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C O R O N A V I R U S

High–temporal resolution profiling reveals distinct 
immune trajectories following the first and second 
doses of COVID-19 mRNA vaccines
Darawan Rinchai1,2*†, Sara Deola1†, Gabriele Zoppoli3,4‡, Basirudeen Syed Ahamed Kabeer1‡, 
Sara Taleb5‡, Igor Pavlovski1§, Selma Maacha1§, Giusy Gentilcore1, Mohammed Toufiq1, 
Lisa Mathew1, Li Liu1, Fazulur Rehaman Vempalli1, Ghada Mubarak1, Stephan Lorenz1, 
Irene Sivieri4,6,7, Gabriella Cirmena3, Chiara Dentone3, Paola Cuccarolo4,  
Daniele Roberto Giacobbe3,6, Federico Baldi6, Alberto Garbarino4, Benedetta Cigolini4, 
Paolo Cremonesi8, Michele Bedognetti9, Alberto Ballestrero3,6, Matteo Bassetti3,6,  
Boris P. Hejblum10, Tracy Augustine1, Nicholas Van Panhuys1, Rodolphe Thiebaut10, 
Ricardo Branco1, Tracey Chew11, Maryam Shojaei12,13,14, Kirsty Short15,16, Carl G. Feng17,18, 
PREDICT-19 Consortium, Susu M. Zughaier19, Andrea De Maria3,6, Benjamin Tang13,  
Ali Ait Hssain20,21, Davide Bedognetti1,4||, Jean-Charles Grivel1||, Damien Chaussabel1,22*||

Knowledge of the mechanisms underpinning the development of protective immunity conferred by mRNA vaccines 
is fragmentary. Here, we investigated responses to coronavirus disease 2019 (COVID-19) mRNA vaccination via high–
temporal resolution blood transcriptome profiling. The first vaccine dose elicited modest interferon and adaptive 
immune responses, which peaked on days 2 and 5, respectively. The second vaccine dose, in contrast, elicited sharp 
day 1 interferon, inflammation, and erythroid cell responses, followed by a day 5 plasmablast response. Both post-
first and post-second dose interferon signatures were associated with the subsequent development of antibody 
responses. Yet, we observed distinct interferon response patterns after each of the doses that may reflect quanti-
tative or qualitative differences in interferon induction. Distinct interferon response phenotypes were also ob-
served in patients with COVID-19 and were associated with severity and differences in duration of intensive care. 
Together, this study also highlights the benefits of adopting high-frequency sampling protocols in profiling vaccine-
elicited immune responses.

INTRODUCTION
Coronavirus disease 2019 (COVID-19) vaccines are critical to the 
ongoing efforts to control the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) pandemic. To date, 9 vaccines have 
received some form of approval for use in humans, and phase 3 trials 
are ongoing for an additional 11 vaccines (1). Notable differences 
exist among the vaccine products in terms of their design, the levels 
of protection they confer, and the type, incidence, and severity of 
adverse events they may elicit. Gaining a comprehensive under-
standing of the immunological factors underpinning the different 

responses to various vaccines is a major endeavor. Yet, this knowledge 
is necessary for guiding timely decisions to modulate vaccination 
protocols (e.g., the use of different types of vaccines for the first and 
second vaccine doses). This information may also assist in match-
ing individuals with the growing number of available vaccines based 
on their demographics, health status, or any other relevant clinical/
molecular phenotypes.

Blood transcriptome profiling measures the abundance of tran-
scripts in whole blood on a system-wide scale. It was previously 
used to comprehensively profile the immune responses elicited by 
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vaccines (2, 3). Notably, this approach identified innate immune sig-
natures arising within hours after administering vaccines (4). In a 
recently published report, Arunachalam et al. (5) described the blood 
transcriptome profiles measured following the administration of 
the BNT162b2 mRNA COVID-19 vaccine. They reported the pres-
ence of an interferon signature 1 day after the first dose of vaccine 
that was no longer detectable on day 7. They further found a more 
comprehensive interferon/inflammatory signature to be present 1 day 
after administering the second dose of vaccine. However, the sam-
pling schedule used in this study was relatively sparse. The sample 
collection time points commonly selected in systems vaccinology 
studies are based on kinetics established for more conventional vac-
cines, with sampling at days 1 and 7 often assumed to correspond to 
the peaks of the innate and adaptive immune responses elicited, for 
instance, by the influenza or pneumococcal vaccines (6). However, 
the precise kinetics of the immune response elicited by mRNA vac-
cines remains to be established. In the present study, we endeavored 
to profile the blood transcriptome of individuals before the admin-
istration of the first dose of COVID-19 mRNA vaccines and for the 
following nine consecutive days. Subjects also collected samples for 
deep serological profiling at three time points. The same sampling 
and profiling schedule was repeated to assess the response to the 
second dose of the vaccine. To achieve this, we have adopted an 
ultralow-volume sampling procedure for self-collection and RNA 
preservation of a few drops of blood (50 l) collected by a finger-
stick (7).

Together, this work permitted the precise delineation of a well-
orchestrated immune response to COVID-19 mRNA vaccines and 
identified marked differences in the magnitude, timing, and nature 
of the transcriptional signatures elicited by the first and second 
doses of the vaccine. Most notably, differences in temporal patterns 
of responsiveness revealed distinct transcriptional components of 
the interferon response, which is known to play a key role in con-
trolling SARS-CoV-2 infection (8) and was also found here to asso-
ciate with the subsequent development of the antibody response 
after vaccination.

RESULTS
Study design, implementation, and serological profiling
We successfully recruited a cohort of volunteers and implemented 
a high-frequency sampling protocol (Fig. 1A). This protocol per-
mitted us to ascertain the response to the first and second dose of 
COVID-19 vaccines at 10 consecutive daily time points: immedi-
ately before vaccination and for 9 days after. We collected samples 
for serological profiling at three time points: before vaccination and 
on days 7 and 14 after vaccination. We implemented a self-sampling 
blood collection protocol so that subjects could extract small vol-
umes (50 l) of RNA-stabilized blood at the required frequency [the 
approach is described in Materials and Methods and in an earlier 
publication (7)]. We generated RNA sequencing (RNA-seq) profiles 
using a cost-effective 3′-biased library preparation protocol (Lexogen 
QuantSeq), which is optimized for optimized for low amounts of 
RNA input. We generated COVID-19–specific antibody profiles from 
capillary blood samples collected by volumetric absorptive micro-
sampling and analyzed using a multiplexed bead array established 
by our team (see Materials and Methods for details). Overall, we en-
rolled 23 subjects in the study. The characteristics of this cohort are 
reported in Table 1. They received either two doses of the Pfizer/

BioNTech mRNA vaccine (BNT162b2, N = 19) or two doses of the 
Moderna mRNA vaccine (N = 4). Among those 23 subjects, 6 had 
recovered from COVID-19 in the months preceding the adminis-
tration of the first vaccine dose. In total, we generated 440 RNA-seq 
profiles and publicly shared this extensive dataset in the Gene Ex-
pression Omnibus (GEO) repository under the accession number 
GSE190001. The serological profiles included reactivity to a stabi-
lized trimer of the Spike protein, its receptor binding domain, the 
Nucleo and Envelope proteins of SARS-CoV-2, and the subunit S1 of 
the SARS Spike protein. The data are provided in file S1. We dis-
sected the seroreactivity to each of these antigens by measuring the 
total immunoglobulin G (IgG), total IgA, and IgM, as well as the 
finer-scale IgG and IgA subtypes. Serological profiling showed a rise 
in the levels of antibodies in the subject’s plasma after vaccination 
(Fig. 1B and fig. S1), including antibodies specific for the SARS-CoV-2 
Spike protein, which is targeted by COVID-19 vaccines. No responses 
to the Envelope protein were detected. Some cross-reactivity was 
observed with the SARS Spike protein. As expected, higher anti-
body levels were induced after the first dose in individuals who had 
been previously infected with the virus (Fig. 1, B and C). These findings 
are in line with previous reports that have described the sero-
logical response to COVID-19 mRNA vaccines (9–12).

Together, the implementation of this protocol established the 
feasibility of obtaining stabilized RNA blood samples from study 
subjects after vaccination at high temporal frequencies. We gener-
ated a large dataset using a cost-effective RNA-seq protocol that 
served as the basis for subsequent analyses presented here and was 
deposited in a public repository. A detailed map of the serological 
profiles of the subjects enrolled in the study was obtained that per-
mitted us to explore the possible associations between blood tran-
scriptional responses and vaccine immunogenicity.

The post–first dose interferon response peaks at day 2 
and correlates with the antibody response
Innate immune responses are elicited and detectable systemically 
via blood transcriptome profiling following some but not all vacci-
nation protocols. The aluminum-adjuvanted hepatitis B vaccine is 
one notable example (13). Therefore, our first question was whether 
transcriptional changes could be observed during the first few days 
following the administration of COVID-19 mRNA vaccines.

Analyses were carried out using a fixed repertoire of 382 tran-
scriptional modules (BloodGen3) that we have recently established 
and characterized functionally (see Materials and Methods for de-
tails) (14). All 23 vaccinated subjects were included in this analysis. 
Given the small number of subjects who had previously recovered 
from COVID-19 (n = 6), it was not possible to perform separate 
analyses for the SARS-CoV-2–naïve and SARS-CoV-2–exposed 
groups. Module responses, corresponding to the percentage of con-
stitutive transcripts for which abundance changes after vaccination, 
were determined at all time points. The differential gene set enrich-
ment functions of the dearseq R package were run to assess whether 
changes observed throughout the 9 days after the first dose of vacci-
nation were statistically significant (15). This analysis identified sig-
nificant temporal changes for 22 of the 382 modules constituting 
the BloodGen3 repertoire (file S2).

Only seven modules were found to be changed at any given time 
point during the first 3 days following the administration of the first 
dose of the vaccine (Fig. 2A). The abundance of the six modules be-
longing to the module aggregate A28 appeared to be consistently 
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Fig. 1. Antibody response to COVID-19 mRNA vaccination. (A) Schematic representation of the study design. (B) The heatmap represents changes in abundance of 
antibodies specific to several SARS-CoV-2 antigens and control antigens relative to prevaccination levels. Red indicates a relative increase and green indicates a relative 
decrease in abundance. Columns represent subjects arranged by time point and have colored tracks at the top indicating whether the subjects were naïve or had previ-
ously been infected with SARS-CoV-2. The rows represent antibody reactivities arranged by antigen specificity. (C) Changes in antibody levels expressed as an “antibody 
index” are shown on the box plots, each corresponding to a given antibody type of a given specificity. Lines indicate changes for individuals previously infected with 
SARS-CoV-2 and who had recovered (in pink) and for naïve individuals (in green). Centerlines, box limits, and whiskers represent the median, interquartile range, and 1.5× 
interquartile range, respectively. Multiple pairwise tests (paired t test) were performed comparing antibody levels to baseline (F0). *P < 0.01, **P < 0.001, and ***P < 0.0001. 
Tests were run separately for naïve and recovered individuals, as indicated by the colors of the asterisks.



Rinchai et al., Sci. Adv. 8, eabp9961 (2022)     11 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 24

Ta
bl

e 
1.

