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Abstract: The future photovoltaic technologies based on perovskite materials are aimed to build
low tech, truly economical, easily fabricated, broadly deployable, and trustworthy solar cells.
Hole transport material (HTM) free perovskite solar cells (PSCs) are among the most likely architectures
which hold a distinctive design and provide a simple way to produce large-area and cost-effective
manufacture of PSCs. Notably, in the monolithic scheme of the HTM-free PSCs, all layers can be printed
using highly reproducible and morphology-controlled methods, and this design has successfully been
demonstrated for industrial-scale fabrication. In this review article, we comprehensively describe the
recent advancements in the different types of mesoporous (nanostructured) and planar HTM-free
PSCs. In addition, the effect of various nanostructures and mesoporous layers on their performance
is discussed using the electrochemical impedance spectroscopy (EIS) technique. We bring together
the different perspectives that researchers have developed to interpret and analyze the EIS data of the
HTM-free PSCs. Their analysis using the EIS tool, the limitations of these studies, and the future
work directions to overcome these limitations to enhance the performance of HTM-free PSCs are
comprehensively considered.

Keywords: HTM-free PSCs; nanostructures; mesoscopic; impedance spectroscopy; electrical
equivalent circuit; power conversion efficiency

1. Introduction

A complete understanding of PSCs has turned out to be a challenge due to their dynamic behavior
and complex multidimensional nanostructure. Recently, electrochemical impedance spectroscopy (EIS)
has emerged as a useful tool in breaking down the complex dynamic processes occurring within the
different layers of solid-state PSCs, which makes it easier to analyze the interfaces and charge dynamics
of this type of solar cells. EIS technique has proven to be an effective tool in analyzing the processes
occurring at the interface of different layers of the PSC [1,2]. For instance, Bernal et al. [3] qualitatively
and quantitatively assessed the different dynamics processes in the PSC by EIS, while Klotz et al. [4]
also used EIS results to assess charge separation and recombination processes and related them with a
temporary loss in an active area of the device due to single grains altering the perovskite layer. Similarly,
the EIS tool has been used consistently in previous works for several other kinds of analyses such as
comparing 2D/3D PSCs with 3D PSCs [5–7], stability analysis [8,9], studying charge dynamics [4,10],
studying the effect of different conditions and architecture on the performance of PSCs [11,12], etc.
The frequency-dependent spectra allow to breakdown the different dynamic processes occurring at
each interface or bulk with distinguished time constants. Hence, with the help of this tool, the layers
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responsible for the degradation in the PSCs can be identified by assessing the behavior of each layer
over time.

Different architectures of PSCs have been studied and analyzed by the EIS technique in previous
works. This includes the conventional n-i-p structure [11] and the inverted p-i-n structure [13].
In addition, researchers have also explored ETL-free [14–16] and HTM-free PSCs [17–20]. This review is
focused on the HTM-free PSCs since they have gained increased attention in the solar energy field due to
their cost-effective and simple fabrication procedure. A wide variety of perspectives has been adopted
by researchers to enhance the performance of HTM-free PSCs such as exploring different counter
electrodes [17,18,20–44] and manipulating the composition of the counter electrodes itself [17,20,24,25].
Besides, the inverted HTM-free PSCs have also been explored. This review summarizes a wide range
of these approaches and their progress.

This review provides an insight into the EIS technique and how it is essential to understand
the complex behavior of HTM-free PSCs better. EIS analysis has been discussed based on Nyquist
and Bode plots, which are the most common methods of analyzing EIS data. The relevant physical
parameters that can be extracted from the EIS data by equivalent circuit modeling are also discussed.
Furthermore, a comprehensive literature review on EIS analysis employed in previous works was also
performed to analyze the trend of utilizing this tool in the field of HTM-free PSC research over the
past years.

2. Progressions in HTM-Free PSCs

Figure 1 represents the power conversion efficiency (PCE) of the different types of HTM-free
PSCs (since the year of the first report) and their active areas considered during the efficiency
measurements. The PCE values of each year were plotted based on the highest efficiencies achieved
in the respective year. Au counter electrode (CE) was first introduced in HTM-free PSCs; however,
not much research has been done with Au CE since it increases the production cost, and its deposition
process is complex as well. Subsequently, the research on carbon CE in HTM-free PSCs also started
as a low-cost alternative. Specifically, considerable attention has been paid to the monolithic design
of the carbon-based mesoscopic PSCs due to its high potential for large-size and commercial-scale
production. Figure 1d shows that the PCE of this architecture increased tremendously within the past
few years, and then saturated to approximately 15 ± 2%; however, a minor decrease in the PCE value is
observed for 2020, which is due to the larger active area of the fabricated device. Limited research has
also been performed on the carbon-based planar HTM-free PSC architecture, and it has shown great
potential with its commonly employed low temperature processed compact layer, SnO2, beneficial for
commercialization, and impressive PCEs. The overall PCE of carbon-based planar HTM-free PSCs is
increasing, considering the active area (Figure 1e). The PCE of the inverted architecture was initially
lower (in 2014) as compared to the other designs. However, its performance soon surpassed the other
architectures and saturated to approximately 19 ± 1%. However, despite the higher PCEs achieved
with the inverted structure, its high efficiency is reported over a very active but small area. The detailed
evolution of the different architectures of HTM-free PSCs is described in the next section.
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Figure 1. (a) Evolution of PCE (power conversion efficiency) of different types of HTM-free PSCs; 
Gold (Au) counter electrode (CE)-based, mesoporous carbon-based (meso-carbon HTM-free), 
monolithic carbon-based (mono-carbon HTM-free), planar carbon CE-based (planar-carbon HTM-
free) and the inverted HTM-free PSC. The active area of the fabricated devices is mentioned in the 
bar-charts (N/A is denoted for area values that are not mentioned in the published file). The data are 
obtained starting from 2012 (when HTM-free PSC was first introduced, with a gold counter electrode). 
The individual progress of the different architectures can also be observed in (b–f). 

