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ABSTRACT We propose a new sparsity-aware framework to model and mitigate the joint effects of
narrow-band interference (NBI) and impulsive noise (IN) in hybrid powerline and unlicensed wireless
communication systems. The proposed mitigation techniques, based on the principles of compressive
sensing, exploit the inherent (non-contiguous or contiguous) sparse structures of NBI and IN in the frequency
and time domains, respectively. For the non-contiguous NBI and IN, we develop a multi-level orthogonal
matching pursuit recovery algorithm that exploits prior knowledge about the sparsity level at each receive
antenna and powerline to further reduce computational complexity without performance loss. In addition, for
the non-contiguous asynchronous NBI scenario, we investigate the application of time-domain windowing to
enhance the NBI’s sparsity and, hence, improve the NBImitigation performance. For the contiguous NBI and
IN scenario, we estimate theNBI and IN signals bymodeling their burstiness as block-sparse vectors with and
without prior knowledge of the bursts’ boundaries. Moreover, we show how to exploit the spatial correlations
of the NBI and IN across the receive antennas and powerlines to convert a non-contiguous NBI and IN
problem to a block-sparse estimation problem with much lower complexity. Furthermore, we investigate
a Bayesian linear minimum mean square error-based approach for estimating both non-contiguous and
contiguous NBI and IN based on their second-order statistics to further improve the estimation performance.
Finally, our numerical results illustrate the superiority of the joint processing of our proposed NBI and IN
sparsity-based mitigation techniques compared to separate processing of the wireless and powerline received
signals.

INDEX TERMS Compressive sensing, impulsive noise (IN), interference mitigation, narrowband interfer-
ence (NBI), orthogonal matching pursuit (OMP), powerline communication (PLC), sparse noise, wireless
local area networks (WLAN).

I. INTRODUCTION
To enhance the broadband transmission reliability and/or
increase the coverage area, there has been an increased
recent focus in realizing additional diversity dimensions from
simultaneous transmissions over multiple physical layers.
Wireless communication in the unlicensed frequency bands
and powerline communication (PLC) are attractive candi-
dates for achieving this goal due to their ubiquity [3]–[7].

Broadband PLC standards such as IEEE P1901.1 [8] and
ITU-T G.hn [9] adopt orthogonal frequency division mul-
tiplexing (OFDM) in the 1.8–250 MHz frequency band.
Broadband wireless local area network (WLAN) standards

such as IEEE 802.11n also adopt OFDM in the 2.4 GHz
and/or 5 GHz unlicensed frequency bands. To enhance com-
munication reliability, a hybrid PLC-wireless communica-
tion system simultaneously transmits OFDM symbols over
the PLC and WLAN channels followed by joint processing
of both received signals to exploit the independence of the
interference and channels characteristics of the two physical
media. Unlike channel fading and interference in receive-
diversity-based wireless communication systems which typ-
ically follow the same statistical distributions on all receive
branches, channel fading and interference distributions are
different for the PLC andwireless receive branches. However,
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a hybrid PLC-wireless system faces the following two main
challenges. First, in-home PLC systems suffer from impul-
sive noise (IN) because of sudden voltage changes caused by
on-off switching of in-home appliances and power electronics
devices such as silicon-controlled rectifiers, switching regu-
lators, and brush motors [10]. Second, WLAN transmissions
are subject to narrow-band interference (NBI) from other
wireless communication signals in the same frequency band
including cordless phones and Bluetooth devices [11]. Our
main objective in this paper is to investigate novel approaches
for joint NBI and IN mitigation in OFDM-based hybrid
PLC-wireless transmissions by exploiting the inherent spar-
sity of the NBI and IN signals in the frequency and time
domains, respectively.