 S
ub

je
ct

 ch
ar

ac
te

ris
tic

s.
 V

ac
ci

ne
 ty

pe
 a

nd
 lo

t a
nd

 su
bj

ec
ts

’ c
ha

ra
ct

er
ist

ic
s w

er
e 

re
co

rd
ed

, in
cl

ud
in

g 
de

m
og

ra
ph

ic
, b

io
m

et
ric

 d
at

a,
 b

lo
od

 g
ro

up
, u

nd
er

ly
in

g 
di

se
as

es
, d

ru
g 

us
ag

e,
 a

nd
 p

re
vi

ou
s 

CO
VI

D-
19

 d
ise

as
e.

 E
ve

ry
 su

bj
ec

t r
ec

or
de

d 
an

d 
gr

ad
ed

 th
e 

sy
m

pt
om

s t
ha

t o
cc

ur
re

d 
af

te
r t

he
 fi

rs
t a

nd
 se

co
nd

 v
ac

ci
na

tio
n 

do
se

s, 
ac

co
rd

in
g 

to
 th

e 
Na

tio
na

l I
ns

tit
ut

es
 o

f H
ea

lth
 “D

iv
isi

on
 o

f A
ID

S 
Ac

ut
e 

Ev
en

ts
 G

ra
di

ng
 T

ab
le

.” 
T2

D,
 ty

pe
 2

 d
ia

be
te

s; 
NA

, n
ot

 a
va

ila
bl

e.
 

Pa
tie

nt
 ID

Va
cc

in
e 

 
na

m
e

G
en

de
r

Ag
e

Et
hn

ic
ity

Pr
ev

io
us

 
CO

VI
D

-1
9

U
nd

er
ly

in
g 

di
se

as
e

D
ru

gs
Sy

m
pt

om
s  

at
 fi

rs
t  

do
se

 (t
yp

e)

Sy
m

pt
om

s  
at

 fi
rs

t d
os

e 
(g

ra
de

)

Sy
m

pt
om

s  
at

 se
co

nd
  

do
se

 (t
yp

e)

Sy
m

pt
om

s  
at

 se
co

nd
  

do
se

 (g
ra

de
)

PZ
B1

Pf
ize

r 
Bi

oN
Te

ch
Fe

m
al

e
38

As
ia

n
Ye

s
No

No
M

ya
lg

ia
G1

Fe
ve

r/m
ya

lg
ia

G1

PZ
B2

Pf
ize

r 
Bi

oN
Te

ch
M

al
e

47
Ca

uc
as

ia
n

Ye
s

No
No

M
ya

lg
ia

G1
M

ya
lg

ia
G1

PZ
B3

Pf
ize

r 
Bi

oN
Te

ch
M

al
e

57
Ca

uc
as

ia
n

Ye
s

T2
D

M
et

fo
rm

in
, 

in
su

lin
M

ya
lg

ia
G1

M
ya

lg
ia

G1

PZ
B4

Pf
ize

r 
Bi

oN
Te

ch
Fe

m
al

e
34

In
di

an
No

No
No

No
ne

NA
Ch

ill
s/

in
so

m
ni

a/
 

he
ad

ac
he

/m
ya

lg
ia

/
fa

tig
ue

G3

PZ
B5

Pf
ize

r 
Bi

oN
Te

ch
M

al
e

38
In

di
an

No
No

No
M

ya
lg

ia
G1

M
ya

lg
ia

G1

PZ
B6

Pf
ize

r 
Bi

oN
Te

ch
Fe

m
al

e
48

Ca
uc

as
ia

n
No

No
No

M
ya

lg
ia

/
he

ad
ac

he
G1

M
ya

lg
ia

G1

PZ
B7

Pf
ize

r 
Bi

oN
Te

ch
Fe

m
al

e
34

Ca
uc

as
ia

/
Ar

ab
No

Ha
sh

im
ot

o 
th

yr
oi

di
tis

No
No

ne
NA

No
ne

NA

PZ
B8

Pf
ize

r 
Bi

oN
Te

ch
Fe

m
al

e
29

Ar
ab

No
No

No
M

ya
lg

ia
/s

w
el

lin
g

G1
Fe

ve
r/m

ya
lg

ia
G1

PZ
B9

Pf
ize

r 
Bi

oN
Te

ch
M

al
e

41
Ar

ab
No

Al
le

rg
ic

 rh
in

iti
s

No
M

ya
lg

ia
G1

M
ya

lg
ia

G1

PZ
B1

0
Pf

ize
r 

Bi
oN

Te
ch

Fe
m

al
e

35
Ar

ab
No

No
No

M
ya

lg
ia

G1
Fe

ve
r/i

ns
om

ni
a/

 
m

ya
lg

ia
/fa

tig
ue

G2

PZ
B1

1
Pf

ize
r 

Bi
oN

Te
ch

M
al

e
41

Ca
uc

as
ia

n
No

No
No

M
ya

lg
ia

G2
M

ya
lg

ia
G1

PZ
B1

2
Pf

ize
r 

Bi
oN

Te
ch

Fe
m

al
e

34
In

di
an

No
Hy

po
th

yr
oi

di
sm

Le
vo

th
yr

ox
in

e
No

ne
NA

Fe
ve

r/m
ya

lg
ia

G1

PZ
B1

3
Pf

ize
r 

Bi
oN

Te
ch

M
al

e
29

In
di

an
No

No
No

Fa
tig

ue
G1

Fe
ve

r/h
ea

vi
ne

ss
  

in
 ar

m
G2

PZ
B1

4
Pf

ize
r 

Bi
oN

Te
ch

Fe
m

al
e

38
Ar

ab
No

Al
le

rg
ic

No
M

ya
lg

ia
/

He
ad

ac
he

G1
Fa

tig
ue

G1

PZ
B1

5
Pf

ize
r 

Bi
oN

Te
ch

M
al

e
43

Ar
ab

No
Hy

po
th

yr
oi

di
sm

Le
vo

th
yr

ox
in

e
No

ne
NA

M
ya

lg
ia

/h
ea

da
ch

e
G2

PZ
B1

6
Pf

ize
r 

Bi
oN

Te
ch

Fe
m

al
e

39
In

di
an

No
No

No
He

av
in

es
s i

n 
ar

m
G1

Fe
ve

r/m
ya

lg
ia

/fa
tig

ue
G2

PZ
B1

7
Pf

ize
r 

Bi
oN

Te
ch

Fe
m

al
e

42
In

di
an

Ye
s

T2
D,

 
hy

pe
rte

ns
io

n
M

et
fo

rm
in

, 
te

lm
isa

rta
n

Fe
ve

r/h
ea

da
ch

e/
m

ya
lg

ia
/fa

tig
ue

G2
Fa

tig
ue

/g
as

tri
tis

G2

M
DA

18
M

od
er

na
M

al
e

42
Ca

uc
as

ia
n

No
Hy

pe
rte

ns
io

n
Am

lo
di

pi
ne

, 
ra

m
ip

ril
M

ya
lg

ia
G1

M
ya

lg
ia

G1

PZ
B1

9
Pf

ize
r 

Bi
oN

Te
ch

Fe
m

al
e

39
Ca

uc
as

ia
n

No
No

No
M

ya
lg

ia
G1

He
ad

ac
he

/m
ya

lg
ia

/ 
ar

th
ra

lg
ia

G3

co
nt

in
ue

d 
on

 n
ex

t p
ag

e



Rinchai et al., Sci. Adv. 8, eabp9961 (2022)     11 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 24

increased [each “module aggregate” regroups sets of modules that 
showed consistent abundance profiles across a reference set of 16 dis-
ease cohorts that were used for the construction of the BloodGen3 
repertoire; see Materials and Methods and (14) for details]. The 
six “aggregate A28” modules are associated with interferon re-
sponses (14). The gene composition of the modules and the function-
al annotations are provided here [relevant information is provided 
in file S3 and can be accessed interactively via https://prezi.com/
view/E34MhxE5uKoZLWZ3KXjG/ (16)]. The response observed 
on days 1 and 2 after the first dose of vaccination was mapped onto 
fingerprint grid plots, where modules occupy a fixed position and 
are arranged by aggregate. Each aggregate occupies a given row 
(Fig. 2A). Time-course gene set enrichment analysis indicated that 
changes observed over the 10 postvaccine time points were signif-
icant in four of six A28 modules. The kinetic profiles of the A28 
modules showed a peak on day 2 after vaccination. This was also 
visible on a heatmap showing responses at each time point across 
individual subjects (Fig. 2B). For each module, the statistical signif-
icance of the overall response was determined by time-course 
gene set enrichment analysis. Four of the six A28 modules met sig-
nificance thresholds of false discovery rate (FDR) < 0.1 (M8.3: 
P = 1.9 × 10−4, FDR = 0.019; M10.1: P = 1.9 × 10−4, FDR = 0.019; 
M15.127: P = 1.9 × 10−4, FDR = 0.019; 727 and M15.86: P = 3.9 × 
10−4, FDR = 0.031) and all six A28 modules, P < 0.05 (M13.17: P = 
1.5 × 10−3, FDR = 0.101; M15.64: P = 0.044, FDR = 0.727). We next 
examined whether this signature correlated with antibody re-
sponses measured after vaccination. For this, correlation analyses 
were run at the module level within aggregate A28 using as the 
endpoint the antibody levels on days 7 and 14 after the first dose 
and days 7 and 14 after the second dose. “Significance hotspots” are 
observed when most modules for a given aggregate reach correla-
tion significance thresholds. Figure 2C shows associations between 
the interferon response measured at multiple time points after the 
first dose and the antibody response measured on day 14 after the 
first dose, with fig. S2 showing correlations with day 2 after the first 
dose (peak interferon response) in individual subjects. Similar com-
parisons with antibody levels measured at day 7 after the first dose 
and days 7 and 14 after the second dose are shown in fig. S3. In the 
case of the post–first dose interferon signature, we identified such 
significance hotspots on days 2 and 3 for a subset of three interfer-
on modules, M10.1, M15.127, and M8.3, while a fourth module, 
M15.86, also displayed significant correlations across all antibody 
types, but only on day 2.

Thus, we found that an interferon response is induced over the 
first 3 days following the administration of the first dose of mRNA 
vaccines. Notably, this signature correlated with the antibody re-
sponse measured 2 weeks later.

