
Neurocomputing 514 (2022) 137–147
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Automated layer-wise solution for ensemble deep randomized
feed-forward neural network
https://doi.org/10.1016/j.neucom.2022.09.148
0925-2312/� 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: KINDI Center for Computing Research, College of
Engineering, Qatar University, Doha, Qatar.

E-mail addresses: e200008@e.ntu.edu.sg (M. Hu), gaor0009@e.ntu.edu.sg
(R. Gao), p.n.suganthan@qu.edu.qa (P.N. Suganthan), mtanveer@iiti.ac.in (M. Tanveer).
Minghui Hu a, Ruobin Gao a, Ponnuthurai N. Suganthan b,⇑, M. Tanveer c

aNanyang Technological University, Singapore, Singapore
bKINDI Center for Computing Research, College of Engineering, Qatar University, Doha, Qatar
cDepartment of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India

a r t i c l e i n f o
Article history:
Received 2 March 2022
Revised 6 August 2022
Accepted 24 September 2022
Available online 29 September 2022
Communicated by Zidong Wang

Keywords:
Randomized feed-forward neural network
Random vector functional link
Automated machine learning
Bayesian optimization
Ensemble deep random vector functional
link
a b s t r a c t

The randomized feed-forward neural network is a single hidden layer feed-forward neural network that
enables efficient learning by optimizing only the output weights. The ensemble deep learning framework
significantly improves the performance of randomized neural networks. However, the framework’s capa-
bilities are limited by traditional hyper-parameter selection approaches. Meanwhile, different random
network architectures, such as the existence or lack of a direct link and the mapping of direct links,
can also strongly affect the results. We present an automated learning pipeline for the ensemble deep
randomized feed-forward neural network in this paper, which integrates hyper-parameter selection
and randomized network architectural search via Bayesian optimization to ensure robust performance.
Experiments on 46 UCI tabular datasets show that our strategy produces state-of-the-art performance
on various tabular datasets among a range of randomized networks and feed-forward neural networks.
We also conduct ablation studies to investigate the impact of various hyper-parameters and network
architectures.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the last decade, neural networks have made remarkable
strides, with many types of neural networks showing promising
outcomes in a number of practical applications, such as classifica-
tion, segmentation and generation tasks. The multilayer percep-
tron (MLP) is a straightforward neural network structure made
up of numerous hidden layers and one output layer. Despite their
simplicity, recent research has shown that MLPs are capable of per-
forming well in large-scale image tasks [1,2]. However, since the
MLP optimizes parameters via gradient descent (GD), the computa-
tional resources and time demanded for successive iterations are
unavoidably large.

Among these, randomized neural networks have attracted great
interest for the efficiency and stability [3]. Typically, randomized
neural networks relate to single hidden layer feedforward neural
networks (SLFN) wherein the weights of the hidden layer are pro-
duced randomly and only the weights from the output layer are
involved in learning [4]. The Randomized Vector Functional Link
(RVFL) [5,6] is the cornerstone of randomized neural networks, in
which the hidden weights of hidden neurons are generated ran-
domly and kept fixed while the weights of output neurons are
derived by a simple closed-form solution [7]. In RVFL, the raw
space features are propagated to the output layer through the
direct links, giving an opportunity to be involved in the weight
computation. Due to the fact that Occam’s Razor argues for simpler
and less complex models, RVFL networks are more appealing than
other neural networks. Extreme Learning Machine (ELM) [8] is one
of the RVFL variants, which omits the direct links and adopts the
primitive structure of SLFN. Broad Learning System (BLS) [9] is also
one of the RVFL’s extensions, as it maps the features from the orig-
inal domain to a latent space and then propagates them to the out-
put layer for the weight solution.

The Ensemble Deep Randomized Vector Functional Link
(edRVFL) [10,35,37] extends the single-layer RVFL network to a
multi-layer structure, utilizing the ensemble technique to mas-
sively increase the network’s efficacy. Each hidden layer in edRVFL
has an associated output layer for prediction, or each hidden layer
may be regarded as a dependent classifier, and then the ensemble
approach, such as majority voting, is used to aggregate all predic-
tions. This Ensemble Deep framework is generic and is applicable
to different randomized networks, such as ELM or BLS, in addition
to RVFL networks. Each hidden layer in the ensemble deep
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framework needs to be trained with an output weight, and utiliz-
ing the consistent hyperparameters for all sub-classifiers would
lead to less than intended results. The current strategy is to specify
the hyperparameters for the options and then use the grid search
to sweep through all the possible options and select the best per-
forming one as the result [10]. However, the grid search approach
has several obvious drawbacks: first, it is difficult to determine the
stride of the given hyperparameter range, and options with varying
degrees of granularity can produce very different results; second,
there is a difficult trade-off between accuracy and speed, with
too many hyperparameter options resulting in lengthy network
training times while too few options resulting in a clear drop in
performance.