Considering earlier works, hybrid wireless and PLC sys-
tems are studied in [3]–[6] for broadband communications
and in [7] and [12]–[16] for narrowband communications.
In [3]–[5], the performance of maximum ratio combining,
selection combining and other receiver combining schemes
are analyzed. Both Lai and Messier [4] and Lai et al. [5]
assume that the noise in the PLC link follows a Middleton
Class-A model and the noise in the wireless link is additive
white Gaussian noise (AWGN), while Guzelgoz et al. [3]
assume that the noise in both the PLC and wireless links
is AWGN. Using relaying in wireless and PLC networks is
investigated in [6] under the AWGN model for the wireless
link. In [7], the noise on the PLC link is modeled as a mix-
ture of synchronous and asynchronous impulse noise while
a Gaussian mixture noise model is adopted for the wireless
link. In [12]–[16], the noise on the PLC link is modeled as a
cyclostationary random process [17]–[19] while the Gaussian
mixture noise model is used for the wireless link. None of
these papers exploited the NBI and IN sparsity over different
domains to estimate and mitigate their performance-limiting
effects.

NBI and INMitigation in OFDM systems was investigated
in [11] and [20] which exploit the NBI and IN sparsity
to mitigate their effects based on sparsity-based techniques.
They showed that sparsity-based NBI or IN mitigation tech-
niques outperforms the traditional interference mitigation
techniques. However, they did not study the joint mitigation
of NBI and IN.

Building on our initial findings in [1] and [2], in this paper,
we exploit additional features of the NBI and IN signals
and apply sparse recovery algorithms that lead to significant
performance improvements. Our main contributions are:

• We develop a novel sparsity-based framework to jointly
mitigate non-contiguous and contiguous NBI and IN
in hybrid PLC-wireless communication systems by
exploiting the NBI and IN inherent sparsity in the time
and frequency domains.

• We utilize prior knowledge of the sparsity level across
different receive ports and propose a multi-level orthog-
onal matching pursuit (OMP) algorithm for non-
contiguous NBI and IN signals.

• To improve the estimation accuracy of asynchronous
NBI, we apply a time-domain windowing to the received
signal to enhance the asynchronous NBI sparsity.

• We investigate sparsity-based mitigation algorithms
under different assumptions that exploit the bursty struc-
ture of contiguous NBI and IN for NBI and IN estima-
tion. Assuming known bursts’ boundaries (block sparse
case,1) we investigate the use of the block orthogonal
matching pursuit (BOMP) algorithm [21]. Without this
knowledge, we study another sparsity-based mitigation
algorithm which was proposed in [22].

• We exploit prior knowledge of NBI and IN second-
order statistics and quantify the performance gains of a
Bayesian linear minimum mean square error estimator
(LMMSE) over the conventional least-squares estimator
for contiguous and non-contiguous NBI and IN.

• We exploit the spatial correlation across the receive ports
(either antennas or wires) for the wireless or PLC links to
convert the non-contiguous NBI and IN recovery prob-
lem to a block sparse signal recovery problem. Then,
we propose a multi-level BOMP recovery algorithm
for the case of different NBI and IN burst sizes. The
proposed multi-level BOMP algorithm is less complex
and enjoys a performance advantage over the OMP
algorithm.

• We compare the NBI and IN mitigation performance in
the case of joint and separate processing of PLC and
wireless received signals and demonstrate the superior-
ity of the former over the latter for a wide span of NBI
and IN power levels.

Note that the first and third contributions above were
discussed in [2], while the fourth contribution above was
discussed in [1]. All other contributions were not investigated
in [1] and [2].
Notation: Lower-case bold letters denote vectors and

upper-case bold letters denote matrices. In addition, I and F
denote the identity and the unitary discrete Fourier trans-
form (DFT) matrices, respectively, while subscripts denote
their dimensions. Matrices/vectors in the frequency domain
are denoted by A(u)

X /a(u)X , where the subscript X ∈ {W ,P}
denotes the communication system with W for wireless sys-
tem and P for PLC system, while the superscript u denotes
the uth antenna/wire. The corresponding time domain matri-
ces/vectors are denoted by Ā(u)

X /ā(u)X . The operation diag[v]
creates a square diagonal matrix with the elements of vector
v on the main diagonal. Moreover, the operations (·)H , (·)∗

and (·)T denote the complex-conjugate transpose, complex-
conjugate and transpose operations. Furthermore, the oper-
ations E [·] and |·| denote the statistical expectation and
absolute value operations. The l0 norm of a vector a is
denoted by ‖a‖0 which counts the number of non-zero ele-
ments of the vector a. Finally, ‖a‖1 and ‖a‖2 denote the l1