A decrease in inflammation is accompanied by an increase 
in adaptive immune response genes on day 5 after 
the first dose
We next characterized the changes occurring beyond the first 3 days 
following administration of the first vaccine dose. In total, 18 mod-
ules displayed changes on day 4 after the first dose, of which 12 
showed a decrease in abundance. These modules belonged to three 
aggregates that have been associated with inflammation (A31, A33, 
and A35). Most changes were observed on day 4, but for some mod-
ules, changes were apparent starting on day 3 and continued be-
yond day 4, day 5, or even day 6 (fig. S4). In our earlier work, 
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Fig. 2. Characterization of the post–first dose interferon response signature. (A) The bar graph shows the number of responsive modules (see Materials and Meth-
ods) at different days following the administration of the first dose of the vaccine (noted F1 to F14). The fingerprint grid plots represent the overall module responses on 
days 1 and 2 after the first dose (F1 and F2, respectively). Modules from the BloodGen3 repertoire occupy fixed positions on the fingerprint grids. They are arranged as 
rows based on membership to module aggregates (rows A1 to A38). Changes compared to the prevaccination baseline are indicated on the grid by red and blue spots of 
varying color intensity. The color key at the top indicates their assigned function. The line graph shows the average % of responsive transcripts for A28/interferon re-
sponse modules across all the post–first dose time points. Centerlines, box limits, and whiskers represent the mean, interquartile range, and 1.5× interquartile range, re-
spectively. We also ascertained the significance of changes measured after the first dose at the level of this module aggregate and at each time point (paired t test 
comparing module response at each time point relative to the prevaccination baseline; *P < 0.01, **P < 0.001, and ***P < 0.0001). (B) The heatmap represents the propor-
tions of transcripts that changed within the six A28 modules at different time points and across different individuals compared to prevaccination baseline values. Col-
umns represent samples grouped by time point and show profiles of individual subjects within each time point. (C) The heatmaps represent associations (Spearman 
correlation) between levels of module response measured at the prevaccination baseline (F0) and for each of the time points after the first dose (F1 to F9 and F14) and 
SARS-CoV-2 S1–specific antibody levels measured at the prevaccination baseline (F0) and at 14 days after the first dose (F14). Correlation coefficients are shown at the top 
(red-white-blue gradient) and respective P values are shown at the bottom (white-green gradient).
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modules within the BloodGen3 aggregate A35 were associated with 
systemic inflammation mediated by neutrophils and were found to 
constitute a common denominator across a wide range of patholo-
gies in which systemic inflammation is present (17). The associa-
tion of A35 with inflammatory processes was also ascertained on 
the basis of functional profiling analysis results and the restriction 
in expression of its constitutive transcripts observed in multiple 
reference datasets (14). Detailed functional annotations can be ac-
cessed via interactive circle packing charts at https://prezi.com/view/
7Q20FyW6Hrs5NjMaTUyW/ (18). Module aggregate A33 has not 
been investigated as extensively in any of our prior studies but was 
clearly associated with inflammation via functional profiling 
[https://prezi.com/view/VBqKqHuLWCra3OJOIZRR/ (19)].

The peak response after the first dose occurred on day 5, with a 
total of 42 modules showing differences in comparison to the pre-
vaccination baseline (Fig. 3A and fig. S5). At this time point, tran-
script abundance increased for 29 modules and decreased for 13. 
Some of the modules that increased at day 5 after vaccination belong 
to aggregates that are associated with adaptive immune responses. 
As shown on the fingerprint grid plot presented in Fig. 3B, three of 
five A27 modules were responsive at this time point. In a reference 
dataset contributed by Monaco et al. (20), we found the expression 
of the genes comprising all five A27 modules to be highly restricted to 
plasma cells (fig. S6). Notably, the genes comprising one of the A27 
modules (M12.15) include the plasmablast marker CD38 and other 
genes associated with plasmablasts (IGJ, TNFRSF17, and TXNDC5). 
Detailed annotations and expression profiles of A27 transcripts in 
the reference datasets can be accessed via https://prezi.com/view/
GgIiA0K9kSFHbpVj2I85/ (21). The transcriptional profiles of the A27 
genes that were significantly changed at this time point are shown 
on Fig. 3C. However, even for this selection of differentially ex-
pressed transcripts, changes were observed only for a subset of sub-
jects at this time point after the first dose, which suggests that the 
humoral response elicited by the first dose of vaccine is altogether 
relatively modest. Other immune-relevant modules found to be 
increased at this time point are associated with T cells [M12.6 from 
aggregate A1; see https://prezi.com/view/sxap39tKxkmCNTTNIlVO/ 
(22) for functional annotations and Fig. 3C for further details]. Others 
were mapped to module aggregates A24 and were associated with 
oxidative phosphorylation, which is known to play a role in T cell 
activation [6 of 11 modules were responsive; see https://prezi.com/
view/eiXvf2LNBLFRgrtaeCuM/ (23) for functional annotations and 
Fig. 3C for further details] (24). Other modules have not yet been 
fully characterized functionally, including, for instance, 4 responsive 
modules of the 15, belonging to aggregate A26 [see https://prezi.com/
view/9CErpW3NwpN2HgRS3Hzf/ (25) for functional annotations 
and Fig. 3C for further details]. Some heterogeneity was observed 
among study subjects (fig. S5B), most notably with a distinction ob-
served between previously infected individuals, for whom the 
transcript abundance for those modules tended to decrease (right 
cluster), while increases were observed in most naïve subjects (left 
cluster). Notably, the signatures observed on day 5 appeared to be 
transient, and no modules were increased on day 6 following the 
administration of the first dose of vaccine.

Together, we found the number of responsive modules to peak on 
day 5 following the first dose of vaccine. A decrease in the abundance 
of transcripts associated with inflammation was accompanied by 
an increase in the abundance of transcripts associated with adaptive 
immunity. The latter responses appeared to peak earlier than those 

observed in response to other vaccines, where adaptive response sig-
natures are observed around day 7 after vaccination (6, 26, 27).

A marked and polyfunctional response is elicited by 
the second vaccine dose
After delineating temporal responses following the administration 
of the first dose of COVID-19 mRNA vaccine, we examined changes 
in blood transcript abundance after the second dose. Time-course 
gene set enrichment analysis identified significant temporal changes 
for 311 of 382 modules comprising the BloodGen3 repertoire (file S4). 
After the second dose, the number of responsive modules peaked 
on day 1, with 261 responsive modules or about two-thirds of the 382 
modules constituting the BloodGen3 repertoire (Fig. 4A). This num-
ber decreased sharply afterward, with 115 responsive modules on 
day 2 and only 9 responsive modules on day 3. The kinetic and ampli-
tude of the post–second vaccine dose response contrasted marked-
ly with that observed after the first dose, when, as described above, 
the number of responsive modules peaked on day 5, with changes 
found in only 42 modules at that time point.

The day 1 post–second dose response was extensive and poly-
functional (Fig. 4B). An overall decrease in abundance was observed 
for aggregates broadly associated with lymphocytic cells (aggregates 
A1 to A8) and increased for module aggregates associated with my-
eloid cells, inflammation, and circulating erythroid cells (aggregates 
A33 to A38). In addition, a marked increase in the abundance of 
modules associated with interferon responses was observed (aggre-
gate A28). We compared the day 1 response fingerprint of the sec-
ond dose of COVID-19 mRNA vaccine to fingerprints derived from 
patients with a wide range of pathologies. These included 16 refer-
ence datasets encompassing infectious and autoimmune diseases, as 
well as cancer and solid organ transplant recipients, among others 
[these cohorts are described in our previously published work 
(14, 28); the respective blood transcriptome fingerprint collec-
tions are accessible via a dedicated web application: https://drinchai.
shinyapps.io/BloodGen3Module/]. In addition, we analyzed two 
original COVID-19 blood transcriptome datasets: One cohort com-
prised 99 patients with COVID-19 with disease severities ranging 
from mild and moderate to severe [the “PREDICT-19 (predicting dis-
ease progression in severe viral respiratory infections and COVID-19) 
Consortium Italian cohort dataset”; see Materials and Methods and 
published study protocol for details (29)], while the second cohort 
comprised 40 patients with COVID-19 recruited at the time of ad-
mission to the intensive care unit (ICU) (“IMPROVISE cohort whole 
blood dataset”). These high-level comparisons showed, first, that the 
extent of the changes associated with the day 1 response to the sec-
ond dose of the COVID-19 mRNA vaccine was similar to that ob-
served in some patient cohorts with acute infections (Fig. 4B). More 
specifically, they were found to most resemble the responses seen in 
a cohort of subjects with influenza infection, with a marked inter-
feron response (A28) and an inflammation signature (A33 and A35). 
At a higher level, these response patterns were also generally consist
ent with those observed in patients with COVID-19 infection. How-
ever, the changes that occurred in response to vaccination were not 
as extreme as those found in patients with sepsis or with the most 
severe form of COVID-19 (i.e., the IMPROVISE dataset) [most no-
tably for inflammation (A33 and A35) and erythroid cell responses 
(A36-A38)]. Overall, the BloodGen3 transcriptome fingerprint ob-
served on day 1 after the second vaccine dose contrasted markedly 
with the fingerprint observed on day 1 after the first.

https://prezi.com/view/7Q20FyW6Hrs5NjMaTUyW/
https://prezi.com/view/7Q20FyW6Hrs5NjMaTUyW/
https://prezi.com/view/VBqKqHuLWCra3OJOIZRR/
https://prezi.com/view/GgIiA0K9kSFHbpVj2I85/
https://prezi.com/view/GgIiA0K9kSFHbpVj2I85/
https://prezi.com/view/sxap39tKxkmCNTTNIlVO/
https://prezi.com/view/eiXvf2LNBLFRgrtaeCuM/
https://prezi.com/view/eiXvf2LNBLFRgrtaeCuM/
https://prezi.com/view/9CErpW3NwpN2HgRS3Hzf/
https://prezi.com/view/9CErpW3NwpN2HgRS3Hzf/
https://drinchai.shinyapps.io/BloodGen3Module/
https://drinchai.shinyapps.io/BloodGen3Module/
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Fig. 3. Characterization of responses on day 5 after the first dose. (A) The bar graph shows the cumulative number of responsive modules at each time point following 
the administration of the first dose of the vaccine (noted F1 to F14). (B) The fingerprint grid plot shows changes observed at F5 (day 5 after the first dose). The position of 
the modules on the grid is fixed. The percent response of individual modules is represented on the grid by red and blue spots of varying color intensity denoting a pre-
dominant increase or decrease in abundance, respectively. The percentage response of a given module corresponds to the proportion of transcripts predominantly in-
creased or decreased compared to baseline, meeting a significance cutoff of FDR < 0.1. The color key at the top indicates the various functions attributed to the modules 
that are represented on the grid. (C) The heatmap represents log2 average FC in abundance of transcripts on day 5 after the first dose (F5). Only modules associated with 
functional annotations were retained for this figure, and only genes showing significant differences at this time point are shown. Rows represent individual transcripts 
grouped according to the module aggregate they originate from, corresponding to the different rows on the fingerprint grid plot on the left. Each module aggregate is 
associated with a unique function, as indicated by the color key above. The columns on the heatmap represent individual subjects coded with the type of vaccine received 
(at the bottom of the heatmap: Pfizer BioNTech, PZB; Moderna, MDA).
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A post–second dose interferon signature peaks on day 1 
and correlates with antibody response
Despite these marked differences, the interferon response signature 
was found to be a common denominator between the responses to 
the first and second doses, since it was observed in both cases in the 
first few days following administration of the vaccine. We therefore 
began to dissect the post–second dose response by examining this 
interferon response signature in more detail (Fig. 5, A and B).

