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ABSTRACT
The field of digital image and video forensics has recently seen
significant advances and has attracted attention from a growing
number of researchers given the availability of imaging function-
alities in most current multimedia devices at no cost including
smartphones and tablets. Photo response non-uniformity (PRNU)
noise is a sensor pattern noise characterizing the imaging device.
However, estimating the PRNU from smartphone videos can be a
challenging process because of the lossy compression that digital
videos normally undergo for various reasons in addition to other
non-unique noise components that interfere with the video data.
This paper presents a new filtering technique for PRNU estimation
based on the three-dimensional discrete wavelet transform followed
by a 3D wiener filter. The rationale is that the 3D filter can filter
out the compression artifacts along the temporal dimension in a
more effective way than simple averaging. Experimental results on
a public video dataset captured by various smartphone devices have
shown a significant gain obtained with the proposed approach over
the well-known two-dimensional wavelet-based Wiener approach.
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1 INTRODUCTION
Nowadays, many organizations and individuals use digital devices
in everyday life due to their undeniable advantages. A prime ex-
ample of such device is smartphone, which includes a camera for
taking good quality images /videos. As a result, many videos are
commonly shared through the internet without applying any au-
thentication system. This may cause serious problems, particularly
in circumstances where the videos are an important component of
the decision-making process for example, child pornography and
movie piracy. Motivated by this, the present work investigates the
performance of estimating Photo Response Non-Uniformity (PRNU)
for smartphone videos and developing new denoising approach to
improve the performance of digital source video identification. The
PRNU noise is a sensor pattern noise characterizing the imaging de-
vice and it has been broadly used in the literature for image authenti-
cation and source camera identification. The abundant information
that the PRNU carries in terms of the frequency content makes it
unique, and therefore suitable for identifying the source camera and
detecting forgeries in digital images. However, the PRNU estimation
procedure is faced with the presence of image-dependent informa-
tion as well as other non-unique noise components [1.]. The field
of image forensics is involved with image authentication, integrity
verification and Source Camera Identification (SCI) by processing
digital images [1.]. Nevertheless, video forensics is involved with
video recorder identification and video authentication using digital
videos. Over the past decade, a large number of attempts to extract
features which characterize the digital device using the Photo Re-
sponse Non-Uniformity noise (PRNU) obtained from digital images
was proposed. It is important to emphasize the fact that the PRNU
characterise imperfections caused by the manufacturing process
due to the lack of homogeneity of the silicon area in the imaging
sensor [2.]. The unique noise caused by sensor imperfections is a
weak signal of the same dimensions as the output of the image or
video, indicated here by K ∈ RW×V , where W × V represent
the dimension of the sensor. Despite the fact that the sensor can be
different from one device to another, the final digital image output
can be expressed as shown in (1) [3.],[4.]. Where J0 denotes to the
original video frame, J0K is the PRNU term and Θ a random noise
factor. In the literature, there has been a rising body of research
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based on PRNU to identify the source of digital images. A technique
to estimate the PRNU-pattern was proposed by [3.].

J = J0 + J0K + Θ (1)

The residual signal r_i is calculated by denoising an image J_i
using wavelet-based de-noising filter. Next the residual signal is
obtained from an image J_i as r_i=J_i-F(J_i ) where the F(J_i ) is the
de-denoised image. The PRNU, K, is the result of averaging N of
the residual signal, where N refer to refers to the number of images
used to estimate the PRNU. In [4.] PRNU estimation method relying
on Maximum Likelihood Estimator (MLE) for SCI was presented.

