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A B S T R A C T

Calmodulin (CaM) modulates the activity o several proteins that play a key role in excitation-contraction
coupling (ECC). In cardiac muscle, the major binding partner o CaM is the type-2 ryanodine receptor (RyR2)
and altered CaM binding contributes to deects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many
genetic studies have reported a series o CaM missense mutations in patients with a history o severe arrhyth-
mogenic cardiac disorders. In the present study, we generated our missense CaM mutants (CaMN98I, CaMD132E,
CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay
to directly compare the relative RyR2-binding o wild type and mutant CaM proteins and to investigate the
unctional eects o these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC)
experiments were perormed to investigate and compare the interactions o the wild-type and mutant CaM
proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-
3602aa), as well as another CaM-binding region (4255-4271aa) o human RyR2. Our data revealed that all our
CaM mutants displayed dramatically reduced RyR2 interaction and deective modulation o [3H]ryanodine
binding to RyR2, regardless o LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC
data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with signicant anity with wild-type
CaM, in the presence and absence o Ca2+, two regions that might contribute to a putative intra-subunit CaM-
binding pocket. In contrast, screening the interaction o the our arrhythmogenic CaM mutants with two syn-
thetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signiying
dierential mechanisms that contribute to reduced RyR2 association.

1. Introduction

Calmodulin (CaM) is an essential, intracellular calcium (Ca2+)-
binding protein that controls and regulates many vital cellular processes.
CaM unctions as a Ca2+ sensor or decoding Ca2+ signals into down-
stream responses by undergoing conormational changes that promote

binding to target proteins [1,2]. CaM is comprised o our Ca2+-binding
EF-hand motis located in two globular N- and C-terminal domains
connected by a fexible linker [3]. In cardiac muscle, CaM modulates
directly or indirectly the activity o several proteins that play a key role
in excitation-contraction coupling (ECC), including the cardiac ryano-
dine receptor type 2 (RyR2), a large homotetrameric cation channel that
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Ń-tetraacetic acid.
* Corresponding author at: College o Medicine, QU Health, Qatar University, Doha 2713, Qatar.
E-mail address: mnomikos@qu.edu.qa (M. Nomikos).

Contents lists available at ScienceDirect

BBA - General Subjects
journal homepage: www.elsevier.com/locate/bbagen 

https://doi.org/10.1016/j.bbagen.2023.130313
Received 2 September 2022; Received in revised orm 17 January 2023; Accepted 18 January 2023



BBA - General Subjects 1867 (2023) 130313

2

mediates Ca2+ release rom the sarcoplasmic reticulum [4,5]. In
humans, there are three CaM genes (CALM1, CALM2 and CALM3) that
are all expressed in cardiac tissue and which encode an identical protein
[6]. In recent years, there have been an increasing number o genetic
and clinical reports that identied a variety o CaM missense mutations
in all three CaM genes, in individuals with a amily history o severe
cardiac disorders and early onset sudden cardiac death [7–12]. In the
majority o cases, the arrhythmogenic phenotype that is driven by the
missense mutations in the CaM genes is attributed either to prolonged
repolarization [long QT syndrome (LQTS) phenotype] or to dysregula-
tion o the intracellular calcium concentration in cardiomyocytes
[catecholaminergic polymorphic ventricular tachycardia (CPVT)
phenotype]. Interestingly, a genetic study reported ve novel de novo
missense mutations in CALM2 gene, identied in three subjects pre-
senting with LQTS (p.N98S, p.N98I, p.D134H) and 2 subjects with
clinical eatures o both LQTS and CPVT (p.D132E and p.Q136P) [10].
While the our individuals responded to β-blocker therapy, the patient
with p.Q136P mutation died suddenly during exertion despite the
treatment [10]. The authors suggested that all these mutations alter
conserved residues that are directly involved in the Ca2+ binding,
causing signicant reductions in Ca2+ binding anity o CaM [10].
Another potential pathophysiological mechanism or these CaM muta-
tions might involve altered CaM/RyR2 binding and thus deective
regulation, as the major binding partner o CaM at the Z-line in car-
diomyocytes is the RyR2, and reduction o CaM/RyR2 binding has been
shown to result in severe cardiovascular abnormalities [13–15]. More-
over, we have previously proposed that the clinical presentation o CPVT
or LQTS associated with CaM mutations may involve both altered
intrinsic Ca2+-binding, as well as dysregulation o RyR2-mediated Ca2+
release, via deective interaction o CaM with distinct region(s) o RyR2
[16–18].

In the present study, we introduced our o the aorementioned
missense CaM mutations (N98I, D132E, D134H and Q136P) into human
CaM sequence (Fig. 1) and we used a bacterial system to express and
puriy these CaM mutants as recombinant proteins. We then employed a
CaM-RyR2 co-immunoprecipitation assay to directly compare the rela-
tive RyR2-binding o wild-type and mutant CaM proteins, and a [3H]
ryanodine binding assay to investigate the unctional eects o these
CaM mutations on RyR2 activity. Finally, isothermal titration calorim-
etry (ITC) experiments were perormed to investigate and compare the
interactions o the wild-type and mutant CaM proteins with various
synthetic peptides located in the well-established RyR2 CaM-binding
region (3581-3607aa), as well as in another putative CaM-binding

region (4240-4277aa) o human RyR2.

2. Materials and methods

2.1. Plasmid construction

Human CaM clone (GenBank® accesion number AAD45181.1) in
pHSIE plasmid [16,17] was subjected to site-directed mutagenesis
(QuikChange II; Stratagene) to generate CaMN98I, CaMD132E, CaMD134H

and CaMQ136P mutant constructs. Successul mutagenesis or all the
aorementioned CaM constructs was conrmed by dideoxynucleotide
sequencing (Applied Biosystems Big-Dye Version 3.1 chemistry and
model 3730 automated capillary DNA sequencer by DNA Sequencing &
Services™).

