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Abstract: The recent advancement in efficient and recoverable CO2 capture solvents has been stim-

ulated by the environmental harm resulting from the accumulation of greenhouse gases. Ionic

liquids (ILs) and IL-based solvents have given rise to a novel method of CO2 collection that is highly

efficient, economical, and environmentally benign. However, there is a lack of knowledge about

the implementation of this process on a wider scale, and it has limitations, including high solvent

costs. This simulated study shows that [EMIM][NTF2] can remove up to 99.4% of the CO2 from

industrial waste effluents using three distinct compositions. Following an economic study using a

20-year plant life estimate, with a plant capacity of 4000 kg/h (206.165 kmol/h) for the raw mixed

stream flow (inlet) and a maximum CO2 capacity of 38.1 kmol/h, it was determined that the process’s

overall annualized cost was USD 2.1 million with operating expenses being USD 1.8 million. The

Aspen Activated Energy Analysis’s recommendation of adding a heat exchanger, with a payback

year of 0.0586 years, a 23.34 m2 area, and potential energy cost savings of USD 340,182/Year was

also implemented successfully. These findings propose a conceptual framework for the development

of novel ionic liquids for CO2 capture. It also demonstrates that sustainable [EMIM][Tf2N]-based

absorption techniques for CO2 capture have the potential to be an industrial technology.

Keywords: ionic liquids; heat integration; CO2 emissions; ASPEN PLUS Simulation

1. Introduction

Emissions of carbon dioxide are progressively a major matter of concern all around the
world [1–3]. According to S. Wang, Li et al. [4], global emissions from the combustion of
fossil fuels reached nearly 33 billion tons in 2011, with economic development, urbanization,
and energy usage as the major factors influencing the rise in emissions in both high and
low-income countries. A study undertaken in Europe reported that global warming would
lead to a significant increase in cold weather moisture levels of up to 15% by the mid-2030s
and 25% by the middle of this century [5]. As the dominant greenhouse gas, carbon dioxide
levels in the atmosphere rise, it leads to elevated air pollution and global warming all
around the world. The top six nations in terms of CO2 emissions in 2014 are depicted
in Figure 1 below [6]. It demonstrates that the largest CO2 emitters—China, USA, India,
Russia, Japan, and Germany—were responsible for a significant portion of the global
warming rise. These nations were directly responsible for almost 60% of the world’s
CO2 emissions, with China leading the pack and the United States coming in second.
Additionally, it demonstrates that the established nations of Japan and Germany produced
fewer carbon emissions than the emerging nations of India and Russia; however, they were
still quite high when compared with the rest of the countries around the globe, and that
placed them in the top six. The Paris Agreement (PA), which established strategies for
combating climate change after 2020, was approved at the Paris Conference on Climate
Change in December 2015. The PA’s long-term mission is to keep the growth in the world’s
mean temperature to less than 2 ◦C rise, preferably less than 1.5 degrees Celsius [7]. To
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fulfill this 1.5 ◦C target, carbon emissions must decrease by 7.6% each year between 2020
and 2030; in order to achieve the specific 2 ◦C benchmark, carbon emissions must drop
by 2.7% per year between 2020 and 2030 [8]. As a result, finding a suitable technology
to manage and reduce CO2 emissions from anthropogenic sources is critical from both
an environmental and economic standpoint [9]. Hence, renewable power sources that
can mitigate CO2 emissions, such as solar, wind, and hydropower, are some long-term
alternatives to fossil fuels. Another useful possibility is to recycle and produce valuable
products from the captured carbon dioxide, such as the manufacture of polymers, fertilizers,
cosmetics, and different chemicals [10,11]. The complex and interconnected issues of the
modern era can be resolved by converting good quality CO2, the primary greenhouse gas,
into value-added goods. With its conversion, we may lessen our reliance on old-fashioned
fossil fuels and more effectively combat global warming. The scientific community and
technologists are now under an obligation to investigate and create innovative solutions
that may be effective for regulating and lowering the atmospheric level of CO2 due to
the necessity to minimize CO2 emissions from the environment. Different uses for this
captured CO2 emerge, including using it as a carbon source in industrial operations or
burying it in coal beds, oil wells, and other geological formations [12]. Since present capture
methods are not particularly efficient in removing highly pure CO2 from significant sources
of combustion, it is obvious that new technologies must be created or that current ones
must be improved [13].
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Figure 1. Top six nations with the greatest CO2 emissions in 2014 (data extracted from [6]).

To date, many technologies have been introduced and various studies have been
conducted to improve the separation and mitigation of CO2 emissions from the industries
expounded above to preserve and keep climate change stable [14]. These technologies
include physical and chemical absorption, adsorption, membrane separation, hydrates
separation, and cryogenic distillation techniques [15,16]. Table 1 below demonstrates these
different methods with their benefits and drawbacks. The most common technologies used
for acid gas removal, such as CO2 in the case of this study, are adsorption and absorption,
verified by Dalane, Dai et al. [17]. However, the adsorption technologies currently available
may not be satisfactory for use as a large-scale treatment for gases. The limited adsorption
efficiency of most available adsorbents may play a prominent part in the challenges and
problems that arise at this level. Furthermore, due to the low selectivity of the most
available adsorbents, the gas streams to be treated should have high CO2 quantities [18].
Furthermore, it is also concluded that since CO2 is a corrosive and acidic gas and can easily
cause hydrates upon decreasing the temperature, it can cause excessive damage to the
distillation columns and membranes. The absorption process, even with low compositions,
provides high selectivity with high efficiency that is greater than 90%, as reported by
Mansourizadeh, Ismail et al. [19].