1The term bursts is used in this paper when the bursts’ boundaries are
unknown, while the term block is used for the case of known bursts’ bound-
aries.
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FIGURE 1. System model of the SIMO hybrid wireless/PLC system (red fonts indicate sparse vectors).

norm and l2 norm of the vector a, respectively, while ‖A‖
denotes the spectral norm of the matrix A and is given by
maxx:x 6=0 ‖Ax‖2/‖x‖2.
Paper Organization: Our system model, assumptions for

hybrid PLC-wireless systems, and the problem formula-
tion are defined in Section II. Our proposed sparsity-based
approach for joint mitigation of non-contiguous NBI and
IN is described in Section III, whereas our investigations
on the extensions of the non-contiguous to asynchronous
NBI, multi-level OMP and Basysian LMMSE based recovery
algorithm are in Subsections III-C, III-A and III-B, respec-
tively. In Section IV, we study contiguous NBI and IN
estimation and mitigation for hybrid PLC-wireless systems.
Extensions to unknown block boundaries, multi-level BOMP
and Bayesian LMMSE block recovery are discussed in
Subsections IV-A, IV-C and IV-B, respectively. Finally,
simulation results and concluding remarks are given in
Sections V and VI, respectively.

II. SYSTEM MODEL
We assume single-input multiple-output (SIMO) OFDM
simultaneous transmissions over wireless and PLC links [4]
as shown in Fig. 1. The wireless link operates in the WLAN
unlicensed frequency band and consists of a single-antenna
transmitter and a K -antenna receiver. The PLC receiver can
process up to β ∈ {1, 2, 3} outputs over its 3 receive wires
(phases). The NBI over the different wireless receive anten-
nas is assumed to be uncorrelated. In addition, we assume
that the PLC receive wires experience uncorrelated IN.
Assuming uncorrelated NBI/IN over the different receive
antennas/wires is a worst-case assumption since the spatial
correlation between the wireless and/or PLC receive branches
can be exploited to further enhance the NBI and IN miti-
gation performance, as will be discussed in Section IV-C.
Given these assumptions, the received signals at the k th, k ∈
{1, . . . ,K }, antenna and the jth, j ∈ {1, . . . , β}, wire are

given by

ȳ(k)W = H̄(k)
W x̄+ ī(k)W + n̄(k)W , (1)

ȳ(j)P = H̄(j)
P x̄+ ī(j)P + n̄(j)P , (2)

Assuming MOFDM subcarriers per OFDM symbol, the H̄(k)
W

and H̄(j)
P denote the M × M circulant channel matri-

ces between the transmitter’s antenna/wire and the k th/jth

receiver’s antenna/wire of the wireless/PLC link. The first
columns of these matrices are

[
h̄(k)TW 01×M−LW

]T
and[

h̄(j)TP 01×M−LP
]T

, where h̄(k)W and h̄(j)P are the wireless and
PLC channel impulse response (CIR) vectors with LW and
LP taps, respectively. The wireless CIR taps is assumed to be
Gaussian distributed, while the magnitudes of the PLC CIR
taps are assumed log-normal distributed [3]. Furthermore,
we assume perfect channel state information (CSI) at the
wireless and PLC receivers. Using x for the M × 1 OFDM
data vector, the vector x̄ in (1) and (2) is defined as x̄ =
F∗Mx. Furthermore, n̄(k)W and n̄(j)P denote complex zero-mean
circularly-symmetric AWGN vectors at the k th/jth receiver’s
antenna/wire with variances σ 2

W and σ 2
P , respectively. Finally,

the NBI (sparse in the frequency domain) and the IN (sparse
in the time domain) vectors at each antenna/wire are denoted
by ī(k)W and ī(j)P , respectively.
Applying the DFT to (1) and (2), we obtain

FM ȳ(k)W︸ ︷︷ ︸
,y(k)W

= FM H̄(k)
W F∗M︸ ︷︷ ︸

,3(k)
W

x+ FM ī(k)W︸ ︷︷ ︸
,i(k)W

+FM n̄(k)W︸ ︷︷ ︸
,n(k)W

, and (3)