K =

∑N
i=1 ri Ji∑N
i=1 (Ji )

2 (2)

In [5.] , an improved locally adaptive DCT Filter followed by a
weighted averaging [6.] to exploit the content of images carrying
the PRNU efficiently was proposed. Although numerous of PRNU
estimation techniques were developed for digital images [3.-12.]
, less research has been conducted towards the forensic analysis
of videos. Chen et al. [13.] were the first authors to extend their
PRNU technique [3.] from an image to video and demonstrated that
PRNU can be utilized in order to link a video to its source camcorder
effectively. In this method, the PRNUs were estimated from both
(training and query) video clips using MLE as shown in (2). Then,
the peak-to-correlation energy (PCE) is utilized as measurement
to detect the presence of PRNU. The key theory behind PCE is to
take into account the correlation between the PRNU and shifted
versions of the noise residue to lessen the similarity which may be
present between the PRNU of a specific digital device and the noise
residue of an image taken by a different camera. The PCE measure
is defined in [4.] and [13.] as:

PCE (x ,y) =
C2
xy (0, 0)

1
ω×v−|A |

∑
m1,m2<AC2

xy (m1,m2)
(3)

where A is a small neighbor area of size 11 × 11 around the central
point at (0,0), |A|is the number of pixels in A, and Cxy (m1, m2)
represents the circular cross-correlation. Additional approach that
considers only the non-textured frames in estimating the PRNU
was proposed in [14.]. This proposed technique applied several
texture measures which was obtained from the Grey Level Cooc-
currence Matrix (GLCM) to split the frames into the textured space
and non-textured space using an unsupervised learning process. In
[15.] confidence weight PRNU based on image gradient magnitudes
is proposed in order to improve PRNU estimation and evaluate the
impact of video content on the performance of Chen et al. [13.]. In
[16.] the video frames are resized to 512×512 using bilinear inter-
polation and the PRNU is extracted only from the green channel
which is the noisiest channel among the RGB video. Existing video
coding standards such as MPEG, H264 uses three types of video
frames, which are intra-coded frame (I-frame), predictive coded
frame (P-frame), and bi-predictive coded frame (B-frames) [15.].
Chuang et al. [17.] and Goljan et al. [18.] analysed the video com-
pression impact on PRUN estimation in the compressed domain.
[17.] reported that extracting the PRNU from I-frames is more reli-
able than P-frames and B-frames. In [19.], a PRNU-based technique
for out-of-camera stabilized videos, such as rotation and cropping
processing was proposed. In this technique also 50 I-frames are

extracted from each video to estimate the PRNU. A smartphone
device may lead to rotate the video 180 degrees while recording
videos with rolling 180 degrees. The authors in [20.] are focused
on effect of cameras rolling, whether videos with several rolling
degrees, 0, 90, 180, and 270 degrees, can affect the PRNU analysis
or not. In [21.], a hybrid methodology that utilizes both videos and
still images were proposed to estimate the PRNU. In this technique,
the PRNUs were estimated from still images obtained by the source
device, while the query PRNU is estimated from the video and sub-
sequently linked with the reference to verify the possible match.
In [22.], the authors analysed some factors such as compression,
resolution and length of the video, which could influence a decrease
of the PRNU’s correlation value in videos. In [23.], the minimum
average correlation energy (MACE) filter [24.] was introduced to
reduce effect of heavily compressed in low-resolution videos. In
this technique, the reference PRNU was extracted from number
of videos, and then the MACE filter was applied for the reference
PRNU to reduce impact of noises on normalized cross-correlation
(NCC). Although there was previous research provided to enhance
the PRNU estimation for source smartphone identification, an effec-
tive method that taken into consideration the frame content is still
lacking. Moreover, existing techniques that takes into an account
the effect of lossy compression on the estimation of PRNU in the
compressed domain requires full access to the right decoder in order
to have separate I-frames at the estimation of the PRNU. This may
not be useful in real scenario since a considerable number of video
codecs applied in smartphones and released with different versions
as standalone applications. This work addresses the problem of
source smartphone video identification based on PRNU estimation
at the filtering stage. The traditional approaches [13.-17.] estimat-
ing the PRNU in digital videos using well-known two-dimensional
wavelet-based Wiener filter [25.]. In the rest of the paper, this fil-
ter is referred to as the “2D-WWF”. Compared to images, videos
include highly temporal correlation between frames and the lossy
compression artifacts can be very similar in the temporal dimension
between adjacent frames [26.]. Therefore, the 2D-WWF may not
be an efficient approach for video denoising as it relies on simple
averaging of the extracted noise residuals. In this work, a new filter-
ing method based three-dimensional wavelet-based Wiener filter
(3D-WWF) for efficient PRNU estimation is proposed. Experimental
results on a video dataset [27.], acquired by various smartphones,
have shown a significant gain obtained with the proposed 3D-WWF
over the 2D-WWF using different sizes of frames. The rest of this
paper is structured as follows; section 2 describes the proposed
method. Experimental results and analysis are provided in section
3. A conclusion is drawn in section 4.

