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Abstract—This paper proposes a new cost-efficient, adaptive,
and self-healing algorithm in real time that detects faults in a
short period with high accuracy, even in the situations when it is
difficult to detect. Rather than using traditional machine learning
(ML) algorithms or hybrid signal processing techniques, a new
framework based on an optimization enabled weighted ensemble
method is developed that combines essential ML algorithms.
In the proposed method, the system will select and compound
appropriate ML algorithms based on Particle Swarm Optimiza-
tion (PSO) weights. For this purpose, power system failures are
simulated by using the PSCAD-Python co-simulation. One of
the salient features of this study is that the proposed solution
works on real-time raw data without using any pre-computational
techniques or pre-stored information. Therefore, the proposed
technique will be able to work on different systems, topologies,
or data collections. The proposed fault detection technique is
validated by using PSCAD-Python co-simulation on a modified
and standard IEEE-14 and standard IEEE-39 bus considering
network faults which are difficult to detect.

Index Terms—Decision tree (DT), ensemble machine learning
algorithm, fault detection, islanding operation, k-Nearest
Neighbor (kNN), linear discriminant analysis (LDA), logistic
regression (LR), Naı̈ve Bayes (NB), self-healing algorithm.

I. INTRODUCTION

THE rapid growth of energy consumption throughout the
world brings new technologies together in power sys-

tems. In addition to traditional systems for energy generation,
such smaller on-site power generating platforms, (e.g., wind
turbines or other renewable energy systems), have emerged
recently. Distributed Energy Resources (DER) arouses new
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investment areas, such as Microgrids or Virtual Power Plants,
that surely attract people looking for possible business oppor-
tunities.

However, using a set of different renewable systems needs
to be coordinated and/or controlled by small units, such
as hardware supported Microgrids or pure communication
enabled software-based Virtual Power Plants. A microgrid,
a localized remotely controllable and self-operating group of
energy sources, uses a type of controller that may operate in
grid-connected or islanded modes to dispatch energy [1].

More importantly, increasing more renewable penetrations
reduces rotating inertia. For example, the total inertia cur-
rently available in the South Australia network is around
16,200 MWs. In 2017, without the Northern Power Station
and Torrens Island “A” Power Station, the total available inertia
would reduce to around 10,000 MWs [2] due to the inclusions
of renewable sources, which is very alarming. This may cause
system instability or even a blackout, in case of catastrophic
events or grid fault conditions [3], [4] and faults are needed
to be cleared quickly. Therefore, special precautions must be
taken to avoid any greater outage and/or cascading blackouts.
Considering these, many fault detection techniques have been
developed recently and reported in power system literature [5],
[6].

In the traditional power system, primarily the protective
relay receives the voltage, current, and frequency information
from transmission/distribution systems using instrumentation
transformers. That information is typically processed by the
protective relay to take action in case of emergency or abnor-
mal conditions for the desired tripping time. The relay logic
algorithm takes the decision of whether to trip open or to
close the circuit breaker. In the distribution system, the pro-
tective relays require a large fault current to detect the faulty
condition. This is problematic for the modern distribution
system which connects various Distributed Generations (DGs)
including renewable sources, microgrids, and virtual power
plants. Most of the DGs, nowadays, are equipped with inverter
technology which typically contributes at two times of per unit
rated current, as rule of thumb [7]. This is troublesome because
the current level may not be sufficient to trigger the relaying
action and it puts the inverter equipped modern distribution
system at risk.

Many fault detection mechanisms have been depicted in the
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power system. The real-time data acquisition device like Fre-
quency Disturbance Recorder (FDR), optimally placed Phasor
Measurement Units (PMUs), and many other equipments are
used to detect power system faults [8]. Line outage detection
using phasor angle measurements are reported in [9]. Fault de-
tection occurred in DC and AC microgrids are reported in [10].
One of the methods could be using additional equipment(s)
to build a protection layer for renewable source integrated
microgrid; however, this requires additional hardware cost [5].
Besides, the faulty equipment is required to be fixed or
replaced in the case of equipment failures, which adds more
cost and labor. It is noted that equipment failures are frequent
events and blackouts are mostly triggered by these problems.
Apparently, hardware-based applications seem not scalable
and they are infeasible due to financial problems. Thus, many
new intelligent computer-aided prediction techniques have
been developed to deal with fault scanning [11]–[13].

In recent years, many soft computing and data-driven ap-
proaches have been investigated to detect power system faults.
The performance of these techniques can be measured by
(i) the rate of their accuracy, (ii) detection time, (iii) cost-
efficiency, and (iv) flexibility/adaptivity.

i. There are various methods proposed to achieve the highest
accuracy rates, i.e., deciding islanding operation cor-
rectly. Primarily, hybrid techniques [14], applying suit-
able threshold settings [15], and signal processing tech-
niques [16], [17] have been proposed. Traditional fault
detection systems, signal processing methods, threshold
settings, and their deficiencies are detailed in Section II.

ii. The proposed methods should be fast enough for detecting
the faults over the network. There is a tradeoff between
accuracy and detectiontime. In the experiments, we were
challenged by IEEE 1547 standards [18], which require
the detection of possible faults within 2 seconds at the
most, and attempted to obtain better results of up to
0.021 seconds. Computational time is almost 1% of IEEE
standards.

iii. While adding new components to the DER systems, we
need to keep the system practical and feasible at the
same time. If renewable applications become wide-spread,
energy marketing would become higher than ever [19].
Therefore, the fault detection module must be cost-
efficient for the new applications.