Sustainability 2023, 15, 3370 3 of 23

Table 1. Conventional and emerging CO2 capture technologies.

CO2 Separation
Techniques

Description Examples Benefits Drawbacks CO2 Recovery Energy Requirement Ref.

Absorption

A process in which a gas is
separated by an absorbent
in which it is soluble; hence,
solubility is the main factor
defining absorption

• Amine chemical
absorption:2-amino-2-
methyl-1-propanol (AMP),
diethanolamine (DEA),
MDEA

• Alkali–salt systems, also
known as hot carbonate

• Ionic liquids

High purity
Low costs for MEA
solvents are reported
Simple design
Less toxic
Easy regeneration
Chemical absorption
holds good results in
terms of
removal efficiency

Methods used to get the
equilibrium data for absorption
through experiments are typically
time-consuming
Amine absorbents are corrosive
MEA absorbent requires high
energy during high-temperature
absorbent regeneration
Requires waste treatment
Solvent degradation

90–98% 4–6 MJ/kgCO2 [20–23]

Adsorption

Using adsorbents to
separate the gas mixtures
under variable pressures
of temperatures

• MOFs Zeolites and
Activated Carbon

Design flexibility
Easy operation

The available adsorbent for CO2

has low selectivity and capacity.
Lower removal efficiency
compared to other technologies
(absorption and cryogenic)
Temperature Swing Adsorption
requires more energy because of
additional heat demand compared
to other processes.

80–95% 2–3 MJ/kgCO2 [20,23–27]

Membrane
separation

Membranes split gases by
allowing a mixture of gases
to pass through a membrane
from one side of the
membrane to the other. The
concentration gradient
created by a high partial
pressure on one side of the
membrane and a low partial
pressure on the other
induces this transportation.

• Polymeric membranes
such as
polysulfone/cellulose
acetate

• Ceramic membranes
• Mixed matrix

membranes (MMM),

Environmentally
friendly technology
Requires less energy
Low cost for operation

Extreme temperatures or harsh
chemicals may destroy the
membrane
Low removal efficiency and low
CO2 purity
Membranes are delicate to
residues of sulfur compounds,
such as H2S

80–90% 0.5–6 MJ/kgCO2 [1,23,28–36]

Distillation
(cryogenic)

A separation technique that
liquefies the gases and then
uses boiling points to
achieve
high-purity separation

• Cryogenic air separation
units (ASU)

Feasible operation
Design that is environ-
mentally friendly

Due to the low temperature of the
gases during liquefaction, the
frosting of gases can occur, which
can damage the equipment
Corrosion and fouling can occur
due to acidic gases
High maintenance costs

>95% 6–10 MJ/kgCO2 [20,23,37–39]
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Table 1. Cont.

CO2 Separation
Techniques

Description Examples Benefits Drawbacks CO2 Recovery Energy Requirement Ref.

Hydrates
separation

Utilizes the differential
pressure in between gas
components to generate
hydrates and accomplish
segregation in the mixture

• Clathrate hydrates
Clean process
Free of impurities
Easy to transport

Not good for industrial use in
terms of costs
Slow process
Very low temperatures are
required to conduct the process
Requires high pressure to operate

99% - [40–45]
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Ionic liquids (ILs), one of the emerging CO2 capture technologies, have drawn a lot
of interest lately due to their extraordinary potential for extracting CO2 from emissions
produced by industry [46–49]. There are already various manufactured ionic liquids with a
wide range of attributes that emerge from anion–cation pair variations. Thermal stability,
low vapor pressure, and strong polarity are just a few of the qualities that make ionic
liquids appealing for CO2 removal [50]. The non-volatile and environment-friendly nature
of ILs has been revealed to be one of the basic properties required to successfully capture
CO2 with less energy usage than typical amine scrubbing absorbent materials [51].

[TF2N]--containing ILs tend to show a significant CO2 solubility. The immense size
of the [TF2N] anion may explain the high CO2 solubility. [TF2N]--containing ILs have
also shown reduced viscosity relative to other ILs and are capable of dissolving large
CO2 concentrations [52,53]. Considering the current literature survey, ILs have emerged
as potential absorption solvents for CO2 capture in recent years. Combining statistical
approaches to approximate the properties of ILs and their related mixtures with process
simulation software is an economical approach at the current state of the art [54,55]. Var-
ious process simulations have been conducted for CO2 capture to interpret the lab-scale
experiments done before and to make comprehensive remarks on the performance of
the system [56], and abundant process simulations have been reported to capture CO2

using ionic liquids in the literature. Shiflett, Drew et al. [57] performed an Aspen Plus
simulation using the absorption of 1-butyl-3-methylimidazolium acetate [bmim][Ac] and
MEA(Monoethanolamine) from flue gas. It was reported that both of these cases gave a
high CO2 purity (>95%); however, using this ionic liquid reduced the energy utilization by
16%. Khonkaen, Siemanond et al. [58] used ([emim][Ac]) to separate 90% CO2 from flue
gas with −38 kJ/mol heat of CO2 absorption. Amiri, Lounis et al. [59] used [hmim][TCB]
and reported that the energy requirements for this solvent are almost 16% less compared
with the DEPG process and that it is an excellent absorbent because of its environmentally
friendly properties. According to another simulation, CO2 capture using the [bmim][Ac]
process may minimize the loss in energy, IL operational expenditures, and equipment foot-
prints by 16%, 11%, and 12%, respectively, when compared with a frequently used MEA
(monoethanolamine) approach [57]. Similarly, Xie, Björkmalm et al. [60] assessed three
prospective ILs and performed a techno-economic study on them. The ionic liquid used
was [bmim][TF2N], aq. ChCl/Urea and aq. [Amim][HCOO]. According to the economic
analysis of [Amim][HCOO], the yearly maintenance and operational cost was USD 260,000,
whereas the annual capital cost was found to be around USD 116,000. Despite the high CO2

capture capacity, several obstacles and shortcomings must still be tackled for ionic liquids.
For example, ionic liquids have a high viscosity and solvent price that consequently affect
energy consumption and manufacturing costs [61].