3. Advancements in Different Architectures of HTM-Free PSC 

Some commonly employed HTM-free PSC structures in previous works are shown in Figure 2a–
f. We categorize these configurations into two different types: (i) with metal top electrodes; and (ii) 
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Figure 1. (a) Evolution of PCE (power conversion efficiency) of different types of HTM-free PSCs;
Gold (Au) counter electrode (CE)-based, mesoporous carbon-based (meso-carbon HTM-free), monolithic
carbon-based (mono-carbon HTM-free), planar carbon CE-based (planar-carbon HTM-free) and the
inverted HTM-free PSC. The active area of the fabricated devices is mentioned in the bar-charts (N/A is
denoted for area values that are not mentioned in the published file). The data are obtained starting
from 2012 (when HTM-free PSC was first introduced, with a gold counter electrode). The individual
progress of the different architectures can also be observed in (b–f).
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3. Advancements in Different Architectures of HTM-Free PSC

Some commonly employed HTM-free PSC structures in previous works are shown in
Figure 2a–f. We categorize these configurations into two different types: (i) with metal top electrodes;
and (ii) carbon-based HTM-free configuration. The corresponding energy band diagrams are given
in Figure 2g. It can be observed that there is a very small difference in the work function of carbon
(−5.0 eV) and Au (−5.1 eV), making carbon an ideal choice to replace Au as the counter electrode and a
fully printable HTM-free PSC structure (monolithic PSC) can be fabricated [37]. In the next section, we
describe the developments related to each architecture one by one.
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architectures is the perovskite deposition technique. In monolithic structure, the perovskite is 
infiltrated into the device after the deposition of all layers (see Figure 3c), whereas the perovskite layer 
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Figure 2. Schematic illustration of commonly employed HTM-free perovskite solar cell structures:
(a) Planar architecture with Au as the back electrode; (b) mesoporous architecture with Au as back
contact; (c) planar configuration with Ag as the rear electrode; (d) planar architecture with carbon as
back contact; (e) mesoporous structure with carbon as back contact; and (f) monolithic device with
carbon as the counter electrode. Reproduced with permission from [45]. Elsevier, 2018. (g) Schematic
illustration of energy band diagrams of p-i-n and n-i-p HTM-free PSC structures with different counter
electrodes. The key difference between mesoporous and monolithic carbon-based architectures is the
perovskite deposition technique. In monolithic structure, the perovskite is infiltrated into the device
after the deposition of all layers (see Figure 3c), whereas the perovskite layer is deposited over the
mesoporous TiO2 layer before the carbon layer in the mesoporous architecture (there is no spacer layer
in this design).

3.1. HTM-Free PSCs Based on Au Counter Electrode

A very compatible work function of Au with perovskite makes it an excellent choice as the back
contact for HTM-free PSCs (see Figure 1g). There are two main designs (mesoporous and planar) that
have been reported for the Au counter electrode-based HTM-free devices, which are described below.
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contact for HTM-free PSCs (see Figure 1g). There are two main designs (mesoporous and planar) that 
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3.1.1. Mesoporous Architecture 

Etgar et al. [20] introduced mesoscopic perovskite/TiO2 heterojunction HTM-free PSC for the 
first time (in 2015) utilizing gold as the back contact and achieved a PCE of 5.5%. The Au layer was 
thermally evaporated onto the cell. Since then, various modifications have been performed by 
researchers to optimize it further. Laban et al. [17] further optimized HTM-free PSC by depositing a 
thick perovskite film by spin coating, in a two-step process and used the thermally evaporated Au 
the counter electrode. The J–V measurements showed a depletion region at the perovskite/TiO2 
junction, which aided in charge separation and prevented the recombination of electrons and holes 

Figure 3. Schematic illustration of the different approaches developed by researchers for HTM-free
perovskite solar cell architectures (a) with the nonporous gold counter electrode and its corresponding
energy bandgap diagram. Reproduced with permission from [26]. Royal Society of Chemistry, 2015.
(b) Cross-section scanning electron microscopy (SEM) for 8 (left) and 10 (right) perovskite spray passes.
Reproduced with permission from [24]. American Chemical Society, 2015. (c) Monolithic PSC with
perovskite infiltrated in the stacked structure. Reproduced with permission from [38]. American
Association for the Advancement of Science, 2014. (d) Mesoporous PSC with carbon layer on top
of screen printed perovskite layer, and Al2O3 spacer layer. Reproduced with permission from [36].
Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, 2019. (e) Schematic of energy band diagrams of
FTO-based PSC and (f) polyaniline-based PSC, showing the bridging and trapping sites. Reproduced
with permission from [46]. Elsevier, 2015. (g) Schematic illustration of carbon-based planar PSC with
SnO2 as the ETL and (h) the corresponding energy band diagram. Reproduced with permission
from [39]. Elsevier, 2019. (i) Schematic illustration of the energy band diagram of planar HTM-free PSCs
using TiO2 and SnO2 as the ETLs, showing their fermi levels. Reproduced with permission from [47].
Elsevier, 2018. (j) Schematic illustration of inverted HTM-free structure with PCB61M as the ETL and
(k) its corresponding energy band diagram. Reproduced with permission from [48]. Royal Society of
Chemistry, 2015.

3.1.1. Mesoporous Architecture

Etgar et al. [20] introduced mesoscopic perovskite/TiO2 heterojunction HTM-free PSC for the
first time (in 2015) utilizing gold as the back contact and achieved a PCE of 5.5%. The Au layer
was thermally evaporated onto the cell. Since then, various modifications have been performed by
researchers to optimize it further. Laban et al. [17] further optimized HTM-free PSC by depositing a
thick perovskite film by spin coating, in a two-step process and used the thermally evaporated Au the
counter electrode. The J–V measurements showed a depletion region at the perovskite/TiO2 junction,
which aided in charge separation and prevented the recombination of electrons and holes and hence
provided a PCE of up to 8%. Later on, to avoid the complex vacuum and energy-intensive deposition
process of Au, Zhou et al. [26] fabricated a directly transferrable nanoporous structured gold electrode
with a de-alloying method which makes the fabrication a little simpler. The schematic of the employed
HTM-free structure is illustrated in Figure 3a. The nanoporous gold structure proved to be an excellent
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choice as the counter electrode in HTM-free PSCs due to its high conductivity combined with high
surface area and stability. Moreover, they also analyzed three different deposition techniques: one-step
spin coating, sequential deposition, and two-step spin coating for the fabrication of perovskite on the
device performance. The different techniques were analyzed by XRD patterns, and the results show
that the two-step spin coating method produced weaker intensity of the characteristic peaks, and hence
it was concluded that the one-step spin coating and sequential deposition technique produced better
crystallinity of the perovskite. However, the SEM images of the two-step spin-coating method showed
better infiltration into the porous structure and higher contact area between the nanoporous Au and
perovskite. Moreover, the PCE obtained using this technique was 7.99%, which was the highest
among the methods used. In addition, the role of Al2O3 in HTM-free PSC was also studied, and it
was reported that the presence of Al2O3 increases the PCE because it prevents the recombination of
electrons and holes at the TiO2 and nanoporous Au interface. Shi et al. [18] also described an HTM-free
PSC with Au as the counter electrode and achieved a PCE of 10.49% and further clarified the working
mechanism of HTM-free PSCs. I–V characterization model was used to analyze the ideality factor,
and series resistance of HTM-free PSC and the values were compared with a typical heterojunction
solar cell whose ideality factor is usually in the range of 1.3–2. Their work termed that HTM-free PSC
is indeed a heterojunction solar cell and not a sensitized cell. Later on, the PCE of HTM-free PSCs was
further enhanced to 10.85% by Aharon at al. [21], who revealed that the performance of HTM-free
PSC strongly depended on the width of the depletion layer at the perovskite/TiO2 junction which
can be estimated by Mott Schottky analysis. Furthermore, it was also analyzed that the width of the
depletion layer could be controlled by the thickness of the mesoporous TiO2 film. It was observed
that at 620 nm± 25 nm thickness, more than half of the TiO2 film was depleted, and hence the PCE
obtained was the highest among the samples.