iv. DER systems gather various renewable energy resources
together and create a gigantic heterogeneous environment,
which requires practical solutions to manage the whole
network. This is because, especially increasing PV farms
on the network, it brings voltage and frequency deviations
together [20], [21]. These deviations make the power
system unstable, and so it must be eliminated by using
different techniques. Consequently, fault detection meth-
ods can cause a mistake because of these fluctuations.
Although there are no faulty conditions, transmission sys-
tem operator’s devices or some algorithms could decide
wrong decisions [22]. Then, the proposed fault detection
algorithms should also be scalable and adaptive for any
type of power systems with a different number of buses.
We observed that many proposed algorithms are designed

for the static power system topologies that do not change
frequently. In the case of modifying the network by
adding/dropping a line or adding new buses, most of the
proposed algorithms may fail.

In order to create a new intelligence-based fault detection
method, we consider all these metrics. Different solutions
use only one machine-learning algorithm to reach the time
goal or use complex ones that merge multi-machine learning
algorithms to obtain higher accuracy results.

The proposed method combines different ML algorithms
which are called weak-learners. Particle Swarm Optimization
(PSO) is used for this combination process in this study.
Optimum weights are calculated and given a set of weak-
learners in order to reach higher performance together. By
using this approach, each weak-learners weakest part is closed
by others. Behind the power of the proposed method is the
ensebmling technique. The main idea is to calculate the almost
ideal weights for each machine learning algorithm periodically
and then combine them with soft voting during the test
conditions. With this adaptive technique, we improve both the
accuracy rate and time while only increasing training time by
a little bit.

Signal processing approaches, such as decision tree and
random forest, are extensively utilized to detect the fault in
distribution systems connecting microgrids [23]. There are also
some other signal processing approaches: Fourier Transform,
Wavelet Transform, S-Transform, TT- Transform, and Hilbert
Huang Transform techniques have successfully been applied to
detect faulty conditions [4], [24], [25]. Data-driven approaches
have also received attention by power system researchers
in identifying faults [26]. The Machine learning technique
requires the computer/system learn various patterns based on
the given input and hence it is found applicible for power
system fault detection [27]. For instance, the machine learning
algorithms, such as the k-Nearest Neighbors (kNN) algorithm,
support vector machine, etc., are adopted in identifying grid
faults [28], [29].

It is noted that the inclusion of renewable sources causes fre-
quent voltage and frequency fluctuations [20], [21] which may
cause power system vulnerabilities, making fault detection
methods unreliable. Although there are no fault conditions, the
protection devices or fault detection algorithms may receive
erroneous signals from those random voltage and frequency
fluctuations [22]. Therefore, the fault detection algorithms
should also be scalable and adaptive when renewables pen-
etration increases. It is also observed that many algorithms
are designed for the static power system [30] and in the case
of network alterations by adding/dropping a line or adding
new buses, most of the proposed algorithms may fail, so the
systems have to be adaptive.

Considering the aforementioned issues, a real-time fault
detection technique is developed in this study using an opti-
mization enabled weighted ensemble based Machine Learning
Algorithm. The proposed method is simple to implement as it
uses voltage, frequency and phase angle signals obtained from
PMUs.

There are different solutions that use only one Machine
Learning (ML) algorithm to reach the time goal [24], or com-
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plex ones that merge multi-machine learning algorithms [25],
[26] to obtain higher accuracy results. The proposed method,
in this study, is a type of ensembling type blending optimiza-
tion algorithm where the Particle Swarm Optimization (PSO)
finds the optimum weights to eliminate the forecast errors
coming from each ML algorithm. Another rigid contribution of
this method that can be used is that the system exhibits flexible
/ adaptable behaviors as a result of any change. As com-
monly known, power systems exhibit a constantly changing/
changeable structure. Algorithm-based error detection systems
may not be able to adapt to these variations. Such problems
are frequently encountered, especially in methods developed
by detecting the threshold. The Cross-validation method has
been used to eliminate the overfitting problem. When the
accuracy reaches 100%, the algorithm is memorizing the data
set, named overfitting. This is one of the prevalent problems
in the machine learning field.

For most of this study, we used the overfitting technique,
which comes from memorization of results instead of learning,
and causes you to unrealisticlly reach a 100% accuracy rate.
This is due to ignoring cross validation techniques that are
taken into consideration in this study to be able to represent
results in a real world power system environment.

The rest of the paper is organized as follows. Section II
discusses machine learning algorithms used in fault detection
and their mathematical algorithmic background is represented.
The ensemble and boosting algorithms are discussed in Sec-
tion III. In Section IV, the proposed algorithm architecture is
presented. Effectiveness and success of the proposed algorithm
by comparing with individual ML algorithms and Ensemble
methods are represented in Section V. Finally, findings of the
proposed study are summarized in Section VI.

II. ITERATIVE MACHINE LEARNING ALGORITHMS IN
FAULT DETECTION

ML applications are not computer programming, like tra-
ditional computer algorithms. ML creates a special algorithm
for a given data/situation which exactly fits the system.

In the power system, researchers are faced with different
problems that are very close to the needed ML applications.
Power transmission and distribution problems depend on too
many variable states. A faulty condition could be happening on
transmission and distribution lines, for example; a bird/snake
can touch the cable, or a tree can fall down on the transmis-
sion/distribution line, causing a short circuit. Since it is very
difficult to encounter that these typess of faulty situations on a
regular basis, the training data set may need to be generated via
simulations. Then, the ML technique could be an effective way
to detect these faults. When hardware-based solutions can not
entirely handle these problems, ML creates a special algorithm
for a given data/situation which exactly fits the system. Some
of the ML techniques which can be used in signal processing
and fault detection are presented as follows.