For each module, statistical significance for the overall response 
was determined by time-course gene set enrichment analysis. Sig-
nificance was reported after the first dose in Fig. 2. After the second 
dose, all six A28 modules met significance thresholds of P < 0.001 
and FDR < 0.001 (M8.3: P = 1.9 × 10−4, FDR = 3.6 × 10−4; M10.1: P = 
1.9 × 10−4, FDR = 3.6 × 10−4; M13.17: P = 1.9 × 10−4, FDR = 3.6 × 
10−4; M15.127: P = 1.9 × 10−4, FDR = 3.6 × 10−4; M15.64: P = 1.9 × 
10−4, FDR = 3.6 × 10−4; M15.86: P = 1.9 × 10−4, FDR = 3.6 × 10−4). 
We decided to perform hierarchical clustering to identify subsets of 
modules within the A28 aggregates that might group together on 
the basis of patterns of transcript abundance across all subjects and 
time points. Two sets of three modules each were thus identified 
within the A28 aggregate (Fig. 5B). The first set comprised modules 
M8.3, M10.1, and M15.127 (referred to as A28/S1), and the second 
set comprised modules M15.64, M13.17, and M15.86 (referred to as 
A28/S2). Notably, while modules in A28/S1 peaked on day 2 follow-
ing the first dose, those belonging to A28/S2 peaked on day 1 
(Fig. 5, B and C). Furthermore, A28/S1 modules showed an ex-
tended peak after the second dose, with day 2 levels being almost 
identical to those of the day 1 peak, while A28/S1 modules peaked 
sharply on day 1, with levels decreasing rapidly thereafter. The fact 
that these two interferon signatures are indeed distinct was con-
firmed by comparing aggregated S1 and S2 responses, with statisti-
cal differences found across all the early time points following both 
the first and second doses of vaccines (Fig. 5B, right). This observa-
tion was furthermore consistent with our earlier findings in the con-
text of systemic lupus erythematosus (SLE) studies (30). We next 
examined whether transcriptional trajectories for the A28 module 
aggregate differed between naïve and previously infected indi-
viduals (fig. S7A). We found the response to be notably uniform 
across all subjects after the second dose. Only minor differences 
were observed between naïve and recovered individuals after the 
first dose.

Overall, following the administration of the second vaccine dose, 
the interferon response was noticeably sharper in comparison to 
the response observed following the first dose and peaked on day 1 
instead of day 2. This was illustrated by the difference in the max-
imum average individual module response across subjects, which, 
for some of the A28/S1 modules, was close to 50% of the constitu-
tive transcripts on day 2 after the first dose and greater than 80% on 
day 1 after the second dose. Differences in pattern and amplitude of 
interferon response between the first and second doses might reflect 
quantitative and/or qualitative differences in the immune responses 
being elicited by the vaccine. Publicly available transcriptome pro-
filing data generated before and after interferon treatment in vivo 
show that A28/S1 modules might be preferentially induced over 
A28/S2 modules in response to type I interferon (fig. S8) (31, 32), 
which would be consistent with the pattern of response observed 
after the first dose. Modules forming the A28/S1 set comprise well-
recognized “canonical” interferon response genes, such as oligoad-
enylate synthetase family members (OAS1, OAS2, OAS3, and OASL), 

interferon-induced protein family members (IFI6, IFI27, IFI35, IFI44, 
and IFI44L), and interferon-induced protein with tetratricopeptide 
repeats family members (IFIT1, IFIT3, and IFIT5) (14). Modules 
forming the A28/S2 set comprise instead most notably members of the 
nuclear antigen family members SP100, SP110, and SP140, which 
are associated with interferon- signaling, as well as transcription 
factors IRF9 and STAT2. Composition and functional annotations 
for A28 modules can be explored further at https://prezi.com/view/
E34MhxE5uKoZLWZ3KXjG/ (16).

Last, we observed a strong association between the post–second 
dose interferon signature and the subsequent development of an 
antibody response (Fig. 5D and figs. S9 to S11). Positive correla-
tions were observed for all six A28 modules that reached signifi-
cance on days 1, 2, and 3 after the second dose. Notably, this 
differed from the interferon response observed after the first dose, 
for which significance was reached only for four of the six modules 
and only on days 2 and 3.

Together, the resolution of immune trajectories after vaccina-
tion via high–temporal frequency profiling permitted the delinea-
tion of distinct patterns of interferon responses following the first and 
second doses of vaccine. One of those module sets, A28/S1, domi-
nated the response elicited by the first dose of vaccine and peaked 
on day 2. The response following the second dose showed a potent 
induction of both S1 and S2 and peaked instead on day 1.

Inflammation and erythroid cell signatures peak sharply 
on day 1 after the second dose
We continued the dissection of the day 1 post–second dose signa-
ture, focusing this time on responses associated with inflammation 
and circulating erythroid cell precursors (Fig. 6A). For each mod-
ule, statistical significance for the overall response was determined 
by time-course gene set enrichment analysis (see Materials and 
Methods). For A35, 20 of 21 modules met significance thresholds 
(P < 0.05 and FDR < 0.01). As described earlier, the abundance of 
A33 and A35 transcripts was decreased on days 4 through 6 follow-
ing administration of the first dose of vaccine. However, following 
the second dose, a sharp and transient increase in abundance of the 
transcript forming these modules was detected instead. A well-
delineated response peak was observed on day 1 after the first dose for 
both the A33 and A35 modules (Fig. 6B, A35, left), but in contrast 
to the interferon response (A28/S1), it did not extend beyond the 
first day. Responses in naïve and recovered individuals after the sec-
ond dose appeared to be similar (fig. S7B). Yet, as shown in the 
same figure, the decrease in abundance characteristic of the first dose 
response for this module aggregate tended to be more pronounced 
in recovered individuals, although it is worth pointing out that this 
observation is only based on a limited number of individuals (as a 
reminder, only 6 of the 23 subjects were previously infected and had 
recovered from COVID-19). As mentioned above, the increase in 
abundance of A35 modules was recently shown to be a hallmark of 
the blood transcriptional signature of psoriasis (17). This signature 
was a common denominator across autoimmune and inflammatory 
diseases and was thought to be driven by neutrophil activation.

Time-course gene set enrichment analysis determined that 11 of 
11 modules forming aggregate A37 changed significantly after the 
second vaccine dose. Modules comprised in the module aggregate 
A37, which we previously associated with glycophorin A–positive 
circulating erythroid cell signatures (28), also displayed a sharp but 
transient increase in transcript abundance on day 1 after the second 

https://prezi.com/view/E34MhxE5uKoZLWZ3KXjG/
https://prezi.com/view/E34MhxE5uKoZLWZ3KXjG/
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Fig. 4. Fingerprint grid plots mapping changes observed on day 1 after the second dose and across reference datasets. (A) The bar graphs show the cumulative 
module response at the various time points after the first and second doses (noted F1 to F14 and S1 to S14, respectively). The y-axis values and numbers on the bars indicate 
the number of modules meeting the 15% response threshold (out of a total of 382 modules constituting the BloodGen3 repertoire, with percentage response correspond-
ing to the proportion of transcripts predominantly increased or decreased compared to baseline, meeting a significance cutoff of DESeq2, FDR < 0.1). (B) The fingerprint grid 
plots show changes in transcript abundance for a given study group in comparison to baseline (prevaccination sample or uninfected control group), with the percent re-
sponse of individual modules shown by red and blue spots of varying color intensity denoting predominant increase or decrease in abundance, respectively. Changes are 
shown in the top grid for subjects 1 day after receiving the second dose of COVID-19 mRNA vaccine in comparison with baseline prevaccination samples (this study). Grids 
in the middle and bottom positions show changes for patients with acute infections caused by influenza virus [earlier work (14), with data available in the NCBI GEO repos-
itory under accession number GSE100150] or SARS-CoV-2 (this study) and for patients with bacterial sepsis [earlier work (14), with data available in the NCBI GEO repository 
under accession number GSE100150]. The color key at the top indicates the various functions attributed to the modules that occupy a fixed position on the grid plot.
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Fig. 5. Characterization of the day 1 post–second dose interferon response signature. (A) The fingerprint grid plot maps the modular response observed on day 1 
after the second dose (% transcripts for a given module showing significant changes, DESeq2, FRD < 0.1). The six modules forming the A28 aggregate are highlighted. 
(B) The line graphs represent the summarized % module responses encompassing all study subjects (one line per module). Changes in abundance are shown after the first 
dose (top graphs) or after the second dose (bottom graphs) compared to baseline prevaccination levels, for two distinct sets of interferon response modules, A28/S1 and 
A28/S2 (left and middle, respectively). In addition, the averaged response for A28/S1 and A28/S2 is shown as well (right). Centerlines, box limits, and whiskers represent the 
mean, interquartile range, and 1.5× interquartile range, respectively. In addition, the significance of changes measured after vaccination (paired t test comparing module 
response at each time point relative to the prevaccination baseline in the graphs on the left and middle) was determined and the averaged A28/S1 and A28/S2 for each 
subject were compared (t test comparing averaged module response for A28/S1 relative to A28/S2 in the graphs on the right). For all tests: *P < 0.01, **P < 0.001, and 
***P < 0.0001. (C) The heatmap represents the proportions of transcripts that changed within the six A28 modules at different time points and across different individ-
uals compared to prevaccination baseline values. Columns represent samples grouped by time point and show profiles of individual subjects within each time point. (D) The 
heatmaps represent associations (Spearman correlation) between levels of module response measured at the prevaccination baseline (S0) and for each of the time points 
after the second dose (S1 to S9 and S14) and SARS-CoV-2 S1–specific antibody levels measured at the prevaccination baseline (S0) and at 14 days after the second dose 
(S14). Correlation coefficients are shown at the top (red-white-blue color gradient) and respective P values are shown at the bottom (white-green color gradient).
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Fig. 6. Characterization of post–second dose inflammation, erythroid cell, and plasmablast responses. (A) The bar graph at the top represents the number of re-
sponsive modules at any given time point after the first and second doses. The fingerprint grid plots below map the modular response observed on day 1 after the second 
dose (left) and day 4 after the second dose (right). (B) The line graphs show the average percentage responses of A35, A37, and A27 modules across multiple time points 
(left, middle, and right, respectively). Each line represents the profile of the modules constituting a given aggregate. For all line graphs, centerlines, box limits, and whis-
kers represent the mean, interquartile range, and 1.5× interquartile range, respectively. The significance of changes measured after the second dose was determined at 
each time point and is shown on the graphs (paired t test comparing module response at each time point relative to the prevaccination baseline; *P < 0.01, **P < 0.001, 
and ***P < 0.0001). (C) The heatmaps represent associations between levels of module response measured at the prevaccination baseline (S0) and for each of the time 
points after the second dose (S1 to S9 and S14) and SARS-CoV-2 S1–specific antibody levels measured at the prevaccination baseline (S0) and at 14 days after the second 
dose (S14). Specifically, the heatmap at the top (blue-red color gradient) represents the correlation coefficients across multiple days and for each day across multiple 
subjects, with rows corresponding to the five A27 plasmablast modules. The heatmap below (green color gradient) represents the significance of the correlations shown 
on the heatmap at the top, with the same order of rows and columns.
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dose (Fig. 6B, A37, middle). However, the abundance tended to dip 
afterward, with a low peak observed on day 5 after the second dose, 
before recovering by day 7. To our knowledge, such a circulating 
erythroid cell signature has not been previously described after vac-
cination. Last, we did not find evidence of an association between 
the day 1 post–second vaccine dose, inflammation or erythroid cell 
signatures, and the antibody responses. Overall, similar trends were 
observed in naïve and recovered subjects (fig. S7C).