FM ȳ(j)P︸ ︷︷ ︸
,y(j)P

= FM H̄(j)
P F∗M︸ ︷︷ ︸

,3(j)
P

x+ FM ī(j)P + FM n̄(j)P︸ ︷︷ ︸
,n(j)P

, (4)

where 3(k)
W and 3(j)

P are M × M diagonal matrices whose
diagonal elements (collected in the vectors

[
h(k)W ,1 . . . h

(k)
W ,M

]
and

[
h(j)P,1 . . . h(j)P,M

]
) are the channel frequency response

(CFR) coefficients of the k th/jth receiver’s antenna/wire of the
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wireless/PLC output, respectively. The vector i(k)W denotes the
frequency-domain (FD) NBI at the k th antenna. In addition,
the sparsity of NBI (in frequency) and IN (in time) implies
that ‖i(k)W ‖0 , ρ

(k)
W � M and ‖ī(j)P ‖0 , ρ

(j)
P � M .

Combining the received wireless and PLC signals in (3)
and (4) for all k ∈ {1, . . . ,K } and j ∈ {1, . . . , β} into a single
column vector leads to the following model

y(1)W
...

y(K )
W
y(1)P
...

y(β)P


︸ ︷︷ ︸

,y

=



3
(1)
W
...

3
(K )
W
3

(1)
P
...

3
(β)
P


︸ ︷︷ ︸

,G

x+



i(1)W
...

i(k)W
FM ī(1)P
...

FM ī(β)P


︸ ︷︷ ︸

,i

+



n(1)W
...

n(K )
W
n(1)P
...

n(β)P


︸ ︷︷ ︸

,n

. (5)

Here, we refer to theM (K + β)× 1 vector y as the measure-
ment vector, while we refer to theM (K+β)×M matrixG as
the channel matrix. Note thatG consists of the CFR matrices
of the wireless and PLC links, i.e., G ,

[
GH
W GH

P

]H , where
GW andGP denote the concatenated FD channel matrices for
the wireless and PLC links, respectively. Finally, i denotes
the M (K + β) × 1 combined NBI and IN vectors, n is the
equivalent M (K + β)× 1 noise vector in frequency domain.
Our main objective here is to use (5) to estimate the NBI and
IN vectors.

In practice, the NBI and IN signals inherit several
attractive features due to the nature of wireless and PLC
links, respectively, that play an important role in mitigat-
ing their effects. Specifically, both NBI and IN can either
be non-contiguous or contiguous, i.e., they can occupy
either dispersed or consecutive frequency subcarriers and
time samples, respectively. Moreover, NBI can be syn-
chronous or asynchronous depending on the interference
source. In the synchronous scenario, the NBI samples fall
exactly on the desired signal’s DFT grid while asynchronous
NBI exhibits a carrier frequency offset with respect to the
desired signal’s carrier frequency. In this paper, we mainly
focus on the synchronousNBI and IN case. The asynchronous
NBI is only discussed in Subsection III-C. Consideration of
asynchronous IN is beyond the scope of this paper. In the
next sections, we propose efficient algorithms to effectively
exploit NBI and IN signal features.

III. SPARSITY-BASED JOINT ESTIMATION
OF NON-CONTIGUOUS NBI AND IN
In this section, we investigate the use of sparse recov-
ery algorithms for the mitigation of non-contiguous NBI
and synchronous IN signals. Initially, we assume syn-
chronous NBI, then we discuss the asynchronous NBI case in
Subsection III-C. To estimate NBI and IN vectors from y,
we first cancel the unknown term Gx in (5) by project-
ing y onto the left-null space of G using the projection
matrix [11], [20]Q = IM (K+β)−GG†, whereG† denotes the
pseudoinverse of G given by

(
GHG

)−1GH for the case of a

full column rank G. Since QG = 0M (K+β)×M , the projected
received signal is given by

y′ , Qy = Qi+Qn. (6)

Let ieqv represent the concatenation of the NBI vector in
the frequency domain and IN vector in the time domain,

i.e., ieqv ,
[
i(1)