A. Machine Learning Algorithms
1) k-Nearest Neighbor (kNN)

The kNN is easy to apply, and is a simple and effective algo-
rithm for binary or multi-classification problems. It considers

the set of observation data and checks the neighbors of the
new incoming items according to the value of k, the number
of neighbors. In most of the ML applications, the k value is
chosen as a default 3 or 5, and also the Minkowski distance
(1) is chosen as a distance length metric. The process of the
algorithm is simple; according to the number of neighbors
and the coordinates of the new data (x1, y1), · · · , (xn, yn),
the k’s nearest neighbors are determined by measuring the
distance, e.g., Euclidean distance, Minkowski distance or
Manhattan distance, for all of the newcomers, and finally the
system decides the clusters of the new nodes with the closest
distance [33].

d(x, y) =

(
n∑

i=1

|(xi − yi)
p|

) 1
p

(1)

2) Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA) can be used to re-

duce the size, improve computational efficiency, and reduce
overfitting in non-digitized models. The LDA is very similar
to Principal Component Analysis (PCA). The PCA tries to
find the orthogonal component axis of the maximum variance
in a data set; The LDA tries to find the feature subspace
that optimizes class separability. The LDA and the PCA are
linear transformation techniques that can be used to reduce the
number of dimensions in a dataset.

The present state of the dataset is used to make the
data more easily separable when it is not very convenient
to separate the components. To achieve this, it also takes
advantage of the covariance matrix. In fact, it is not literally a
classification algorithm. It can be used as a pretreatment before
the classification process when there is not enough differences
to distinguish the classes following the feature extraction. To
distinguish between classes, LDA examines the distribution of
classes and uses the difference between the average values.
3) Logistic Regression (LR)

Logistic regression is a statistical method used to analyze a
dataset with one or more independent variables that determine
a result. The result is measured by a binary variable (there are
only two possible results). In logistic regression, the dependent
variables must only be binary. In nother words, final results
are only 1 (TRUE, success, etc.) or 0 (FALSE, error, etc.) as
encoded data.

The purpose of logistic regression is to find the most
appropriate (yet biologically plausible) model to define the
relationship between a number of independent (predictive or
explanatory) variables related to the two-way characteristic
variable (dependent variable = response or outcome variable).
Logistic regression produces the coefficients of a formula to
estimate the probability.
4) Naı̈ve Bayes (NB)

The algorithm has been widely studied since 1950, based
on the Bayes Theorem and it uses the idea of the simple prob-
abilistic classifier. In statistic and computer science, the NB is
represented as conditional probability [31]. Terminologically,
the Bayesian probability is given in (2).

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(2a)
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posterior =
prior x likelihood

evidence
(2b)

where p(Ck|x) is the posterior probability of class, p(Ck) is
the prior probability of class, p(x|Ck) is the likelihood, P (x)
is evidence.
5) Decision Tree (DT)

In Machine Learning applications, the Decision Tree (DT)
is one of the most preferred algorithms due to its simplicity.
The DT gives all possible outcomes and if you have enough
data for the next future prediction, it can decide precisely.
The DT uses a math-based background that relies on Shannon
Information Theory and entropy calculations [34]. The biggest
entropy value is the start of branches and the whole tree
follows it with the same scheme as shown below:

E(s) =
c∑

i=1

−pi log 2(pi) (3)

where E(s) is entropy and it represents the power and dom-
inancy of the feature frequency. Therefore, the branch starts
from the feature which has the biggest E(s) value; pi is the
probability.

B. Finding Best Decision Variable for Each ML Algorithms

Machine learning algorithms require several parameters that
can affect the accuracy rate. Before bagging several ML
techniques as an ensemble algorithm, in order to understand
the optimum parameters of each algorithm, the proposed
method checks the sub-set of parameters or decision variables
given in Table I (unshaded part). The ML algorithms were run
iteratively with different parameters and the best combination
is obtained for a given algorithm as demonstrated in Fig. 1.
This code cycle is processed for just one time until the
power system or data structure changes. The main idea of
this loop is to obtain the best decision variables for the PSO
optimization based Ensemble algorithm shown in Section IV.
Briefly, the PSO-based Ensemble algorithm combines different
iterative ML techniques with the best parameters and weights.
Since chosen ML techniques for the bagging process will
always use the same local parameters during the decision time
span, optimum parameters are obtained individually with this

TABLE I
PARAMETERS TO CALCULATE THE DECISION VARIABLES FOR SELECTED

ML AND ENSEMBLE ALGORITHMS

ML and Ensemble
Algorithms

Decision
Variables

Interval

kNN number of
neighbors

[3 to 21, incremented by 1]
(Testing results gives that k must
be 9 for that dataset to obtain
highest accuracy result)

LDA tolerance 0.0001
LR – –
DT – –
NB – –

Gradient Boosting and Adaboost algorithms are also tunned for
comparison with proposed method.