Inspired by the significant process occurring in the field of Auto-
mated Machine Learning (AutoML) [11–13] and Hyper-parameter
optimization (HPO) [14,15], we propose an automated layer-wise
learning pipeline for randomized neural networks with an ensem-
ble deep framework. AutoML introduces techniques that increase
machine learning’s efficiency and speed up machine learning
research. HPO and model structure selection play a significant role
in AutoML. The main core of HPO and structure selection consists
of Bayesian Optimization (BO) [16]. In our proposed pipeline, we
use a BO-based approach to optimize the hyperparameters; we
also consider different kinds of randomized networks as the pipe-
line components, including RVFL, ELM and BLS. In addition, due to
the specificity of the ensemble deep framework, where the input of
each hidden layer is dependent on the output of the shallow layer,
we designed an exclusive training and inference process to demon-
strate the benefits of randomized networks. We hope that each
individual hidden layer can be responsible for a fraction of the
indistinguishable samples and achieve satisfactory results by
ensemble. Our contributions are mainly the following:

� We propose an automated layer-wise pipeline for randomized
feed-forward neural networks, which integrated different kinds
of randomized network architectures.

� We rethink the ensemble deep framework’s training and infer-
ence phases due to the capacity limitation of randomized net-
works, and propose a Sample-level Attention Strategy to
divide the training set into subsets to solve the capabilities
problem.

� Several ablation experiments are conducted to verify the effect
of different hyper-parameters on the results.

The remaining part of the article is structured as follows: Section 2
provides a brief overview of related work, including recent
advances in RVFL and its variants, AutoML and HPO. Section 3
delves into the specifics of our proposed pipeline. Section 4
describes the experimental setting and dataset description, we also
present and analyze the experimental results. Finally, we summa-
rize our paper and suggest some directions for future work.
2. Related Work

In this section, we first demonstrate a brief overview of the fun-
damental random vector functional link network and some related
variants. We then review the ensemble deep framework for ran-
domized feed-forward neural networks and next we present some
common approaches for automated machine learning pipelines
and hyper-parameter optimization methods.
2.1. Randomized Feed-forward Neural Network

Randomized Feed-forward Neural Network(RFNN) refers to a
subclass of SLFNs in which the hidden layer neurons are randomly
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initialized and fixed, while the output weights are calculated
through a simple closed-form solution. There are many variants
of RFNN, the mainstream of which is the Random Vector Func-
tional Link (RVFL) proposed by Pao et al. in 1992 [5]. There have
been numerous RVFL extensions during the last two decades,
including Extreme Learning Machine (ELM), Broad Learning Sys-
tem (BLS), etc.Random Vector Functional Link

Random Vector Functional Link (RVFL) was proposed by Pao
and Takefuji in [5]. It is similar to SLFN in construction except that
it includes a direct link that propagates the input features directly
to the output layer, which is composed of an input layer, a single
hidden layer and an output layer. Given an input sample
X 2 Rk�d with associated labels Y 2 Nk, random weights W are
used to map the input features to the latent features A 2 Rk�N ,
where k and d are the numbers and the dimension of the input
samples, N is the number of neurons in the hidden layer. The
weights of the hidden layers are generated randomly and main-
tained; only the weights of the output neurons b are tuned during
the training phase.

The objective equation of RVFL is the following:

min
b

jjEb� Yjj2 þ kjjbjj2 ð1Þ

where E represents the linear combination of input patterns X and
hidden features A, which we referred to as enhanced features
E ¼ ½A;X�. With the activation function gð�Þ for non-linear mappings,
gðXWÞ can be used to produce A.

The objective problem can be solved using ridge regression,
which is denoted by:

b ¼ ðETEþ kIÞ�1
ETY ð2Þ

b ¼ ETðEET þ kIÞ�1
Y ð3Þ

where I is the identity matrix and k is the regularization parameter.
Extreme Learning Machine Extreme Learning Machine (ELM) can be
viewed as a simplified version of the RVFL without bias and direct
connections from the input to the output, which is developed in
2004 [8]. The primary theoretical distinction between ELM and
RVFL is that the features used to solve for the output layer weights
b are different, in another word, the enhanced feature E in Eq. 1 is
replaced by the hidden feature A. It is therefore not difficult to
obtain the objective function and the solution for the ELM:

Obj: min
b

jjAb� Yjj2 þ kjjbjj2

Sol: b ¼ ðATAþ kIÞ�1
ATY

or b ¼ ATðAAT þ kIÞ�1
Y

ð4Þ

Broad Learning System
The Broad Learning System is an extension of the RVFL. The

original data is transformed into latent features using random
weights. Then, using similar random methods, the latent features
are extended to another latent space. Finally, the output weights
are connected to both two latent space features, and the appropri-
ate output weights may be derived by solving ridge regression or
psudo-inverse. Mathematically, after obtaining A via gðXwÞ, we
need to procure A0 via similar random mapping g0ðAw0Þ. Thus the
enhanced feature E is replaced by two sets of latent features
E ¼ ½A;A0�. The solution procedure is same as Eqs. (2, 3) for RVFL.

2.2. Ensemble Deep Randomized Neural Network

edRVFL [10] is a generic framework for randomized feedfor-
ward networks that is not only confined to RVFL networks. This
framework contains numerous hidden layers, each of which has
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an input that is a concatenation of the previous layer’s output and
the original features from direct link, Each hidden layer separately
calculates the output weights, or each hidden layer can be seen of
as an individual classifier. Finally, the ensemble approach is used to
combine the prediction results from each hidden layer. Recently,
there are many works based on the edRVFLin various domain
[17,36,38].