3.1.2. Planar Architecture

Initial work on planar HTM-free PSCs with Au back contact was performed by Gamliel et al. [24],
who deposited perovskite with the spray coating technique to produce micrometer perovskite crystals.
The perovskite precursor was sprayed on hot substrates where the DMF evaporated immediately,
creating perovskite crystals. The perovskite film thickness was controlled by the number of spray
passes. It was concluded that ten passes created a film thickness of 3.4 µm, which gave the highest PCE
of 6.9% (Figure 3b). This spray coating technique of perovskite is not suitable for device architectures
containing mesoporous metal oxides due to the percolation of perovskite grains into the mesoporous
layers. Therefore, the probability of electron–hole recombination increases, and hence the device
performance is affected. Utilizing Au back contact in planar HTM-free architectures has not gained
much attention and thus needs further research to explore the potential of using the gold counter
electrode in this type of PSC configuration.

3.2. HTM-Free PSCs Based on Carbon Counter Electrode

Besides an expensive energy-intensive vacuum deposition process of Au, it has also been reported
that the Au could be a potential reason behind the degradation of the PSC devices by diffusing into
the perovskite layer [49]. Subsequently, carbon is a much cheaper and more stable material to utilize
as a replacement for the Au counter electrode. It also avoids the highly energy consumptive process
of vacuum deposition of Au. Moreover, it is also hydrophobic, inert to ionic migration [50], and it is
available in abundance allowing for large-scale and economical production.

3.2.1. Monolithic Architecture

The research on carbon-based HTM-free PCS is mostly concentrated on monolithic architectures.
Han’s group provided a significant contribution to carbon-based HTM-free PSCs research, and they
introduced a unique type of mesoporous HTM-free PSC; monolithic PSC, where all the layers are
screen printed and stacked, as illustrated in Figure 3c. The perovskite is then infiltrated into the device
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in the end, by drop-casting technique. It is a cost-effective, fully printable PSC allowing for large-scale
production [37]. They employed a carbon/graphite electrode in HTM-free PSCs for the first time
and initially achieved a PCE of 6.7%. Flaky graphite and spheroidal graphite were compared with
the I-V characterization technique, incident photon to current conversion efficiency (IPCE) spectrum,
and scanning electron microscopy (SEM). It was reported that the spheroidal graphite produced a
better performance with a higher PCE. Later on, they improved the PCE of HTM-free PSC to 10.64% by
utilizing TiO2 nanosheets [40]. The improved PCE was attributed to the high reactivity of exposed
facets in TiO2 nanosheets, which enhanced the interfacial properties between the compact TiO2 and
perovskite. Afterward, over 11% of PCE was achieved by optimizing the size of the graphite/carbon
counter electrode [43]. The influence of different sized counter electrodes was analyzed by impedance
spectroscopy, and it was determined that a thickness of 9 µm provided the best performance. The PCE
was further enhanced later on, to 12.8% for a fully printable mesoscopic HTM-free PSC, which was
stable for more than 1000 h under illumination conditions [38]. A double mesoporous layer of TiO2 and
ZrO2 was employed and covered by a porous carbon layer. 5-AVA additives were also incorporated to
improve the PCE. In later research, ammonium chloride was incorporated into the perovskite precursor,
which increased the PCE to 15.6% [51].

3.2.2. Mesoporous Architecture

Significant research on carbon-based HTM-free PSCs has been dedicated to mesoporous
configurations. The multiple mesoporous layers in this type of architecture prevent the recombination
of electrons and holes and also avoids pure ohmic shunts [52]. Bhatt et al. [46] fabricated an HTM-free
mesoscopic carbon-based PSC in ambient air, where polyaniline on FTO was used as a current collector
electrode. It was revealed that the PCE increased by 21% with a polyaniline electrode relative to the FTO
electrode. However, the Voc was observed to be decreasing. This phenomenon was explained by a new
approach, known as bridging and trapping effects. By analyzing the energy band diagrams illustrated
in Figure 3e–f, it was revealed that the carbon layer in FTO-based PSC enhances charge transfer at
perovskite/TiO2 interface due to bridging effect. Consequently, in polyaniline-based PSC, the carbon
layer causes charge trapping due to mismatching energy levels of perovskite and polyaniline electrode
resulting in trapping effect, and hence the Voc decreases. Ke et al. [36] also reported a carbon-based
mesoporous HTM-free PSC fabricated in ambient air with a PCE of 10.7%. The performance was
enhanced by incorporating tetrahydrofuran (THF) in the perovskite precursor to produce a uniform
film. Al2O3 mesoporous layer was also incorporated between perovskite and TiO2 layers to avoid direct
contact, and hence electron–hole recombination was suppressed. The fabricated device is illustrated in
Figure 3d.

3.2.3. Planar Architecture

This type of architecture does not include mesoporous scaffold and insulating layers, as shown
in Figure 2d and has carbon as the back counter electrode, which makes it a simpler and low-cost
architecture. Lv et al. [50] fabricated a fully air-processed planar HTM-free PSC with a PCE of 11.12%
where air-stable perovskite; CsPbBr3 was used, and carbon and TiO2 were used as the back counter
electrode and ETL, respectively. Most of the research on this type of architecture is concentrated
on low temperature processed SnO2, such as the ETL illustrated in Figure 3g,h, instead of the most
commonly employed compact and mesoporous layers of TiO2, which require high temperature for
processing and sintering. SnO2 has been consistently used in previous works as the ETL in HTM-based
PSCs and has shown impressive electrical and chemical properties with a wide bandgap and high
charge mobility [53] and has achieved PCEs up to 20%. Therefore, researchers have attempted to
utilize this ETL in HTM-free architectures as well, to obtain a lower fabrication cost-based solar
cell beneficial for commercialization. Lin et al. [47] were the first ones to report a low-temperature
processed ETL, SnO2 in a planar HTM-free PSC architecture, and achieved a PCE of 14.5%. This device
was compared with the conventional high temperature processed TiO2-based HTM-free PSC device,
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and it was observed that the Voc of SnO2 (1.07 V)-based device was 100 mV higher than that of
TiO2-based PSC. This is due to SnO2’s impressive hole blocking and electron transporting ability
which is attributed to its enhanced fermi level owing to its wider bandgap, as illustrated in Figure 3i.
This results in a higher Vbi (built in potential), according to Mott–Schottky study. Therefore, the Voc

increases due to inhibition of charge recombination. Recently, Vijayaraghavan et al. [53] fabricated a
low temperature processed fully printable HTM-free PSC using SnO2 quantum dot as the ETL and
achieved a PCE of 13.6%. SnO2 quantum dots were reported as superior to other solution-processed
SnO2 and colloidal nanoparticles-based SnO2 due to their long-term stability, higher molar extinction
coefficient, fast electron extraction, and hole blocking property, which results in an enhanced PCE.