2.2. Protein expression and purifcation

CaMWT and its corresponding mutants in pHSIE plasmid were
expressed in E. coli (BL21-CodonPlus(DE3)-RILP; Stratagene) as previ-
ously described [17,18]. Briefy, ater transormation, the bacterial cells
were cultured at 37 ◦C until the A600 reached 0.6, and the protein
expression was induced or 18 h at 16 ◦C with 0.1 mM isopropyl β-D-
thiogalactopyranoside (IPTG; ForMedium). The induced cells were then
harvested by centriugation at 6000g or 10 min at 4 ◦C and recombinant
CaM proteins were puried by one-step anity chromatography puri-
cation [17,18]. The eluted recombinant CaM proteins ollowing dial-
ysis and concentration using centriugal concentrators (Sartorius; 3000
molecular weight cut-o), were analyzed by SDS-PAGE and immunoblot
analysis, which was perormed as previously described [16–18]. For the
immunoblot analysis, the CaM recombinant proteins were probed with
an anti-CaM rabbit monoclonal antibody (1:10,000 dilution; Source
Bioscience).

2.3. Preparation o cardiac heavy SR vesicles and co-
immunoprecipitation assays

Heavy SR vesicles were isolated rom pig cardiac muscle as previ-
ously described [17]. Pellets were resuspended to 25 mg protein/ml in
homogenization buer (10 mM Na2PIPES pH 7.4, 0.3 mM sucrose, 0.5
mM EDTA, 0.2 mM AEBSF, 2 mM DTT and protease inhibitors) and
stored at 80 ◦C in small aliquots. Co-immunoprecipitation assays were
perormed as we have previously described [16–18]. Cardiac SR mi-
crosomes (300 μg) were solubilised in 200 μL o IP buer (20 mM Tris-

Fig. 1. Schematic representation o EF hand III and IV domains located in the C-terminal domain o CaM. Red arrows point to the amino acid substitutions
responsible or the arrhythmogenic CaM mutations (N98I, D132E, D134H and Q136P) that are subject o this study. (For interpretation o the reerences to colour in
this gure legend, the reader is reerred to the web version o this article.)
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HCl pH 7.4, 150 mM NaCl, 0.4% CHAPS and protease inhibitors) con-
taining the appropriate ree [Ca2+] (achieved by mixing dierent pro-
portions o 1 mM EGTA and 1 mM Ca2+ together, according to the Max
Chelator sotware [http://maxchelator.stanord.edu/]) by overnight
incubation at 4 ◦C with continuous mixing. The insoluble material was
then pelleted at 20,000 g or 10 min at 4 ◦C, and the supernatant was
removed. Concurrently, the RyR2-specic antibody, Ab1093 (4 μL) was
captured on 20 μL nProtein-A–Sepharose beads (GE Healthcare) in 200
μL o PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, pH 7.4) overnight at 4 ◦C. Beads were recovered at 1500 g or 2
min at 4 ◦C and washed twice with the appropriate IP buer. The
solubilised SR proteins and 1 μM o CaMWT or its corresponding CaM
mutants were transerred into tubes with RyR2 antibody Ab1093-protein-
A beads, and incubated or 6 h at 4 ◦C with mixing. Beads were recov-
ered at 1500 g or 2 min at 4 ◦C and washed twice with the appropriate
IP buer or 5 min. Immunoprecipitated proteins were then eluted with
SDS-PAGE loading buer, heated at 80 ◦C or 5 min, and analyzed by
SDS-PAGE and western blotting using the aorementioned anti-CaM
rabbit monoclonal antibody (1:5000 dilution; Source Bioscience).

2.4. [3H]Ryanodine binding assays

Ryanodine binding was determined using 200 μg o cardiac SR mi-
crosomes per assay (volume 300 μL) incubated with 10 nM ryanodine
containing [3H]ryanodine (100 Ci/mmol, Amersham) or 90 min at
37 ◦C, as previously described [17,18]. The basic buer contained 25
mM PIPES, 150 mM KCl, pH 7.1 with either 1 mM EGTA (<0.01 μM
Ca2+) or a series o ree Ca2+ concentrations (values expressed as pCa
8–pCa 4 where pCaX = log10[Ca]X) achieved by mixing dierent
proportions o 1 mM EGTA and 1 mM Ca2+ as calculated using Max
Chelator. CaMWT or CaM mutants were added to a nal concentration o
1 μM.