In ensemble deep RVFL (edRVFL), the output of every hidden

layer AðiÞ is defined as follows:

AðiÞ ¼ gðXWð1Þ
r Þ if i ¼ 1

gð½Aði�1Þ;X�WðiÞ
re Þ if i > 1

(
ð5Þ

where Wð1Þ
r 2 Rd�N and WðiÞ

re 2 RðdþNÞ�N are the random weights
between the input to first hidden layer and inter hidden layers
respectively. The weights and biases are randomly generated and
kept fixed. For the ease of notation, we omit the bias term in the for-
mulas, as shown in [6], compared with no bias, the network with
bias has more freedom, as bias is also a variable parameter that
can be adjusted, and the network will have a better approximation
to the data. For edRVFL, each layer can be solved according to Eqs.
(2, 3) simply substitute the enhancement feature E for the corre-

sponding layer’s EðiÞ ¼ ½AðiÞ;X�.

2.3. Automated Machine Learning and Hyper-parameter Optimization

2.3.1. Automated Machine Learning
Automated Machine Learning (AutoML) is a widely used term, a

comprehensive AutoML framework performs a variety of tasks,
including data preprocessing, feature selection, model selection,
hyperparameter tuning, and results analysis. There are numerous
autoML frameworks available, and we will discuss a couple of them
briefly.

Auto-WEKA Auto-WEKA [13] was one of the first AutoML frame-
works and has remained active in the recent years [18]. Auto-
WEKA is based on the WEKA ML library in Java, which employs
BO and integrates various ML models via different ensemble
strategies.

Auto-sklearn Auto-sklearn [12] uses ML models from the scikit-
learn library in Python and has placed first in several competitions.
There are various critical aspects that contribute to the success of
as follows: 1.Auto-sklearn uses an ensemble model selection strat-
egy [19] for model integration; 2.Auto-sklearn employs a meta-
learning approach [20] as warm-up to obtaining more accurate
hyperparameters; and 3.Auto-sklearn introduces a time budget
system to balance the efficiency and accuracy.

2.3.2. Hyper-parameter Optimization
In comparison to the comprehensive framework for autono-

mous learning, this paper concentrates on a hyper-parameter opti-
mization strategy. Currently available Hyper-parameter
optimization techniques fall into two broad categories: BO and
evolutionary algorithms (EA). The following is a sampling of repre-
sentative work:

Bayesian Optimization Bayesian Optimization (BO) is widely
used for hyper-parameter optimization tasks, one of the most com-
monly used probabilistic models in BO is the Gaussian process (GP)
[21]. However, Bayesian optimization based on Gaussian processes
has significant flaws. For starters, Gaussian processes are unsuit-
able for high dimensions and are overly computationally costly;
also, it is difficult to adapt to complex configuration spaces such
as discrete, polynomial, etc. The Tree Parzen Estimator (TPE) [22]
is an alternative choice for GP, which is based on Gaussian mixture
model. In each trial, TPE maintains a Gaussian mixture model LðxÞ
for the hyper-parameter associated with the best target value and
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another Gaussian mixture model GðxÞ for the remaining hyper-
parameters, selecting the hyper-parameter whose minimizing of
GðxÞ=LðxÞ corresponds to the next set of search values. Mathemat-
ically, the common acquisition function Expected Improvement
(EI) can be stated as follows:

aðx;aÞ ¼
Z

maxð0;a� f ðXÞÞd pðf jDÞ ð6Þ

where a is the best observation of observed data points
D ¼ fðx0; y0Þ; . . . ; ðxn; ynÞg. According to a, TPE uses non-parametric
Parzen kernel density estimators (KDE) to model the distribution
of different configurations

LðxÞ ¼ pðy < ajx;DÞ
GðxÞ ¼ pðy > ajx;DÞ ð7Þ

It can be derived that maximising the ratio LðxÞ=GðxÞ is equal to
maximize the acquisition function [22].

Hyperband Hyperband (HB) is proposed in 2017 [23], which uti-
lizes Successive-Halving (SH) [24] to allocate resources iteratively
to random configurations. HB selects N configurations for SH on
each iteration. In practice, HB performs admirably and frequently
outperforms random search and Bayesian optimization approaches
when performing full-featured budget evaluations on small to
medium overall budgets. However, due to its reliance on randomly
chosen configurations, its convergence to the global optimum is
limited, and its advantages with high budgets are typically negated
by random search.

DEHB DEHB [25] is an HPO approach that combines the benefits
of the well-known bandit-based method HB with the evolutionary
search strategy Differential Evolution (DE).

3. Methods

Rather than developing a comprehensive framework for auto-
mated learning, we will concentrate on developing an automated
optimization pipeline for the ensemble deep framework with ran-
domized feed-forward neural networks.

Through our experiments we found that the ensemble deep
framework has numerous significant drawbacks, including the
following:

1. The hyper-parameters for all sub-classifiers are identical,
including the number of neurons, the type of activation func-
tion, the regression coefficients, etc. This significantly reduces
the network’s diversity.

2. Each sub-classifier is responsible for the whole training space.
However, the capacity of the random network is limited. Hence,
the prediction of all layers is a more moderate result and the
performance of the whole model relies heavily on the effect of
the final ensemble.