AB Estimator [1 to 100, incremented by 5]
SAMME, SAMME.R

GB number of
trees

[11 to 71, incremented by 1]

seed [1 to 11, incremented by 1]

Set the
parameters

Fit training data
and get scores

Choose
algorithm

Highest
accuracy is
achieved YES

Save
parameter

values for this
data set

NO

Calculate
algorithm

LDA LR DT NBkNN

Fig. 1. Tuning the parameters with grid search to calculate the best decision
value for each ML Algortihm.

looping process before continuing with the optimization part.
Since the power system structure is not always kept constant
and requires some changes over time, algorithms need to be
able to work with updated network structures. This ability is
known as the self-healing property of algorithms that ensures
the detection and update of decision variables and weights
when power system structures are changed.

For instance, when kNN is working, the algorithm checks
the k neighbor value to find the best decision variable that pro-
vides the maximum accuracy rate for a given dataset. Although
these parameters can be altered with topological changes,
this proposed approach finds new values before applying the
optimization algorithm. Thus, the system becomes robust and
adaptive with various datasets.

III. ENSEMBLE ALGORITHMS

Ensemble methods refer to combining weak learning al-
gorithms and transforming them into a strong learner with
additional processes. Weak learners can work sequentially, and
each predictor tries to fix the previous results via the boosting
method. The other approach is to combine the results of weak
learners with the bagging method. So, ensemble techniques
can be applied with a feedback mechanism, such as Adaboost
and Gradient Boosting, or it can be a vote-based method, such
as the bagging approach. So the boosting algorithms work as
ensembling methods.

A. Bagging Methods

(i) Majority/Hard voting is a simple case of voting methods
with a voting algorithm which is given in (4).

∀C ∈ Cn (4a)
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φ = mode{C1(x), C2(x), C3(x), · · · , CN (x)} (4b)
C1(x)
C2(x)

...
CN (x)

 =


0
0
...
1

 (4c)

φ = mode{0, · · · , 1} = 0 or 1 (4d)

where φ is the final decision of total results and it uses
the Python’s mode command. This is a piece of code cycle;
C1, C2, · · · , CN are the classifier’s decision results, either 0
or 1.

In this scheme, each ML algorithm comes up with the
decision on the given test case, separately. The final decision
will be given with the agreement of the majority.

(ii) Soft voting gives the average probability of the decisions
rather than counting the votes on positive or negative decisions
coming from the ML algorithms. For example, when three
algorithms give the decisions with (0.60, 0.60, 0.15), then
hard voting will decide negatively, since there are 2 positives
and one negative. However, the soft voting will decide it as
being negative due to the average of the probability which is
0.45. In this example, algorithms have the same significance,
however, the weights can be different if the contribution of the
algorithms is not the same.

B. Boosting Methods

AdaBoost (AB) iteratively repeats the weak learner algo-
rithm with given instances. In each iteration, misclassified
data items are re-weighted according to the information gained
from the previous step. With this feedback mechanism, the AB
runs a classifier, changes the weights, runs another classifier,
and repeats until most of the items are classified properly.
Thus, there is no parallel calculation, each step must follow
the previous ones, just like a chain.

The Bagging and boosting processes are represented in
Fig. 2. Not only does the bagging process preceed the boosting
type but it also is reinforced with PSO that results in faster
processing time when compared with any other ML algorithm
or boosting method.

wi=1 wi=2 wi=n

fi=1 (x) fi=2 (x) fi=2 (x)fi=1 (x)fi=n (x) fi=n (x)

fM=sign Σ (fx)
i=1

M

fM=sign Σ (fx)
i=1

M

Bagging Boosting

wi=1 wi=2 wi=n

Fig. 2. Bagging and boosting methods.

Gradient Boosting (GB) also combines multiple ML algo-
rithms based on weights. It collects weak learners and makes a
new stronger learner and works as a team. A dataset is applied

to this algorithm in order to obtain the best result. The GB has
2 types of algorithms; one of them is SAMME.R and the other
one is SAMME. Each algorithm’s decision variable values are
listed in Table I (shaded part).

IV. PROPOSED PSO BASED WEIGHTED
ENSEMBLE APPROACH

The workflow for the proposed algorithm is shown in Fig. 3
which combines five different ML algorithms explained in
Section III, by using a novel weighted ensemble approach
blended with the Particle Swarm Optimization (PSO) tech-
nique to accurately detect the faults on the power system. The
proposed approach is explained by the following steps:

1) Collect the data from the sensors and all other parts of
the system, e.g. SCADA, to train the system periodically.

2) For each ML algorithm, the best decision variables of the
techniques are calculated with the Brute-Force approach
as shown in Section III.B.

3) The weights of ML algorithms for the bagging process,
which are based on the soft-voting technique, are cal-
culated by Particle Swarm Optimization module. Thus,
PSO will give the best set of weights for the soft-voting
approach. During this process, bagging is applied with the
PSO calculated optimized weights until the next training
time window.

4) The ensembling process uses a minimum 2 and maxi-
mum 5 ML algorithms according to PSO results. In this
process, cross validation was applied to the dataset to
evaluate the predictive performance of the model results
in the training dataset step. In applying this approach,
one of the well-known methods, K-Fold Cross Validation
(cv), is applied as cv=5. That means, 80% of data was
chosen for the training part and 20% of data was for
testing purposes.

5) A self-healing algorithm has been developed which is
adaptive against the structural changes and the algorithm
collects the data and controls the power system in case
of any faults. Based on each of the algorithm weights
obtained in step-4, the power system control action is
triggered, in this case, in a PSCAD simulator.