2.5. Peptide synthesis and purifcation

All the peptides were synthesized manually on a Rink-amide resin
(loading capacity: 0.6 mmol/g) with the Fmoc strategy, ollowing a
previously described protocol [19] with slight modications. Briefy, an
excess (4 eq) o Fmoc-protected amino acids and ethyl (hydroxyimino)
cyanoacetate (Oxyma) were dissolved in N,Ń-dimethylormamide
(DMF). The solution was let on ice or 10 min and then an excess (4 eq)
o N,Ń-diisopropylcarbodiimide (DIC) was added and the reaction
mixture was let or another 10 min on ice and nally added to the resin
or the coupling reaction (2 h). Coupling eciency was monitored by
the Kaiser ninhydrin test. Ater each coupling, the Fmoc group was
removed rom the N-terminal amino group o the resin-bound peptide
with 20% piperidine in DMF. The nal product was cleaved rom the
resin using a cocktail o trifuoroacetic acid (TFA) 93%, 1,2-ethanedi-
thiol 2.5%, H2O 2.5% and triisopropylsilane 2% or peptide B, while
the peptides F and F scrambled, were cleaved rom the resin by using the
reagent R (TFA 90%, thioanisole 5%, anisole 2%, 1,2-ethanedithiol 3%)
and adding an excess o Bu4NBr (30 eq) just 5 min beore the end o the
cleavage treatment, in order to reduce any oxidized methionine. The
crude product, obtained by precipitation with cold diethylether, was
puried by semi-preparative Reverse Phase High Perormance Liquid
Chromatography (RP-HPLC) on a Waters system (pump 600E, detector
UV-484) equipped with a 10 Nucleosil 7 C18 (250 mm × 12.7 mm, in-
ternal diameter; Macherey-Nagel) column. Elution was perormed with
a solvent system consisting o 0.05% TFA in water (solvent A) and 60%
CH3CN in solvent A (solvent B), by applying dierent gradients
depending on the peptide sequence. The fow rate was 3 mL/min and the
peptide peaks were detected with a UV detector at 220 nm. Analytical
RP-HPLC was perormed on a Waters system (pump 616E, detector 996
PDA) equipped with a LiChrospher (250 nm × 4.6 nm, internal diam-
eter; 5 μm particle size, Merck) column, with a solvent system consisting
o 0.05% TFA in water (solvent A) and 90% CH3CN in solvent A (solvent

B), by applying a linear gradient rom 100% to 40% A in 23 min. The
fow rate was 1 mL/min and the peptide peaks were detected with a UV
detector at 220 nm. The peptides were urther characterized by ESI-MS.

2.6. ESI-MS analysis

For the peptide characterization a triple quadrupole tandem mass
spectrometer 310-MS TQ rom Varian (Agilent Technologies; Foster
City, CA, USA) was used. A sample containing approximately 0.1 mg/mL
o each synthetic peptide in CH3CN:H2O 1:1 was directly inused to the
MS/MS using a syringe pump rom Harvard Apparatus (Holliston, MA)
at a fow rate o 0.2 mL/min and the detection parameters were deter-
mined by operating the instrument in electrospray ionization (ESI)
positive mode. (Detection parameters: detector, 1300 V; needle voltage
positive, 3500 V; spray shield voltage positive, 600 V; spray chamber
temperature, 55 ◦C; drying gas temperature 325 ◦C; nebulizing gas
pressure 18.0 psi; drying gas pressure 19.0 psi). Instrument control, data
acquisition and qualitative data analysis were perormed using the MS
Workstation version 6.9.3 sotware (Varian).

2.7. Isothermal titration calorimetry

An ITC200 (GE Healthcare) microcalorimetry system was used to
study the interactions o wild type and mutant CaM proteins with the
human RyR2 peptides under both Ca2+-saturated and Ca2+-ree condi-
tions (holo-CaM and apo-CaM, respectively). Identical puried CaM
samples were dialyzed against 100 mM KCl, 10 mM HEPES (pH 7.4), 10
mM CaCl2 (holo-buer) and 100 mM KCl, 10 mM HEPES (pH 7.4), 10
mM EDTA (apo-buer) at 4 ◦C. Peptides corresponding to human RyR2
CaM-recognition sites were synthesized and puried as lyophilized
powder. Peptide samples or ITC experiments were dissolved directly in
the appropriate dialysis buer, to avoid buer mismatch dilution heats.
All sample solutions were thoroughly degassed beore use to avoid
bubble ormation. In all cases, the calorimetric cell was lled with a 40
μM protein sample and the syringe was loaded with a 450 μM peptide
solution. All titrations consisted o an initial 1 μL injection, ollowed by
14 identical 2.5 μL injections at 300 s intervals. Experiments were per-
ormed at 25 ◦C and a stirring speed o 1000 rpm was used to ensure a
rapid equilibration o the mixture. Heat contributions rom peptide
dilution were accounted or in separate experiments by injecting the
samples in buer solution ollowing identical titration protocols. These
blank data are subsequently subtracted rom the titration data to obtain
the net binding isotherm as a unction o the overall peptide concen-
tration in the cell. All ITC data were processed using Microcal Origin
sotware (OriginLab, Northampton, MA) equipped with calorimetric
routines.

Complex ormation is an equilibrium interaction that can be
described by a chemical equation o the orm:

[CaM] + [Peptide] ⇔ Kb [Complex]

where: [CaM] and [Peptide] are the concentrations o the non-
complexed CaM and peptide respectively, [Complex] represents the
concentration o the protein-peptide complex, while Kb = 1/ Kd is the
binding constant o the interaction.

The stoichiometry (moles o peptide bound per mol o protein) [N],
the binding constant [Kb] and the binding enthalpy [ΔrH] o the reaction
are obtained, along with their corresponding uncertainties, directly rom
tting the ITC experimental data to a one set-o-sites thermodynamic
model. The Gibbs ree energy change binding ΔrG and the entropy
change ΔrS accompanying the complexation are calculated rom the
equalities:
ΔrG = RT ln Kb = ΔrH–T ΔrS  

where R is the gas constant, and T is absolute temperature. The un-
certainties o these parameters are estimated using error propagation
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calculations.