Regardless of the high affinity of ILs for CO2, there are significant restrictions to
resolve before this approach can be used on a broad scale. For example, ILs have sig-
nificant solvent rates and viscosity, which raises pump manufacturing costs and energy
consumption. To the fullest extent possible, researchers and technical staff must pay close
attention to these technological and economic issues [61,62]. Consequently, despite being
one of the prominent absorbents in the market currently, energy and cost-related issues
necessitate a specific focus on the part of researchers and specialists in order to effectively
and efficiently utilize their capabilities and strengths in order to commercialize them. To
select the most reliable and promising IL, several studies were reviewed from the literature.
Shaahmadi et al. (2020) [63] used ionic liquids [Bmim][Ac] and [Bmim][BF4] to check
CO2/CH4 combination solubilities in these ions, and it was concluded that [Bmim][Ac]
performed better for the absorption of this mixture compared with [Bmim][BF4]. Ramdin
de Loos et al. (2012) [64] discussed different experimental data available for CO2 capture
from flue gas and its solubility in different ionic liquids. Ten different ionic liquids were
compared, and it was concluded that the EMIM (TF2N) alkyl chain had the highest CO2

solubility compared with BMIM (BF4, TFO, methide, PF6, TF2N), OMIM (TF2N), and
HMIM (TF2N). The authors conducted a comprehensive comparison between ionic liquids
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and other physical absorption commercially available methods and concluded that ionic
liquids have a CO2 solubility greater than 2.5, and they can be used in the areas where
physical solvents cannot be used in. Furthermore, it was demonstrated that since ionic
liquids are still an emerging technology, a lot of physical and chemical properties of ionic
liquids are lacking in the literature. Additionally, it was stated that this subject needs to
be studied since it lacks recyclability, lab-pilot plant, cost, energy, and safety studies. A
study by Kortenbruck et al. (2012) [65] concluded that EMIMNTF2 could be efficiently
used for absorption processes for CO2 capture, and this claim was further supported by
Giammancoet al. (2016) [66], who explained that this absorbent is a widely studied ionic
liquid that has high CO2 solubility and is thermally stable. So conclusively, EMIMNTF2

was selected as the final absorbent to be used in this simulation study.
The aforementioned analysis reveals that although the IL EMIMNTF2 has a promis-

ing potential to uptake CO2 from gas streams, the developed affinity, cost, and energy
demand under a wide range of operational conditions should be confirmed. Therefore, the
present study aims at investigating the capability of CO2 capture from industrial waste
streams (with high CH4 content) using the IL EMIMNTF2 [1-ethyl-3-methyl-imidizolium
bis[(trifluoromethyl)sulfonyl] amide]. The potential of EMIMNTF2 to uptake CO2 from
streams with high CH4 content and corresponding stream purities is established. The
techno-economic aspects of such technology in terms of cost and energy savings and re-
quired unit operations are explored and discussed. Additionally, optimal design, waste heat
recovery, process optimization, and energy saving are included to achieve high profitability.

2. Modelling and Validation of CO2 Capture on Aspen Plus

This simulation employs an advanced CO2 capture process, which includes a gas-
liquid separator, absorber, two flash tanks, a dryer, a mixer, pumps, compressors, and
coolers. IL EMIMNTF2 with a molecular weight (MW) of 391.31 g/mol was used as the
absorbent in the absorption tower for CO2 absorption [67]. EMIMNTF2 is stated to be an
excellent absorbent for capturing CO2, as stated by Li et al., who used this absorbent to
separate CO2 from power plants using the NRTL model in Aspen Plus [68]. Figure 2 shows
the overall optimization approach applied in this study. The study started by exploring
different ILs and selecting the best green ionic liquid with high CO2 solubility and low
energy requirements. Then, the properties of the selected IL (EMIMNTF2 in this study)
were identified, and then the appropriate IL was used to study the CO2 uptake. Optimized
conditions were identified based on cost, energy, and uptake capacity.

Figure 3 depicts the ASPEN Plus model used to simulate the physical absorption of
CO2 by utilizing IL. ASPEN Plus has been used by experts in the field to study the CO2

