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A B S T R A C T   

Objectives: In safety assessment, studies with no events are a frequent occurrence when conducting meta- 
analyses. The current approach in meta-analysis is to exclude double-zero studies from the synthesis. In this 
study, we compared the performance of excluding and including double-zero studies. 
Methods: A simulation with 5000 iterations was conducted based on the real-world dataset from Cochrane re
views. The true distribution of the rare events rather than normal distribution for the effects were used in the 
data generating mechanism to simulate aggregate meta-analysis data. We used Doi’s inverse variance hetero
geneity (IVhet) model for the meta-analyses with continuity correction (of 0.5) to include double-zero studies 
and used the odds ratio effect size. The performance of including versus excluding double-zero studies were then 
compared. 
Results: Generally, there was much larger mean squared error when double zero studies were excluded than when 
double-zero studies were included. The coverage when studies were excluded rapidly deteriorates as heteroge
neity increased, while remained at or above the nominal level when double-zero studies were included. When 
there were very few double-zero studies, the performances was almost the same when including or excluding 
these studies. Subgroup analysis showed that, even for meta-analyses with unbalanced sample size across the two 
arms, including double-zero studies improved performance compared to when they were excluded. 
Conclusions: Including double-zero studies in meta-analysis improved performance substantively when compared 
to excluding them, especially when the proportion of double-zero studies was large. Continuity correction with 
use of the IVhet model is therefore a good solution to deal with double-zero studies and should be considered in 
future meta-analyses.   

1. Introduction 

Studies with no events are a frequent occurrence when conducting 
meta-analyses of binary outcomes. Typically, a study with no event in 
one of the arms is referred to as a single-zero study, while with no events 
in both arms is referred as double-zero study. Suppose we consider a 
two-arm trial with interventions A and B and say the the outcome of 
interest is fracture; if investigators did not observe any fracture in arm A, 
but two fractures in arm B, the study is then considered a single-zero 
study; if no fracture events occurred in both arms A and B, it is then a 
double-zero study. As estimated by a previous survey, about 34% of the 
Cochrane Reviews on binary outcomes contain studies with no events; 

this means, on average, for every three meta-analyses of binary out
comes there would be one containing studies with no events in one or 
both arms [1]. 

Methods based on a two-stage framework are the most commonly 
utilized methods in dealing with studies with no events. These include 
the continuity correction, the Peto’s odds ratio (OR), and the Mantel- 
Haenszel (MH) method [2,3]. The problem with the Peto’s and MH 
method is that when using relative measures of effect (e.g. the OR), the 
point and variance estimators cannot be defined for double-zero studies 
[4,5]. Therefore, in most of the existing meta-analytical software (e.g. 
RevMan) and packages (e.g. metan for Stata) studies with no events in 
both arms are by default excluded from the meta-analysis, even though a 
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continuity correction can be applied [6,7]. The main reason for exclu
sion of these studies from meta-analysis is that these studies are 
considered to contain no information in terms of the conditional likeli
hood theory [8,9], but this ignores potential evidence that suggests that 
excluding studies with no events in both arms could lead to some sta
tistical problems and also selection bias (e.g., publication bias) [7,10]. 
For example, in trials with a randomization ratio of 1:1, when there are 
no events in both arms, these studies provide evidence that there is no 
difference in the risk of the outcome (e.g. an adverse event) between 
interventions [5]. Thus, ignoring the evidence from such studies may 
adversely impact evidence informed decision-making. 

In a previous study, Xu et al. used a one-stage method to demonstrate 
that double-zero studies may not necessarily be non-informative and 
excluding such studies may alter conclusions [10]. However, two-stage 
methods are more commonly used in meta-analyses [7], and the conti
nuity correction for studies with no events is one of the most common 
methods used to estimate the OR and its variance [11]. This could be 
even more attractive as a solution since the continuity correction may be 
the second order approximation of the true OR [12], and the OR has 
been strongly recommended as the relative measure of choice for meta- 
analysis [13,14]. The only other study that investigated this was the 
study by Cheng et al [15]. who used a continuity correction with the MH 
and Peto’s OR methods for studies with no events, and concluded that it 
is recommended to include studies with no events when there is no 
treatment effect (OR = 1), but exclude studies with no events when there 
is a treatment effect (OR∕=1). However, their simulation was not 
convincing because it assumed a normal distribution for the expected 
study effects, which for meta-analyses of rare events, is not a reasonable 
assumption, especially when zero-events are involved and is unlikely to 
be valid in practice [16,17]. 