Planar carbon-based HTM-free PSCs are not very popular because the mesoporous scaffold and
spacer layers, like in mesoporous and monolithic architectures (Figure 2e,f) are normally required
between the front and back contact of the HTM-free PSCs to keep them separated and prevent ohmic
shunt. Otherwise, the probability of electrons holes recombination becomes high; however, researchers
have overcome this issue by exploring excellent ETL candidates with efficient hole extraction and
electron transport abilities and have achieved moderate PCEs with these types of PSCs.

3.3. Inverted HTM-Free PSCs (with Ag Counter Electrode)

Most of the work on the inverted structure utilizes silver (Ag) as the back metal electrode
instead of Au. Ag usually is not used in the standard architecture since the iodine in the perovskite
can react with Ag. However, the inverted structure makes it possible to utilize Ag as the metal
electrode. This architecture also avoids the need for mesoporous metal oxide layers such as TiO2

and Al2O3, which require high temperature (400–500 ◦C) for deposition. Hu et al. [54] were the
first to propose inverted HTM-free PSC with the configuration of ITO/CH3NH3PbI3/C60/Ag, and a
PCE of 5.4% was achieved with a sequential vapor deposition technique for the growth of highly
uniform perovskite film. The perovskite was deposited directly on the ITO substrate. Since then,
impressive progress has been made on inverted HTM-free PSC research. Tsai et al. further enhanced
the PCE to above 11% with an impressive open circuit voltage of 1.1 V by fabricating an HTM-free
perovskite/fullerene heterojunction PSC with the configuration of ITO/MAPbI3/PC61BM/bis-C60/Ag,
as illustrated in Figure 3j,k. They discovered that perovskite is responsible for altering the work
function of ITO, resulting in an enhanced charge extraction efficiency at perovskite/ITO interface.
Later on, the PCE was further increased to 16% by Li et al. [27], who fabricated HTM-free PSC by the
solution process. The PCE was also improved to 18.1% with almost no I-V hysteresis, by Ye et al. [55]
with the configuration of ITO/MAPbI3−xClx(CuSCN)/C60/BCP/Ag. CuSCN was incorporated in the
perovskite to form a bulk heterojunction, where CuSCN played the role of hole conductor. Later on,
there was a major breakthrough by Wu et al. [56], who managed to achieve a PCE surpassing 20% for
HTM-free PSCs with a configuration of ITO/MAPbI3:F4TCNQ/C60/BCP/Cu, by molecular doping of
the perovskite film which improved its conductivity and its contact with the substrate. This resulted in
a reduced series resistance and an enhanced PCE. Moreover, the doctor-blading deposition technique
was acquired, enabling a scalable production.

4. Perovskite Solar Cells and Impedance Spectroscopy

4.1. The Fundamental Concept of IS and PSCs

Electrochemical impedance spectroscopy (EIS) refers to a technique that is utilized to gain insight
into the bulk and interfacial properties of multijunction devices, and it can be used to study the
devices under different in-situ conditions such as a function of different variables such as dc voltage,
illumination intensity and temperature [57]. It has been progressively applied to perovskite solar cells
(PSCs) by researchers over recent decades to study the behavior of PSCs as a function of multiple
dynamic processes under different operating conditions. EIS provides the impedance response of the
sample against a wide frequency range, usually 0.1–1 MHz against an AC applied potential. The EIS
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data are commonly interpreted by a Nyquist plot with Z imaginary and Z real along the y-axis and
x-axis, respectively. The resultant spectra can exhibit one, two, three, or more semicircles (depends on
the time constants within the applied frequency range). Each arch can be represented by an RC element
in an electrical equivalent circuit (EEC) model. Figure 4 illustrates some commonly obtained Nyquist
plots with their corresponding Bode plots, and the RC circuit diagrams can be observed in the inset of
Nyquist plots. Figure 4a is the impedance spectrum of one RC element. The corresponding frequency
data can be extracted from the Bode plot. The maximum of the semicircle; polarization resistance (Rp)
in the Nyquist plot represents the peak frequency (fp) in the Bode plot. The corresponding highest
and lowest frequency values are marked in the Nyquist plot of Figure 4a. Figure 4b illustrates the
impedance spectra of two RC elements. When more than one RC feature is present, the semicircles
obtained can be well separated or overlapped. The separated and overlapped semicircles can be defined
by τ, which is a time constant representing relaxation time scales. If the time scales of the different
dynamic processes are discrete, then separated semicircles are observed. Consequently, when the
relaxation time scales are indistinct, the semicircles are overlapped or merged, and it becomes complex
to analyze the data. Figure 4c illustrates the impedance spectra of three RC elements, where three clear
semicircles at high frequency (HF) (>104), intermediate frequency (IF) (10–104 Hz) and low frequency
(LF) (<10 Hz) regions are evident, and these arcs are formed by a parallel combination of resistance
and interfacial capacitance [58].
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Figure 4. Representation of Impedance spectra using Nyquist plots (left) and Bode plots (right):
(a) 1-RC circuit; (b) 2-RC circuit, black lines represent the Nyquist and Bode plots with well-separated
arcs while the red lines symbolize the merged arcs (Reproduced with permission from [59]. Society of
Photo-Optical Instrumentation Engineers, 2019.); and (c) 3-RC circuit. The corresponding RC circuit
diagrams can be found in the inset of Nyquist plots.
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The HF region represents geometric capacitance, which is commonly provided by the carbon or
gold electrode in HTM-free PSCs. The IF arc represents the recombination process in the mesoporous
TiO2/perovskite interface or in the bulk of these layers. The LF region is related to ionic motion
as well as recombination processes, and it is very complex to analyze due to hysteresis related to
ionic motion [60]. Sometimes, negative loops also appear, which has stirred a high debate on the
interpretation of its origin. It has been argued that they are due to the charge accumulation at the
interfaces or bulk of semiconducting layers [61–63]. Ebadi et al. [64] explained negative capacitance to
be just a result of hysteresis. Electrical equivalent circuit (EEC) modeling is the most common tool
used to interpret the EIS data physically.