T

W . . . i(K )T

W ī(1)
T

P . . . ī(β)
T

P

]T
. Then, vector i

can be written in terms of ieqv as follows

i =
[

IKM 0KM×βM
0βM×KM Iβ ⊗ FM

]
︸ ︷︷ ︸

,A

ieqv, (7)

where ⊗ denotes the Kronecker product operation.
Now, (6) can be rewritten as follows

y′ , Qeqvieqv + n′, (8)

where the measurement matrix Qeqv is defined in terms of Q
asQeqv = QA, and n′ , Qn. Now, we have reduced our joint
NBI and IN estimation problem to the linear model in (8).
While we can use conventional estimation techniques in this
setting to estimate ieqv, we know from [11], [20], and [23]
that exploiting the sparsity of ieqv can further enhance the
estimation performance. In particular, CS principles advocate
for the estimation of sparse vectors by solving problems of the
form (8) as follows

îeqv , argmin
i∈C(K+β)M

‖Qeqvi− y′‖22 subject to ‖i‖0 = S, (9)

where S is the number of non-zero elements of ieqv, defined
as S ,

∑K
k=1 ρ

(k)
W +

∑β

j=1 ρ
(j)
P .

Note that while (9) in its stated form has combinatorial
complexity, there exist a number of greedy and optimization-
based techniques in the CS literature that can be applied
to efficiently solve this problem. In this paper, we use a
well-known greedy algorithm, named orthogonal matching
pursuit (OMP) [24], because of its low computational com-
plexity. OMP algorithm estimates îeqv iteratively by select-
ing S columns of Qeqv that are most correlated with the
observations y′ and then solving a restricted least-squares
(LS) problem using the selected columns. For completeness,
we summarize its main steps in Algorithm 1 using the nota-
tion of this paper.

Remark: The matrix Qeqv has a closed-form expression
since both Q and G have a special structure and can be
decomposed into diagonal matrices. Specifically, after some
algebraic manipulations, it follows that

Q = IM (K+β) −

[
GWGH

W GWGH
P

GPGH
W GPGH

P

]
×
(
IK+β ⊗9

)
(10)

with the matrix 9 defined as follows:

9 ,

[
3

(1)
W

(
3

(1)
W

)H
+ . . .+3

(K )
W

(
3

(K )
W

)H
+3

(1)
P

(
3

(1)
P

)H
+ . . .+3

(β)
P

(
3

(β)
P

)H]−1
. (11)
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Algorithm 1 OMP for Joint Estimation of Non-Contiguous
NBI and IN
Inputs:Matrix Qeqv, vector y′, and sparsity level S.
Initialization: Define set index I0 = {}, set residual r0 = y′,
estimate îeqv = 0(K+β)M , and the iteration count l = 1.
The lth iteration:

1) Calculate δi =
∣∣rHl−1Qeqv(:, i)

∣∣ for all i /∈ Il−1, where
Qeqv(:, i) denotes the column i in the matrix Qeqv.

2) Search for index of the next non-zero entry at the l th

iteration as cl = argmax
i

δi.

3) Update the non-zero entries indices as Il = Il−1∪ {cl}.
4) Set îeqv(Il) =

(
Qeqv(:, Il)

)† y′, where îeqv(Il) denotes
the entries of îeqv indexed by Il .

5) Calculate the residual error term at the l th iteration as
rl = y′ −Qeqv(:, Il)îeqv(Il).

6) If l = S then exit, else set l = l + 1 and go to Step 1.

Assuming perfect CSI, Q can be computed efficiently
from (10) since it is much easier to compute the inverse of
the diagonal matrix in (11), denoted by 9, instead of using
the form Q = IM (K+β) − GG† which requires computation
of the inverse of the general matrix

(
GHG

)−1.
In the following, our proposed framework for joint esti-

mation of non-contiguous NBI and IN is extended to include
the following cases. First, in Subsection III-A, we consider
the general case of unequal sparsity levels of NBI and IN
on different antennas/wires. Second, in Subsection III-B,
we exploit knowledge of the second order statistics of the NBI
and IN to enhance the estimation quality. Finally, in Subsec-
tion III-C, we investigate the case when the carrier frequency
of the NBI signal is different than the desired signal’s carrier
frequency (asynchronous NBI), which leads to NBI leakage
across the OFDM subcarriers.