3. Due to the grid search methods, all viable hyper-parameter
alternatives must be artificially given prior to training the
framework. However, such an approach might result in biased
findings. Simultaneously, a finer hyper-parameter stride will
result in increased training time and make it difficult to enjoy
the advantages of randomized networks.

To address the aforementioned issues, we introduce an automated
layer-wise optimization pipeline that incorporates the following
enhancement methods:

1. We propose a layer-wise optimization strategy, where the
hyper-parameters of each hidden layer are independent. More-
over, to add diversity to the hidden layer features, we introduce
additional randomized networks for backbone choice.
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2. We introduce a Sample-level Attention Strategy that enable dis-
tinct hidden layers to concentrate their efforts on distinct train-
ing subspaces. Additionally, we suggest a nearest neighbor
partitioning strategy for the inference phase to account for
weighted subspaces strategy.

3. Inspired by the recent rapid progress of hyper-parameter opti-
mization methods, we use BO and HB based methods to opti-
mize the hyper-parameters of the pipeline.

The pipeline can be found in Algorithm1 and Fig. 1. The details of
proposed strategies are demonstrated below.

Algorithm1: Automated Layer-wise Optimization

input non-test set Xnt ¼ fXnt; yntg, test set Xt ¼ fXtg
given number of layers N
output predictions yt of Xt

fori 2 Ndo
ifi ¼ 0then

random split the Xnt into train X
ð0Þ
train and validation X

ð0Þ
val

search the best configurations via BOHB to

obtain Að0Þ via Eq. 8
generate attention matrix Wð0Þ by Eq. 9
calculate b0 by Eq. 2 or Eq. 3

obtain prediction y0p of Xt

end if

split the Xnt into train X
ðiÞ
train and validation X

ðiÞ
val w.r.t.WðiÞ

search the best configurations via BOHB

obtain AðiÞ via Eq. 8
generate attention matrix WðiÞ by Eq. 9

calculate bi by Eq. 10
obtain prediction yip of Xt

end for
pick top T layers for each non-test sample in Xnt

find t nearest neighbors in Xnt for each test sample in Xt

ensemble T � t predictions and get the final decision yt
3.1. Layer-wise Solution

Inspired by the greedy training strategy [26,27], we introduce a
layer-wise optimization method for ensemble deep randomized
neural network. Instead of obtaining the local minimum of the
whole network, each hidden layer in the ensemble deep frame-
work can be regarded as an independent classifier, and we aim
to find the optimal configuration for each layer. The subsequent
hidden layers will not be trained until the training of preceding
layers has been completed. Mathematically, the output of each hid-
den layer can be expressed by:

AðiÞ ¼

gð1ÞðXWð1ÞÞ if i ¼ 1

gðiÞð½Aði�1Þ;X�WðiÞÞ if i > 1 &w= direct link

gðiÞðAði�1ÞWðiÞÞ if i > 1 &w=o direct link

gðiÞð½Aði�1Þ;A0ði�1Þ�WðiÞÞ if i > 1 &w=2ndmapping

8>>>>>>><
>>>>>>>:

ð8Þ

where Wð1Þ 2 Rd�Nð1Þ
and WðiÞ 2 RðgðiÞþNði�1ÞÞ�NðiÞ

. NðiÞ and gðiÞð�Þ repre-
sent the neuron number and the activation function type of ith
layer. gðiÞ depends on the ith layer type: if the ith layer is with direct
link (RVFL type), gðiÞ means the dimension of the raw input X, else if
it has another random mapping (BLS type), gðiÞ is subject to the
dimension of A0ði�1Þ, otherwise, gðiÞ ¼ 0 (ELM type). Fig. 2 depicts
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the weight shape of the various kinds of hidden layers. For the acti-
vation function gðiÞð�Þ, it can be selected from the Table 1.

It is worth noting that all the layers are independent. Specifi-
cally, the configuration of each layer can be different, e.g. different
layers can have different numbers of neurons and these configura-
tions are optimised by Bayesian methods. In contrast, for the tradi-
tional random neural network ensemble framework, the number of
neurons in each layer is predefined and fixed. Our layerwise solu-
tion provides stronger diversity for ensemble random neural
networks.

After the acquisition of AðiÞ, we can generate enhanced features

EðiÞ based on the type of current layer. The enhanced features EðiÞ

can be ½AðiÞ;X� or ½AðiÞ� or ½AðiÞ;A0ðiÞ� for RVFL type, ELM type and
BLS type separately.

3.2. Sample-level Attention Strategy

Our sample-level Attention strategy consists of three main sec-
tions. First, based on the results of the previous layer, we deter-
mine the relevance and importance of the various samples; next,
we divide the training set for the current layer based on the rele-
vance and importance. Finally, we select the hidden layers that will
be used for the ensemble based on the inclusiveness of training
samples.