4.2. Electrical Equivalent Circuit Modeling

There are different configurations of electrical circuits that are employed for the fitting of the EIS data
(as mentioned in Figure 5), i.e., series type circuit also known as Voight circuit, ladder (or Matryoshka)
type circuit, and Maxwell (dielectric) circuit. The ladder-type circuit represents multiple processes
occurring simultaneously with different characteristic times [59]. Most commonly, a combination
of ladder-type and Voight type configuration is employed for the PSCs. The Maxwell equivalent
circuit provides a more complex relationship with the EIS data. Todinova et al. [60] reported that
the Matryoshka, Voight, and the mixed Matryoshka–Voight circuit produces equally good fitting of
the EIS data. Therefore, one can equally choose between these models. In contrast, the Maxwell
circuit may provide values that differ from the empirical EIS data. It should be noted that impedance
spectra do not generally exhibit a perfect semicircle, and they are usually flattened due to non-ideal
capacitances. Therefore, the EIS data are modeled using a constant phase element (CPE) instead
of an ideal capacitor. CPE = −1 represents inductance, CPE = 0 represents resistance, and CPE = 1
represents pure capacitance. The Rct that appears in the high-frequency region is typically attributed
to the counter electrode, carbon or gold electrode, and their interface with the perovskite layer (in the
case of PSCs). Another resistance element is required to represent the charge transfer at the electron
transport layer (ETL) and perovskite interface in the lower frequency region. This is commonly the
case when only two arcs appear in the Nyquist plot, [28,65,66]. In this case, 2-RC element equivalent
circuit models are required, as illustrated in Figure 5. This is usually the case at low potentials were
the processes at the mesoporous layers are not evident [28,67]. At low potentials, the mesoporous
layers in the PSCs act as insulators, and hence the recombination resistance is very high and merges
into the curve. However, at higher potentials, the mesoporous layers start behaving as conductors or
semiconductors (depending on applied potential value) and hence their time constant is evident in the
Nyquist plot, sometimes as a small arc in the low-frequency region or as a negative capacitance or
as an appearance of an origin of negative capacitance [67]. Hence, the interpretation of the EIS data
using the EEC analysis becomes very complicated due to multi-interfacial and ion diffusion processes.
Moreover, different circuit configurations are required when analyzing different potentials, since the
behavior of PSC depends strongly on the applied potential.
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4.3. Proposed EEC Models for HTM-Free PSCs

Various EECs have been used in previous works to model EIS spectra of HTM-free PSCs.
For instance, Chen et al. [32] employed a 2-RC circuit model for a fully printable HTM-free PSC device
with mixed anion perovskite at 0.6 V biasing, as illustrated in Figure 6a. Two arcs can be clearly
differentiated in the Nyquist plot, and hence employing a two-circuit model seems logical. On the
other hand, Cao et al. [30] used a 3-RC circuit model for a double-layer mesoscopic HTM-free PSC
device at 0.8 V biasing. In this case, three arcs can be clearly separated in the Nyquist plot illustrated in
Figure 6b. Therefore, employing a 3-RC circuit model for this case is also justifiable. Both models have
been used consistently in other works for double-layer mesoscopic architectures [25,29,32–35,41–44,66].
The common reasoning provided for employing 2-RC elements in previous works is that, since the
HTM layer is not present in the device, perovskite plays both roles of light-harvesting and hole
transporting and, therefore, only two RC elements representing carbon/perovskite interface and
perovskite/ETL interface are required to fit the EIS data. On the other hand, employing the 3-RC
model is theoretically more reasonable since it considers an RC element for the mesoporous layers
as well, in the EEC model. In some works, the third RC element is attributed to the mesoporous
oxide layer/perovskite interface in the intermediate frequency region of the Nyquist plot [31], while,
in others, it is assigned to ion motion [31,44] and slow dynamics in perovskite [30], represented in
the low frequency (LF) region of the Nyquist plot. Zhou et al. [44] reported a 3-RC model for the
fitting of a double-layer mesoscopic architecture under an applied biasing of 0.2 V, as illustrated in
Figure 6b. However, it can be clearly observed that the EEC fitting of the Nyquist plot does not seem
perfect. Raminafshar et al. [28] reported two models for different biasing conditions; a 2-RC circuit
model for a double-layer mesoscopic HTM-free PSC device at 0 V biasing, whereas a 4-RC circuit
model at 0.8 V biasing based on best fitting. One RC element was assigned to the high frequency
arc representing charge transfer at counter electrode/perovskite interface and one RC element was
attributed to the low frequency arc representing charge accumulation at the perovskite/ETL interface.
The reasoning for the remaining two RC elements in the 4-RC circuit model was not clearly explained,
and it was attributed to the appearance of additional interfacial charge accumulation under strong
biasing. Cao et al. [31] employed a 4-RC circuit model to fit the EIS data of a triple-layer mesoscopic
HTM-free PSC, as illustrated in Figure 6c. The additional RC element from the FTO or compact
TiO2 layer was suggested to be omitted at high potentials due to a very high resistance and low
capacitance value.

However, Ahmed et al. [67] performed a more detailed EEC-based EIS study for monolithic PSCs,
where multiple EEC models were analyzed, and a well-defined model was recognized, which can be
further modified based on the applied potentials (see Figure 6d). Monolithic PSCs (m-PSCs) were
fabricated with a double mesoporous scaffold, m-TiO2 and ZrO2, and its EIS analysis was performed
at high, intermediate, and low potentials. The 3-RC model was proposed to fit the EIS data at low
and high potentials, and its authenticity was verified by comparing it with 2-RC and 4-RC models.
The 3-RC model was chosen based on its relevancy to physical parameters of m-PSC, closeness to
the experimental EIS data, and goodness of fit. The first RC element related to the HF region was
attributed to the carbon/perovskite interface, which is the commonly accepted interpretation. The RC
elements related to IF were attributed to the spacer layer, ZrO2, and mesoporous TiO2 contribution
since the perovskite closely packs the mesoporous oxide particles. The RC element of the LF region
was assigned to the recombination resistance at the perovskite/TiO2 interface. Moreover, the 3-RC
model was suggested to be modified to 4-RC at intermediate potentials due to multiple contributions
from perovskite/compact TiO2 and perovskite/mesoscopic TiO2 interfaces. At high potentials, the
contribution from the compact layer can be ignored due to very high resistance and small capacitance.
A current follow model, illustrated in Figure 6d, was developed at different potentials so that the EEC
model could be modified according to the applied to bias.
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Figure 6. Electrical equivalent circuits for HTM-free perovskite solar cells with their corresponding
Nyquist plots: (a) 2-RC model. Reproduced with permission from [32]. Wiley-VCH Verlag GmbH
& Co. KGaA Weinheim, 2016. (b) Nyquist plots of Device A (containing MAPbI3 perovskite),
Device B (containing MAPbI2.7Br0.3 perovskite), and Device C (containing MAPbI2.4Br0.6 perovskite),
fitted with 3-RC model. Reproduced with permission from [30]. Royal Society of Chemistry, 2016.
(c) Quadruple mesoscopic layer architecture fitted with 4-RC model. Reproduced with permission
from [31], Elsevier, 2015. (d) Electric current follows the diagram for m-PSCs under low, intermediate,
and high potentials. Reproduced with permission from [67]. Elsevier, 2020.
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From this literature review, it is clear that the interpretation of the IF and LF region is complex and
has still not been widely agreed upon. Moreover, it is clear that the EEC model selection also depends
on applied biasing in addition to the device architecture.