Therefore, we repeated the simulation study using a different data- 
generation mechanism that makes no such assumptions about the dis
tribution of the expected study effects (instead, we used their true dis
tribution). Since the distributional assumption is made to try to mitigate 
overdispersion when studies are heterogeneous, we used a meta-analytic 
model to synthesize data that avoided the need for such an assumption 
when heterogeneity was present. We now present the comparison of 
performance between excluding and including studies with no events, 
the latter after applying a continuity correction and compare the per
formance of the meta-analytic estimator. 

2. The continuity correction 

The continuity correction is one of the most widely used methods to 
deal with studies with no events in published meta-analyses [7,18,19]. 
Suppose we denote a, b, c, d in a 2 by 2 table, where a + b = n1, c + d =
n0, the OR is then estimated as ad/bc, with the variance of LnOR as 1/a 
+ 1/b + 1/c + 1/d. A correction element, Δ, is added to each of the cells, 
so that we then have an approximate estimate of the LnOR as follows 
[12]: 

LnORΔ = Ln
[(a + Δ

b + Δ

)/(c + Δ
d + Δ

) ]
= Ln

(a + Δ
b + Δ

)
− Ln

(c + Δ
d + Δ

)

Haldane suggested that use of 0.5 as the correction (Δ) applied to 
each cell can eliminate the first order bias term and thus when Δ takes 
the value of 0.5, it could be the second order approximation of LnOR 
[18]. Under the continuity correction, the approximate estimates are: 

Ln(ORcc) = Ln
(a + 0.5)(d + 0.5)
(b + 0.5)(c + 0.5)

Var(LnORcc) = 1/(a+ 0.5)+ 1/(b+ 0.5)+ 1/(c+ 0.5)+ 1/(d + 0.5)

This method works when a = 0 or c = 0 (i.e., single-zero-events), and 
even when a = c = 0 (i.e., double-zero-events). The Peto’s OR, does not 
require a continuity correction for single-zero studies because of the 
nature of the Peto’s estimator of effect and variance [2]. These 

procedure work well when single-zero studies are involved, while for 
double-zero studies, in principle, it is not applicable as the OR and 
variance cannot be defined with the MH or Peto methods [20,21]. Thus, 
in most of meta-analytical software and packages, double-zero studies 
are automatically dropped from the synthesis. We therefore do not 
consider the Peto’s and MH methods in this paper. 

3. Simulation 

3.1. Data generating mechanism 

In Cheng’s study [15], for the data generation they assumed a normal 
distribution of the true effect; in brief, they first set the event risk (p0) in 
the control arm, and assumed the treatment effect θ~(μ,τ2), where both 
μ (the expected effect) and τ2 (the between-study variance) were fixed 
and the variance (within-study error) of μ was determined by the sample 
size they assumed for each study. Based on p0 and the sample size, they 
obtained the events in the control arm (r0); and based on θ, they ob
tained the event risk in the treatment arm (p1) and further obtained the 
events in the treatment arm (r1). 

As we stated before, the normal distribution assumption of varying 
but similar expected effects is an assumption made to mitigate over
dispersion in the variance estimation, but which is not appropriate [16]. 
Therefore, in the current study we used a different simulation strategy 
where we first computed a fixed value for p0 and the OR and then p1 was 
derived from them. For the “true” study event risk of the control arm p0, 
we set three scenarios (0.01, 0.05, and 0.1), and the study event risk of 
treatment arm p1 was calculated from the fixed simulation true effect 
(log OR) and p0. 