Overall, these findings highlight the marked differences in the 
kinetics and nature of the immune responses elicited in the first 
days following the administration of the first and second doses of 
COVID-19 mRNA vaccines. They also point to the possible “train-
ing” of the innate immune response by the first vaccine dose.

A plasmablast signature peaks on day 4 after administration 
of the second vaccine dose and correlates 
with antibody responses
After the second dose of COVID-19 mRNA vaccine, the number of 
responsive modules peaked sharply on day 1 and then rapidly sub-
sided beyond day 2, with the number of responsive modules on days 
3, 4, 5, and 6 being reduced to 9, 11, 3, and 2, respectively. Yet, 
changes within this later time frame are meaningful, as they specif-
ically concern the set of five modules comprising aggregate A27, 
which is associated with the presence of antibody-producing cells in 
the peripheral blood (Fig. 6A).

Three of the five A27 modules showed significant alterations af-
ter the second dose (M12.15, M13.32, and M15.110) (Fig. 6B, A27, 
right). The proportion of differentially expressed transcripts in each 
module was relatively modest (with an average of 15% at the peak of 
response), especially in comparison with the interferon signatures 
described above (with an average of >80% for some modules at the 
response peak). We also examined the association of this post–second 
dose plasmablast signature with the antibody response and found a 
significant association starting from about day 3 and lasting until 
day 7 after the second dose (Fig. 6C and figs. S12 and S13). Robust 
responses were observed in both naïve and recovered subjects after 
the second dose (fig. S7D). However, notably, the A27/plasmablast 
response was only observed in recovered individuals after the 
first dose.

In summary, COVID-19 mRNA vaccination induced a marked 
plasmablast response that peaked on day 4 after vaccination. This 
was unexpected since such signatures typically are measured around 
day 7 after vaccine administration [e.g., in the case of influenza or 
pneumococcal vaccines (6)]. We were also able to demonstrate an 
association between this post–second dose plasmablast signature 
and the subsequent development of humoral immunity.

Patterns of interferon induction elicited by COVID-19 mRNA 
vaccines are also observed among patients with COVID-19
This work has identified the interferon response as the most up-
stream factor associated with the development of humoral immunity 
following COVID-19 mRNA vaccination. High–temporal resolu-
tion profiling delineated distinct patterns of interferon induction 
after the first dose and after the second dose, and we next decided to 
determine whether similar response patterns could be identified 
among patients with COVID-19 disease.

For this, we relied on blood transcriptome data generated de 
novo from the PREDICT-19 Consortium Italian COVID-19 cohort 
comprising 99 patients with a wide spectrum of disease severity. We 

used the response values for the six interferon modules from aggre-
gate A28 to map individual COVID-19 patient samples along with 
postvaccine samples on the same t-distributed Stochastic Neighbor 
Embedding (tSNE) plot (Fig. 7A). First, we confirmed that there 
was no apparent separation of the vaccination and COVID-19 pa-
tient cohorts and that batch correction was therefore not warranted 
before proceeding with comparative analyses (fig. S14). This is consis-
tent with the results of meta-analyses that we have previously con-
ducted at the module level (28). To help with the interpretation, k-means 
clustering was performed using the consolidated set of samples, re-
sulting in the formation of eight distinct clusters. Next, we exam-
ined the distribution of samples from the vaccine and COVID-19 
cohorts across the tSNE plot and among the eight clusters (Fig. 7B). 
Time points at which an interferon response was detectable in vac-
cinated subjects were of particular interest. Day 1 and day 2 post–
first dose samples (F1 and F2), while preferentially found in 
clusters 1 and 5, appeared to be distributed across the entire tSNE 
plot. This is in contrast with day 1 and day 2 post–second vaccine 
dose samples (S1 and S2), which were almost exclusively found in 
cluster 5. A set of patients with COVID-19 also colocalized in clus-
ter 5, while others were found scattered across clusters, especially 
clusters 1, 2, 6, and 3. Interferon responses were detectable in all 
these clusters but with important nuances. For one, samples from 
cluster 5 showed, by far, the most potent responses, with responses 
seen in most cases across all six interferon modules, which was con-
sistent with the response observed following administration of the 
second dose of vaccine (Fig. 7C). In comparison, the response was 
less pronounced in samples from cluster 1, which was dominated by 
modules associated with type I interferon responses (the A28/S1 
set comprising M10.1, M8.3, and M15.127 described above). This 
was more consistent with the pattern of response observed after the 
first dose of vaccine. Signatures for samples forming clusters 2 and 
6 were not well defined and were, in some cases, absent, yet these 
clusters also included patients with COVID-19. Samples forming 
cluster 3 displayed a peculiar signature, with an increase in the abun-
dance of modules belonging to the A28/S2 set (M15.64, M13.17, 
and M15.86) concomitantly with a decrease in modules forming 
the A28/S1 set. Among the samples forming this cluster, this pat-
tern was most apparent for the patients with COVID-19.

Thus, we used here the distinct interferon response “traits” ob-
served after COVID-19 vaccination as a benchmark for the inter-
pretation of COVID-19 patient signature. We were able to establish 
that most patients with COVID-19 display interferon responses con-
sistent with those found after vaccination, which, as established in 
this study, were associated with the development of potent humoral re-
sponses. However, a subset of patients displayed patterns of inter-
feron response that are not typically seen in vaccinated individuals.

The distinct interferon response signature observed 
in patients with COVID-19 is associated with a worse course 
of disease
The fact that some patients with COVID-19 failed to display robust 
“postvaccine-like” interferon responses may be due to either a de-
fective innate immune response, which may lead to a more severe 
disease course, or conversely to activation thresholds not being 
reached in patients presented with milder disease. Thus, we next ex-
amined patterns of interferon response in another original COVID-19 
disease cohort, composed exclusively of patients enrolled at the 
time of admission in the ICU (the IMPROVISE cohort, which was 
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also described above). As described above, we mapped individual 
COVID-19 patient samples along with postvaccine samples on a 
tSNE plot based on similarities in the patterns of interferon respon-
siveness across the six A28 interferon modules (Fig. 8A). As was the 
case earlier for the PREDICT-19 cohort, COVID-19 subjects were 
found to be distributed throughout multiple clusters. Notably, patients 

who colocalized with day 1 post–second dose samples tended to have 
relatively short ICU stays (in cluster 5 with potent A28/S1 and A28/
S2 responses), and only a few patients colocalized with day 2 post–
first dose samples in cluster 3, which was characterized by a more 
prominent A28/S1 signature compared with A28/S2 (Fig. 8B). Further-
more, distinct groups of patients in clusters 1 and 6 displayed the 

Fig. 7. Comparing patterns of interferon response in vaccinated individuals and a cohort of patients with COVID-19. (A) The tSNE plot represents similarities in 
patterns of interferon response induction across the six modules forming aggregate A28 and among samples comprised in our vaccination cohort and one of our 
COVID-19 disease cohorts (PREDICT-19/Italy). COVID-19 samples are shown in red along with specific postvaccination time points [post–first dose days 1 and 2 (F1 and 
F2) and post–second dose days 1 and 2 (S1 and S2)]. (B) Samples from the consolidated cohorts were partitioned into eight clusters via k-means clustering, the distribu-
tion of which is shown on this tSNE plot. (C) Heatmaps show patterns of response for the six interferon response modules across the eight sample clusters. The red colors 
indicate that the abundance of transcripts for a given module is predominantly increased with the intensity representing the proportion of constitutive transcripts meet-
ing a given threshold, which, at the level of individual samples, is a fixed FC and difference cutoff (|FC| > 1.5 and |difference| > 10 in a given sample over its respective 
prevaccination baseline). The blue color denotes a predominant decrease in abundance of constitutive transcripts compared to the same individual’s prevaccination 
baseline. Details are shown below for clusters 3, 5, and 8 in separate heatmaps.
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Fig. 8. Comparison of interferon response patterns of vaccinated individuals and a cohort of patients with COVID-19 with severe disease under intensive care. 
(A) The tSNE plot represents similarities in patterns of interferon response induction among vaccinated subjects and subjects with COVID-19 (IMPROVISE cohort). Specific 
postvaccination time points (F1, F2, S1, and S2) and repeat samples from a patient with COVID-19 (TP1 to TP4) are shown. Samples from the consolidated cohorts were parti-
tioned into eight clusters via k-means clustering (center). Length of ICU stay is shown on the right. (B) The fingerprint heatmap shows patterns of response for the six in-
terferon response modules across the eight sample clusters defined by k-means clustering in (A). (C) The heatmap shows patterns of interferon responses for patients with 
COVID-19 upon ICU admission. Multiple clinical parameters are shown on the tracks above [extracorporeal membrane oxygenation (ECMO), hypertension (HTN), coronary 
artery disease (CAD), chronic kidney disease (CKD), and congestive heart failure (CHF)]. The histogram represents the length of stay in the hospital, in the ICU, and under 
mechanical ventilation (MV), in days. DM, diabetes mellitus. (D) The bar graph represents for different datasets the proportion of samples corresponding to IRTP I, II, or 
III, according to the following definition, which is based on the delineation of two distinct sets of interferon response modules: A28/S1 (M8.3, M15.127, M10.1) and A28/S2 
(M13.17, M15.64, M15.86): IRTP I = (“S1++S2+,” “S1++S20,” and “S1+S20”); IRTP II = (S1++S2++); IRTP III = (“S1-S2++,” “S1-S2+,” “S10S2++”, and “S10S2+”). The datasets shown 
along the x axis include day 1 and day 2 post–first and post–second vaccine dose responses (F1, F2, S1, and S2, respectively; N = 23); the PREDICT-19 (N = 99 patients) 
and IMPROVISE (N = 40 patients) COVID-19 cohorts. Other datasets were derived from an earlier study (14) and include reference cohorts of patients with acute influ-
enza infection (FLU; N = 25), HIV infection (N = 28), active pulmonary tuberculosis (PTB; N = 23), acute RSV infection (N = 70), bacterial sepsis (N = 33), and SLE (N = 55).
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peculiar pattern of interferon response dominated by A28/S2 that was 
identified earlier among patients enrolled in the PREDICT-19 co-
hort. Notably, patients from the IMPROVISE cohort displaying this 
pattern of interferon response showed significantly lengthier stays in 
the ICU compared to patients displaying patterns of interferon re-
sponse that are consistent with those observed after vaccination (Fig. 
8C comparing left and right clusters: for length of hospital stay, t test, 
**P = 0.006; mechanical ventilation days, *P = 0.016; and ICU stay, *P = 
0.012; notably, age did not appear to be a factor driving differences in 
patterns of interferon response and length of ICU stays; fig. S15).

Thus, in a cohort of subjects uniformly presenting with severe 
disease, post–first dose–like patterns of interferon response domi-
nated by A28/S1 were less prevalent. Post–second dose–like pat-
terns of interferon response characterized by robust A28/S1 and 
A28/S2 signatures were observed instead in most patients. A nota-
ble exception was patients presenting with patterns of response 
dominated by A28/S2, not observed previously following vaccina-
tion but which were found again in this second independent 
COVID-19 dataset. In this context, we could also establish that such 
response is associated with a worse disease course. This overall sup-
ports the notion that patients harboring this signature may fail to 
mount an effective immune response against SARS-CoV-2.