3.2.1. Sample Attention
The performance of a randomized neural network is limited by

its capacity [30]. Instead of increasing the number of neurons, we
prefer to make training phase more purposeful. We use a
sample-level attention strategy to implicitly assign the focus of
training phase, which is based on an adaptive weighting mecha-
nism. Specifically, the attention matrix of the ith layer is based
on the score of all previous layers, which can be expressed as:

WðiÞ ¼

X
i

sigmoid maxðAðiÞ
N Þ � AðiÞ

P

� �
X
i

Xk

j

sigmoid maxðAði;jÞ
N Þ � Aði;jÞ

P

� � ð9Þ

where i is the layer index and j is the index of k training samples. AðiÞ
P

and AðiÞ
N are the score matrix in Rk of the prediction score of ground

truth and all the remaining scores separately. After obtaining Wði�1Þ

and EðiÞ, the weight of ith layer output can be calculated via the
equations similar to Eqs. (2, 3):

PrimalSpace : b ¼ ½Wði�1Þ � EðiÞ�T ½Wði�1Þ � EðiÞ� þ kI
� ��1

½Wði�1Þ � EðiÞ�TY

or Dual Space : b ¼ ½Wði�1Þ � EðiÞ�T ½Wði�1Þ � EðiÞ�½Wði�1Þ � EðiÞ�T þ kI
� ��1

Y

ð10Þ
As Eq. 9, when samples are successfully classified, their weights are
reduced. And when samples are incorrectly predicted, or the prob-
ability gap is not significant, these samples are given higher weights
in the following layer. This assures that distinct hidden layers are
accountable for different subsets.

3.2.2. Data Division
To further manifest the effects of the attention mechanism, we

also propose a specialized scheme for the division of the training
and validation sets. Typically, a dataset will be divided into three
parts in the data pre-process phase: a training set, a validation
set, and a test set. Without considering cross-validation, we only
divide the entire dataset into a test set and a non-test set before
training in our experiment. We partitioned the non-test set into



Fig. 1. The pipeline of automated layer-wise solution for ensemble deep randomized feed-forward neural network. The hyper-parameters of each layer are independent, e.g.,
the number of neurons in different layers is not uniform. The partitioning of the training and validation sets is also different for each layer, and the division is based on the
output of the previous layer. At the end, top T feasible layers will be screened to utilize for the ensemble to get the final outcome.
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a training set and a validation set at each layer during the layer-
wise training procedure afterwards. In contrast to random split,
we introduce an novel division strategy.

The new dataset split strategy is inspired by the nearest neigh-
bor clustering algorithm. The motivation for this is that we want
each layer to be responsible for a few clusters of hard-to-train data.
Prior to beginning training in any layer, we sort the features by

their weights WðiÞ and use the top M enhanced features EðiÞ as clus-
tering centers. For each clustering centre, we take the m nearest
enhanced features to them and form clusters, where m is a fixed
ratio of the sample number of non-test set. Following the acquisi-
tion of M þ 1 clusters (M clusters with centre and one cluster
include all remainings), the training set for this layer contains
90% of the samples from M clusters and 10% of the samples from
the remaining clusters.

3.2.3. Layer Selection
However, such training process will lead a diminishing predic-

tion results as the hidden layers have difficulties with samples
without weights in inference phase. If we simply adopt an ensem-
141
ble approach, we will introduce a multitude of unexpected predic-
tions and thus significantly reduce the accuracy. Therefore, we also
need to assign matching classifiers to the test set during the infer-
ence phase. We first rank the performance of all instances at each
layer based on cross-entropy loss during the training phase, the
loss can be expressed in Eq. 11:

Loss ¼ �
Xk

i¼0

OneHotðYiÞ log expðAiÞXk

j¼0

expðAjÞ

0
BBBB@

1
CCCCA ð11Þ

where OneHotð�Þ is an operator which transform the input from sca-
lars to f0;1gc vectors, and c is the number of classes. We then select
the best performing T sub-classifiers based on these rankings and
record them. In test phase, we find t training samples nearest to
the test features and ensemble the corresponding T � t predictions
by voting. We measure the distance between features by the L2 dis-

tance, where the features are the enhanced EðiÞ feature and depends
on the ith layer type.



Fig. 2. Weight shape in different types of hidden layers. The various shading
methods indicate distinct source compositions.
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3.3. BO & HB for HPO

Following [14], we adopted a similar BOHB technique for our
model. We first utilize Hyperband(HB) [23] to choose the budget
and then use Successive-Halving(SH) [24] to choose the ideal
parameters. In contrast to the original HB, the SH process is led
Table 1
Activation functions considered for the model.

Activation Type Expression

Rectified Linear Units (ReLU) f ðxÞ ¼ maxð0; xÞ
Sigmoid Activation f xð Þ ¼ 1= 1þ exp �xð Þð Þ
Scaled Exponential Linear Unit (SELU) [28] f xð Þ ¼ k � x if x P 01

f xð Þ ¼ k � a exp xð Þ � 1ð Þ if x < 02

Swish [29] f ðxÞ ¼ x � sigmoidðbxÞ 3

Self-normalizing Swish f ðxÞ ¼ k � x � sigmoidðbx� cÞ4

1 k 	 1:0507
2 a 	 1:6732
3 In most cases, b ¼ 1
4 This activation function has not appeared in any literature, however, according

to the proof in [28], we can easily obtain c 	 0:2066.

Table 2
Overview of the UCI datasets.