3. Results and discussion

To investigate the impact o N98I, D132E, D134H and Q136P mu-
tations on CaM/RyR2 binding and regulation, we initially generated the
mutant CaM constructs in pHSIE plasmid vector and we used a bacterial
system to express and then puriy wild type and mutant CaMs as re-
combinant proteins, using the one-step purication protocol that we
have previously successully used and described [16–18]. Signicant
expression o soluble wild-type and all our mutant CaM proteins was
observed. Fig. 2 shows the anity-puried untagged recombinant CaM
proteins ater SDS-PAGE (let panel) and immunoblot analysis (right
panel). The protein band with mobility corresponding to the predicted
molecular weight (~17.4 kDa) was present or all the samples and the
immunoblot analysis using an anti-CaM antibody conrmed the identity
o all CaM proteins (Fig. 2).

To assess and directly compare the relative RyR2-binding anities o
CaMWT and CaM mutants, we employed a co-immunoprecipitation
assay, as we have previously described [16–18]. Native RyR2 rom pig
cardiac SR was immunoprecipitated with a puried RyR2-isoorm-
specic antibody in the presence o each recombinant CaM protein at
two dierent ree Ca2+ concentrations (0 and 100 μM) and the relative
binding o CaM wild-type and mutant proteins with RyR2 was analyzed
by SDS-PAGE electrophoresis and immunoblot analysis using the anti-
CaM monoclonal antibody. As previously shown, endogenous CaM is
not detectable on immunoblot analysis using the anti-CaM antibody,
while the levels o co-immunoprecipitated RyR2 remained constant as
per same porcine SR preparation analysis [16–18]. Densitometric
analysis perormed in the absence o saturation or CaM mutants as
compared to CaMWT and revealed that RyR2 binding to all CaM mutant
proteins (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) was signi-
cantly decreased compared to CaMWT in the presence o Ca2+. In
contrast, in the absence o Ca2+, statistically signicant reduction on
CaM-RyR2 binding was only observed or the CaMD134H mutant (Fig. 3).
Our co-IP data suggest that while the eect o D134H mutation on RyR/
CaM association appears to be Ca2+-independent, the N98I, D132E and
Q136P mutations alter the interaction o CaM with RyR2 in a Ca2+-
dependent manner (Fig. 3).

To urther investigate the potential eects o these cardiac disease-
associated CaM mutations on RyR2 unction and regulation, we per-
ormed a series o [3H]ryanodine binding assays, as we have previously
described [16–18]. The binding o [3H]ryanodine to RyR is dependent
upon the unctional state o the channel and CaM has been shown to
reduce the [3H]ryanodine binding to RyR. The eect o CaMWT and its
corresponding mutants on [3H]ryanodine binding to RyR2 was exam-
ined in a range o dierent Ca2+ concentrations varying rom 10 nM to

100 μM. As shown in Fig. 4 and as anticipated, the CaMWT signicantly
reduced the [3H]ryanodine binding compared to the control (no addi-
tion o CaM protein). In contrast, none o the our CaM mutants was
capable o inhibiting the [3H]ryanodine binding to RyR2 at all high Ca2+
concentrations, as the level o [3H]ryanodine binding was indistin-
guishable rom that o the control, suggesting an impaired or no asso-
ciation o RyR2 with these CaM mutants.

Interestingly, in a previous study, where we characterized another
CaM missense mutation at position 98, where asparagine (N) was
replaced by a serine (S) residue, the CaMN98S mutant displayed a similar
RyR2-binding anity to CaMWT, and also in our [3H]ryanodine binding
assays CaMN98S acted identically to CaMWT, inhibiting RyR2 to the same
extent [17]. In contrast, our current data reveals that the RyR2 binding
o CaMN98I was signicantly decreased vs. CaMWT at high Ca2+ con-
centrations, suggesting that the substitution o N by an S exerts a major
inhibitory eect on the binding and regulation o CaM to RyR2 at high
Ca2+ concentrations. This may be explained by the act that residue N98
is directly involved in Ca2+ sequestration within EF hand 3 [20], and its
replacement by an isoleucine (I) dramatically reduces the Ca2+-binding
anity o CaM. This is supported by two independent studies that used a
similar assay to measure the Ca2+-binding anities o N98S [7] and
N98I [10] and showed that the N98S mutation results in a ~ 2 old,
while N98I in an ~8 old decrease in the Ca2+-binding anities o
CaMWT. Moreover, crystallographic and NMR data or several arrhyth-
mogenic CaM mutants reported by Wang et al., suggested that the N98I
mutation causes a major distortion o CaMC-terminal lobe, resulting in a
pathological conormation that alters its interaction with the IQ domain
o the L-type voltage-gated Ca2+ channel (Cav1.2) [21]. In a similar
ashion and based on the crystal structure, Wang et al., reported that
when CaMQ136P mutant is not bound to Cav1.2 IQ domain, it adopts a
pathological conormation that can alter the interaction with other
molecular targets, such as RyR2 [22]. Moreover, the clinical phenotypes
o three patients bearing mutations at position N98 are very intriguing.
Two patients with N98S or N98I mutations in CALM2 gene presented
with LQTS phenotype [10], while one patient with N98S mutation in
CALM1 had CPVT [7]. As mentioned earlier, in humans there are three
CaM genes (CALM1, CALM2 and CALM3), which all encode an identical
protein. The main dierence is the relative expression o CaM in human
cardiac tissue by the three genes, which was experimentally assessed
and the ratio o CaM1:CaM2:CaM3 appeared to be approximately 1:2:5,
respectively [8]. The identication o mutations such as the D132E and
Q136P in patients with mixed LQTS and CPVT phenotypes [10] high-
lights the likelihood that specic clinical presentation(s) are triggered
by multiple actors. These include the position o the mutation, the
amino acid substitution, the ratio o mutant:WT protein, the total
mutant protein concentration, or alterations on CaM Ca2+-binding a-
nity, which in turn lead to deects in the vital interactions o CaM with