2 PROPOSED PRNU ESTIMATION
APPROACH

The justification behind the proposed 3D filter is that the PRNU is
hard to be estimated in digital videos due to the lossy compression
nature in which digital videos are stored, distortions that mainly oc-
cur in textured and edged regions. Because the imperfections in the
silicon area of the imaging device remain unchanged while a video
is being recorded, the video frames should contain an identical
PRNU regardless of their different contents. However, because the
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Figure 1: High-level of proposed source Video smartphone identification and verification system.

compression artifacts are highly correlated across the consecutive
frames [26.], they can’t be removed effectively with the traditional
technique by a simple averaging of the 2D noise residuals. In the
3D transform, the filter considers these artifacts as a 3D noise.
Also, 3D DWT is used since the low-frequency and high frequency
coefficients of the 3D DWT could be analysed to obtain more statis-
tical properties of correlation among several successive frames [26.].
These procedures lead to reduce efficiently the effect of compression
in PRNU estimation. Figure 1 demonstrates the proposed 3D-WWF
for source smartphone video verification and identification system.
First, to estimate the smartphone PRNU, videos are filtered using
the proposed 3D-WWF. Then for each video, the residual signal
is calculated by subtracting the original 3D video from the 3D de-
noised version. Next the PRNU is estimated using (2) and saved in
a database to be used later for verification and identification. At
matching stage, the PRNU for query video is estimated by applying
the same process that has been used in PRNU extracting stage. For
identification, the query video PRNU will be compared to all avail-
able PRNUs using the PCE similarity measure as shown in (3). The
maximum PCE value is corresponding to the smartphone which has
been used to record the video. In smartphone verification, however,
the similarity between the PRNU and the query video PRNU of a
certain smartphone is compared to a particular threshold in order
to verify whether the video is recorded by that smartphone. The
3D filtering technique will be discussed in more detail in the next
subsections.

2.1 Three-Dimensional Wavelet Transform
DWT has been applied in image compression standard JPEG2000
[26.]. Also, DWT has played a significant role in the data analyzing
and de-noising ofMR images [28.]. The DWT convert a finite energy
signal to the scaled frequency domain. The orthogonal 1D DWT
could be written as

X (t) =
∑

k ∈Z
uj,o,kϕ j,o,k (t) +

∑jo
j=∞

∑
k ∈Z

w j,kψj,k (t), (4)

Where ϕ j0,k (t) = 2j ϕ(2j − k) refers to the scaling, ψj,k (t) =

2
j/2 ψ (2j t − k) is the wavelet function. Also, the inner products

uj,k = X ,ϕ j,k and w j,k = X ,ψj,k are the scaling and wavelet co-
efficients, respectively [29.]. The 3D DWT is a rapidly developing
research area, and it has been utilized in many fields such as seis-
mology, biomedicine, material science, remote sensing, etc. [28.].
The 3D DWT structure can be implemented as separate products
of 1D DWT by applying 1D DWT in the x, y and z directions. The