Name #Samples #Features #Classes

abalone 4177 9 3
adult 48842 15 2
arrhythmia 452 263 13
bank 4521 17 2
car 1728 7 4
cardio-10 2126 22 10
cardio-3 2126 22 3
chess-krvk 28056 7 18
chess-krvkp 3196 37 2
connect-4 67557 43 2
congressional-voting 435 16 2
contrac 1473 10 3
hill-valley 1212 101 2
sementation 2310 19 7
led-display 1000 8 10
letter 20000 17 26
magic 19020 11 2
minboone 130064 51 2
molec-biol-splice 3190 61 2
mushroom 8124 22 2
musk-2 6598 167 2
nursery 12960 9 5
om_nucleus_4d 1022 42 3
om_states_2f 1022 26 2
optical 5620 63 10
glass 214 9 6
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by BO (based on a model), rather than random sampling. The BO
part is similar to the TPE in that the Gaussian mixture model is
constructed by a single multidimensional KDE. The whole sam-
pling process [14] is given in Algorithm2:

Algorithm2: BOHB sampling process

input Observations D, fraction of random runs q, number of
sample Ns, min number of points Nmin

output next configuration to evaluate
ifrandðÞ < qthen
return random configuration
end if
find largest budget with at least Nmin þ 1 observations
ifno such B existsthen
return random configuration
end if
fit KDEs according to Eq. 7
draw Ns samples � LðxÞ
return Sample with highest ratio LðxÞ=GðxÞ
4. Experiments

In this section, we perform several experiments to demonstrate
the superiority of our proposed method. It is worth noting that all
the data are extracted from the real world.

4.1. Datasets and Comparison Methods

The experiments are conducted on public UCI datasets from
various domains. Table 2 gives an overview of the 46 real-world
application datasets. We used the same pre-processing method
as [28] for splitting the dataset into test and non-test groups.

It’s worth mentioning that all datasets have been cross-
validated fourfold. The entire data was split into a non-test set
and a test set four times, each time called one fold. During the
training process, we will use the non-test to train the network
Name #Samples #Features #Classes

ozone 2536 73 2
page-blocks 5473 11 5
ot_nucleus_5b 912 25 2
pendigits 10992 17 10
plant-margin 1600 65 100
plant-shape 1600 65 100
plant-texture 1599 65 100
ringnorm 7400 21 2
semeion 1593 257 10
spambase 4601 58 2
monks-3 3190 6 2
german-credit 1000 25 2
statlog-image 2310 19 7
statlog-landsat 6435 37 6
statlog-shuttle 58000 10 7
steel-plates 1941 28 7
thyroid 7200 22 3
titanic 2201 4 2
twonorm 7400 21 2
wall-following 5456 25 4
waveform 5000 22 3
waveform-noise 5000 41 3
wine-quality-red 1599 12 6
wine-quality-white 4898 12 7
yeast 1484 9 10



Table 4
Accuracy (%) and Average Ranks of basic approaches and ablation results.

BLS SCN HELM RVFL

abalone 60.06 64.00 63.77 64.12
adult 85.15 85.01 85.05 85.01
arrhythmia 62.23 44.91 72.12 62.83
bank 88.19 88.83 89.20 89.29
cardio-10 83.47 81.26 82.39 81.73
cardio-3 91.33 91.57 90.68 90.96
chess-krvkp 98.75 97.77 99.00 97.80
congressional-voting 59.40 60.09 61.24 60.09
contrac 41.78 47.75 54.08 48.91
glass 61.23 66.79 68.87 64.38
letter 93.99 86.11 93.15 94.55
molec-biol-splice 74.84 75.75 82.40 80.32
monks-3 52.37 69.42 78.70 60.45
musk-2 98.77 96.71 98.32 98.29
OMN_4d 57.46 89.91 92.06 88.92
pendigits 97.45 97.05 97.41 97.23
spambase 92.15 91.71 92.67 92.95
statlog-image 89.90 94.97 95.28 96.36
statlog-landsat 83.47 90.25 91.22 89.85
statlog-shuttle 96.82 99.79 99.88 98.77
wall-following 89.53 85.41 89.46 87.84
waveform 83.48 84.76 86.16 84.64
noise 82.44 83.70 86.08 84.48
wine-quality-white 55.15 55.96 55.49 58.48
Average Accuracy 78.31 80.40 83.53 81.60
Average Rank 7.67 7.54 5.17 7.21

y means the method includes automated layer-wise training.

Table 3
Hyper-parameter configurations for RVFL networks.

HPs Description Search
Range

Type

N The number of hidden layer neurons [256,2048] integer
C Regularization factor coefficient [-12, 12] float
S Neuron Normalization Scale [0,10] float
g Activation Function type, details in

Table 1
N/A categorical

T The number of selected best
performing sub-classifiers set

[0,5] integer

t The number of selected training features
nearest to the test set

[0,5] integer

Fig. 3. The accuracy of basic approaches and ablation results. The horizontal axis repre
different coloured scatters represent different algorithms. The proposed algorithm (ALR
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and will seek the ideal hyperparameters based on the lowest vali-
dation loss, the details are in Section 3.2. Then, using the entire
non-test set, we retrain the current layer using the optimized con-
figurations. Finally, we provide the mean accuracy of test set and
their standard deviation. Each set of trials is repeated 10 times
with different random seeds.