absorption and desorption processes in several feasibility studies [69,70]. The property
model used for this study was COSMOSAC. This model rapidly gives pertinent informa-
tion on gas–liquid interactions without having to rely on binary interaction parameters or
experimental data, making it a reliable provisional tool for quick screening and configura-
tion of ILs for CO2 extraction [71,72]. In contrast to other activity coefficient models, such
as UNIFAC or UNIQUAC, the key components for phase equilibria are individual atoms
rather than functional groups. As a result, the COSMOSAC model is more adaptable since
it can be used to simulate a larger variety of systems, including complex molecules, such as
the ILs that were the subject of this investigation and are not included in the Aspen Plus
database. More particulars regarding the model and how the input parameters are found in
a study done by García-Gutiérrez, Jacquemin et al. [73] and are given in the Supplementary
Data (Table S2). First of all, to eliminate any potential water residue, the INLETGAS stream
approaches the Flash Separator to remove the water content from the inlet streams; the
pressure is the same as the inlet stream (15 bar), and the temperature is specified to be
20 Celsius. The separator is used to eliminate the water content from the bottom. The dry
industrial waste gas stream (S1) then passes a mixer, where it is blended with a stream that
recirculates through Flash-1 and contains traces of CO2 and CH4 that are not completely
absorbed in the absorption column. Following that, a three-stage multistage compressor
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compresses and cools the mixed stream (S2) to 18 bar and 313.15 K before directing it
into an absorber. Stream S6 from the cooler, when mixed using a mixture with stream S1
(15 bar, 20 ◦C) would cause the mixed stream to be at (20 ◦C and 15 bar); the three-stage
compressor is required here to increase the pressure of the stream to 18 bars and 313.15 K
that will be fed to the column. Because of these pressure and temperature differences,
in order for the mixture to be at a regulated temperature and pressure, we are using a
multistage compressor. Gas temperature can be controlled via multistage compressors.
The output gas has a regulated temperature because they cool the gas as it moves between
each chamber; hence, the multistage compressor is a good choice to be used, especially
when there is a difference in temperature and pressure of the two mixed streams. The
main specification entered into the unit was to regulate the temperature to 40 ◦C with
an intercooler because there are two streams being mixed before the compressor, so in
order to regulate the temperature before going to the absorber, multistage is preferable
in this scenario. Further to this, the flowrate in stream S6 entering the mixer is quite low
(9 kg/h), and stream S1 is 3953.95 kg/h so in order to regulate the flowrate and increase
them to 4500 kg/h which is our inlet flowrate to the absorber we are using a multi—stage
compressor. The main absorption tower is then fed the compressed and dehydrated input
stream (S31), where the gas interacts with the IL from the LEANIN1 stream at 30 ◦C and
20 bar counter-currently and is absorbed in 20 stages at 15 bars which was the optimum
value for high purity. The purified gas, primarily CH4 with certain contaminants such
(H2S, N2, etc.), exits the absorption tower’s top (GASOUT1). The CO2-enriched solvent is
introduced into Flash-1, where the flash’s generated gas is recycled to the mixer, and then it
is transferred to Flash-2 to separate CO2 and ILs. Since the operating pressure of Flash-2 is
0.04 bar, we use a vacuum pump (details in the Supplementary Data) [74,75] to reduce the
pressure from 2 bars to 0.04 bars. Afterwards, the IL is recirculated at 20 bars and 303.15 K
absorption column for continuous absorption.

Table 2 defines the major operating conditions used for each equipment in this process
simulation. This process starts with the INLETGAS stream from industrial wastes with
composition and conditions described in Table 3. Table 4 demonstrates the Inlet parameters
considered for the input streams. These Inlet conditions in Table 4 were predicted precisely
according to the temperature and pressure ranges present for major gases exiting in the waste
streams, such as CO2 and CH4 according to [76–78], with a presumed flowrate of 4000 kg/h
since this flowrate was suitable according to the temperature and pressure specified in the
simulation. Out of total seven streams tested; three streams gave the best results with high
CO2 purity hence those three streams are addressed in this study. The flowrate of ionic liquid
is kept at 20,000 kg/h for the streams to achieve high purity content of CO2.

Table 2. Operating parameters used for each equipment in this study.

Equipment Operating Input Parameters

LIQSEP (Flash Separator) Temperature: 20 ◦C, Pressure:15 bar

Mixer -

MP2 (Multistage Compressor) Isentropic, 3 Stages, Discharge Pressure 18 bar

Absorber 20 Stages, Column Pressure:15 bar, Packing Type: Flexiring, Material: Metal, Size: 0.625 In, Vendor: KOCH

Flash1 (Flash Column) Temperature: 38.85 ◦C, Pressure: 2 bar

COMP (Compressor) Isentropic, Discharge Pressure: 30 bar

Cooler1 Temperature: 37.5 ◦C, Pressure: 30 bar

Heater Temperature: 126.85 ◦C, Pressure: 2 bar

Flash2 (Flash Column) Temperature: 131.85 ◦C, Pressure: 0.04 bar

Pump Discharge Pressure: 20 bar

Vaccum Pump Discharge Pressure: 0.04 bar

Cooler2 Temperature: 30 ◦C, Pressure: 20 bar

Total Electric Power Demand 13.15 kW

Net Duty 364,744.59 kJ/h
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Figure 2. Schematic approach applied for this study.
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Figure 3. Process model for the simulation.

Table 3. Compositions for the streams for major gases before IL absorption.

Inlet Stream
No.

CH4

Composition
(%)

CO2

Composition
(%)

H2S
Composition
(%)

H2O
Composition
(%)

N2

Composition
(%)

H2

Composition
(%)

CO
Composition
(%)

Stream 1 56 42 1 1 - - -

Stream 2 83 14 1 2 - - -

Stream 3 58 35 1 2 1 1 2

Table 4. Inlet parameters for waste streams.