The “study” sample size was generated from a uniform distribution 
based on the real-world data from the Cochrane Database of Systematic 
Reviews. The 25th and the 75th percentile of the real-world study arm 
sizes were used and the sample size of the treatment and control arms 
were obtained from a uniform distribution as follows n1~uniform 
(15,58); n0~uniform(15,50) [10,20]. Next we computed the cell counts 
for a 2 × 2 table for the study based on the generated p1, p0, n1, and n0. 
Next, we introduce systematic and random error simultaneously by 
subjecting the rescaled cell counts to a beta distribution as follows: 
(p1e~beta(a/f,b/f)) & (p0e~beta(c/f,d/f)) to generate new values for 
study event risks (p1e, p0e) and where f is a scaling factor that adds sys
tematic error when used to generate event risks via the beta distribution. 
The new event risks are then used to generate the final cell counts for the 
study from the sample size already defined. The scaling factor used 
above was derived from a hypothetical study quality count (Qi) (see 
details in the supplementary material) [22]. 

Using these parameters, we simulated the 2 by 2 table data for each 
study included in a meta-analysis. The following simulation settings 
were applied:  

i. number of studies included in the meta-analysis, k, set at 5 or 10;  
ii. event rate for control arm, p0, set at 0.01 or 0.05 or 0.1;  

iii. and two simulations were run with either true OR set at 1 or 2; 

Therefore, there were 2*3*2 = 12 scenarios and for each scenario, 
we had 5000 iterations (simulated 5000 meta-analyses) in each of 10 
runs, the latter with different amount of heterogeneity as determined by 
the scaling factor f. Each run thus included different amounts of 
between-study variance. We conducted the simulation study and 
compared the performance of either: 1) excluding studies with no 
events; 2) including studies with no events after applying a continuity 
correction. 

In addition, we calculated the sample size ratio of each study and 
defined a study with the ratio ≥ 2 or ≤ 0.5 as an “unbalanced” study 
[19,23]. Previous methodological studies defined a meta-analysis of 
unbalanced studies when all the included studies were unbalanced in the 
simulation setting [15,19,24]. However, this is unrealistic since 
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balanced and unbalanced studies co-exist in a meta-analysis [25]. 
Therefore, in this study, we defined a meta-analysis of unbalanced 
studies when ≥50% of the studies were unbalanced. Based on this 
definition, we further divided the meta-analyses into balanced or un
balanced, and compared the performance of excluding vs including 
double-zero studies in these two subgroups. We did not consider Peto’s 
OR and MH OR since these two methods are not feasible for studies with 
double-zero studies. In Cheng’s study, the DerSimonian and Lairds 
random-effect (RE) model [26] was used to pool data within meta- 
analysis, but as stated above this assumes that expected study effects 
are normally distributed, and given that Cheng et al.’s simulation also 
generated data under this assumption this creates a self-fulfilling 
prophecy where data are generated the way they will be analyzed. To 
avoid the latter as well as to avoid the pitfalls of such an assumption (see 
above) resulting in poor performance of random effects models under 
heterogeneity [16,27,28], we only consider the use of Doi’s inverse 
variance heterogeneity (IVhet) model to synthesize the intervention 
effects across studies [29]. Let’s assume wi indicate the inverse variance 
weight for the ith study, θi the treatment effect of the ith study, si

2 the 
within-study variance of the ith study, and τ2 the method of moments 
based between-study variance, then the IVhet model effect estimate and 
variance are computed as: 

θ̂ IVhet =
∑k

i=1
wiθi,where wi =

1
si

2

/
∑k

i=1

1
si

2  

Var(θ̂ IVhet) =
∑k

i=1
w2

i si
2ψi =

∑k

i=1
w2

i

(
si

2 + τ2)

Here ψ i is the study-specific overdispersion correction which can be 

calculated as si
2+τ2

si2
. 

3.2. Statistical performance 

We consider four parameters to measure the statistical performance 
of the meta-analytic methods, they were i) bias2 = (θ̂ − θ)2, ii) mean 
squared error (MSE=bias2+ Var

θ̂
), iii) width of 95% confidence interval 

(ub − lb), and iv) coverage proportion [30]. The method with the 
smallest MSE and closest to nominal coverage was considered to have 
the best performance. The exact computations used have been reported 
elsewhere [16]. 

Here we did not consider bias alone as an important parameter 
because the primary purpose of a meta-analysis is to trade off increase in 
bias against reduction in variance. This is also the reason why statisti
cians do not use the arithmetic mean (i.e., unweighted or natural mean) 
in meta-analysis, although it is an unbiased estimator [31]. The data 
generation and analyses were conducted in Stata software (Stata 14/SE, 
StataCorp, USA) with code in the supplementary material. 