In order to demonstrate the superior performance of our model,
comparison with several deep neural network approaches and
other shallow networks methods is performed. All relevant algo-
rithms used are shown below:

1. ResNet: Residual networks [31].
2. SNN: Self normalizing networks with SELUs [28]
dRVFL edRVFL AL-RVFLy edRandom ALRy
66.33 65.81 66.34 65.87 67.14
85.12 85.25 85.14 85.21 85.25
69.03 70.58 70.67 69.12 71.68
89.87 89.76 89.90 89.80 90.26
83.62 82.39 82.99 82.44 83.00
92.84 92.66 92.91 92.69 92.93
99.03 99.12 99.12 99.12 99.12
60.33 61.01 60.35 61.03 63.30
55.37 51.36 55.41 51.43 55.50
65.09 66.58 66.67 65.13 71.70
97.23 97.46 96.84 96.88 96.88
82.34 84.00 82.37 84.09 84.57
55.07 61.35 61.39 55.10 72.92
99.04 98.57 99.12 98.62 99.39
91.47 93.86 91.53 93.87 95.61
97.01 97.46 97.78 97.47 97.83
93.61 93.87 93.63 93.95 94.26
96.79 96.84 96.83 96.91 97.23
90.70 91.20 90.72 91.18 91.20
99.88 99.91 99.87 99.90 99.92
90.71 90.30 90.72 90.34 90.98
86.34 85.90 86.44 85.96 86.88
84.48 85.72 86.08 85.73 86.08
62.36 63.30 62.40 63.31 65.60
83.15 83.51 83.55 83.13 84.97
4.54 3.04 3.56 3.81 1.46

sents the different data sets and the vertical axis indicates the accuracy rate. The
) are highlighted with larger size.
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3. RVFL: Randomized Feedforward Neural Network with func-
tional link [5].

4. SCN: Stochastic configuration networks [32]
5. HELM: Hierarchical ELM with different regularization methods

[33]
6. BLS: Broad learning system [9], a paradigm shift version based

on RVFL.
7. deep RVFLs: Deep RVFL network and its ensemble version [10]

To conduct the analysis, we use the method described in [10] and
additionally apply statistical comparison methods described in
[34] to demonstrate the method’s validity. We use the Wilcoxon
signed rank test method to do statistical analysis, which is a non-
parametric statistical hypothesis test based on the observations.

4.2. Experiment Setting

In our experiments, there are six hyper-parameters to be tuned
and two meta parameters need to be assigned manually. All the
hyper-parameters are optimized by the BOHB framework as
described in Section 3.3. The hyper-parameters are summarized
Table 5
Accuracy (%) and Average Ranks of various deep approaches on 46 UCI datasets.

dRVFL edRVF

abalone 66.33 65.81
adult 85.12 85.25
bank 89.87 89.60
car 97.97 98.04
cardio-10 83.62 83.24
cardio-3 92.84 92.66
chess-krvk 68.39 70.07
chess-krvkp 99.03 99.12
connect-4 83.94 84.77
contrac 55.37 54.01
hill-valley 58.75 67.00
image-sementation 89.10 88.52
led-display 73.90 74.40
letter 97.23 97.46
magic 86.55 86.81
minboone 92.33 92.72
molec-biol-splice 82.34 84.00
mushroom 100.00 100.00
musk-2 99.04 98.57
nursery 98.32 98.70
oocytes_merluccius_nucleus_4d 82.75 84.41
oocytes_merluccius_states_2f 91.86 93.63
optical 98.16 98.27
ozone 97.12 97.20
page-blocks 96.60 96.56
pendigits 97.77 97.46
plant-margin 81.88 81.88
plant-shape 71.75 72.31
plant-texture 84.06 85.25
ringnorm 98.26 97.97
semeion 93.47 92.96
spambase 93.61 93.87
statlog-german-credit 76.20 77.70
statlog-image 96.79 96.84
statlog-landsat 90.70 91.20
statlog-shuttle 99.88 99.91
steel-plates 58.66 76.44
thyroid 95.92 95.65
titanic 78.82 78.82
twonorm 97.78 97.81
wall-following 90.71 90.30
waveform 86.34 86.44
waveform-noise 86.32 85.70
wine-quality-red 61.75 65.63
wine-quality-white 62.36 63.30
yeast 60.24 61.66
Average Accuracy 85.43 86.30
Average RANK 3.50 2.95
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in the Table 3, include the number of hidden neurons N, the coef-
ficient of regularization factor C where k ¼ 1=2C in Eqs. 2, 3 and
their extensions, the activation function type g and the hyper-
parameters T and t for sample-level attention strategy, and the
neuron normalization factor in Eq. 12:

W ¼ s � v
jjvjj ð12Þ

where v is randomly generated and s can be considered as a
hyperparameter.

The meta parameters are the number of network layers L and
the desired budget of BOHB. In our experiments, L is set to 20,
and the budget is set to 50.