Stream Variable Value

Pressure, bar 15

Temperature, K 326

Total Mass Flow kg/h 4000

3. Results and Discussion

3.1. CO2 Purity Results

After implementing ionic liquids to absorb CO2 from the previously defined streams,
the first step is to figure out the gas purity being emitted. Table 5 below represents
compositions of from some industrial waste streams with CO2 and CH4 removal efficiencies
and compares them with this study. This work shows some of the utmost purity values
using [EMIM][NTF2] as the ionic liquid that signifies that this ionic liquid is one of the
most suitable IL to capture CO2 with high purity values for different compositions of waste
industrial streams. The compositions varied for CH4, CO2, and N2 with traces of H2S and
H2O in all the three streams and the process was tested out for each of them. All the streams
successfully separated CO2 from the mixtures with high purity values reaching up to 99.4%
CO2 rich stream after the absorption. This demonstrates that the process used in the study
is successfully not only capturing CO2 using IL but also CH4 and impurities up to 99% such
as H2S, CO and N2 (used in minute quantities for Stream 3) that come out from the top of
the absorber can later be used in variety of applications such as fuels. Similar techniques
for capturing CO2 using ionic liquids have been attempted by various authors, and much
research for different types of industrial waste have disclosed the CO2 purity outcomes
upon absorption. Rashid [79] and Shiflett, Drew et al. [57] tested ([Bmim][Ac]) for a coal-
fired powerplant waste stream and found out that their process provides a CO2 purity
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of 98.7%. Kazmi, B. et al. [80] found out that absorption with pyridinium functionalized
ionic liquids for natural gas sweetening process yielded a CO2 and CH4 purity ≥ 99%.
Hospital-Benito and Lemus et al. [81] utilized [P2228][CNPyr] to remove carbon dioxide
from raw synthesis gas to provide an usable H2-rich product stream. Haider, J. et al. [82]
compared MEA (monoethanolamine) process with [Bmim][PF6] to study CO2 absorption
capacity on both and found out that using IL gives around 99% CH4 purity and 98.5%
purity for CO2. Likewise, Ma, Wang et al. [83] used [bmim][PF6] and [bmim][BF4] for
their analysis to separate CO2 from flue gas and got the purity as 90% for the CO2 rich
stream after separation. [hmim][Tf2N] gave 93.7% pure CO2 in an alternative study [84].
Khonkaen, Siemanond et al. [58] modelled a system for coal industry waste stream and his
method gave a CO2 purity of 99.26% for [C2MIm][Tf2N]. Moreover, biogas from anaerobic
digestion of sewage sludge was treated by García-Gutiérrez, Jacquemin et al. [73] using
three different ionic liquids; [C2MIm][Tf2N], [C6MIm][Tf2N], and [P66614][Tf2N] gave a
high purity of 95% for methane rich stream removing off CO2 completely from the system.
Even though there has been a fast rise in attention in ILs over the past 20 years and a lot
of research studies are being performed, only a small number of procedures have been
commercialized for the treatment of industrial gas effluent as of yet. The demanding
benchmark requirements established by the U.S. Department of Energy (DOE) for CO2

collection technology are as follows: At 90% CO2 processing efficiency, a 95% CO2 stream
must be achieved [85]. Therefore, the technology presented in this study can effectively
and efficiently extract CO2 with a high level of purity from a variety of industrial effluents.

Table 5. CO2 purity (%) using various compositions from industrial waste streams.

Type of Industry Composition of Feed (%) IL Used
CO2 Purity
(%)

CH4 Purity (%) Ref.

Coal-fired
Power Plant

N2→78
CO2→13
H2O→1

1-butyl-3-
methylimidazolium
acetate ([Bmim][Ac])

98.7 - [57,79]

Natural-Gas
(Sweetening Process)

CH4→80
CO2→20

3MEPYNTF2 ≥99 ≥99 [80]

Biomethane
Liquefaction

CH4→60
CO2→39
H2S→1

[Bmim][PF6] 98.5 99 [82]

Model Flue gas

O2→3.81
CO2→13.30
N2→71.64
H2O→11.25

[bmim][PF6]
[bmim][BF4]

90
90

- [83]

Coal Industry
N2→84
CO2→12
H2O (vapor)→4

([emim][Ac]) 99.26 - [58]

Flue Gas

Ar→0.48
CH4→0.24
H2→37.5
N2→0.33
CO→6.27
CO2→23.87
H2O→30.68
NH3→0.16
H2S→0.47

[hmim][Tf2N] 93.7%, - [84]
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Table 5. Cont.

Type of Industry Composition of Feed (%) IL Used
CO2 Purity
(%)

CH4 Purity (%) Ref.

Natural Gas
CH4→-
CO2→-
H2S→-

[DePYO] [H2PO4]
[BeMPYO][H2PO4]
[PMMIM] [H2PO4]
[EMIM] [H2PO4]
[BMIM] [MeSO4]
[BMIM] [PF6]
[BMIM] [TCM]

90.73
89.96
88.26
91.42
84.11
85.18
86.64

97.47
97.36
97.21
97.52
97.01
96.86
97.26

[86]

Biogas from
sewage sludge

CH4→40–75 vol%
CO2→15–60 vol%
H2O (vapor)→5–10 vol%
Trace→H2S

[C2MIm][Tf2N]
[C6MIm][Tf2N]
[P66614][Tf2N]

Complete
removal of
CO2

95% CH4 mol
frac rich stream

[73]

Power Plant
N2→78
CO2→12.5
H2O→5

[bmim][Tf2N] 94.5 - [87]

Mixed Waste
Industrial Stream
(Stream 1)

CH4→56
CO2→42
H2O→1
H2S→1

[EMIM][NTF2] 99.4 98.36
This
Work

Mixed Waste
Industrial Stream
(Stream 2)

CH4→83
CO2→14
H2O→2
H2S→1

[EMIM][NTF2] 97.9 98.8
This
Work

Mixed Waste
Industrial Stream
(Stream 3)

CH4→58
CO2→35
H2O→1
H2S→1
N2→1
H2→1
CO→2

[EMIM][NTF2] 99.2 92.1
This
Work

3.2. Cost Evaluation

The cost of machinery plays a key role in any plant’s capital spending. The most
accurate way for estimating equipment costs is to get prices from manufacturers, but this
includes comprehensive engineering drawings and documentation. Using cost analysis
software is a more accurate way to measure the cost of facilities. Aspen Tech created
the Aspen Process Economic Analyzer, which works in tandem with Aspen Plus is one
such tool to easily perform economic analysis [69]. Owing to various existing operations
involved with the industrial sector, multiple process pollutants are regular. These reserved
emissions from industrial processes in the United States alone approach almost 5800 MtCO2

as per 2018 country-level emission data [88]. Hence it is essential to implement a proper
cost analysis for the waste streams coming out from these industries.