Video is firstly filtered along the x-direction which led to obtain
sub-bands L and H. Next, filters are utilized along to y- direction,
producing four decomposed sub-volumes: LL, LH, HL andHH. After
that every sub-volume is filtered along the z-dimension, resulting
in eight sub-volumes: LLL, LLH, LHL, LHH, HLL, HLH, HHL and
HHH as shown in Figure 2 [28.],[30.]. The 3D DWT structure has
advantages in analyzing changes of spatial and temporal informa-
tion simultaneously [26.]. Recently, the 3D DWT has been used
in video watermarking, video coding and video denoising. Video
and image denoising are crucial process as an initial stage in vari-
ous recognition, analysis, and detection systems, which take visual
input. Some Magnetic Resonance Imaging (MRI) and Computed
Tomography (CT), utilize a set of consecutively captured images,
which can be treated as 3D images, such images frequently includ-
ing larger redundancy than single 2D images. The results show that
filtering images as 3D data is more effective than using 2D filters
over every sub-image being an element of them [31.]. The authors
in [29.] reported that 3D wavelet improved the denoising results
in comparison with 2D wavelet measured in Peak Signal to Noise
Ratio (PSNR) and visually. The work [29.] compering 2D and 3D
version of three different filtering methods and the results have
shown that the 3D versions always outperform the 2D ones based
on the PSNR.

2.2 Three-dimensional wavelet-based Wiener
filter (3D-WWF) for PRNU estimation.

One of the commonly applied filters against image noise is the
Wiener filter, which can be used for estimating uncontaminated sig-
nal by minimizing the mean square error between the estimated and
the uncontaminated signal in a statistical sense [32.]. Most of tradi-
tional methods [13.-17.] applied the well-known two-dimensional
wavelet-based Wiener filter [25.]. With aim to reduce the effect
lossy compression on the PRNU estimation, this work uses an ex-
tended version of [25.] that treating video as 3D volume rather than
applying 2D filter over each video frame. Figure 3 illustrates the
main components of the proposed 3D filtering method. Firstly, a 3D
video is decomposed at specific level in each direction (row, column,
and slices). This process has been done by applying 1D DWT in
each direction. At the first decomposition level, eight sub-bands are
obtained (LLL, LLH, LHL, LHH, HLL, HLH, HHL and HHH ∈ T ),
where T is the index set of the wavelet coefficients that depends
on the decomposition level. It is worth mentioning that each video
is decomposed with multiple levels which is equal to 4. The 3D

126



ICMLT 2022, March 11–13, 2022, Rome, Italy Ashref Lawgaly et al.

Figure 2: Separable 3D Wavelet decomposition.

Figure 3: proposed 3D-WWF for Video smartphone identification and verification system.

fourth-level wavelet decomposition of the 3D video with the 8-tap
Daubechies quadrature mirror filter is computed. Next, the 3D de-
noised wavelet coefficients are achieved utilizing the proposed 3D
Wiener filter. This filter can be calculated for each sub-band as:

LLHW (x ,y, z) = LLH (x ,y, z)
σ̂ 2 (x ,y, z)

σ̂ 2 (x ,y, z) + σ 2
0

(5)

Let the coordinates for each sub-band over the horizontals, verticals
and slices be respectively denoted by x ,y, z . σ 2

0 is the variance of
white Gaussian noise (AWGN) and σ̂ 2(x ,y, z) refers to the estimated
local variance of the 3D coefficients for the noise-free video. The
maximum a posterior (MPA) estimation is applied as shown in (6)
to obtain the local variance, where q × q × q is the size of the 3D
mask Bq around (x ,y, z).

max ©­«0 ,
1
q3

∑
(x,y,z)∈Bq

LLH2 (x ,y, z) − σ 2
0
ª®¬ (6)

In [3.] the authors were suggested to set q ∈ {3, 5, 7, 9}. After
that the minimum value of the four variances as shown in (7) is
applied in (5). The value of σ 2

0 can slightly affect the performance
of the filter in PRNU extraction and it has been suggested that the
value of σ0 to be between 2 and 5 [3.].

σ̂ 2 (x ,y, z) = min
(
σ̂ 2

3 (x ,y, z) , σ̂ 2
5 (x ,y, z) , σ̂ 2

7 (x ,y, z) , σ̂ 2
9 (x ,y, z)

)
(7)

The denoised 3D video is then obtained by applying 3-D wavelet
reconstruction (inverse of wavelet transform) on the de-noised
coefficients. Next, the 3D residual signal is calculated by subtracting
the original 3D video from the 3D denoised version. Finally, the
PRNU is estimated using (2). Once the PRNU is estimated for every
single smartphone device, the above procedure is applied for the
query video (See Figure 1 ).