4. Results 

4.1. Excluding versus including studies with no events 

Figs. 1 and 2 present the performance comparison between excluding 
and including double-zero studies without (OR = 1, Fig. 1) and with (OR 
= 2, Fig. 2) a treatment effect, with true risk in the control group = 0.01, 
and the number of studies = 10. In both scenarios, the results were 
similar. There was smaller bias when studies with no events were 
excluded; however, it presented much larger MSE than when studies 
with no events were included. Despite having a wider confidence 

Fig. 1. Performance comparison between excluding (solid lines) and including (dashed lines) studies with no events when there is no treatment effect (OR = 1).  
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interval, the coverage when studies were excluded rapidly deteriorate as 
heterogeneity increased, while the coverage remained above the nom
inal level (i.e., 95%) when studies with no events were included. 
Overall, under these scenarios, including studies with no events in both 
arms performed substantively better than excluding studies with no 
events. 

4.2. Varying control event rates 

Figures S1 (OR = 1) and S2 (OR = 2) present the performance when 
the control event rate was set at 0.05, while Figs. S3 (OR = 1) and S4 
(OR = 2) when the control event rate was set at 0.1. When OR = 1 (S1 
and S3), there was almost unbiased point estimation (bias <0.002) for 
both including and excluding studies with no events. Including studies 
with no events had a smaller MSE, while the coverage was at the 

nominal level across the different levels of heterogeneity for including 
and excluding studies with no events (due to the wider confidence in
terval for excluding studies). When OR = 2, the bias of including studies 
with no events increased (bias ranged from 0.01 to 0.03), the coverage 
remained at the nominal level for including and excluding studies with 
no events, and again, including studies showed smaller MSE. 

To explore the reasons of the discrepancy between the coverage 
when excluding studies with no events with control event rate of 0.01 
(poor coverage) versus 0.05 and 0.1 (adequate coverage), we summa
rized the median I2 for the 10 runs (Table 1) and the proportion of 
studies with no events for the different control group event rates 
(Table 2). We observed that excluding studies with no events in both 
arms (compared to including studies) presented larger between-study 
variance in all the scenarios, and this became more prominent when 
the control event rate was 0.01 (Table 1). In addition, when the control 

Fig. 2. Performance comparison between excluding (solid lines) and including (dashed lines) studies with no events when there is treatment effect (OR = 2).  

Table 1 
The mean I2 from runs 1 to 10.  

Run number 
(increasing 
amount of 
heterogeneity) 

Mean I2 (%) (OR = 1) Mean I2 (%) (OR = 2) Mean I2 (%) (OR = 1) Mean I2 (%) (OR = 2) Mean I2 (%) (OR = 1) Mean I2 (%) (OR = 2) 

Event risk = 0.01 Event risk = 0.05 Event risk = 0.1 

Excluding Including Excluding Including Excluding Including Excluding Including Excluding Including Excluding Including 

1 3.2 0 1.4 0 1.5 1.2 2.2 2.2 4.4 4.4 5.6 5.6 
2 6.8 0.1 5.5 0.3 11.7 8.3 14.5 12.8 22.2 21.1 26.7 26.2 
3 8.2 0.25 6.6 0.6 17.5 11.6 20.7 17.5 31.2 28.7 36.3 35.1 
4 8.2 0.36 8.3 0.8 19.9 13.1 24.7 20.5 36.5 32.7 41.3 39.4 
5 8.3 0.43 8.7 1 21.7 13.9 25.9 21.3 39.1 35 45.6 43.4 
6 9.1 0.6 8.9 1.2 22.9 14.6 26.7 21.8 41.2 36.4 47.4 44.8 
7 8.9 0.83 9.3 1.3 25.2 15.7 28.8 23.5 43.7 38.9 49.6 46.9 
8 8.5 0.9 9.5 1.6 26.7 16.6 30.8 24.9 44.1 38.9 50.6 47.8 
9 8.8 1 9.6 1.7 27.9 17 31.3 24.9 45 39.6 51.5 48.6 
10 7.9 1 9.2 1.9 29.2 18.4 31.9 25.4 46.5 40.8 51.3 48.4  
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event rate was 0.01, the median proportion of double-zero studies was 
67% while it decreased to 20% and 0% when the control event rate 
increased to 0.05 and 0.1, respectively (Table 2). These observations 
explained why excluding double-zero studies had poor coverage and 
large MSE in the simulation when control event rate was the smallest - 
excluding studies led to substantially larger heterogeneity and as the 
proportion of double-zero studies in a meta-analysis increased, the in
crease in heterogeneity became more prominent. This also explained 
why when the control event rate was 0.05 and 0.1 (small proportion of 
double-zero studies), the performance of excluding or including double- 
zero studies was similar. 