Figure 4 demonstrates the factors considered for the economic analysis as per the US
APEA template, which was in correspondence to the studies done by [89,90]. Moreover,
Figure 5 shows the calculated costs for each of the three streams extracted from the ASPEN
software. Other details for the capital and operational costs split up are discussed in
Table S3 of the Supplementary Datasheet. Cost analysis for this study to get the total initial
costs is performed using the built-in Aspen Economic Analyzer option available in Aspen
Plus V11. The built-in approximation is modified by the Aspen Economic Analyzer to fit
the capacity required in the flow sheet. Nevertheless, since that database does not contain
all types and sizes of equipment, it is often important to use a mapping to equipment
option for similar but not equivalent functions [91].
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Figure 5. Cost analysis for an operating life of 20 years for a plant.

An initial study for 20 years of the operating life of the plant was conducted with
mapping for each stream composition and data such as total initial investment of the project
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was calculated by summing up the total capital, equipment and installed costs. The total
operational hours for this scenario are calculated to be 8766 h/year and 52 weeks/year.
Moreover, the interest rate is calculated to be 20%, and the tax rate is calculated to be 40%
for all three streams. It is summarized that the initial cost of the project maximum around
USD 1.08 million for each composition (Stream 1, Stream 2, Stream 3) selected for this
study. In Table 6 below, the expenses of the utilities taken into consideration for this study
are displayed, together with the inlet and outlet temperatures of the utilities, which are
by default accessible in Aspen. Additionally, the total utilities cost, which includes both
heating and cooling utilities (for example electricity, water, and stream), is calculated to
be around a maximum value of USD 0.11 million. The desired rate of return is around
20% per annum. Moreover, TAC (total annualized costs) has been widely used in many
process design studies to produce the best results for economic analysis [73,90,92–96]. The
equation for calculating TAC for this study is taken from Wang, Ma et al. (2018) [97] that is
shown in equation [1] below where the plant lifetime is taken to be 20 years and the capital
and operating costs are extracted from the economic analysis of ASPEN PLUS software.
The plant capacity of the model is 4000 kg/h (206.165 kmol/h)-0.035Mt/Year for the mixed
stream flow (inlet), and a maximum CO2 capacity of 38.1 kmol/h.

TAC =
Total Capital Cost

Plant li f etime
+ Total Operating Cost (1)

Table 6. The prices implemented in Aspen Plus.

Utility Type Costing Rate
Inlet
Temperature
(◦C)

Outlet
Temperature
(◦C)

Pressure (Bar)

Electricity 0.0775 $/kWh - - -

HP Steam 2.5·10−6 $/kJ 250 249 39.7

Cooling Water 2.12·10−7 $/kJ 20 25 1.01

TAC is found to be approximately 2.1 M$/Year for all of the three different streams,
which is considerably lesser than Haider, Qyyum et al. [98] in which [Bmim][PF6] to
purify biogas with a TAC value of USD 31.1 M/year with a plant capacity of 0.4 MTPA.
Similarly, Zhang, Song et al. [78] reported a comparative economic analysis for CO2

separation and stated that physical absorption of DEPG solvent gives a TAC value of USD
22.8–25.1 M/year with 1.255 MTPA plant capacity when CO2 molar composition in feed
gas varies from 15% to 65%, it was also reported that Monoethanolamine (MEA)-based
chemical absorption results for TAC from USD 11.3 M/year to USD 48.5 M/year for
same CO2 inlet compositions with a plant capacity of 2.4MTPA. Kazmi, Raza et al. [80]
compared MEA with TAC with a value of USD 9.8 M/year and dimethyl ether (DME)
with a value of USD 6.16 M/year CO2 capture processes to imidazolium ionic liquid
3MEPYNTF2 with TAC value of USD 1.64 M/year and stated that using ionic liquid
relatively decreased the costs of the process in comparison with conventional processes
with a plant capacity of around 0.175 MTPA. Moreover, it was also reported that the
total capital cost of MEA is USD 9.028 M and DMEA is USD 14.2026 M, while the total
operating cost of MEA is found to be USD 8.022 × 106 year−1, and for DME it is USD
3.3205 M/year. Furthermore, De Riva, Suarez-Reyes et al. [99] indicated that using
imidazolium-based IL to capture CO2, with an operating cost for optimum scenario
was around 3.07 M€/year (3.64 M USD/Year) which corresponded to EURO 73.3/ton of
captured CO2. This study accounts for the operating cost to be around USD 1.8 M/year
that is almost half of what was reported. The reported values for capital cost in this study
is USD 6 M, which is substantially less than the total capital costs of MEA and DME;
moreover, the TAC result (USD 2.1 M/year) is also similar to the ones stated by Kazmi,
Raza et al. [80]. The operating costs and TAC results for other studies previously reported
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are considerably less than the compared studies, which verifies that using [Emim][NTf2]
to capture CO2 in the process reported in this study is comparatively a better option than
employing other conventional techniques. Additionally, [Emim][NTf2] is found to be
a cheap ionic liquid that can be used to capture CO2 according to various studies. The
variable operating cost of [Emim][NTf2] was predicted by de Riva, Suarez-Reyes et al. [99]
as USD 83/tCO2 for capturing CO2. Likewise, as reported from experimental studies
done by Li, Wu et al. [100], [Emim][NTf2] cost around 1500 (JPY/kg) for 0.12–0.69 molar
fraction of CO2, which was the lowest amongst the compared ionic liquids; hence, it can
be proven that [Emim][NTf2] is an extremely low-cost option to produce highly pure CO2

from industrial waste streams. According to prior research, these ensuing expenses may
be reduced by enhancing the working conditions, such as decreasing vacuum, which
would lower operational and capital expenses [101].