Fig. 2. Analysis o the puried recombinant CaM proteins. The anity-puried CaM proteins (1 μg) were analyzed by 15% SDS-PAGE, ollowed by either Coomassie
Brilliant Blue staining (let panel) or immunoblot analysis using an anti-CaM rabbit monoclonal antibody (1:10.000 dilution) (right panel). (For interpretation o the
reerences to colour in this gure legend, the reader is reerred to the web version o this article.)
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a plethora o ion channel complexes, including RyR2 [17].
Up to date, a number o linear ragments o RyR2 have been reported

as potential CaM-binding sequences (CaMBDs), based on biochemical
studies in which synthetic peptides or larger protein segments o RyR2
were used [4,23–25]. The sequence within the residues 3583-3603aa in
RyR2, as well as extended versions o this sequence, which are highly
conserved among mammalian RyR2 isoorms, have been identied as a
CaM-binding site in almost all relevant studies and thereore this region
is considered as a well-established CaMBD o RyR2 [14,23,25–28].
Deletion o the sequence 3583-3603aa in RyR2 resulted in disruption o
CaM binding to RyR2 and reduced ecacy o CaM inhibition on RyR2
activity in single channel measurements [23]. Besides the 3583-3603aa
region, other RyR2 regions have also been reported as potential CaM-
binding sequences; however their exact contribution to CaM-binding
remains to be ully elucidated [25,29]. Huang et al. [30], based on
previous binding studies with radio-labeled CaM where sequence
4303–4328 in RyR1 (4261–4286 in RyR2) was rst detected as a CaM-

binding sequence [4,31], investigated the 3581-3612aa and 4261-
4286aa regions o mouse RyR2 as putative CaMBDs by cryo-EM and
FRET experiments. The above two RyR2-regions were ound to be in
close proximity and adjacent to the CaM-binding location, which was
rst localized on RyR2 by cryo-EM [32]. More specically, these two
sequences rom the same subunit within the tetrameric RyR molecule
have been reported to interact with each other, undergoing conorma-
tional changes when RyR2 switches between the closed and open states,
orming an intra-subunit binding pocket or CaM [30]. These ndings
indicate the involvement o both the aorementioned RyR2-regions in
RyR2-CaM binding. Moreover, Lau et al., [24] investigated the binding
o CaM to three distinct regions omouse RyR2, i.e. 1941-1965aa, 3580-
3606aa and 4246-4276aa, by using ITC. The data obtained showed that
all three RyR2-regions studied were bound to Ca2+-CaM, while the C-
terminal 4246-4276aa region o RyR2 exhibited the highest anity
among all or apo-CaM. In contrast, the region 1941-1965aa was shown
to have signicantly lower anity compared to the other RyR2 CaM-

Fig. 3. Co-immunoprecipitation assays measuring the relative association o CaMWT and CaM mutants with cardiac RyR2. RyR2 was immunoprecipitated with the
anti-RyR2 Ab1093 rom CHAPS-solubilised cardiac SR in the presence o 1 μM o exogenous recombinant CaMWT or CaM mutant proteins, at two dierent Ca2+
concentrations (0 and 100 μM). The presence o RyR2-precipitated CaMWT and CaM mutants was analyzed by 18% SDS-PAGE ollowed by immunoblot analysis using
an anti-CaM rabbit monoclonal antibody (1:5000 dilution); (let panels). Following three independent experiments using three dierent porcine cardiac SR prep-
arations, densitometry analysis (Quantity One® 1-D analysis sotware, BioRad) was perormed or each occasion and the densities o the bands corresponding to CaM
mutant proteins were normalized to CaMWT (right panels). Dierences in mean relative density between CaMWT and CaM mutant proteins were compared using
unpaired Student’s t-test (GraphPad, Prism 5). Statistically signicant dierences are shown, * P < 0.05, ** P < 0.005 and ***P < 0.001 (All data are expressed as
means ± SEM o 3 independent experiments, using three dierent porcine cardiac SR preparations with one technical repeat per SR preparation).
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binding regions [24]. Furthermore, ollow up studies rom Brohus et al.,
[25] proposed a binding model where the C-domain o CaM is anchored
to the well-established CaMBD (3581-3607aa) region o human RyR2
and saturated with Ca2+ during Ca2+-oscillations, while the CaM N-
domain unctions as a dynamic Ca2+-sensor that can bridge noncontig-
uous regions o RyR2 [25]. Interestingly, another recent crystallo-
graphic study revealed that binding o CaM to CaMBD3 (4246-4275aa)
region and the binding o a th Ca2+ to CaM may contribute to the
physiological regulation o RyR2 channel. It was demonstrated that the
binding o the th Ca2+ to CaM results in a 2-old increase in the
binding anity o CaM-CaMBD3 complex, which might be critical or
the stabilization o the CaM-RyR2 complex under physiological condi-
tions [33].