5. Analysis of HTM-Free PSCs with the EIS Technique

EIS has been utilized in HTM-free PSC analysis to compare different architectures [31], different
compositions [29], and different thicknesses of the layers [43] by studying their interfacial properties.
Below, we describe some of the ways that researchers have adopted to utilize the EIS tool in their studies.

5.1. Use of EIS for the Comparison of HTM-Based and HTM-Free PSCs

The first article employing the EIS tool to analyze HTM-free PSCs was demonstrated by
Juárez-Pérez et al. [25] in 2014. They compared the effect of removing the HTM layer on the performance
of the PSCs. Using the EIS (at 0.1 V biasing), the values of series resistance (Rs), recombination resistances
(Rrec), and charge transfer resistance (Rct) (see Figure 7a) and their effect on Voc, fill factor (FF), and PCE
can be determined. Raminafshar et al. [28] also performed EIS analysis at different biasing (at 0 V,
as well as close to open-circuit voltage) in dark and illumination to compare carbon-based monolithic
HTM-free PSCs with the effect of HTM on PSCs. Their EIS analysis has shown that the absence of an
HTM layer causes a higher electrons holes recombination (see Figure 7b) due to the lack of an electron
blocking effect at the perovskite/counter electrode interface. Moreover, the FF also decreases due to the
higher Rs value in the absence of HTM. Similarly, Khan et al. [68] also performed a study on the impact
of HTM layer in PSCs by EIS technique which also showed a lower recombination resistance in the
case of HTM-free PSC devices.
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Figure 7. Nyquist plot with HTM and HTM-free carbon counter electrode-based PSCs: (a) obtained at a
DC bias of 0.1 V under 1 sun illumination (Reproduced with permission from [25]. American Chemical
Society, 2014.); and (b) obtained at DC bias of 0 V in the dark [28].

5.2. Use of EIS to Identify the Impact of ETL and Mesoporous Scaffold

The properties of ETL and mesoporous oxide layers have a significant impact on charge transfer
and recombination processes. The better is the energy alignment of ETL with perovskite, the lower is
the recombination rate. The spacer layers, ZrO2 or Al2O3, play a crucial role in separating the front and
back electrodes to prevent ohmic shunts [69]. The pore size determines the infiltration of perovskite
and its contact with the anode. Therefore, the spacer layer thickness needs to be optimized to deliver
high performance. Researchers have extensively utilized EIS tool to analyze the interfacial properties
of HTM-free PSCs, by exploring different ETLs and spacer layers, and varying the mesoporous scaffold
thickness, to achieve high-performance HTM-free PSCs, suitable for commercialization.

Hang’s group fabricated an HTM-free mesoscopic PSC and demonstrated a PCE of 10.64% [40].
TiO2 nanosheets (NSs) as an electron transport layer (ETL) was compared with TiO2 nanoparticles
(NPs), and the EIS data showed better interfacial properties of the device with NSs. The Nyquist plot
showed two well-defined arcs and the device with NSs provided a smaller arc in the HF region and a
bigger arc in the low frequency (LF) region, indicating a smaller Rct at the counter electrode/perovskite
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interface and a higher Rrec at the perovskite/ETL interface, compared to NPs and hence improving the
performance (Figure 8a). The explanation provided was that the attachment between the perovskite
and TiO2 nanosheets is stronger, and the high ionic charge of the facets in TiO2 nanosheets screens
electrons, which results in lower recombination of electrons and holes. The EIS tool was also used
to study the effect of different sized mesoporous TiO2 nanoparticles by analyzing charge transfer
kinetics at the TiO2/perovskite interface [42]. It was observed that different sizes did not have an
evident effect on the charge transfer at the selective contact represented by the HF arc, as illustrated in
Figure 8b; however, the series resistance value was observed to be decreasing with an increase in the
size of TiO2 nanoparticles. The low-frequency arc was assigned to interfacial or bulk recombination.
The recombination resistance was observed to be decreasing with the increase in the size of TiO2

nanoparticles. This EIS analysis helped identify the optimum size of TiO2 nanoparticles; 25 nm,
which exhibited the best performance with a PCE of 13.41%. Recently, Han’s group performed another
EIS study under weak illumination (0.1 sun) on HTM-free mesoscopic PSC with a TiO2/spacer/carbon
architecture and analyzed the spacer layer thickness to optimize the performance of the device [70].
The Nyquist plot obtained is illustrated in Figure 8c: it was different from the previous works, and an
additional feature was observed; two RC elements were merging in the HF region, and one RC
element was observed in the LF region. It was described that the additional RC element was due
to charge transport of the perovskite in the spacer layer. To summarize, in the HF to intermediate
frequency (IF) region, charge transport process was related to carbon/perovskite interface, together with
perovskite/spacer layer, and the LF region was related to TiO2/perovskite interface. To confirm the
reported correlations of each semicircle with the physical processes at the interfaces, the EIS study was
also performed with and without the mesoporous TiO2 layer.
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Figure 8. Nyquist plots of carbon-based monolithic HTM-free PSCs: (a) with TiO2 nanosheets and
TiO2 nanoparticles, measured at 0.6 V in the dark (Reproduced with permission from [40], American
Chemical Society, 2014.); (b) with a different thickness of TiO2 mesoporous layers, measured at 0.7 V
in the dark (Reproduced with permission from [42]. Royal Society of Chemistry, 2015.); and (c) with
different spacer layer thickness (0 µm (black), 0.08 µm (red), 0.11 µm (green), 0.66 µm (purple),
2.64 µm (light blue), 3.31 µm (dark blue), 4.84 µm (yellow), and 5.96 µm (black with yellow shade),
measured at 0.3 V under 0.1 sun illumination (Reproduced with permission from [70]. Royal Society of
Chemistry, 2014).
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Cao et al. [31] performed the EIS analysis of an efficient (with 15% efficiency) HTM-free PSC, with a
quadruple mesoscopic layer, to determine its charge transfer processes in the range of 0.02 Hz to 2 MHz
under illumination as well. It was observed that the Nyquist plot arcs shifted to high-frequency regions
under illumination, giving crucial information on the carrier lifetime and changes in electron–hole
density due to photoexcitation and, hence, providing a more realistic analysis under practical operating
conditions (see Figure 6c). Liu et al. [71] investigated the effectiveness of compact TiO2 blocking layer
in HTM-free PSCs, by optimizing the amount of DEA (diethanolamine) in the precursor solution,
through EIS analysis. It was stated the conventional fabrication procedure of TiO2 is prone to cracking,
which can create trapping sites for electrons and holes recombination. Consequently, the incorporation
of DEA in the precursor solution revamps the cracks resulting in a higher performance of the PSCs
by increasing the contact area. The EIS analysis confirmed the optimum DEA molar ratio (x) of 0.75.
The Nyquist plot, as illustrated in Figure 9a, showed that the Rct kept decreasing by increasing the
amount of DEA until x = 0.75, where Rct value was at its minimum. Any further increase in the DEA
amount leads to an increase in Rct value. Consequently, the Rrec increased to a maximum at x = 0.75
followed by a decrease in further increasing the value of x (Figure 9a). Later on, Zhao et al. [66]
studied a bilayer zinc tin oxide (ZTO) film as an ETL instead of the commonly employed TiO2 or
SnO2. Its EIS analysis shows that the ZTO performed better in terms of suppressing the recombination
process of electrons and holes due to better-matched energy alignment of ZTO with the perovskite
film, which enhances the Voc. This was proved by EIS. Moreover, the Rs and Rct of ZTO-based PSC
devices were reduced due to the higher charge mobility and conductivity, as shown in Figure 9b.
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Figure 9. (a) Nyquist plots with different DEA molar ratios (x), measured at a bias of 0.8 V in the
dark. Reproduced with permission from [71]. Elsevier, 2018. (b) Nyquist plots of HTM-free monolithic
PSC with SnO2 as ETL (Control device) and bi-layered ZTO as ETL (Target device). Reproduced with
permission from [66]. American Chemical Society, 2019.