The distinct interferon response phenotype observed 
in patients with COVID-19 is not typically found 
in the context of other infections
Last, we asked whether the A28/S2-dominated interferon response 
pattern associated with worse disease outcomes in patients with 
COVID-19 was also commonly found in other infectious diseases. 
For this, we first developed a standard definition of “interferon re-
sponse transcriptional phenotypes” (IRTPs): The two distinct sig-
natures described above, A28/S1 and A28/S2, were used as traits for 
the definition of three main phenotypes observed following vacci-
nation and in response to SARS-CoV-2 infection. (i) IRTP I encom-
passed A28/S1-dominated patterns of response: “A28/S1++A28/S2+,” 
“A28/S1++A28/S20,” and “A28/S1+A28/S20” (see Materials and Meth-
ods for details). (ii) IRTP II corresponded to a pattern of interferon 
response characterized by the strong induction of both components: 
A28/S1++A28/S2++. (iii) IRTP III encompassed the A28/S2-dominated 
patterns of interferon response: “A28/S1−A28/S2++,” “A28/S1−A28/
S2+,” “A28/S10A28/S2++,” and “A28/S10A28/S2+.” These three IRTPs 
were, in turn, used for the stratification of our vaccination cohort at 
early time points following administration of the first and second 
vaccine doses, as well as both of our COVID-19 cohorts and of sev-
eral reference cohorts of patients that we had generated as part of 
one of our earlier studies (14), focusing more particularly on pa-
thologies known to elicit robust interferon responses, including viral 
infections [influenza, Rous sarcoma virus (RSV), and HIV], tuber-
culosis, or SLE (Fig. 8D).

IRTP I was found in approximately one-third of the vaccinated 
subjects at peak response on day 2 after the first dose (Fig. 8D, F2). 
It was, however, absent at peak response after the second dose (S1). 
Similarly, IRTP I was found among patients with COVID-19 be-
longing to the PREDICT-19 cohort (although in only 7.9% of pa-
tients), but not among those belonging to the IMPROVISE cohort, 
who presented with more severe disease. IRTP I was otherwise also 
found in between 0 and 18% of subjects across most of our reference 
cohorts. However, as was the case of our severe COVID-19 cohort, 
it was absent in the comparator cohort of patients with bacterial 

sepsis. In the context of mRNA vaccination, IRTP II, which is char-
acterized by the robust induction of both A28/S1 and A28/S2 com-
ponents, was observed following the second dose of vaccines in 95% 
of samples profiled on day 1, which corresponds to the peak re-
sponse. The first dose of COVID-19 mRNA vaccine was able to in-
duce both components robustly but in only 48% of samples at peak 
(day 2 after the first dose). IRTP II was otherwise also prevalent in 
patients with COVID-19, which is consistent with our earlier obser-
vation. It was also found in most samples in the other pathologies 
used as comparators, except for RSV and bacterial sepsis (40 and 
48%, respectively). IRTP III, which is characterized by an A28/S2-
dominated response, was observed only rarely after COVID-19 
mRNA vaccination. It was, however, prevalent among patients with 
COVID-19, with 20.2 and 15% of subjects with this phenotype in 
the PREDICT-19 and IMPROVISE cohorts, respectively. However, 
it was not observed in patients with tuberculosis, influenza virus, or 
HIV infection. IRTP III is, on the other hand, found in 4.3% of pa-
tients with RSV infection and reached its peak prevalence in pa-
tients with bacterial sepsis (33.3%).

In summary, those results show that in most instances, both com-
ponents of the transcriptional interferon response can be robustly 
induced following COVID-19 vaccination or viral infection (i.e., 
corresponding to IRTP II). However, incomplete patterns of induc-
tion can also be observed in some circumstances. We hypothesize 
that this may be due to (i) activation thresholds not being reached, 
in the case of IRTP I, or (ii) subjects failing to mount an effective 
interferon response, in the case of IRTP III, which, in the context of 
SARS-CoV-2 infection, might affect their ability to control the in-
fection. Notably, besides COVID-19, IRTP III phenotypes were only 
observed in a limited set of pathologies, including infection caused 
by RSV, a virus that is known to interfere with the interferon re-
sponse (33, 34), and bacterial sepsis that is characterized by a dys-
regulated host response to infection (35).

DISCUSSION
Relatively little is known about the types of in vivo immune re-
sponses elicited by mRNA vaccines in humans. To address this, we 
used bulk blood transcriptomics to map the immune changes tak-
ing place in vivo after the administration of the first and second doses 
of COVID-19 vaccines in adult volunteers. We did so at a high tem-
poral resolution, collecting small amounts of blood before and for 
nine consecutive days after the administration of the first and sec-
ond doses of COVID-19 mRNA vaccines. The use of blood tran-
scriptomics eliminated the need to choose a panel of analytes to 
measure vaccine responses, which is one source of bias. The daily 
collection and profiling schemes adopted eliminated the need to 
choose specific time points for measuring the response, thus elimi-
nating a second source of bias.

Profiling blood transcript abundance after the first and second 
doses of COVID-19 mRNA vaccines at a high temporal resolution 
revealed a well-orchestrated sequence of immune events (Fig. 9). 
The immune signatures elicited following the administration of the 
two doses of mRNA vaccines differed drastically. Relatively modest 
changes were observed after the first dose that manifested primarily 
as the induction of interferon response signatures that were detect-
able over the first 3 days following the injection of the first dose. 
This was followed by a more subtle response that could be at-
tributed to the priming of the adaptive response between days 4 and 6. 
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A decrease in the abundance of transcripts for modules associated 
with inflammation was observed over these 3 days, which was ac-
companied by an increase in transcripts associated with plasma 
cells and T cells on day 5. No further changes were detected beyond 
day 6. After the second dose, the plasmablast response was more robust 
and peaked on day 4 but was not accompanied by a T cell response 
peak, as was the case after the first dose. Notably, in studies assess-
ing blood transcriptional responses to vaccines, the peak plasmablast 
response is typically observed on day 7, as is the case, for instance, with 
influenza and pneumococcal vaccines (6, 26, 27). As a result, sampling 
schedules in common use that are designed to capture changes on days 1 
and 7 and, sometimes, day 3 would miss the peak of the adaptive 
response to COVID-19 mRNA vaccines observed in our study.

In addition to eliminating potential blind spots, high-frequency 
sampling and profiling also permit the precise resolution of the com-
plex kinetics of a response; for instance, the erythroid cell signature 
peaks sharply after the second dose and recedes well below baseline 
over several days before recovering. The trajectory of this signature 
may be of significance in the context of vaccination, as we recently 
described its association with immunosuppressive states, such as 
late-stage cancer and maintenance therapy in liver transplant recip-
ients (28). In the same work, we found this signature to be strongly 
associated with the development of a more severe disease in sub-
jects with acute respiratory syncytial virus infection. Notably, 
erythroid precursors have also been recently associated with more 
severe clinical outcomes in patients with COVID-19 (36). Popula-
tions of circulating erythroid cells have been found to have immuno-
suppressive properties (37). These properties may be exerted, for 
instance, through the expression by these cells of arginase or trans-
forming growth factor–, which have been found to suppress inter-
feron- production in effector T cells and promote the development 
or regulatory T cells, respectively (38, 39). Conversely, a recent 
report has shown that a defect in erythrocyte mitochondrial removal 
observed in patients with SLE was a driver for interferon produc-
tion and correlated with disease activity (40). The downward trajec-
tory followed by the A37/erythroid cell modules after the day 1 peak 
after the second dose was peculiar. It was not observed with the A35/
inflammation module, for instance, which also peaked at day 1. It 
may be attributed to changes in relative cellular composition in 

the blood, reflecting either a mobilization of erythroid cells outside 
of the circulation or, conversely, a transient expansion of other 
populations of circulating leukocytes, resulting in a dilution of the 
erythroid cell population. Together, these observations warrant 
follow-up investigations into the potential role of circulating eryth-
roid cells in the context of vaccination.

Arunachalam et al. (5) previously described the elicitation of 
qualitatively distinct innate signatures on day 1 following the ad-
ministration of the first and second doses of COVID-19 mRNA 
vaccines, with the former inducing an interferon response and the 
latter a mixed response that also presented an inflammatory com-
ponent. Our findings are consistent with these earlier observations 
and, using a high-frequency sampling and profiling protocol, per-
mitted us to further dissect those responses. Most notably, while 
interferon responses appear a priori as the common denominator 
between the post–first and post–second dose responses, the tempo-
ral pattern of response that we observed indicates that these are 
qualitatively and quantitatively distinct. This was best evidenced by 
the differences in the timing of the response peak, which corre-
sponded to day 2 after the first and day 1 after the second doses. The 
kinetics of the response after the second dose is therefore most con-
sistent with what is observed following injection of a single dose of 
influenza vaccine (6). A further investigation of the patterns of 
response among the six modular components of the interferon 
responses (module aggregate A28) identified two distinct sets of mod-
ules. These two sets of three modules each, A28/S1 and A28/S2, dis-
played distinct kinetics and amplitude of response after the first and 
second doses. In an earlier report, we have shown that module rep-
ertoire analyses permitted the delineation of distinct interferon sig-
natures and that those signatures could stratify patients with SLE 
(30), an observation that has since been confirmed in independent 
studies (41–43). We report here that distinct interferon signatures 
are elicited following vaccination. The delineation of these signa-
tures was greatly aided by the adoption of a high–temporal resolution 
profiling approach. It permitted us to identify subtle but significant 
differences in amplitude and timing between the two signatures fol-
lowing both the first and second doses of mRNA vaccine. The 
response to the second dose appeared to be more potent and uni-
form across A28/S1 and A28/S2 modules and was accompanied by 

Fig. 9. Summary. This diagrammatic representation summarizes the temporal trajectories of blood transcriptional signatures elicited in response to the first and second 
doses of mRNA vaccines.
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an increase in abundance of modules associated with inflammation 
and erythroid responses, among other signatures. Together, the dif-
ferences observed after the first and second doses could be attributed 
to quantitative or qualitative differences, e.g., elicitation by the 
second dose of vaccine of the release of higher amounts of endoge-
nous interferons or of the release of interferon of a different type 
(with the post–first dose signature possibly being elicited by type I 
interferons, as patterns of induction after interferon- treatment 
would suggest, and the post–second dose signature possibly being 
elicited by type II interferon). The latter thesis is indirectly sup-
ported by recent findings in mice that received the Pfizer BioNTech 
BNT162b2 vaccine and were found to preferentially produce 
interferon- in vivo after the first dose of vaccine and interferon- 
after the second dose (44). It should be, however, noted that while 
the pattern of induction of A28/S1 and S2 modules might be indic-
ative of a given type of interferon response, our observations would 
not support the notion of a given set to be exclusively associated 
with a given type of response (i.e., the analyses of public datasets 
in fig. S7 show that A28/S1 modules may be more responsive 
to type I interferons, while the A28/S2 also appears to respond but 
only to a lesser degree).