To investigate the interaction o CaM with this CaM-binding RyR2
region, we used recombinant CaMWT protein and ITC experiments to
screen a number o RyR2 specic synthetic peptides corresponding to
the region 4240-4277aa o human RyR2. From all the synthetic peptides
screened, we ound one peptide, corresponding to region 4255-4271aa

o human RyR2 (peptide F) that interacts with signicant anity to
CaM in the presence and absence o Ca2+ (Kd values 0.60 and 16.58 μM,
respectively); (Tables 1 and 2). Our ndings regarding the binding o
CaM to this RyR2 region is in good agreement with the previous Huang
et al. study [30], suggesting that both 3584-3602aa and 4255-4271aa
are critical or the interaction o RyR2 with CaM and might contribute
to a mobile, intra-subunit CaM-binding domain. In order to examine
how the N98I, D132E, D134H and Q136P mutations may alter the
interaction o CaM with RyR2, we used ITC and we investigated the
interaction o CaMWT and its mutants with the two synthetic peptides,
corresponding to the well-established CaMBD region 3584-3602aa
(peptide B) and the region 4255-4271aa (peptide F). Fig. 5 shows
typical ITC proles at T= 298.15 K or the interactions between peptide
B and CaM samples in holo-buer. Negative power supply signals indi-
cate exothermic interactions, while positive power supply signals
correspond to endothermic events. Typically, large exothermic signals
signiy the ormation o a network o avourable bonds between receptor
and ligand, while endothermic events suggest that hydrophobic in-
teractions are the driving orce o the binding. All recombinant CaM
proteins show signicant anity or peptide B, each orming a 1:1
complex with Kd values below 1 μМ (Table 1). CaMD134H and CaMQ136P

mutants appear to have a small negative eect on peptide B binding; in
contrast to CaMN98I and CaMD132E that show higher anity than CaMWT

(it is noteworthy that or CaMD132E, the Kd is less than hal o the WT’s
Kd). Peptide B binding is a strongly exothermic enthalpy-driven process,
signiying an extensive network o interactions between the peptide and
the protein.

In Fig. 6, the typical ITC proles at T = 298.15 K or the interactions
between peptide B and the ve CaM proteins in apo-buer are pre-
sented. From all recombinant CaM proteins tested, only CaMWT was able
to bind to peptide B with measurable anity in the absence o Ca2+ (the
lower Kd that can be detected with our ITC experimental protocol is 50
μМ, so even i there is an interaction with lower anity it will be bio-
logically irrelevant), (Table 2). Contrary to holo-CaM, the apo-CaM-
peptide B binding is a much weaker endothermic interaction (Kd (apo)
~ 40*Kd (holo)), with a complex ormation that is based solely on
entropically-avourable contributions. These entropically-avourable
contributions generally arise by hydrophobic residues at the protein-
solvent interace that are shielded rom water upon binding. The abil-
ity o CaM to change conormations in response to intracellular Ca2+
levels leads to dierent peptide-protein interace geometries and thus
dierent binding modes or the apo- and holo-CaM interactions. Our
ndings suggest that N98I, D132E, D134H and Q136P mutations pro-
hibit apo-CaM rom adopting a unctional conormation.

Fig. 7 shows typical ITC proles at T = 298.15 K or the interactions
between peptide F and CaM samples in holo-buer. All CaM proteins
interact with peptide F, each orming a 1:1 complex, although mutated
CaM proteins show signicantly lower anities or peptide F compared

Fig. 4. [3H]Ryanodine binding assays showing the impact o N98I, D132E,
D134H and Q136P mutations on the ability o CaM to inhibit RyR2 open
conormation. As described in the Materials and Methods section, the basic
binding buer contained 50 mM HEPES, 25 mM Tris, 500 mM KCl, pH 7.4 with
either 1 mM EGTA (<0.01 μM Ca2+) or with the indicated series o ree Ca2+
concentrations. Normalized [3H]ryanodine binding data are means ± SEM o 3
independent experiments. Unpaired Student’s t-test (GraphPad, Prism 5) and
statistically signicant dierences between control and CaM mutants are
shown, * P < 0.05 and ** P < 0.005.

Table 1
Thermodynamic parameters or the binding o peptides B (RyR2 3584-3602aa) and F (RyR2 4255-4271aa) with CaMwild type andmutants in holo-buer. Dissociation
constant [Kd], stoichiometry [N], binding enthalpy change [ΔrH], entropic term change [T•ΔrS] and ree energy change [ΔrG] values obtained rom titration o
CaMWT and CaMmutants with two appropriately selected synthetic peptides o human RyR2 (Peptide B and Peptide F). Titration was perormed at T= 298.15 K in 100
mM KCl, 10 mM HEPES (pH 7.4), 10 mM CaCl2. Values and corresponding errors were derived rom non-linear least square t o the ITC data to a one-set-o-sites
thermodynamic model.
Titration Dissociation Constant [Kd]

(μM)
Stoichiometry
[N]

Binding Enthalpy [ΔrH] (kJ/
mol)

Entropic Term [T•ΔrS] (kJ/
mol)

Gibbs Free Energy Change [ΔrG]
(kJ/mol)

Peptide
B

WT 0.35 ± 0.03 0.93 ± 0.01 45.9 ± 1.4 9.1 ± 1.4 36.8 ± 0.2
N98I 0.29 ± 0.01 0.94 ± 0.01 43.8 ± 1.3 6.5 ± 1.3 37.3 ± 0.1
D132H 0.16 ± 0.01 1.09 ± 0.01 50.8 ± 1.6 11.9 ± 1.6 38.9 ± 0.2
D134H 0.36 ± 0.03 0.97 ± 0.01 46.2 ± 1.5 9.5 ± 1.6 36.7 ± 0.2
Q136P 0.42 ± 0.02 0.97 ± 0.01 47.9 ± 1.5 11.5 ± 1.6 36.4 ± 0.1

Peptide F

WT 0.60 ± 0.05 1.05 ± 0.01 8.9 ± 0.4 44.4 ± 0.5 35.5 ± 0.2
N98I 2.99 ± 0.28 1.04 ± 0.01 9.5 ± 0.4 41.0 ± 0.5 31.5 ± 0.3
D132H 2.13 ± 0.15 1.06 ± 0.01 8.1 ± 0.4 40.5 ± 0.5 32.4 ± 0.2
D134H 2.54 ± 0.39 1.16 ± 0.02 10.9 ± 0.4 21.1 ± 0.6 31.9 ± 0.4
Q136P 5.92 ± 0.50 1.09 ± 0.01 10.5 ± 0.4 19.3 ± 0.5 29.8 ± 0.2
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to CaMWT (~3–10 times lower, see Table 1). Interestingly, binding o
CaMWT, CaMN98I and CaMD132E to peptide F is endothermic, while the
corresponding CaMD134H and CaMQ136P interactions are exothermic.
This drastically dierent thermodynamic signature could suggest a
dierent binding site or a dierent protein-peptide alignment or the
CaMD134H and CaMQ136P - peptide F complexes.