6) If structural changes occur, the proposed method will
recalculate each algorithm’s special parameters (such as
the k parameter for KNN) and recalculate the optimum
values by following the same steps to obtain the best
weights for each algorithm’s self-improved algorithm
ability. Otherwise, if the system structure stays stable,
the calculated weights will be used to detect faults. In
that case, structural changes means the training dataset
must be changed, so the parameters of each algorithm
must be recalculated, and PSO will optimize the weights
again and again until ane accurate result is obtained.

7) If there is no structural change e.g., add/drop a new line,
adding new renewable sources, step-6 would remain as
indicated.

Since each algorithm has pros/cons for different character-
istics of datasets, all of them are combined together to obtain
the powerful sides of each.



1150 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 4, JULY 2022

Start PSCAD
by using python

and start
collecting datas

Training
dataset

kNN LDA LR DT NB

Training
dataset

Final self-healing algorithm

kNN LDA LR DT NB

NO YES

Model Changed?
Add/drop new bus
or tranmission lines

Power system
control action

e.g.islanding
operation, opening

circuit breakers

Apply to
PSCAD

Ensembling process

PSO Module
in this part some

different weights are
given to algorithms
for bagging process

Particle
swarm

optimizer

Fig. 3. Workflow for the PSO based weighted ensemble algorithm.

As a result, the proposed method becomes flexible and
adaptive in case of any structural changes, which is a very
normal and frequent behavior for the power system. This
method does not require applying any signal processing tech-
niques or any other pre-processing method, such as feature
selection techniques, but at the same time, it can obtain very
high accuracy even with raw data. Most of the methods use
feature selection techniques to analyze the training data to
obtain high accuracy results for the given dataset. However,
the same selected features, or parameters that are used in the
specific algorithm, can fail on another dataset, or scenario,
because of their different characteristics. Thus, the proposed
methods should be dynamically adapted to the collected data,
which is rare and hard to optimize and apply in the real
environment. It is noted that, with the proposed method, real-
time processing could be possible since it has an ability to
work with unprocessed newly collected data, as one of the
powerful benefits with the self-healing adaptive background.

In the ensemble method, the key point is that the system will
give 0 weight to the algorithm if it is not needed in the selected
set. Each weight represents the power rate of the algorithm
for the given data set during the soft-voting process. The PSO
finds the best bag and provides the weights for each classifier
in the combination. The generalized approach is shown as
follows:

M = {mla1,mla2, . . .mlaN}, ML Algorithms (5a)
K = {i0, i1, . . . , ik}, Class Labels (5b)
W = {w1, w2, . . . , wN}, Weights (5c)

θ(M,W,K) = argmaxi

N∑
j=1

wj ∗ p(mlaj |i) (5d)

PSO(mla1, . . . ,mlaN) = {w1, . . . , wN} (5e)

where M is the set of weak machine learning algorithms
represented by mla, K represents the class labels -which is
“fault” or “not fault” in the scope of this paper-, W shows the
weights of the algorithms. θ(M,W,K) is the function of the
bagging process, and PSO calculates the optimal set of weights
for θ(M,W,K) that obtains the highest accuracy. See Fig. 5
for random fault conditions.

The main purpose behind this idea is explained in Fig. 4
with a mock-up example. With the proposed method, each
algorithm will close the gaps of other collaborative algorithms
and try to obtain a total consensus if there is a fault or not.
However, this consensus should also be as fast as possible
because of the time limitations while working in a real-time
environment. By using the best-scored classifier combinations
and their calculated weights, the proposed model will be
able to run the ensemble algorithm in real-time for islanding
detection. Please note that the weight calculation process is
computed just once unless there is no modification on the
power system topology. In case of any structural changes in
the power system model, the proposed algorithm will detect
that difference and continuously train itself until it reaches
saturation.

V. RESULTS AND DISCUSSIONS

The islanding or fault situation must be detected as fast
and as accurate as possible, and for this purpose, conventional
signal processing techniques have aided in obtaining great
predictions with machine learning algorithms. In addition to
these techniques, many feature selection methods are applied
in most of the techniques in literature to deal with deficiencies
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Fig. 4. PSO effects for each ML algorithm.
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and system defects. However, they focus on the given dataset
and provide excellent results for the specific state. When the
technique provides high accuracy rates with feature selection,
the same technique could fail on a different or dynamic data
structure. When a ML algorithm is improved and specialized
for a power system structure, it cannot be used on different
structures or it can fail in cases where there is any differences
in the power system structure. Thus, most of the common
solutions are not applicable in the real environment. Many im-
proved ML techniques show very high accuracy results, which
means these improved models memorize the data instead of
learning. Thus, it can be easily recognized, when the algorithm
results in 100% accuracy, when there is an overfitting problem.

To overcome these situations, a weighted and self-healing
ensemble technique has been proposed in this study by choos-
ing 5 most robust machine learning algorithms; The IEEE 14

bus and IEEE 39 bus power system models are used to show
the effectiveness of the proposed weighted ensemble-based
machine learning approach for fault detection. The standard
power system parameters are implemented during the PSCAD
simulations running on an IEEE 14 bus model [35]. In addition
to the well-known IEEE 14 bus model, the proposed method is
also applied to the modified version, shown in Fig. 4, to com-
pare the performances under entirely different characteristics
of power systems in pointing out its adaptive and self-healing
schemes. In this scenario, the IEEE 14 bus model system has
been modified connecting renewable sources at buses 3, 6,
and 8 by providing intermittency and uncertainties of voltage,
phase angle and frequencies to test the proposed method’s
adaptivity. In all three cases, PSCAD/EMTDC software is
coupled with Python to solve the problems and obtain solu-
tions in a co-simulated platform to mimic real-time scenarios.
PSCAD is being used to simulate the power system and
Python for implementing ML algorithms. The time step of
the co-simulation is kept as 50µs. By running the simulation
5 sec, 210.000 of voltage, frequency and phase angle data are
generated for analysis as a CSV file format. About 80% of the
gathered data is used for training the algorithm and then 20%
of the remaining data is used for the testing of each algorithm.