A. MULTI-LEVEL OMP
In this subsection, we exploit knowledge of the, generally
unequal, sparsity levels of the NBI and IN signals across
antennas and wires, respectively. In this case, the problem
formulation in (9) can be rewritten as follows:

îeqv , argmin
i∈C(K+β)M

‖Qeqvi− y′‖22

subject to ‖T(u)
X i‖0 = ρ

(u)
X , ∀(X , u), (12)

where (X , u) ∈ {(W , 1), . . . , (W ,K ), (P, 1), . . . , (P, β)},
T(u)
X is a diagonal matrix of size (K+β)M×(K+β)M and its

diagonal entries are all zeros except forM ones corresponding
to the uth receive antenna/wire. Hence, the operation ‖T(u)

X i‖0
counts the number of non-zero entries in the NBI/IN vector
at the uth receive port.
To solve this problem, we present a modified version of the

greedy OMP algorithm such that a multi-level sparsity con-
straint for each segment of vector i is satisfied. The modified
multi-level OMP recovery algorithm aims to reduce compu-
tational complexity by reducing the search space based on

the pre-defined different antennas’/wires’ sparsity levels ρ(u)X .
In other words, multi-level OMP aims to achieve the same
performance as that of the greedy OMP at a much lower com-
plexity. Specifically, we define the vector z(u)X that counts the
number of detected non-zero elements for each antenna/wire
u for every iteration l. In each iteration l, we map the detected
element index cl to the corresponding antenna/wire u and
update the vector z(u)X . Then, we compare the updated vector
z(u)X with the desired sparsity level ρ(u)X . Once the vector
z(u)X reaches the sparsity level for a specific antenna/wire u′,
i.e., z(u

′)
X = ρ

(u′)
X , we exclude all indices associated with the

antenna/wire u′ from the search space. The entire procedure
for multi-level OMP is given in Algorithm 2.

Algorithm 2 Multi-level OMP for Joint Estimation of Non-
Contiguous NBI and IN
Inputs: Vector y′, matrix Qeqv, multi-level sparsity con-
straints ρ(u)X , and overall sparsity S.
Initialization: Define set index I0 = Ĩ0 = {}, set residual
r0 = y′, estimate îeqv = 0(K+β)M , iteration count l = 1, and
z(u)X = 1, (X , u) ∈ {(W , 1), . . . , (W ,K ), (P, 1), . . . , (P, β)}.
The lth iteration:

1) Compute δi =
∣∣rHl−1Qeqv(:, i)

∣∣ for all i /∈ Ĩl−1.
2) Search for index of the next non-zero entry at the l th

iteration as cl = argmax
i

δi.

3) If cl > MK , then X = P and u = d cl−MKM e, else
X = W and u = d clM e.

4) For (X , u) calculated in the previous step, if z(u)X > ρ
(u)
X ,

then add all the column indices associated with the uth

receive port to the set Ĩl if they do not exist already,
i.e., Ĩl = Ĩl−1∪ψ , whereψ = {(u−1)M+1, . . . , uM}
if X = W , and ψ = {((u− 1)M + 1, . . . , uM )+MK }
if X = P, and go to Step 1, else proceed to Step 5.

5) Update the non-zero elements indices as Il = Il−1∪{cl}
and Ĩl = Ĩl−1 ∪ {cl}.

6) Set îeqv(Il) =
(
Qeqv(:, Il)

)† y′, where îeqv(Il) denotes
the elements of îeqv indexed by Il .

7) Calculate the residual error at the l th iteration as rl =
y′ −Qeqv(:, Il)ieqv(Il) and set z(u)X = z(u)X + 1.

8) If l = S then exit, else set l = l + 1 and go to Step 1.