5.3. Use of EIS to Investigate the Hole Collecting (Counter) Electrodes

Hole collecting layers or counter electrodes (CEs) play a crucial role in determining the performance
of PSCs. In HTM-free PSCs, it is required for the CE to play the role of HTM as well [72], which in
turn affects the series resistance and Voc of the device [35]. Carbon is most commonly employed
as the CE in HTM-free PSCs, and an optimized thickness of mesoporous carbon CE is essential for
high-performance devices (specifically, in the case of monolithic PSCs) [73]. Batmunkh et al. [74]
suggested that carbon nanomaterials and graphene should be especially considered for CEs, as they
play an essential role in significantly enhancing the stability of PSCs. Meng et al. [75] reviewed the
interfacial engineering techniques of carbon-based PSCs and some of the modifications suggested in
carbon paste as the CE, essential for enhancing the stability of PSCs, optimizing the thickness of the
CE layer, hot-pressing, and increasing the contact sites. The EIS tool has been consistently utilized
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in analyzing the performance of CEs in HTM-free PSCs for determining their optimized thickness
and compositions.

Han’s group utilized the EIS tool to analyze the effect of the counter electrode (CE) on the
photovoltaic performance of the fabricated HTM-free mesoscopic PSC device [43]. Graphite/carbon
was used as the back-counter electrode, and the EIS technique analyzed the effect of the thickness of
graphite in carbon counter electrodes in HTM-free PSCs at 0.2, 0.4, and 0.6 V DC biasing (see Figure 10a).
It was observed that the graphite-based carbon electrode decreased the Rs and Rct of the device
and hence had a significant impact on increasing the PCE (up to 11%) of HTM-free cells. Next,
they employed an ultrathin graphite-based carbon counter electrode for HTM-free mesoscopic fully
printable PSC, analyzed its interfacial properties with the EIS tool, and compared it with bulk graphite
counter electrode-based device, as shown in Figure 10b [33]. The analysis confirmed that the ultrathin
graphite-based device exhibited better interfacial properties, higher charge transfer rate, and lower
recombination rate due to its larger specific surface area and hence more contact surface with the
perovskite increasing the hole transporting efficiency. Later on, they manipulated the counter electrode
again, by boron doping of the graphite, and performed EIS analysis on it (see Figure 10c) [34],
which showed that the charge transfer rate at the carbon/perovskite interface increased, and the charge
recombination lifetime also extended. In another research, they analyzed the effect of the work function
of the carbon counter electrode on the performance of mesoscopic HTM-free PSC [35]. They used the
EIS tool to investigate the impact of incorporating NiO in the mesoporous carbon layer as the counter
electrode and analyzed the charge transfer rate at the carbon/perovskite interface and recombination
resistance at TiO2/perovskite interface as shown in Figure 10d.
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conduction properties of the metal electrode, decreased in CuS-C-based PSC. Moreover, the Rrec, 

Figure 10. Nyquist plots of carbon counter electrode-based HTM-free PSCs: (a) graphite-based CE
under different applied potentials (Reproduced with permission from [43]. Royal Society of Chemistry,
2013.); (b) with bulk graphite and ultrathin graphite CE, measured at 0.8 V in the dark (Reproduced
with permission from [33]. Elsevier, 2017.); (c) with boron-free graphite and boron-doped graphite CE,
measured at 0.6 V in the dark (Reproduced with permission from [34]. American Chemical Society,
2014.); and (d) with different amounts of NiO incorporated CE, measured at 0.5 V under illumination.
Reproduced with permission from [35]. American Chemical Society, 2018.
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Hu et al. [76] studied the effect of incorporating CuS in the carbon CE layer using EIS tool
(see Figure 11a), and it was observed that the Rs value, which was claimed to be directly linked to
the conduction properties of the metal electrode, decreased in CuS-C-based PSC. Moreover, the Rrec,
which was related to the recombination processes of the overall PCS, was reduced in CuS-C-based
PSC, indicating better hole collection property of CuS-based carbon CE, as well as the better property
of suppressing electrons and holes recombination, leading to an enhanced FF and Jsc. Zhou et al. [44]
manipulated the carbon layer by embedding WO3 nanoparticles in it to function as the HTM. A PCE
of 10.77% was achieved under ambient conditions. To analyze this HTM-free PSC, EIS analysis was
performed in the range of 1 Hz to 1 MHz at −0.2 V DC biasing in the dark. As can be observed
in Figure 11b, the HTM-free PSC with WO3 nanoparticles showed a lower Rs value compared to
PSC without WO3, indicating higher hole extraction efficiency. Moreover, the Rrec was higher with
WO3 embedded PSC, which means that the WO3 was acting as a passivating layer at the carbon and
perovskite interface, inhibiting the recombination of charges. Later on, Bhandari et al. [29] also studied
the effect of WO3 embedded carbon in HTM-free PSC with the EIS technique. This time, the EIS tool
was used to optimize the amount of WO3 and EIS results of the best performing device; 7.5% WO3

showed a lower Rs value, which is directly correlated to the PCE and a higher Rrec at TiO2/perovskite
interface (Figure 11c).
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5.4. Use of the EIS to Investigate the Effect of Perovskite Composition

