Neural network compression ✘ ✔ ✘ ✔ ✔
5(5) Mobile devices ✘ ✘ ✘ ✔ ✘
6(6) Model compression ✔ ✔ ✔ ✔ ✔
7(7) Proper parameters ✔ ✘ ✘ ✔ ✔
8(8) YOLO platform ✔ ✘ ✘ ✔ ✔
9(9) Light-weight CNNs ✘ ✘ ✘ ✔ ✔
10(10) Distributed network architecture ✘ ✘ ✘ ✔ ✘
11(11) Quantized CNNs ✘ ✔ ✔ ✔ ✔
12(12) ShuffleNet architecture ✘ ✘ ✔ ✔ ✔

Complexity 7



just by looking at sample data while residing on cloud could
significantly reduce the compression overhead. We think
current neural network-based compression (4) was dismissed
too quickly at not being accurate and having large com-
putational overhead; the authors did not explore the pos-
sibility of training the network on cloud and exploring the
possibility of getting the results from that network remotely.

4. Conclusions and Future Work

+e main issue involved in running the neural networks is
the time that is required for training, the storage space that is
required for storing the network weights, and finally the
accuracy that is given by the network as the output.

Most of the time while implementing the networks, the
designers have to trade off between these three; most of the
techniques attempt to tackle the problem at the initialization
stage by devising clever ways to efficiently initialize the
network by doing so; the network training time is reduced
significantly.

Another set of techniques like deep compression (3) tries
to tackle the problem by targeting the storage angle. +is
kind of techniques tries to minimize the storage space
consumed by the network by efficiently storing those
weights.

Finally, factoring in the scenario calls for tradeoffs in
accuracy of the networks; i.e., if there is a constraint on
training time, then accuracy is affected significantly which
leads us to a final conclusion:

+ere is no silver bullet to solve this problem; a lot of
work that is being done in this area is via considering
different parameters and how to effectively utilize them.

+e answer could be using all the combinations of the
above techniques at each level in their most effective and
optimized form. In the future, the proposed techniques will
involve both the hardware-based and software-based solu-
tions where different combinations of these two solutions are
combined with different hyperparameters and exper-
imenting with them to get an optimal training time while
balancing all the three constraints, i.e., time, space, and
accuracy.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

+e findings achieved herein are solely the responsibility of
the authors.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is article was supported by Qatar University Internal
Grant no. IRCC-2020-009.

References

[1] T. Chen, I. Goodfellow, and J. Shlens, “Accelerating learning
via knowledge transfer,” 2016, https://arxiv.org/abs/1511.
05641.

[2] S. Han, H. Mao, and W. J. Dally, “Deep compression com-
pressing deep neural networks with pruning, trained quan-
tization and huffman coding,” in Proceedings of the Conference
paper at ICLR, San Juan, PR, USA, May 2016.

[3] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wan, and S. Wang, “Image
and video compression with neural networks,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 30,
no. 6, pp. 1683–1698, 2019.

[4] Y. He, J. Lin, Z. Liu, W. Hanrui, Li-J. Li, and S. Han, “AMC:
AutoML for model compression and acceleration on mobile
devices,” in Proceedings of the European Conference Computer
Vision Foundation ECCV, Munich, Germany, September
2018.

[5] M. Radovic, O. Adarkwa, and Q. Wang, “Object recognition
in aerial images using convolutional neural networks,” Journal
of Imaging, vol. 3, 2017.

[6] N. Ahmed, T. Natrajan, and K. R. Rao, “Discrete cosine
transform,” IEEE Transactions on Computers, vol. 23, no. 1,
pp. 90–93, 1974.

[7] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard
transform image coding,” IEEE, vol. 57, no. 1, 1969.

[8] E. Ahmed and M. H. Rehmani, “Mobile edge computing:
opportunities, solutions, and challenges,” Journal of Future
Generation Systems, vol. 70, pp. 59–63, 2016.

[9] J. Chen, K. Li, Q. Deng, K. Li, and P. S. Yu, “Distributed deep
learning model for intelligent video surveillance systems with
edge computing,” 2019, https://arxiv.org/abs/1904.06400.

[10] S. Y. Nikouei, Yu Chen, S. Song, R. Xu, B.-Y. Choi, and
R. F. Timothy, “Smart surveillance reducing high computation
cost for neural networks and mobile computing,” 2018,
https://arxiv.org/abs/1805.00331.

[11] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: an ex-
tremely efficient convolutional neural network for mobile
devices,” in Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6848–6856, Salt
Lake City, UT, USA, 2018.

[12] J. Wu, L. Cong, Y. Wang, Q. Hu, and J. Cheng, “Quantized
convolutional neural networks for mobile devices,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4820–4828, Las Vegas, NV, USA,
June 2018.

[13] M. I. Uddin, S. A. A. Shah, M. A. Al-Khasawneh et al., “A
novel deep convolutional neural network model to monitor
people following guidelines to avoid COVID-19,” Journal of
Sensors, vol. 2020, pp. 1–16, 2020.

8 Complexity

https://arxiv.org/abs/1511.05641
https://arxiv.org/abs/1511.05641
https://arxiv.org/abs/1904.06400
https://arxiv.org/abs/1805.00331