For the scenarios when number of studies was set as 5, we observed 
similar results as with 10 studies per meta-analysis (Figs. S5 and S6). 

4.3. Varying sample size ratio (balanced and unbalanced studies) 

When the baseline risk was 0.05 and 0.1 there were few double-zero 
studies in most of the meta-analyses (Table 2), thus we focused on the 
scenarios where the baseline risk was 0.01. Figs. S7 (OR = 1) and S8 (OR 
= 2) present the performance of excluding versus including studies with 
no events when studies were balanced in the meta-analysis; while 
Figs. S9 (OR = 1) and S10 (OR = 2) when studies were unbalanced. Our 
results suggest that for both, balanced and unbalanced meta-analyses, 
including studies with no events in both arms outperformed excluding 
studies. 

4.4. Adding 0.5 to all studies 

In response to a reviewer’s suggestion, we added a simulation that 
compared an alternative method, namely, adding 0.5 to cells in all 
studies. This is because adding 0.5 has been proposed for reducing bias 
in the empirical logit method regardless of the occurrence of zero events 
[32–34]. Figs. S11 (OR = 1) and S12 (OR = 2) present the results. Our 
results suggest that adding the 0.5 continuity correction to all studies 
performed the best amongst all the three methods, which further rein
forced our findings that including double-zero studies outperforms 
excluding them. 

5. Example from the literature 

We used data from a Cochrane review investigating the effect of 
antibiotic use for preventing complications in children with measles 
[35]. Two outcomes, otitis media and mortality, were selected for the 
review. For otitis media, five studies were included of which one was a 
double-zero study and one was a single-zero study. For mortality, seven 
studies were included of which five were double-zero studies and one 
was a single-zero study. Both could be classified as “MA-MZ” (meta- 
analysis with a mixture of zero-events study types) according to our 
framework [1]. We used the continuity correction under Doi’s QE [36] 
and Doi’s IVhet [29] and the REDL [26] models to deal with zero-events 
for both single-zero and double-zero studies. Figs. 3 and 4 present the 
results of including and excluding double-zero studies respectively. For 
otitis media, when including (ORIVhet = 0.43; 95%CI: 0.20, 0.93) and 
excluding (ORIVhet = 0.42; 95%CI: 0.19, 0.91) the double-zero studies, 
the pooled ORs were very similar. With the QE model, the results were 
also similar between including and excluding studies, but with much less 
certainty than with the IVhet model. 

For the mortality outcome, the pooled OR when including (ORIVhet =

1.45; 95%CI: 0.40, 5.20) and excluding the 5 double-zero studies 
(ORIVhet = 3.12; 95%CI: 0.48, 20.13) significantly differed indicating the 
problem with excluding double-zero studies, and it is likely that bias was 
introduced by exclusion of studies. With the QE model, including or 
excluding the 5 double-zero studies, resulted in a pooled OR of 1.02 
(95%CI: 0.14, 7.57) and 3.12 (95%CI: 0.48, 20.13) and again it is 

Table 2 
The proportion of double-zero studies in simulated meta-analyses.  