Here, we also sought to determine whether “post–first dose–
like” patterns (i.e., dominated by A28/S1, IRTP I) or “post–second 
dose–like” patterns (i.e., with potent induction of both components: 
A28/S1++ and A28/S2++, IRTP II) could be identified among patients 
with COVID-19. Since those were associated with the subsequent 
development of humoral immunity in the context of vaccination, it 
may be surmised that it would also be the case during the course of 
SARS-CoV-2 infection. This question was made particularly rele-
vant in the context of COVID-19 disease, since it has been reported 
that failure to induce interferon responses is associated with worse 
disease outcomes (8, 45–47). In the PREDICT-19 cohort, composed 
of patients with predominantly mild or moderate pathology, both 
phenotypes were observed, along with a third distinct phenotype 
that was not observed after vaccination. This latter phenotype is 
dominated instead by A28/S2, with A28/S1 abundance being low or 
even decreased (IRTP IIII). Notably, in a cohort of patients with 
severe disease, both A28/S1++ A28/S2++ (post–second dose–like/
IRTP II) and A28/S2>S1 (IRTP III) phenotypes were also observed, 
with the latter being associated with extended lengths of stay in the 
ICU. However, IRTP III did not appear to be preferentially as-
sociated with death in this setting, which may be due to the sup-
portive care provided to the patients. Overall, our observations are 
consistent with earlier work that has linked SARS-CoV-2 infection 
to impaired interferon responses and support the notion that failure 
to mount robust interferon responses is associated with a less favor-
able course of the disease (8, 48). However, our findings also show 
that the response elicited by the infection in these patients may not 
be altogether defective (i.e., with only one component, A28/S1, be-
ing primarily affected). One possibility is that this peculiar response 
pattern may be associated with the presence of endogenously pro-
duced autoantibodies neutralizing interferon, as has been previously 
described (47, 49), or, in a smaller proportion of individuals, of in-
born errors of immunity (46, 50). The high incidence of the IRTP 
IIII phenotype observed in patients with bacterial sepsis (about one 
in three), however, suggests that other mechanisms may be at play 
(e.g., suboptimal, delayed, or exhausted responses).

Other points remain to be elucidated. This includes the timing of 
the adaptive response to mRNA vaccines, which appears to rise and 

peak several days earlier than what is normally observed in responses 
to other vaccines (±7-day peak). The priming mechanism under-
pinning the robust polyfunctional response observed on day 1 after 
the second dose would deserve further investigation as well, with 
our findings suggesting that the first vaccine dose could contribute 
to the training of the innate immune response. Notably, the greater 
amplitude of responses observed after the second dose and the pres-
ence of an inflammatory component are also consistent with previ-
ous reports of the increase in the incidence of side effects/discomfort 
following the administration of the second dose of COVID-19 
mRNA vaccine (51, 52).

Last, while this study contributes to a better understanding of 
the drivers of mRNA vaccine immunogenicity, it can also serve as a 
resource to help inform the design of future studies investigating 
vaccine responses. A decrease in sequencing costs provides an op-
portunity to use transcriptome profiling approaches in novel ways. 
One of them is the implementation of high–temporal resolution 
profiling protocols. An advantage of the delineation of transcrip-
tome responses at high temporal resolution is that it is doubly unbi-
ased, i.e., there is no need to select transcripts for inclusion in a 
panel because RNA-seq measures all transcript species present in a 
sample. Similarly, there is no need to select specific time points for 
assessing the vaccine response, as all time points are profiled within 
a given time frame. Thus the approach permits the removal of po-
tential blind spots and the detection of changes that may other-
wise be missed by more sparse sampling protocols. In addition 
to eliminating potential blind spots, high-frequency profiling data 
helped resolve the vaccine response more precisely. This was the 
case in our study of the interferon response, with the delineation of 
two distinct components having been much more difficult if not for 
the precise resolution of peaks of response over the first 3 days after 
the first and second doses of vaccines. Some of the practical ele-
ments that may contribute to making the routine implementation 
of the high–temporal resolution transcriptomics approach viable 
include, as mentioned earlier, a substantial decrease in the cost of 
RNA-seq, especially 3′-biased methodologies. Along the same lines, 
recent publications showed through downsampling analysis that 
sequencing at read depths that are much shallower than is typical is 
adequate for biomarker discovery projects, which could lead to fur-
ther reductions in the cost of RNA-seq assays (53). In turn, the 
lower costs should permit a substantial increase in sample sizes 
or, as in this case, sampling frequency. Another consideration is the 
availability of solutions for the in-home self-collection of samples. 
This is the case for the collection of RNA-stabilized blood with 
our custom method, which could be further improved. Novel solutions 
are also being put forward that could permit the implementation 
of these methods at scale (54). Last, as we have shown, it is possible 
to implement the self-collection of samples for serology profiling 
within a vaccinology study.

There were several limitations to our study. While the sample 
size was adequate for an initial discovery phase, a larger study co-
hort would help better resolve interindividual variations. The data-
set that we generated, however, has been made available for reuse, and 
it should be possible to integrate and consolidate this dataset with 
those generated in follow-up studies by us and others (28). Follow-
on studies would need to be designed to formally address specific 
questions, for instance, comparing responses in individuals who had 
previously been exposed to SARS-CoV-2 with those in naïve indi-
viduals. It would also be interesting to compare responses elicited 
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by the Pfizer/BioNTech and Moderna vaccines, which was not pos-
sible in our study because of the small numbers of individuals that 
received the Moderna vaccine. Although we hoped that it would 
be possible to obtain more balanced sample sizes for a more detailed 
comparison, the speed at which the vaccinations were rolled out 
among our target population of health care workers meant that we 
had very little control over the number of volunteers that received 
the different types of vaccines or their status as naïve or previously 
exposed individuals. It would also have been particularly interest-
ing to enroll patients from different age categories, especially the 
elderly population, but this again proved impossible.

In conclusion, the data presented here suggest that high–temporal 
resolution blood transcriptomics would provide a valuable means 
to precisely map and compare the types of responses elicited by the 
different types of COVID-19 vaccines. In addition, with several al-
ready approved and >20 currently in phase 3 trials (55), it could 
constitute a unique opportunity for the benchmarking of virtually 
all available vaccine platforms. Similarly, this approach could po-
tentially be implemented to characterize and compare vaccine re-
sponse profiles in populations that do not respond optimally to 
vaccines [e.g., in the elderly (56, 57), immunosuppressed (58–60), 
and during pregnancy (61, 62)]. This study also contributed to a 
better understanding of the drivers of mRNA vaccine immunoge-
nicity and identified interferon signatures as early indicators of the 
potency of the humoral immune response elicited in individual 
subjects. It also led to the definition of functional interferon re-
sponse phenotypes among patients with COVID-19 that were asso-
ciated with different disease trajectories. In particular, mechanisms 
underlying the development of dysfunctional interferon responses 
remain to be elucidated, which may yield important insights into 
the pathogenesis of severe COVID-19 disease.

MATERIALS AND METHODS
Subject recruitment
COVAX cohort
We enrolled adult subjects eligible to receive a COVID-19 vaccine 
who were willing to adhere to the sampling schedule. The protocol 
was approved by Sidra Hospital Institutional Review Board (IRB) (IRB 
number 1670047-6), and all participants gave written informed con-
sent. Inclusion criteria matched the clinical eligibility for receiving 
the vaccine, and the only exclusion criterion was to have received 
a first dose of any COVID-19 vaccine. Twenty-three subjects were 
enrolled, and the median age was 38 years (range, 29 to 57 years); 
20 of the subjects received the Pfizer vaccine, and 3 received the 
Moderna vaccine. The demographics, health status at accrual, and 
vaccination side effects are shown in Table 1. Intervals between 
the first and second vaccine doses were typically 21 days for Pfizer 
and 29 days for Moderna.
IMPROVISE cohort
Adult subjects with severe COVID-19 were enrolled in this cohort 
under the Hamad Medical Corporation IRB approval (MRC-05-007). 
Blood samples were collected at multiple time points during the pa-
tients’ ICU stay (time point 1 was taken at ICU admission; time 
points 1 to 4 were 7 days apart). Subjects with burn and trauma, 
with immunological diseases, receiving immunosuppressive treat-
ment, with other immune-related conditions, or with a previous 
COVID-19 infection were excluded. For this analysis, 40 patients 
with severe COVID-19 were included, with a median age of 52 years 

(range, 30 to 92 years). The clinical parameters of those patients 
included gender, ICU and hospital stay, mechanical ventilation du-
ration, extracorporeal membrane oxygenation initiation, comor-
bidities, outcomes (death/recovery), nosocomial infection onset, 
and plasma therapy. Samples were also collected from control sub-
jects who were adults and did not (i) present with an infectious syn-
drome during the past 90 days; (ii) experience extreme physical 
stress within the past week; (iii) receive, during the past 90 days, a 
treatment based on antivirals, antibiotics, antiparasitics, and anti-
fungals; (iv) receive, within the past 15 days, a treatment based on 
nonsteroidal anti-inflammatory drugs; (v) receive, during the past 
24 months, a treatment based on immunosuppressive therapy, cor-
ticosteroids, therapeutic antibodies, and chemotherapy; and (vi) 
have a history of innate or acquired immune deficiency, hematolog-
ical disease, solid tumor, severe chronic disease, surgery or hospital-
ization within the past 2 years, pregnancy within the past year, 
participation to a phase 1 clinical assay during the past year, and par-
ticipation to a phase 1 clinical assay during the past year; no samples 
were collected from pregnant or breastfeeding women and those 
with restricted liberty or under legal protection.
PREDICT-19 cohort
The “PREDICT-19” Consortium is an international consortium 
formed by a group of researchers who share common interests in 
identifying, developing, and validating clinical and/or bioinformatics 
tools to improve patient triage in a pandemic such as COVID-19 
(29). The PREDICT-19 Italian cohort comprises adult subjects with 
mild, moderate, or severe COVID-19 diagnosed by real-time poly-
merase chain reaction on nasopharyngeal swab who were consented and 
enrolled at Ente Ospedaliero (E.O.) Ospedali Galliera and Istituto di 
Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico 
San Martino, Genoa, Italy (Ethics Committee of the Liguria Region; 
N.CER Liguria 163/2020-ID 10475). Blood samples were collected 
during hospitalization. Subjects with burn and trauma, with immuno-
logical diseases, receiving immunosuppressive treatment for underlying 
disorders before COVID-19 diagnosis, with other immune-related 
conditions, or with a previous COVID-19 infection were excluded. 
Severity scores were determined at the time of sampling and on the basis 
of an eight-point system established by the World Health Organization 
(63). For this analysis, 10 healthy subjects and 99 patients with COVID-19 
were included, with a median age of 61.76 years (range, 26 to 86 years).