3.3. Energy Savings Analysis

Due to various benefits, such as non-volatility, reliability, high carbon dioxide solubil-
ity, and reduced energy requirements for recovery, ionic liquids (ILs) have demonstrated
tremendous potential to be used as liquid absorbents for CO2 separation [102,103]. Addi-
tionally, even though several ILs have been produced and formulated as possible liquid
absorbents for CO2 removal, the energy consumption of a CO2 separation system utilizing
multiple ILs is not yet thoroughly investigated, making it challenging for users to choose
the right IL for a given operation; hence, it is essential to perform an energy analysis in
order to give the users the option to compare and chose the best ionic liquid to apply in
their tasks and applications [104]. Using Aspen Energy Analysis was the first step leading
to developing the heat integration for this study. Table S4 in the Supplementary Data
sheet evaluates the actual energy being spent on the utilities, energy savings potentials and
possibilities for this process and identifies the targets in detail. Figures 6 and 7 present the
actual energy values and the percentages of how much energy can be saved if this system
achieves the targets given from ASPEN PLUS automatically. It is shown that Stream 1 has
an estimated total energy savings of almost 3.39·106 kJ/h, which, in other words, means that
almost 65.27% of the actual energy expenditures can be saved after achieving the identified
targets. Similarly, the total energy savings for Stream 2 are given as 3.314 · 106 kJ/h, and
for Stream 3 are calculated as 3.359·106 kJ/h. Furthermore, a detailed description of these
energy savings is given for the heating and cooling utilities and carbon emissions that are
found to be 162 kg/h for Stream 1, with that the calculated target carbon emissions are
50.6 kg/h which can save almost 68.77% of actual energy expenditures. Likewise, Stream
2 and Stream 3 give actual carbon emissions of 134.5 kg/h and 154.9 kg/h and targets
of 25.33 kg/h and 44.25 kg/h that can save up to 81.17% and 71.37% for both streams.
Additionally, for each stream, an actual and targeted cost analysis is provided (shown
in Figures 8 and 9), indicating the total utilities, current cost, and percentage of savings
that can be achieved in order to reduce energy expenses. For Stream 1, the total utilities
are found to be USD 0.066 M/year, and the targets aim at USD 0.02 M/year, which can
save around 69.19% of costs. Equivalently, for Stream 2 the actual costs are found to be
0.06 $M/year with targets of USD 0.012M/year, which can save 79.1% of the spending on
energy. Stream 3 contributes to USD 0.067 M/year again with targets of USD 0.019 M/year,
which can save around 71.41% of energy expenses. Similar techniques of using Aspen
Energy Analyzer were used by Shankar, Sivasubramanian et al. [105] and Lei, Zhou et al.
Lei, Zhou et al. [106] to get savings on their proposed processes.

3.4. Process Integration of the Proposed Model

Composite curves are amongst the most well-known process integration tools [107,108].
The composite curves display the overall cooling and heating demands of a process in a
single graph. The overlap of the curves gives a target for heat recovery potential, whilst the
remaining heating and cooling of the composite curves give targets for additional heating
and cooling specifications [109]. The curves are segregated by a point with the smallest
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temperature difference, DTmin, which is selected from before as 10 ◦C for this process. This
Tmin is the level of temperature in the device that can be defined as the “pinch”. In the
HEN study, the minimum approach temperature is very critical. It is the energy that elevates
heat recovery and identifies the amount of heat recovered in the system. Lower DTmin

means lower energy costs, but it also means higher heat exchanger capital costs. As a
result, the DTmin can be selected in such a way that the net running expense for resources
and area is as low as possible [110]. This network is divided into two halves: one with
a heat excess that must be removed by cooling, and the other with an energy deficit that
must be overcome by additional heating. Some more details on this are provided in the
Supplementary Data [111–114].
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Figure 6. Actual energy spent (kJ/h) for each stream on utilities.
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Figure 7. Energy savings (%) for the utilities suggested by Aspen Plus V.11 software.
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Figure 8. Cost analysis for the utilities for each stream.
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Figure 9. Cost savings (%) for the utilities suggested by Aspen Plus V.11 software.

Figure 10 below displays the composite curve for the process. These curves represent
the minimum energy targets for the heating and cooling utilities as explained before. Table 7
represents these minimum energy targets that are found to be 1.404 × 106 kJ/h (390 kW)
of minimum heating load and 1.596 × 106 kJ/h (433.3 kW) for the cooling load after heat
integration. These values are significantly less than the base case (without heat integration)
that were 4.401 × 107 kJ/h (12,225 kW) of heating load and 4.420 × 107 kJ/h (12,277.7 kW),
which signifies heat integration was applied successfully to this process. Moreover, the
temperatures of cross pinch for the study are 403.2 and 113.29 ◦C for the hot side and 393.2
and 103.29 ◦C for the cold side. Moreover, the process pinch temperature is at 113.3 Celsius.
Gatti, Martelli et al. [115] developed a simulation on CO2 capture using the Rectisol process
and demonstrated a GCC curve similar to what we have in this study with heat duty values
for the cold utility of 60 MW of cold utilities. Another study by Harkin, Hoadley et al. [116]
was published to reduce the energy penalty for capturing CO2 using pinch analysis, where
related composite and grand composite (GCC) curves were reported after heat integration
with heat load for the reboiler, 125 MW and 233 MW for Plants A and B with DTmin of 3 ◦C
and reported that these values were comparably less than the ones without heat integration
heat loads of 226 MW and 416 MW. Perevertaylenko, Gariev et al. [117] established a
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study on amine absorption units for capturing CO2 and with the help of composite curves
demonstrated that after heat integration had a Qmin cooling of 13,307 kW and a Qmin

heating of 8517 kW.