Cross-validation was chosen as five, which means the algo-
rithms test the next 20% part of the dataset and this process
continues five times until all data was used for the test. Than
the results are obtained by taking an average of five different
accuracy results. For example, kNN accuracy results are 89%,
93.25%, 97%, 91%, and 92.5% for each cross-validation cycle.
The average of the five accuracy values is 92.55% as stated
in Table III. The overfitting problem was handled in this way
and ensures more realistic results.
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After these steps, each ML algorithm (kNN, LDA, LR,
NB, DT), boosting algorithm (AB, GB), and finally proposed
PSO based ensemble method are investigated and compared
in terms of effectiveness, adaptivity, and process-time under
two different case scenarios.

A. Case 1: Fault Analysis and Comparison

In power system applications, symmetrical and unsymmet-
rical faults are occurring. In that perspective, we choose one of
the most common occurring faults, which is an unsymmetrical
fault. In this study, unsymmetrical faults are applied. In
practice, just 2%–5% of symmetrical faults are occurring in
the power system. This unsymmetrical fault type is one of
the most difficult ones to detect, compared to severe double-
line-to-ground (2LG) and three-line-to-ground (3LG) faults.
The system performance has really been tested in the most
challenging situations: single-line-to-ground (1LG) faults.

In this study, the 1LG fault has been selected and applied
randomly for 0.15 s in lines (7–8, 10–11, 9–14, 2–3, 6–12) at
5 different time instants (1.6, 2.3, 2.8, 3.8, 4.4), respectively.
Different fault locations are chosen to observe the effect of the
proposed algorithm as the voltage drops vary randomly. For
instance, the voltage response at bus 9 is given in Fig. 6 to
show the fault’s effect on the voltage response. Also, for each
bus, the frequency and phase values have been used for the
prediction process. The PSCAD timed fault logic box creates
faults, and the impedance is selected as 100 kΩ for the default.
Fault locations are respectively;

• Line 7–8, 63 km, close to bus 7,
• Line 10–11, 23 km, close to bus 11
• Line 9–14, 43 km, close to bus 14
• Line 2–3, 35 km, close to bus 3
• Line 6–12, 35 km, close to bus 12
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Fig. 6. Voltage response at bus 9 (1 LG fault).

Table II shows how the PSO-based weighted ensemble
method, which is a combination of multiple (at least 2, up
to 5) ML algorithms, can work on-fly effectively compared to
well-known boosting algorithms for an IEEE 14 bus standard
model.

Table II also shows a comparison of the proposed PSO-
based ensemble method with other boosting algorithms (GB
and AB), in terms of time and accuracy viewpoints using
the IEEE 14 bus model. Accuracy results show the proposed
algorithm is around 5% more accurate, and also much faster

TABLE II
DECISION PARAMETERS AND COMPARISON OF ACCURACIES FOR EACH

CLASSIFIER ON CLASSICAL IEEE 14 BUS MODEL

Algorithm Parameters Algorithms
Individual Process
Times (s)

Accuracy
Results %

K Nearest
Neighbor

Neighbor = 9 1.7 92.55

Linear
Discriminant
Analysis

Tolerance =
0.0001 Solver
= svd

1.49 92.35

Logistic
Regression

– 2.3 80.93

Naı̈ve Bayes – 0.6 73.12
Decision Tree criterion =

gini splitter =
best

2.0 71.12

AdaBoost – 0.57 93.13
Gradient
Boosting

– 0.29 92.85

XgBoost [36] – 0.11 97.62
PSO-Ensemble Combination

of 5 ML PSO
Weights
kNN 0.51
LDA 0.49
LR 0.24
DT 0.14
NB 0.82

0.021 97.93

then individual and boosting algorithms. The proposed method
is also achieving slightly better accuracy results, compared to
the XgBoost algorithm [36].

Process time-wise, the PSO-based Ensemble algorithm
works faster than other approaches because of its bagging
scheme and pre-computed background in which, as an evolu-
tionary algorithm, PSO particles communicate with each other
and they use their own previous best solution. Thus, it can
reach final results very quickly. Each of the ML algorithms
are strengthened by PSO, so PSO trains the algorithms to find
the best weights, however, this process only happens one time
unless the power system structures are kept constant. The same
collected dataset used for comparison with boosting algorithms
and the proposed method gives better results in terms of
both process time and accuracy. The bagging application is
faster than any other boosting algorithms (AB and GB) due
to the parallel processing structure. In the proposed method,
different powerful ML algorithms close their gaps as they work
together. That is the reason why the proposed method gives
better results.

B. Case 2: Power System Structure Adaptivity Test

In this case, two different rigid (IEEE-39 bus and IEEE-
14 bus modified) models are tested. The structural change is
reflected in the simulation by adding 3 renewable sources at
buses 3, 6, 8 and this system is named as a modified IEEE
14 Bus model to test the proposed method in adaptivity and
self-healing. The 1LG fault is also considered in this case.
Because one of the most difficult detections is a 1LG fault,
its captured dataset of the voltage, frequency and phase angle
signals are considered for further analysis. For the IEEE-39
bus system, faults are applied randomly to locations for 0.15 s
in lines (1-39, 3–4, 6–11, 9–39, 13–14, 16–19, 19–33, 23–24)
at 8 different time instants (1.2, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4),
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respectively.
The nature of PSO adopts structural changes immediately

and efficiently. The proposed method detects the structural
changes, and if they happen, the best-tuned parameters of each
algorithm are re-calculated again. Then, PSO gives different
weights to each of them again. Because structural changes
affect the dataset, previous parameters and weights may not
be useful in that case. An additional explanation can be seen
in Fig. 3, step 6.