Sampling protocol
COVAX cohort
For transcriptomics applications for the COVAX study, after punc-
turing the skin with a fingerstick, 50 l of blood was collected in a 
capillary/microfuge tube assembly supplied by KABE Labortechnik 
(Numbrecht, Germany) containing 100 l of tempus RNA-stabilizing 
solution aliquoted from a regular-sized tempus tube (designed for 
the collection of 3 ml of blood and containing 6 ml of solution; 
Thermo Fisher Scientific, Waltham, MA, USA). This method is 
described in detail in an earlier report (7), and the collection proce-
dure is illustrated in an uploaded video at www.youtube.com/
watch?v=xnrXidwg83I (64). Blood was collected before the vaccine 
was administered (day 0), on the same day, and daily thereafter over 
the next 10 days. This protocol was followed for both the first and 
second vaccine doses. For serology applications, 20 l of blood was 
collected using a Mitra blood collection device (Neoteryx, Torrance, 
CA, USA) before the vaccine was administered and on days 7 and 
14 after vaccination with the first and second doses.

http://www.youtube.com/watch?v=xnrXidwg83I
http://www.youtube.com/watch?v=xnrXidwg83I
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IMPROVISE cohort
For the IMPROVISE study, samples were collected using PaxGene 
Blood RNA tubes (BD Biosciences, Franklin Lakes, NJ, USA) at all 
time points and were frozen at −20°C until further processing.
PREDICT-19 cohort
For the Italian cohort of the PREDICT-19 study, blood samples 
were collected during hospitalization by venipuncture in tubes con-
taining an RNA-stabilizing solution (Tempus Blood RNA Tube, 
Thermo Fisher Scientific, Waltham, MA, USA; catalog number 
4342792) and frozen at −20°C until further processing.

Multiplex serological assay
The presence of antibodies against selected human coronavirus 
proteins in the serum was measured with a home-built bead array 
based on carboxymethylated bead sets with six distinct intensities of 
an ultraviolet-excitable dye. Each bead set was individually coupled 
to the three SARS-CoV-2 proteins envelope, nucleoprotein, and 
Spike protein in its trimeric form or its fragments and the S1 frag-
ment of SARS-CoV S protein. Therefore, the complete array con-
sisted of six antigens, including five SARS-CoV-2 antigens (Full 
Spike Trimer, Receptor Binding Domain, Spike S1, Nucleoprotein, 
and Envelope), as well as the closely related SARS-CoV-S1 protein. 
The binding of human antibodies to each viral antigen (bead set) is 
revealed with fluorescently labeled isotype-specific mouse mono-
clonal or polyclonal antibodies. We measured total IgM, total IgG, 
and total IgA as well as their individual isotypes IgG1, IgG2, IgG3, 
IgA1, and IgA2, reporting a total of 48 parameters per sample. The 
assays were performed on filter plates and acquired on a BD Sym-
phony A5 using a high-throughput sampler. An average of 300 beads 
per region was acquired, and the median fluorescence intensity 
(MFI) for each isotype binding was used for characterizing the anti-
body response. An antibody response index was calculated as the 
ratio of the MFI of pooled negative blood controls collected before 
June 2018 (Sidra IRB 1609004823) to the MFI obtained for vacci-
nated donor samples.

RNA extraction and quality control
RNA was extracted using the Tempus Spin RNA Isolation Kit 
(Thermo Fisher Scientific), which was adapted for the handling of small 
blood volumes. The methodology has been described previously in de-
tail (65). Contaminating DNA was removed using the TurboDNAse 
kit (Thermo Fisher Scientific), and RNA was quantitated on a Qubit 
instrument (Thermo Fisher Scientific) and quality controlled using 
an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA).

RNA sequencing
COVAX and IMPROVISE cohorts
mRNA sequencing was performed using the QuantSeq 3′ mRNA-
Seq Library Prep Kit FWD for Illumina (75 single end) with a read 
depth of 8M and an average read alignment of 79.60%. Single sam-
ples were sequenced across four lanes, and the resulting FASTQ 
files were merged by sample. Quality trimming is performed to re-
move adapter sequences and polyadenylate tails. Then, trimmed 
reads were aligned to human genome GRCh38/hg38 (Genome Ref-
erence Consortium Human Build 38, International Nucleotide 
Sequence Database Collaboration (INSDC) Assembly GCA_
000001405.28, December 2013) using STAR 2.6.1d, and featureCounts 
v2.0.0 was used to generate the raw counts. Raw expression data 
were normalized to size factor effects using the R package DESeq2. 

All downstream analyses were performed using R version 4.1 unless 
otherwise specified. Global transcriptional differences between 
samples were assessed by principal components analysis using the 
“prcomp” function. Transcriptome profiling data were deposited, 
along with detailed sample information, into a public repository, the 
National Center for Biotechnology Information (NCBI) GEO, with 
accession ID GSE190001 and BioProject ID PRJNA785113.
PREDICT-19 cohort
Total RNA was isolated from whole-blood lysate using the Tempus 
Spin Isolation kit (Applied Biosystems) according to the manufac-
turer’s instructions. Globin mRNA was depleted from a portion of 
each total RNA sample using the GLOBINclear-Human kit (Thermo 
Fisher Scientific). Following the removal of globin transcripts, tran-
scriptome profiles were generated via mRNA sequencing using Illumina 
HiSeq 4000 Technology (75 paired end) with a read depth of 60M.  
Single samples were sequenced across four lanes, and the resulting 
FASTQ files were merged by sample. All FASTQs passed quality 
control and were aligned to reference genome GRCh38 using STAR 
(2.6.1d). BAM files were converted to a raw count’s expression matrix 
using HTSeq (https://zenodo.org/record/6985383#.YvZa7uxBz0o). 
Raw count data were normalized using DESeq2. The ensemble IDs 
targeting multiple genes were collapsed (average), and a final data 
matrix gene was generated for modular repertoire analysis.

Statistical analysis
Analyses were conducted using predefined gene sets. Specifically, 
we used a fixed repertoire of 382 transcriptional modules that were 
thoroughly functionally annotated, as described in detail in a recent 
publication (14). Briefly, this repertoire of transcriptional modules 
(“BloodGen3”) was identified on the basis of coexpression, as mea-
sured in a collection of 16 blood transcriptome datasets encom-
passing 985 individual transcriptome profiles. Sets of coexpressed 
transcripts were derived from the analysis of a large weighted co-
clustering network. Downstream analysis results and visualizations 
were generated using a custom R package (66). The workflow con-
sists of, first, annotating the expression matrix (DESeq2-normalized 
counts) with module repertoire information (mapping transcripts 
to BloodGen3 modules); second, determining differential expres-
sion, which, as detailed below, can be done at either the level of 
groups or individual samples; and third, calculating the “module 
response,” which is defined as the percentage of constitutive tran-
scripts with a given abundance that was determined to be different 
between two study groups or for the same individual in comparison 
to a given baseline (in this study, prevaccination abundance levels). 
The values, therefore, ranged from 100% (all constitutive transcripts 
increased) to −100% (all constitutive transcripts decreased). Only the 
dominant trend (i.e., increase or decrease in abundance over control/
baseline) was retained for visualization purposes on fingerprint 
grids or fingerprint heatmaps, with red indicating an increase and 
blue indicating a decrease in abundance. When performing group 
comparisons (e.g., cases versus controls for the disease datasets used 
as reference), the P value and FDR cutoffs were applied (DESeq2 
FDR < 0.1). When performing longitudinal analyses, the module 
response is determined by using fixed fold change (FC) and expres-
sion difference cutoffs (|FC| > 1.5 and |DIFF| > 10). Significance was 
determined for each module using the differential gene set enrich-
ment function of the dearseq R package (15). The BloodGen3Module 
package was also used for visualizing module response. In the case 
of the vaccine cohort: (i) using fingerprint grid plots representing 

https://zenodo.org/record/6985383#.YvZa7uxBz0o


Rinchai et al., Sci. Adv. 8, eabp9961 (2022)     11 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

21 of 24

module response for a group of subjects (previously exposed and 
naïve) at a given time point in comparison to the prevaccination 
baseline (before the first or before the second dose, as applicable), as 
is the case for Figs. 2A, 3A, 4, 5A, and 6A), or (ii) using fingerprint 
heatmaps representing module response for individual subjects com-
pared to their prevaccination baseline, as is the case for Figs. 2B and 
5B. In addition, line graphs in Figs. 2, 4, and 5 showing average in-
dividual response over time for a set of modules from a given aggre-
gate were generated using the ggplot2 R package (67). Bar graphs 
showing the number of responsive modules in Figs. 2A, 3A, 4A, and 
6A were generated using the same package. In these instances, a 
module is considered responsive when the dominant proportion of 
constitutive transcripts reaches a defined threshold, which was set 
to 15% as to limit permissiveness to noise. To calculate correlations 
between module response levels and serum antibody levels before 
vaccination and at specific time points after vaccination, we used 
instead single-sample gene set enrichment analysis that was imple-
mented in the GSVA package (68), and enrichment scores of indi-
vidual samples were used for the Spearman correlation analysis 
(Figs. 2, 5, and 6 and figs. S2, S3, and S9 to S13). This approach per-
mitted us to assign a module response value to prevaccination sam-
ples, which was not possible using the BloodGen3Module package 
since it uses these samples as a baseline for calculating module re-
sponses after vaccination. Spearman correlation results are shown 
in Figs. 2, 5, and 6 and figs. S2, S3, S9 to S13. We additionally per-
formed linear mixed-effect modeling of the module activity (single-
sample gene set enrichment analysis score) according to antibody 
index levels at baseline (before the first or second vaccination) and 
day 7 or 14 following vaccination and infection history. We have 
two observations per patient (at baseline and any given day after 
vaccine for transcriptional profiling data and at baseline and day 7 
or 14 after vaccination for the antibody index), and we account for 
repeated measurements through a patient random effect on the in-
tercept. The slope P value indicated on the scatterplots shown in 
figs. S2 and S9 to S13 characterizes the significance of the associa-
tion between module activity and the antibody index.

Definition of IRTPs
Study cohorts were stratified on the basis of patterns of interferon 
response for two distinct interferon signatures, defined as A28/S1 
(comprising modules M8.3, M10.1, and M15.127) and A28/S2 (com-
prising modules M13.17, M15.64, and M15.86). For this, pheno-
types were defined on the basis of levels of response observed for 
these two traits, as follows: Percentage responses of the six interferon 
modules were scored on the basis of the degree of response (% re-
sponse ≥ 50, score = 2; 0 < %response < 50, score = 1; % response ≤ 
−50, score = −2; −50 < % response < 0, score = −1). Then, the aver-
age scores of S1 (“M8.3,” “M10.1,” and “M15.127”) and S2 (“M13.17,” 
“M15.64,” and “M15.86”) and phenotypes were classified using cut-
off at S1/S2++ (average score ≥ 1), S1/S2+ (1 < average score < 0.33), 
S1/S20 (0.33 < average score ≤ 0), and S1/S2− (average score < 0). 
The phenotypes were grouped as follows:

1) “IRTP I” = IRTP I = A28/S1++A28/S2+, A28/S1++A28/S20, and 
A28/S1+A28/S20

2) “IRTP II” = A28/S1++A28/S2++”
3) “IRTP III” = A28/S1−A28/S2++, A28/S1−A28/S2+, A28/S10A28/

S2++, and A28/S10A28/S2+

4) The “other” category encompassed the remaining phenotypes = 
A28/S1+A28/S20, “A28/S10A8/S2+,” “A8/S1+A28/S2,” “A28/S10A28/

S20,” “A28/S10A28/S2−,” “A28/S1−A28/S2−,” “A28/S1+A28/S2++,” “A28/
S1+A28/S2+,” and “A28/S1−A28/S20”

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abp9961

View/request a protocol for this paper from Bio-protocol.
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