4.3. Results and Analysis

We begin by comparing our proposed methods Automated
Layer-wise Randomized Feedforward Networks (ALR) to several
classical randomized feed-forward neural networks on smaller
datasets, and also conduct ablation experiments to illustrate the
influence of various parameters on the final performance. The abla-
L SNN Resnet ALR

66.57 64.66 67.14
84.76 84.84 85.25
89.03 87.96 90.26
98.38 92.82 99.12
83.99 81.73 83.00
91.53 90.21 92.93
88.05 85.43 84.44
99.12 99.12 99.12
88.07 87.16 82.51
51.90 51.36 55.50
52.48 53.96 76.16
91.14 89.19 92.19
76.40 71.60 76.80
97.26 97.62 96.68
86.92 87.23 86.83
93.07 92.54 93.07
90.09 85.57 84.57
100.00 100.00 100.00
98.91 99.64 99.39
99.78 99.40 98.70
82.35 80.00 85.45
95.29 93.73 95.69
97.11 96.27 98.27
97.00 96.69 97.48
95.83 96.05 97.08
97.06 97.08 97.83
81.25 79.75 80.50
72.75 51.50 73.25
81.25 80.00 84.50
97.51 98.11 98.38
91.96 91.46 93.97
94.09 94.61 94.26
75.60 77.20 78.80
95.49 95.84 97.23
91.00 90.55 91.20
99.90 99.92 99.92
78.35 76.29 77.11
98.16 97.99 96.18
78.36 77.27 79.09
98.05 97.35 98.11
90.98 92.23 90.98
84.80 83.60 86.88
86.08 85.84 86.00
63.00 61.50 66.00
63.73 63.07 65.60
63.07 54.99 58.22
86.47 85.02 87.21
2.97 3.72 1.87



Fig. 4. The accuracy of various deep approaches and ablation results. The horizontal axis represents the different data sets and the vertical axis indicates the accuracy rate.
The different coloured scatters represent different algorithms. The proposed algorithm (ALR) are highlighted with larger size.

Table 6
Pairwise statistical comparison of all mentioned algorithms.

BLS SCN RVFL HELM ResNet SNN dRVFL edRVFL edRandom AL-RVFL ALR

SCN - - - - - - - - -
BLS - - - - - - - -

RVFL + - - - - - -
HELM + + - - -

ResNet + + - - -
dRVFL + + + - -

edRVFL + + + - -
SNN + + + -

edRandom + + + + + -
AL-RVFL + + + + + + + -

ALR + + + + + + + + + +

* + means the method in the corresponding row is statistically better than the method in the corresponding column. Similarly, - indicates that the method in the
corresponding row is statistically worse than the method in the corresponding column.
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tion experiment is divided into two sections. The results are given
in Table 4 and Fig. 3. From the figure, we can visualise that our
method is useful in achieving the highest accuracy rates on most
data sets. The first is built on the ensemble deep framework and
contains a variety of randomized networks topology situations,
called as edRandom. We do not employ layer-wise training or offer
sample-level attention in this experiment, the architecture of each
hidden layer is randomly picked. The other approach, termed AL-
RVFL, uses just RVFL as the base architecture but employs auto-
mated layer-wise training.

We can deduce from this basic experiment that the proposed
ALR model is viable. From the results of AL-RVFL, we can conclude
that the layer-wise training method is significantly effective, the
average ranking and average accuracy ranked second out of nine.
We can reasonably speculate that having separate hyper-
parameters for the different hidden layers is beneficial to the effec-
tiveness of the framework. As seen by the final findings of ALR, the
integration of different backbone networks guided by BO signifi-
cantly improves the results. This demonstrates the need of consid-
ering whether to establish direct linkages and alter the output of
certain hidden layers.

Moreover, we compare the proposed ALR approach against
other neural networks on the broader datasets, and all training sets
in this experiment have sample sizes greater than 1000. The elab-
orated results are given in Table 5 and Fig. 4. Our method is supe-
rior to the other two neural network baselines.
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Additionally, we present results from pairwise comparisons in
Table 6. The absence of an item indicates that there is no statisti-
cally significant difference noticed. The sign + indicates that the
technique in the adjacent row is statistically superior to the
method in the adjacent column; the symbol � indicates that the
method in the adjacent row is statistically inferior to the method
in the adjacent column.
5. Conclusion

We suggested an Automated Layer-wise pipeline in this study
that may be used to replace the original ensemble randomized
neural network training process with enhancing performance. By
the help of sample-wise attention, we may increase the capacity
of the randomized neural network implicitly and therefore
improve performance. And to the best of our knowledge, this is
the first work integrated various randomized feed-forward neural
network architectures into one framework. We outlined the dis-
tinctions between randomized networks, the main difference
between which lies in the representation of the direct link. The
fusion of different networks can improve the stability of the model,
especially in the ALR pipeline. Additionally, an efficient hyper-
parameter optimization tool, such as Hyperband with Bayesian
Optimization, can also have a significant effect on the model’s per-
formance. Based on empirical evidence evaluated on a diverse col-
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lection of benchmark tabular datasets, it has been shown that deep
ensemble randomized networks provides improved performance
with automated layer-wise solution.

Our further research will first concentrate on more robust
methods of hyper-parameter optimization. The current pipeline
is quite sensitive to the range of hyper-parameters, and we need
a more reliable method for optimizing the range of hyper-
parameters based on the property of datasets. We are also explor-
ing how the ALR pipeline can be adapted to other tasks such as
regression, time series prediction, etc. Simultaneously, there are
other details of our model that need consideration, such as the
selection of similar samples. A good selection strategy enables us
to distinguish samples more accurately, hence determining the
hidden layer’s inputs and optimizing performance.
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