After showing the success of the proposed method, each
well-known algorithm and boosting algorithm results are ob-
tained and tested to be compared with the proposed method
using the modified IEEE 14 bus model. In this case, accuracy
results can be seen in Table III which shows that the proposed
method adaptivity is very high when compared with other
methods. Also, the IEEE 39 bus model has been tested under
the same conditions and the results are shown in Table IV.

TABLE III
DECISION PARAMETERS AND COMPARISON OF ACCURACIES FOR EACH

CLASSIFIER ON THE MODIFIED IEEE 14 BUS MODEL (WITH PV)

Algorithm Parameters Algorithms
Individual Process
Times (s)

Accuracy
Results %

K Nearest
Neighbor

Neighbor = 9 1.94 92.61

Linear
Discriminant
Analysis

Tolerance =
0.0001 Solver
= svd

1.63 87.38

Logistic
Regression

– 2.45 76.3

Naı̈ve Bayes – 0.83 84.5
Decision Tree criterion =

gini splitter =
best

2.13 82.38

AdaBoost – 0.57 81.23
Gradient
Boosting

– 0.29 91.35

XgBoost [36] 0.11 93.48
PSO-Ensemble Combination

of 5 ML PSO
Weights
kNN 0.69
LDA 0.40
LR 0.39
DT 0.23
NB 0.85

0.036 96.68

• There are no signal processing techniques and they don’t
require threshold tunning. In this study, only a raw dataset
has been used for training and prediction parts. As a result
of this method, any waste of time is avoided. Also, it is
not necessary to have too much computational power. Be-
cause ML algorithm’s parameters and PSO optimizations
processes are just one time applied until power system
structure changes occur. If the power system structure
changes, the proposed method calculates new parameters
and weights for each algorithm.

• Most of the popular algorithms (5 of them) are com-
bined adaptively, and that mechanism obtains a real-time
self-healing feature. The proposed method automatically
calculates the weights of each algorithm. When a faulty
condition happens, or the current weights cannot give
sufficient results in a timly manner, the training part re-
starts to overcome this issue, see Fig 3.

TABLE IV
DECISION PARAMETERS AND COMPARISON OF ACCURACIES FOR EACH

CLASSIFIER ON THE IEEE 39 BUS MODEL

Algorithm Parameters Algorithms
Individual Process
Times (s)

Accuracy
Results %

K Nearest
Neighbor

Neighbor = 9 2.23 79.59

Linear
Discriminant
Analysis

Tolerance =
0.0001 Solver
= svd

1.93 78.14

Logistic
Regression

– 2.97 87.02

Naı̈ve Bayes – 1.23 81.20
Decision Tree criterion =

gini splitter =
best

2.83 91.00

AdaBoost – 0.59 73.17
Gradient
Boosting

– 0.89 94.15

XgBoost [36] 1.37 95.89
PSO-Ensemble Combination

of 5 ML PSO
Weights
kNN 0.305
LDA 0.226
LR 0.065
DT 0.139
NB 0.772

1.13 96.61

• Boosting algorithms are applied for prediction, and so
final accuracy results show that the proposed method
works successfully and can obtain the highest accuracy
which is more than the boosting algorithms, such as
AdaBoost and gradient boosting.

• The proposed Method can update by itself, in case of any
existing topological differences.

• As an optimization algorithm, PSO, optimizes popular
algorithm’s weights to achieve an as accurate result as
possible.

• IEEE allows 2 second delays [37], but in this case,
the experimental prediction time interval is 0.001. So
the proposal method achieved almost 2,000 times faster
detection than IEEE’s allowed time delay. Also, for the
different random faults, the algorithm continues to show
the same success.

• Any possible voltage fluctuation or bus system violence
can mislead final results, therefore threshold setting is not
a good solution so we don’t use any threshold settings for
our proposed method.

• Tables III and IV also show that the proposed method pro-
vides almost 5% better accuracy performance compared
to boosting algorithms and individual ML algorithms
accuracy results in both modified IEEE 14 bus models.

• In the standard topology, XgBoost and the proposed
method seem very close to each other in terms of
accuracy performance. However, when the topology is
changed, and the system fluctuates more, the results
show that the proposed method is clearly overperforming
XgBoost.

The results given in Table III and Table IV show that some
ML algorithms, such as kNN or GB in Table III, can provide
high accuracy results in some cases, however, they may not
be able to reach the same levels on different structures as in
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Table IV. That is the main reason to develop the bagging based
ensemble algorithms to strength deficiencies and weaknesses
in the ML algorithm in different scenarios and/or structures.

It is noted that Gradient boosting works more accurately
than Adaboost on the modified IEEE model. The main reason
for this is by adding renewable sources, the gathered data
has more noise because of voltage/frequency fluctuations,
and therefore, the Adaboost algorithm can be easily defeated
by noise when compared with the Gradient Boosting. With
respect to accuracy and process time, the proposed PSO
based Ensemble method shows very high results over boost-
ing algorithms. Also, the proposed method, compared with
the XgBoost algorithm, clearly outperforms. The results are
promising for both conditions.