3 EXPERIMENTAL RESULTS
In this section, several experiments have been conducted to evalu-
ate the performance of the proposed system. The evaluation has
been conducted using the Video Authentication and Camera Iden-
tification Database (Video-ACID) [27.]. Table 1 shows the twelve
smartphones which have been used in our experiments. It is worth
mentioning that this experimental contains videos from 7 different
smartphones manufacturers, also, some of these videos are recorded
by same brand device such as Motorola Moto E, Nokia 6.1 and Sony
Xperia L1, letter A and B are used to differentiate between them. In
this work, the proposed 3D wavelet Wiener filter (3D-WWF) is com-
pared with the well-known wavelet-based Wiener filter(2D-WWF)
[24.] as has been used in [13.-17.]. Each PRNU for both estimated
from 50 videos recorded by the same sensor, while the remaining
videos are used in the testing stage. The estimation of PRNU has
been performed by considering cropped blocks from the frame with
different sizes, i.e., 512 × 512 and 720 × 720. The blocks are cropped
from the centre of the full-size frame without affecting their content.

127



Three Dimensional Denoising Filter For Effective Source Smartphone Video Identification and Verification ICMLT 2022, March 11–13, 2022, Rome, Italy

Table 1: Smartphones used in the experimental.

Smartphone name Symbol number of videos

Huawei Mate SE M01 257
Kodak EKTRA M02 239
LG X Charge M03 234
Motorola Moto E (A) M04 251
Motorola Moto E (B) M05 227
Nokia 6.1 (A) M06 234
Nokia 6.1 (B) M07 242
Samsung Galaxy J7 Pro M08 169
Samsung Galaxy S3 M09 230
Samsung Galaxy S5 M10 257
Sony Xperia L1 (A) M11 233
Sony Xperia L1 (B) M12 237

For fair comparison, each smartphone PRNU for both approaches
(the 2D-WWF Vs proposed 3D-WWF) is estimated using MLE as
shown in (2) and the similarity between two PRNUs are calculated
using PCE as shown in (3). Also, same parameters values have been
used in both approaches for example the value of σ0 and the decom-
position level are set to be 3 and 4 respectively for both methods.
The performance of the proposed filter is examined in two different
aspects, i.e., source identification and source verification.

3.1 Source smartphone identification:
The objective of this scenario is to identify the smartphone used
to record the video. Here, it is supposed that the video is recorded
by one of the available smartphones. Accordingly, a query video
is assigned to a specific smartphone if the corresponding PRNU
provides the highest PCE. Table 2 demonstrates the false negative
rate (FNR) for each smartphone using a frame size of 720×720. A
clear improvement is demonstrated in most of smartphones for
instance the FNR has been reduced from 62.02% to 3.80%and 36.36 %
to 2.14 %. Furthermore, as shown in table 2 the proposed 3D-WWF
lead a reduction in the overall FNR from 19.11% to 7.82%. Table
3 shows the false positive rate (FPR) for each smartphone using
both approaches (2D-WWF vs. the proposed). As can be seen, a
significant enhancement is obtained using the proposed 3D-WWF
in ten smartphones out of twelve. Also, the proposed 3D-WWF
lead to reduce the overall FPR to more than 50% less as shown in
table 3. In addition to this, the accuracy for each smartphone is
calculated as shown in (8) where TP, TN, FP, and FN are referred to
the number of true positive, true negative, false positive and false
negative respectively. The accuracy rate is defined as the proportion
of videos which are correctly found to have been recorded or not
to have been recorded by a given smartphone device. This contains
the correct acceptance of videos recorded by the smartphone as
well as the correct reject of recorded that were not acquired by the
smartphone. As shown in table 4, the proposed technique leads to
increase in the accuracy for most of the smartphones. For instance,
in M11 andM12 the accuracy has been increased compared with 2D-
WWF by about 3% regardless the frame size. Moreover, an increase
in accuracy is shown in M03 of up to 5%. Additionally, with frame
size 512×512 the overall accuracy is increased by more than 1% and

by 2 % when the frame size is equal to 720×720. (See table 4).