Computational Savings in Multi-Level OMP: We com-
pare the total computational complexity of the multi-level
OMP algorithm against the total computational complexity
of the OMP algorithm in terms of the number of multipli-
cations. As shown in Algorithm 1, for the OMP algorithm,
a matrix/vector multiplication is required in Steps 1, 4 and 5.
The first step of the OMP algorithm requires multiplying
the vector rl−1 by the matrix Qeqv(:, i), which is a subset
of the matrix Qeqv that includes all columns except the
indices corresponding to the detected interference indices,
i.e., i /∈ Il−1. To compute the LS estimate îeqv(Il), Step 4
requires computation of the pseudo-inverse of Qeqv(:, Il) in
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addition to a matrix/vector multiplication, where Qeqv(:, Il)
is a subset of the matrix Qeqv that includes the columns
corresponding only to the detected interference indices Il . In
Step 5, a matrix/vector multiplication between the estimated
interference vector îeqv(Il) and thematrixQeqv(:, Il) is needed
to compute the residual vector rl . Here, the computational
complexity of Step 5 can be neglected since the vector îeqv(Il)
is a sparse vector with maximum sparsity level S. More-
over, in Step 4, Qeqv(:, Il) has a maximum dimension of
M (K+β)×S in the last iteration. Thismeans that, in the worst
case, the LS estimation first requires inversion of a matrix
of size S × S (which requires S3/3 multiplications using
Cholesky factorization) and then a matrix/vector multiplica-
tion requiring M (K + β) × S multiplications. Hence, under
the assumption S << M (K + β), the LS complexity is very
small and can be neglected compared to the complexity of
Step 1, which involves a matrix/vector multiplication requir-
ing M (K + β) ×M (K + β) multiplications. Similarly, for
the multi-level OMP algorithm, the complexity is dominated
by Step 1 under the assumption S << M (K + β). There-
fore, in the following computational complexity comparison,
we focus only on the complexity of Step 1.

For simplicity, we assume the same sparsity level for all
antennas and wires, i.e., ρ(k)W = ρ

(j)
P = ρ for all k ∈

{1, . . . ,K } and j ∈ {1, . . . , β}. Now, let N = M (K + β),
then the total complexity of the OMP algorithmCOMP can be
expressed as follows:

COMP =

S−1∑
i=0

N (N − i) =
K+β∑
m=1

ρ−1∑
i=0

N (N − (m− 1)ρ − i).

(13)

As discussed earlier, the computational savings for the
multi-level OMP algorithm comes from the reduction of the
search space (number of columns) in Step 1 with successive
iterations. In particular, unlike the OMP algorithm, instead of
eliminating one column every iteration, the multi-level OMP
either eliminates one column or M columns in every iteration
based on a condition on the number of detected NBI/IN sub-
carriers/samples at each antenna/wire. Since the complexity
reduction in every iteration of the multi-level OMP is not
deterministic, the complexity of the multi-level OMP is not
fixed. Thus, we evaluate the best and worst case complexity
for the multi-level OMP algorithm. For the best case com-
plexity, the detection is performed for all NBI/IN indices
associated with the first antenna/wire so that all columns
corresponding to the first antenna/wire can be excluded from
the remaining iterations, then the detection is performed for
all NBI/IN indices associatedwith the following antenna/wire
and so on. The complexity for the best case of the multi-level
OMP algorithm CMOMP,b can be evaluated as follows:

CMOMP,b =

K+β∑
m=1

ρ−1∑
i=0

N (N − (m− 1)M − i). (14)

Comparing (13) and (14), it is clear that the best case com-
plexity of the multi-level OMP algorithm is much smaller

than the complexity of the OMP algorithm since M >> ρ.
However, the worst case complexity of the multi-level OMP
algorithm occurs when the column’s exclusion is not possible
until the last (K +β) iterations where every antenna/wire has
only one remaining NBI/IN index to be detected. Since the
complexity saving in the worst case multi-level OMP algo-
rithm (compared to OMP algorithm) is only in the last (K+β)
iterations, the worst case complexity of the multi-level OMP
algorithm CMOMP,w as a function of the complexity of the
OMP algorithm COMP is given by the following expression:

CMOMP,w = COMP

−

S−1∑
i=S−K−β+1

N (M − ρ)(i−S+K+β). (15)

Note that the term subtracted from the COMP in (15) is
always positive. Hence, the worst case complexity of the
multi-level OMP algorithm is always lower than the complex-
ity of the OMP algorithm. In Section V, we present numerical
results for the computational complexity savings in the multi-
level OMP compared to the OMP algorithm.