In a similar ashion to CaM-Peptide B titrations, only CaMWT was able
to interact with peptide F in the absence o Ca2+ (Fig. 8). The apo-CaM
interaction is ~30 times weaker compared to that o the holo-CaM,
although it ollows a similar entropically-driven process. The holo-
CaM - peptide F binding has a more avourable entropic term that
leads to this higher anity. There are several possible mechanisms that
could lead to that eect, like dierences in complex fexibility and/or in
the hydrophobic area shielded by the solvent. However, without sup-
porting structural data this issue remains unclear. It is also interesting
that apo-CaMWT recognizes peptide F and peptide B with similar an-
ities (Kd = 16.58 and 14.03 μM, respectively).

Søndergaard et al. [34] recently reported the eect o various
arrhythmogenic CaM mutations, including the our mutations that we
investigated in this study, on the regulation o RyR2-mediated Ca2+
release during store-overload induced Ca2+ release (SOICR), as well as
their eect on CaM-dependent inhibition o RyR2 Ca2+ release in per-
meabilized HEK293 cells [34]. The N98I, D132E and Q136P mutations
aected the RyR2 activation threshold or SOICR suggesting that these
mutations can promote spontaneous Ca2+ release in cardiomyocytes
during diastole [27,34,35]. Furthermore, N98I, D132E, D134H and
Q136P mutations impaired termination o RyR2 Ca2+ release suggesting
that these arrhythmogenic CaM mutations can cause excessive Ca2+
release due to diminished inhibition o RyR2 during cardiomyocyte
stimulation [34]. Moreover, the authors perormed Ca2+-dependent
titration experiments o a fuorescently-labeled peptide corresponding
to the CaMBD region 3581-3611aa o RyR2 with CaM and showed that
the arrhythmogenic CaM mutations conerred a decreased anity or
binding to this peptide, altering the Ca2+-dependency o CaM binding to

Table 2
Thermodynamic parameters or the binding o peptides B (RyR2 3584-3602aa) and F (RyR2 4255-4271aa) with CaMwild type and mutants in apo-buer. Dissociation
constant [Kd], stoichiometry [N], binding enthalpy change [ΔrH], entropic term change [T•ΔrS] and ree energy change [ΔrG] values obtained rom titration o
CaMWT and CaMmutants with two appropriately selected synthetic peptides o human RyR2 (Peptide B and Peptide F). Titration was perormed at T= 298.15 K in 100
mM KCl, 10 mM HEPES (pH 7.4), 10 mM EDTA. Values and corresponding errors were derived rom non-linear least square t o the ITC data to a one-set-o-sites
thermodynamic model.
Titration Dissociation Constant [Kd]

(μM)
Stoichiometry
[N]

Binding Enthalpy [ΔrH] (kJ/
mol)

Entropic Term [T•ΔrS] (kJ/
mol)

Gibbs Free Energy Change [ΔrG]
(kJ/mol)

Peptide
B

WT 14.03 ± 2.40 1.04 ± 0.01 6.3 ± 0.9 34.0 ± 1.0 27.7 ± 0.4
N98I No binding detected
D132H No binding detected
D134H No binding detected
Q136P No binding detected

Peptide F

WT 16.58 ± 3.22 0.96 ± 0.01 6.6 ± 0.5 33.9 ± 0.7 27.3 ± 0.5
N98I No binding detected
D132H No binding detected
D134H No binding detected
Q136P No binding detected

Fig. 5. Binding interactions o CaM wild-type and its corresponding mutants with peptide B (RyR2 3584-3602aa) in holo-buer. Upper Panels: Change o power
supply to the calorimetric cell during the titration o 450 μM o peptide B solutions into 40 μM o CaMWT (A), CaMN98I (B), CaMD132E (C), CaMD134H (D) and CaMQ136P

(E) at 298.15 K in holo-buer, ater the subtraction o the appropriate reerence experiments. Lower Panels: Integration o the area under each injection, normalized
per mol o injectant and plotted as a unction o the [Peptide]/[CaM] ratio at each point o the CaMWT (F), CaMN98I (G), CaMD132E (H), CaMD134H (I) and CaMQ136P (J)
titrations. Solid red lines represent the non-linear least-square t o the ITC data to a single-set-o-sites thermodynamic model. (For interpretation o the reerences to
colour in this gure legend, the reader is reerred to the web version o this article.)
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the RyR2 CaM-binding domain. Interestingly, the mutant CaM C-do-
mains appeared to bind in a less Ca2+-saturated state compared to the
native CaMWT/RyR2 CaMBD interaction at cardiomyocyte resting con-
ditions and during early systole, supporting the authors proposal that a
pathological deective CaM-RyR2 interaction can not only diminish

RyR2 inhibition but can even acilitate RyR2 Ca2+ release [34].
On the other hand, the arrhythmogenic CaM N54I mutation which

was previously identied in a patient with CPVT phenotype [7] and
occurs in the loop between EF-hands 1 & 2 o the N-lobe domain has
been shown to have no signicant eect on the Ca2+ binding anity o