Accurary =
TP +TN

TP +TN + FP + FN
(8)

3.2 Source smartphone verification:
In this scenario, the task of the forensic analyst is to confirm
whether a smartphone has been acquired video evidence by a par-
ticular threshold. This threshold is representing the least possible
similarity among the reference PRNU of a smartphone and the
PRNU of a video acquired by the same device. In this section, the
Receiver Operating Characteristics (ROC) curve is utilised to ex-
amine the performance of the proposed filter. Twelve smartphones
are used to compute the PCE values of similarity between each
smartphone PRNU and the PRNU of video obtained by the same
smartphone, On the other hand, the PCE values of similarity be-
tween every smartphone PRNU and the PRNU of videos recorded
by different smartphones have been considered. Based on the pre-
vious procedures, the false positive rate and false negative rate for
each threshold value is computed and then ROC curve is drawn.
The ROC performance of the proposed 3D-WWF along with the tra-
ditional 2D-WWF is shown in Figure 4 and Figure 5. The ROC curve
shows that the proposed method performs better than 2D-WWF
approach. This is true for all frame sizes.

4 CONCLUSION
In this paper, an effective 3D filtering approach for source smart-
phone identification and verification has been proposed. In the
traditional approach, the noise residual signals are extracted from
video frames through the 2D wavelet Wiener filter and then av-
eraged to estimate the PRNU. However, lossy video compression
can lead to strong temporal correlation of artifacts between neigh-
boring frames then averaged to estimate the PRNU. Therefore, the
averaging process does not filter out the undesirable noise due to
lossy compression artifacts across the temporal dimension. The ra-
tionale behind the proposed approach is that the denoising process
should consider both temporal and spatial dimensions to reduce
the effect of lossy compression artifacts. This is achieved via a
new 3D wavelet Wiener filter operating in the 3D wavelet domain
(3D-WWF). An experimental evaluation covering two application
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Table 2: FNR (%) for each smartphone using the traditional 2D-WWF and proposed 3D-WWF.

frame
size

methods M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 overall
FNR

720×
720

2D-WWF 28.02 3.17 69.02 17.41 13.56 4.89 4.17 0.84 7.78 18.36 25.68 36.36 19.11
Proposed
3D-WWF

30.92 3.17 3.80 18.41 3.95 3.26 0.00 1.86 4.44 15.46 6.56 2.14 7.82

Table 3: FPR (%) for each smartphone using the traditional 2D-WWF and proposed 3D-WWF.

frame
size

methods M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 overall
FPR

720×
720

2D-WWF 0.35 4.60 0.35 1.10 1.52 1.14 1.04 1.63 0.89 3.89 6.76 0.79 2.00
Proposed
3D-WWF

0.10 2.47 1.04 0.55 0.64 0.94 0.05 1.05 0.49 0.65 0.30 0.84 0.76

Table 4: Accuracy (%) for each smartphone using the traditional 2D-WWF and proposed 3D-WWF.

frame
size

methods M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 overall
Accu-
racy

512×
512

2D-WWF 97.47 96.56 93.89 98.42 98.14 99.14 99.82 98.64 98.96 97.01 92.49 94.98 97.13
Proposed
3D-WWF

97.65 96.70 99.23 98.37 99.59 99.00 99.86 99.50 99.19 98.24 98.78 98.05 98.68

720×
720

2D-WWF 97.06 95.52 93.94 97.42 97.51 98.55 98.69 98.42 98.55 94.75 91.67 96.20 96.52
Proposed
3D-WWF

97.01 97.47 98.73 97.83 99.10 98.87 99.95 98.91 99.19 97.96 99.19 99.05 98.60

Figure 4: Overall ROC curve for 12 smartphones, frame size
512×512.

scenarios in smartphone video forensics has shown the superiority
of the proposed 3D-WWF over the traditional 2D-WWF.

Figure 5: Overall ROC curve for 12 smartphones, frame size
720×720.
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