HTM-free PSCs are commonly composed of Lead halide-based perovskites [20,37] composition
of the perovskite layer is crucial in determining the performance of HTM-free PSCs. The perovskite
should deliver uniform pore filling to enhance the FF of the device. Moreover, it should also provide
low defect concentration and high contact with the mesoporous scaffold in mesoporous HTM-free
architectures. Additionally, an improved connection of perovskite with the CE is also required to
suppress the recombination of electrons and holes and hence enhance the Voc. Researchers have
extensively worked on optimizing the perovskite compositions in HTM-free PSCs and analyzed the
photovoltaic performance using the EIS tool.

Han’s group fabricated HTM-free fully printable mesoscopic PSC with a mixed anion perovskite
(CH3NH3PbI(3−x)(BF4)x) and used EIS tool to compare it with the single anion perovskite-based
HTM-free PSC device [32]. The EIS results show that the transport and exchange resistance at
the carbon/perovskite interface, represented by the HF arc, was smaller for the case of mixed
anion perovskite-based device, resulting in an increased fill factor (FF) of the device. In addition,
the recombination rate in the case of mixed anion perovskite-based device was much lower, as indicated
by the larger arc in the LF region, resulting in an enhanced Voc of the device, as illustrated in Figure 12a.
They then manipulated the composition of perovskite again by incorporating 30% LiCl with it and
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achieved a PCE of 14.5% [41]. The EIS tool was used to analyze the interfacial properties, and it was
observed that charge transfer resistance and recombination rate reduced dramatically (Figure 12b),
resulting in an enhanced FF and Voc.Nanomaterials 2020, 10, x FOR PEER REVIEW 18 of 23 
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30% LiCl and without it, measured in the dark at a bias of 0.6 V (Reproduced with permission from [41].
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Later on, Cao et al. [30] also modified the perovskite precursor and analyzed the performance by
EIS technique (see Figure 6b). MAPbI3-Brx mixed perovskite precursor was fabricated, and a higher
PCE than for other MAPbI3-based devices was obtained. The J–V curves showed reduced hysteresis,
which was attributed to slow kinetics observed from impedance measurements. The hysteric effect
was linked to low-frequency arcs in the Nyquist spectra, and hence it was concluded that the higher
the low-frequency capacitance is, the higher the I–V hysteresis will be.

6. Summary and Future Perspectives

A wide variety of perspectives has been adopted by researchers to enhance the performance of
the HTM-free PSCs; however, the primary focus was to explore the different counter electrode (CE)
materials. Although the carbon-based HTM-free PSCs can simply be prepared using printing methods,
the low power conversion efficiency (PCE) of ~15% is leftover as an essential research question. Besides,
the challenge is still under debate to achieve consistent and high integrity on the consecutive layer and
perovskite layer deposition for the massive scale production. The PCE can be observed to be decreasing
with an increase in the area. More research work is required to further enhance its performance by
exploring more optimization strategies. In addition, the widespread production of the HTM-free PSCs
requires improving the device stability, deep understanding of the interfaces between the different
printed layers, and charge collection at the respective electrodes.

In this respect, electrochemical impedance spectroscopy (EIS) has emerged as a leading-edge
tool for a systematic illustration of the charge accumulation, charge transfer, interfaces analysis,
and degradation of the different layers in the PSCs research. It is widely utilized by researchers to
study the behavior of HTM-free PSCs under various operating conditions. Even though EIS has
proven to be an advanced tool, with the help of which the interfacial and bulk properties of PSCs can
be comprehensively analyzed, many aspects of this tool are yet to be fully understood, for example,
identifying the correlation of each interface of the multilayered HTM-free PSC with the different
features in each frequency range of the Nyquist plot. Many researchers still do not consider the
charge transport processes at the spacer layers (nine in the case of monolithic design), ZrO2 or Al2O3,
which are responsible for the additional features in the Nyquist plot. The charge transport processes
from the perovskite confined in these spacer layers produce an additional feature in the Nyquist plot,
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which is commonly merged with the high-frequency arc and, therefore, is challenging to identify.
In this respect, a well-supported electrical equivalent circuit (EEC) model can be developed to improve
the accuracy of the analysis and hence can provide valid, relevant physical parameters. It is essential
to acquire an in-depth understanding of EEC modeling of the impedance spectra since the underlying
assumptions and applicability of this approach remains unclear in the literature.

It has been realized by EIS analysis that the key to optimizing the performance of HTM-free PSCs
is by choosing an ETL with the following properties: provides high contact area to minimize trapping
sites for recombination and well-matched energy alignment with perovskite. The combination of these
properties results in reduced Rct and Rs, as realized by EIS analysis. The recombination process is also
significantly suppressed. Besides, it has been found that the charge transfer resistance in the HF region
increases with the spacer layer thickness. Therefore, it is crucial to optimize the spacer layer to obtain
the high efficiency of HTM-free PSCs. In addition, it has been recognized (by EIS analysis) that mixed
anion perovskites such as MAPbI(3−x)Brx provide better performance by suppressing recombination
rate and hence enhancing the Voc of the device. This is attributed to their wider bandgap, which makes
them capable of acting as electron blocking materials at the perovskite/counter electrode interface, and
hence this avoids the requirement of an HTM layer.

The EIS study of the HTM-free PSCs has also proven that the hole collecting layer (counter
electrode) indeed has a significant effect on HTM-free PSCs performance. The hole collecting layer
is highly responsible for the HF region of the Nyquist plot. Moreover, it also affects the LF region
of EIS spectra (in the case of monolithic architecture) because it provides a pathway to perovskite
infiltration. Therefore, the better the porous morphology (absorbency) of CE is, the more uniform
the perovskite infiltration will be in the monolithic design. Moreover, EIS analysis has also shown
that manipulating the work function of the counter electrode to improve the energy alignment and
enhance the conduction properties by doping is an effective technique in obtaining high-performance
HTM-free PSCs.

We believe that the use of the EIS tool in the field of PSCs is essential, and utilizing this tool to its
maximum potential will pave the way for substantial improvements in our understanding. EIS tool
has been used consistently in previous works for the analysis of HTM-free PSCs, yet the scope for
further studies is significant. The studies that are highlighted in this review can help researchers gain
an intimate understanding of the interpretation of EIS data, and the different ways in which the EIS
tool can be utilized to analyze HTM-free PSCs.
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