Proportion of double-zero 
studies 

OR = 1 OR = 2 

Baseline risk = 0.01 
66.7% (IQR: 55.6% to 
80%) 

50% (IQR: 40% to 
66.7%) 

Baseline risk = 0.05 
20% (IQR: 10% to 
28.6%) 

10% (IQR: 0% to 
16.7%) 

Baseline risk = 0.10 0% (IQR: 0% to 11.1%) 
0% (IQR: 0% to 
10.0%)  

Fig. 3. Forest plot of a real-world example, including double-zero studies.  
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evident that bias adjustment fails when double zero studies are 
excluded. Excluding double-zero studies from the meta-analysis may 
have substantial impact on the effect estimates, and the impact is closely 
associated with the proportions of double-zero studies within a meta- 
analysis. Of note the IVhet and RE models concur in this example 
because I2 = 0% in all meta-analyses and the limitations we outlined for 
the RE model kick in as heterogeneity increases. 

6. Discussion 

In the current study, we replicated the simulation study by Cheng 
et al. [15] but with a more suitable data generating mechanism to 
compare the statistical properties of including studies with no events 
versus excluding them. Our results suggest that including studies with 
no events in both arms with a continuity correction performed better 
than excluding them, and this is consistent with Cheng’s results. While 
we further demonstrated that even when there is a treatment effect, 
including zero-event studies has better performance than excluding 
them, which differs from Cheng’s conclusion. We also found the 
advantage of including double-zero studies, especially when the pro
portion of double-zero studies in a meta-analysis is large, as excluding 
them would increase the between-study variance and further lead to 
inflated MSE and serious drop in coverage. 

Based on our findings, excluding studies with no events in both arms 
in meta-analysis may not be the most appropriate choice. These findings 
are consistent with our previous study that applied one-stage methods to 
compare the statistical performance of including versus excluding such 
studies [10]. One concern about studies with no events is that the 
observed events may largely mislead when the risk in both arms is 
extremely small. For example, suppose there is a 1:1 design trial with a 
sample size of 100 and true event risk in both arms are 0.005 and 0.001, 
then the true OR ~ 5. The observed events for both arms are likely to be 
0, which makes the estimated OR = 1, which then brings random error 
into the meta-analysis. However, we argue that each study faces the 
problem of random error, while the method of meta-analysis in
corporates variability due to such error into the results. It could be ex
pected that when random and systematic error are well-addressed by 

appropriate methods, the results of a meta-analysis are still more reli
able, regardless of the amount of error brought by a single study. 

The use of a continuity correction to deal with zero-event studies is 
debated for evidence synthesis. This opinion, to some extent, is correct 
as it would lead to large amount of bias for unbalanced studies [19,37]; 
While we argue that this opinion is based on the extreme assumption 
that all included studies are unbalanced, while in the real-world, such a 
situation is extremely rare as meta-analyses generally contain both 
balanced and unbalanced studies [25]. Based on a more reasonable 
definition of “unbalanced” meta-analysis, our simulation results suggest 
that continuity correction under the IVhet model has good performance, 
especially when the events are extremely rare. 

Another concern with the continuity correction is that although 
adding 0.5 corrects the first-order bias as compared with not using this 
correction, it may raise a second-order bias such that the correction may 
not be sufficient [33]. Statisticians have suggested alternative correc
tions such as add − 0.5 for weighted empirical logit or add 0.25 to 
minimize the bias of the slope [36,37]. However, none of these correc
tions suit well for all situations, as Gart et al. [33] pointed out “It is not 
possible to recommend a universal correction, …, sometimes 1/2 is best, other 
times 1/4, 0, -1/2 is best…”. Further review authors may consider 
sensitivity analysis with divergent correction elements. 

For the problem of dealing with double-zero studies in meta-analysis, 
the current recommendations from the Cochrane Collaboration is to 
exclude them from the meta-analysis [21], and most meta-analytical 
software and packages exclude these studies by default. However, the 
results of the current study suggest that studies with zero-events are not 
necessarily non-informative and simply excluding them may produce 
biased pooled estimates. Our findings concur with the results and rec
ommendations from related studies [5,38–47]. 

7. Conclusion 

Based on current evidence, including double-zero studies with a 
continuity correction performed substantively better than excluding 
them, especially when the proportion of double-zero studies was large. 
Therefore, we recommend that double- zero-events studies are included 

Fig. 4. Forest plot of a real-world example, excluding double-zero studies.  
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in future meta-analysis by applying a continuity correction of 0.5 
(instead of the current practice of excluding them from the synthesis) 
and perhaps extending the continuity correction to all studies when 
there are double-zero studies in the mix. 
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