All these comparisons show that the proposed method
has an adaptive characteristic and it can work significantly
better than any platform without changing pre-computational
techniques so that it provides a specific solution for a given
data set. Since the PSO weights are calculated dynamically,
whenever needed, the PSO-based Ensemble method can be
easily adapted in different schemes and power topologies, so
that it can train and predict data at the same time.

The performance of the PSO-based Ensemble method is
not significantly affected in uncertain cases in voltage and
frequencies, such as adding renewable sources. This means
that the addition of renewable sources affects the individ-
ual machine learning algorithms’ performance, however, the
proposed method’s progress is extremely good, even in this
situation.

VI. CONCLUSION

The PSO-based Ensemble method is proposed in this study
to detect faults in the power system. The proposed algorithm
is tested on different models, such as IEEE 14, IEEE-39 bus
systems and modified model by adding newly commissioned
renewable sources, as a means to present the case of structural
change of the power system.

In the proposed method, there are no signal processing or
feature selection techniques needed, and just raw dataset (input
signal voltage, frequency and pahse angle) is used for the
predictions. Thus, the proposed method is not just specialized
for the dataset. According to the results, it is also adaptive and
flexible for any type of structure-based dataset. It is found
that the proposed method provides much greater accurate
results than individual machine learning algorithms using three
IEEE models (14 bus-39-bus and PV added). The proposed
method’s accuracy rates are calcualted as 97.93% for the
IEEE classical model and 96.68% for the modified (PV added)
model and 96.61% for the IEEE-39 bus model. While IEEE
1547 standards allow 2 second delays to detect any possible
faults, the proposed method obtains better results, up to 0.021 s
for the IEEE 14 bus and 0.036 s for the modified IEEE 14
bus model. This means, the computational time is almost
1% of IEEE standards which is small enough for a power
system study. Thus, the proposed method will provide higher
and faster results than the most popular machine learning
algorithms and also provides adaptivity for any structural
changes.
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Ahmet Önen received the B.Sc. degree in Electrical-
Electronics Engineering from Gaziantep University,
in 2005, the M.S. degree in Electrical and Computer
Engineering from Clemson University, in 2010, and
the Ph.D. degree from the Department of Electrical
and Computer Engineering, Virginia Tech, in 2014.
He is currently working as an Associate Professor
with Sultan Qaboos University. His research interest
includes the development and deployment of renew-
able energy along with AI.



1156 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 8, NO. 4, JULY 2022

Xiangjun Li (M’06–SM’12) received the B.E. de-
gree in Electrical Engineering from Shenyang Uni-
versity of Technology, China, in July 2001, and
his M.E. and Ph.D. degrees in Electrical and Elec-
tronic Engineering from Kitami Institute of Tech-
nology (KIT), Japan, in March 2004 and March
2006, respectively. From May 2006 to March 2010,
he worked as a postdoctoral research fellow at
the Korea Institute of Energy Research (KIER),
Daejeon, Korea, and Tsinghua University, Beijing,
China, respectively. In March 2010, he joined the

Energy Storage and Electro-technics Department (ESED) (before: Electrical
Engineering and New Material Department), China Electric Power Research
Institute (CEPRI), Beijing, China, where he has been engaged in the topic
of integration/control/SCADA/application technologies for large-scale multi-
type battery energy storage systems/stations, distributed generation systems,
electric vehicles, and micro-grids. He is the director of energy storage system
integration & configuration technology laboratory for the ESED of CEPRI
from June 2019. He is the director of large-scale energy storage technology
and application laboratory of CEPRI from May 2020. His research interests
include renewable energy power generation, electric energy saving/storage
technology, and power system engineering. He has served as the Chair of the
IEEE CIS Task Force on ADP and RL in Power and Energy Internets. He
has also served as the editor of the IEEE Transactions on Sustainable Energy,
editor of IET Renewable Power Generation, editor of Protection and Control
of Modern Power Systems (Springer journal), and guest editor of Engineering
(Elsevier journal). He has been awarded three U.S. Patents of Invention and 79
Chinese Patents of Invention. Prof. Li is a Fellow of IET, chartered engineer,
and is one of the senior members of IEEE, CSEE, CAS, and CES, etc.

S. M. Muyeen (S’03–M’08–SM’12) received his
B.Sc. Eng. Degree from Rajshahi University of
Engineering and Technology (RUET), Bangladesh
formerly known as Rajshahi Institute of Technology,
in 2000 and M.Eng. and Ph.D. Degrees from Kitami
Institute of Technology, Japan, in 2005 and 2008, re-
spectively, all in Electrical and Electronic Engineer-
ing. At the present, he is working as a full Professor
in the Electrical Engineering Department of Qatar
University. His research interests are power system
stability and control, electrical machine, FACTS,

energy storage system (ESS), Renewable Energy, and HVDC system. He
has been a Keynote Speaker and an Invited Speaker at many international
conferences, workshops, and universities. He has published more than 250+
articles in different journals and international conferences. He has published
seven books as an author or editor. He is serving as Editor/Associate Editor
for many prestigious Journals from IEEE, IET, and other publishers including
IEEE Transactions on Energy Conversion, IEEE Power Engineering Letters,
IET Renewable Power Generation and IET Generation, Transmission &
Distribution, etc. Dr. Muyeen is the senior member of IEEE and Fellow of
Engineers Australia.