Fig. 6. Binding interactions o CaM wild-type and its corresponding mutants with peptide B (RyR2 3584-3602aa) in apo-buer. Upper Panels: Change o power
supply to the calorimetric cell during the titration o 450 μM o peptide B solutions into 40 μM o CaMWT (A), CaMN98I (B), CaMD132E (C), CaMD134H (D) and CaMQ136P

(E) at 298.15 K in apo-buer, ater the subtraction o the appropriate reerence experiments. Lower Panels: Integration o the area under each injection, normalized
per mol o injectant and plotted as a unction o the [Peptide]/[CaM] ratio at each point o the CaMWT (F), CaMN98I (G), CaMD132E (H), CaMD134H (I) and CaMQ136P (J)
titrations. Solid red lines represent the non-linear least-square t o the ITC data to a single-set-o-sites thermodynamic model. (For interpretation o the reerences to
colour in this gure legend, the reader is reerred to the web version o this article.)

Fig. 7. Binding interactions o CaM wild-type and its corresponding mutants with peptide F (RyR2 4255-4271aa) in holo-buer. Upper Panels: Change o power
supply to the calorimetric cell during the titration o 450 μM o peptide F solutions into 40 μM o CaMWT (A), CaMN98I (B), CaMD132E (C), CaMD134H (D) and CaMQ136P

(E) at 298.15 K in holo-buer, ater the subtraction o the appropriate reerence experiments. Lower Panels: Integration o the area under each injection, normalized
per mol o injectant and plotted as a unction o the [Peptide]/[CaM] ratio at each point o CaMWT (F), CaMN98I (G), CaMD132E (H), CaMD134H (I) and CaMQ136P (J)
titrations. Solid red lines represent the non-linear least-square t o the ITC data to a single-set-o-sites thermodynamic model. (For interpretation o the reerences to
colour in this gure legend, the reader is reerred to the web version o this article.)
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CaM [17,36]. More importantly, this N-lobe CaM mutation showed an
increased binding to RyR2 in ryanodine binding assays, which was not
inhibitory but interestingly it enhanced RyR2 activity above that o the
CaM-ree control [17]. Moreover, in permeabilised ventricular myo-
cytes, the N54I mutation showed to increase Ca2+ sparks and the re-
quency o Ca2+ waves [36]. Furthermore, the N54I mutation appeared
to cause excessive RyR2 activity in HEK293 cells and in single RyR2
channels but showed to have no eect on the CaM C-domain/RyR2
CaMBD (3581-3607aa) interaction [34,36–38]. This raised the question
o whether the CaM N-domain interacts with any other calmodulin
binding region(s) o RyR2 rather than the 3581-3607aa, and that the
N54I mutation impairs RyR2 inhibition by perturbing such interactions.
Søndergaard et al. [38] assessed the eects o deleting each o the our
known CaMBD regions in RyR2 on the CaM-dependent inhibition o
RyR2-mediated Ca2+ release in HEK293 cells and ound that only ater
deleting the RyR2-CaMBD 3581-3607aa could abolish the eects o both
CaM-N54I and CaM-WT [38]. This supports the notion that CaM N54I
mutation causes aberrant RyR2 regulation via an uncharacterized
CaMBD or less likely CaMBD 3581-3607aa, and that likely CaMBD 3581-
3607aa is required or the actions o both N- and C-domain CaM mu-
tations [38].

In the present study, our ITC data suggest that both 3584-3602aa and
4255-4271aa RyR2 regions interact with signicant anity with wild-
type CaM, in the presence and absence o Ca2+. These two regions
might contribute to a putative intra-subunit CaM-binding pocket, and
the intracellular Ca2+ changes operate as an important “switch” or
successul CaM/RyR2 association and thus channel regulation. In
contrast, screening the interaction o the our arrhythmogenic CaM
mutations (N98I, D132E, D134H and Q136P) with two synthetic pep-
tides (B and F) that correspond to the aorementioned human RyR2
regions, revealed that all mutants show disparate binding properties to
these two RyR2 peptides, in the presence and absence o Ca2+. These
ndings indicate a more complicated picture suggesting dierential
mechanism(s) or CaM/RyR2 interaction and modulation o [3H]rya-
nodine binding to RyR2. The resulting complexes seem to involve

multiple RyR2 regions that cannot be recognized by these CaM mutants
with high anity. Further investigation is required to delineate the
deective binding/interactions mechanisms between RyR2 and the
pathogenic CaM mutants, as deective association o these two proteins
is one o the main triggers o arrhythmogenesis and early onset sudden
cardiac death.
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Fig. 8. Binding interactions o CaM wild-type and its corresponding mutants with peptide F (RyR2 4255-4271aa) in apo-buer. Upper Panels: Change o power
supply to the calorimetric cell during the titration o 450 μM o peptide F solutions into 40 μM o CaMWT (A), CaMN98I (B), CaMD132E (C), CaMD134H (D) and CaMQ136P

(E) at 298.15 K in apo-buer, ater the subtraction o the appropriate reerence experiments. Lower Panels: Integration o the area under each injection, normalized
per mol o injectant and plotted as a unction o the [Peptide]/[CaM] ratio at each point o the CaMWT (F), CaMN98I (G), CaMD132E (H), CaMD134H (I) and CaMQ136P (J)
titrations. Solid red lines represent the non-linear least-square t o the ITC data to a single-set-o-sites thermodynamic model. (For interpretation o the reerences to
colour in this gure legend, the reader is reerred to the web version o this article.)
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