 

 

Figure 10. Composite curve of temperature vs. enthalpy.

Table 7. Detailed heat exchange network (HEN) design with operating savings and cost index.

Design Base Case Target
New Area
Cost Index
(Cost)

Payback
(Years)

Operating
Savings
(Cost/s)

DTmin (◦C) Pinch Temperatures (◦C)

Heating Cost
Index
(Cost/s)

0.04267 0.04747 0.001654

19,950 58,670 0.01078 10

HOT COLD

Heating Load
(kJ/h)

36,150,000 44,010,000 1,404,000 403.2 393.2

Cooling Cost
Index
(Cost/s)

0.02766 0.03364 0.001215 113.29 103.29

Cooling Load
(kJ/h)

36,350,000 44,200,000 1,596,000

Area (m2) 516.8 585.2 3734

New Area
(m2)

23.34

Shell 8 7 38

New Shell 1

The delta Tmin value of 10 ◦C was selected based on the previous studies mentioned
before by Momeni, Soltani et al. [118] and Brunner, Slawitsch et al. [119]. However, the
range target feature of the Aspen Energy Analyzer is another approach that can be used to
get the optimal approach temperature (DTmin) for the scenario selected (see Supplementary
Data Figure S2). The HEN model of the method is founded on the principle of process pinch
analysis. The optimum heat regeneration is produced from heat exchangers with pinch
point technology; hence, a HEN model is a useful technique for process cost and energy
savings [118]. The HEN design constructed the heat exchanger streams is demonstrated
in Figure 11 below. The red lines indicate the hot streams, and the blue lines validate the
cold streams. It has a highlighted section that shows the addition of the additional heat
exchanger (with green spheres) to perform this heat integration with a load of 2182.12 kW
(7,855,653.2 kJ/h). It shows that the hot side fluid with higher temperature is upstream
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cool2 (with blue spheres) with a duty of 10,029.1 kW (36,104,913.6 kJ/h), whereas the
colder side fluid from the heat exchanger is upstream of the heater placed on the left side
with 1.01 kW (3665 kJ/h) of duty. The HEN design network also shows the pinch and
cross pinch lines specified where the vertical dotted lines are the cross-pinch temperatures
(Supplementary Datasheet Figure S3). Moreover, cross pinch duties are demonstrated in
Table 8. It shows that for a cross-pinch temperature of 403.2/393.2 ◦C the total cross-pinch
load is 3.45·107 kJ/h, and for 113.3/103.3 ◦C, the cross-pinch load is 4.19·106 kJ/h. Similar
kinds of HEN diagrams were demonstrated by Shemfe, Fidalgo et al., Momeni, Soltani et al.,
and Dagde and Piagbo [110,118,120] that modified and enhanced the energy savings of the
processes presented with the help of heat integration.

 

 

Figure 11. Detailed heat exchange network (HEN) design selected for least payback amount with

pinch lines and cross pinch lines specified.

Table 8. The Cross-pinch table for HEN design.

HEN Design Cross Pinch 403.2/393.2 ◦C 113.3/103.3 ◦C

Flash2_Heat_Exchanger (kJ/h) 34,556,431.6 0

B-10_Heat_Exchanger (kJ/h) 0 0

Heater (kJ/h) 0 0

Flash1_Heatexchanger (kJ/h) 0 0

Cooler2 (kJ/h) 0 30,488,804.7

Cooler1 (kJ/h) 0 70,389.4058

E-100(kJ/h) 0 4,190,871.3

Total Network Cross Pinch Load (kJ/h) 34,556,431.6 34,750,065.4

4. Conclusions

An inclusive simulation study using EMIMNTF2 [1-ethyl-3-methyl-imidizolium
bis[(trifluoromethyl)sulfonyl] amide] as a promising ionic liquid to absorb CO2 and CH4
from three different compositions of waste industrial streams with the highest purity
up to 99.4% for carbon dioxide and 98.8% for methane was successfully applied in this
study. With the recycling ability of EMIMNTF2 introduced in the process design, this
system can potentially be used on a commercial scale in the near future. Furthermore,
using the Economic Analyzer feature in Aspen Plus, it is reported that with 20 years of a
plant’s life the total annualized cost (TAC) for the process is found to be USD 2.1 M/year
with total operating cost (TOC) of USD 1.8 M/year, which is comparatively less than
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some reported studies for conventional absorption technologies and a few ionic liquids
are also specified in the paper. In addition to costs, a thorough analysis of energy savings
and heat integration was performed on this system to lower energy usage. Therefore, it
was suggested by the Aspen Activated Energy Analysis that installing a heat exchanger
in the system would possibly save about USD 340,182 per year and have the lowest
payback period of 0.0586 years. To conclude, this study initiates the future possibility of
using [EMIM][NTF2] on a potentially large scale to absorb not only CO2 but also CH4

with other impurities generated from the waste streams of various industries.
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