B. LMMSE BASED OMP
In this subsection, we exploit knowledge of the second-order
statistics of the NBI and IN signals, when they are available at
the receiver, to further enhance the quality of their estimates.
In particular, we propose replacing the LS estimator in Step
4 in Algorithm 1 (Step 6 in Algorithm 2) with the linear min-
imum mean square error (LMMSE) estimator based on the
second-order statistics of NBI, IN and noise [25] as follows:

îeqv(Il) = E
[
ieqv(Il)y′

H
]
E
[
y′y′H

]−1
y′, (16)

where E
[
ieqv(Il)y′

H
]
= RieqvQ

H
eqv(:, Il), E

[
y′y′H

]
=(

Qeqv(:, Il)RieqvQ
H
eqv(:, Il)+ Rn′

)
, and Rieqv and Rn′ are the

covariance matrices for ieqv and n′ in (8), respectively. For
simplicity, we assume that the non-zero entries of the NBI
and IN vectors are independent and identically distributed
(i.i.d.) zero-mean Gaussian random variables with variances
EW and EP, respectively. In addition, we assume i.i.d. zero-
mean Gaussian noise for both the wireless and PLC links with
variances σ 2

W and σ 2
P , respectively.

To evaluate (16), we need to compute Rieqv and Rn′ . First,
we derive an expression for Rieqv . Since both NBI and IN are
assumed independent over different antennas/wires,Rieqv is a
block diagonal matrix and can be written as follows:

Rieqv = diag
[
R(1)
ieqv,W

, · · · ,R(K )
ieqv,W

,R(1)
ieqv,P

, · · · ,R(β)
ieqv,P

]
,

(17)

where each submatrix R(u)
ieqv,X

can be evaluated as follows:

R(u)
ieqv,X

= E
[
i(u)eqv,X i

(u)H

eqv,X

]
=

∑
ωuX∈U

u
X

E
[
i(u)eqv,X i

(u)H

eqv,X |ω
u
X

]
p(ωuX ). (18)
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Here, i(u)eqv,X = i(k)W when X = W , and i(u)eqv,X = ī(j)P when
X = P. The summation in (18) is taken over the set of all
possible sparsity profiles, denoted by UuX , while p(ω

u
X ) is the

probability that the ωuX sparsity profile is activated and it is
assumed to be a uniform distribution,2 i.e.,

p(ωuX ) =
1( M
ρ
(u)
X

) . (19)

It is then straightforward to show that

R(u)
ieqv,X

= EX

( M−1
ρ
(u)
X −1

)
( M
ρ
(u)
X

) IM = EX
ρ
(u)
X

M
IM . (20)

Next, we evaluate the covariance matrix of the equivalent
noise in (8), which is given by

Rn′ = E
[
n′n′H

]
= QRnnQH , (21)

where Rnn = diag
[
σ 2
W IKM , σ 2

PIβM
]
.

C. JOINT PROCESSING WITH ASYNCHRONOUS NBI
In practice, the carrier frequency of the NBI signal can deviate
from that of the desired signal which causes NBI energy
leakage across the OFDM subcarriers, therefore, the sparsity
level of the NBI is reduced. To improve the robustness of
sparsity-based NBI recovery against carrier frequency offset
(CFO), we apply time-domain windowing to reduce the DFT
side lobes and enhance the sparsity level of the NBI signal.
After applying the time-domain windowing to the wireless
received signal and performing the DFT of (1), we get

FM8ȳ
(k)
W︸ ︷︷ ︸

,y̌(k)W

=FM8H̄
(k)
W F∗M︸ ︷︷ ︸

,3̌(k)
W

x+FM8D
(k)
W ī(k)W︸ ︷︷ ︸

,ǐ(k)W

+FM8n̄
(k)
W︸ ︷︷ ︸

,ň(k)W

, (22)

where the matrix D(k)
W , diag

[
1, exp

(
i 2πα

(k)

M

)
, · · · ,

exp
(
i 2πα

(k)(M−1)
M

)]
with α(k) denoting the CFO between the

NBI signal and the wireless received signal normalized to
the OFDM subcarrier spacing. The CFO α(k) is assumed to
be uniformly-distributed in the range [−0.5, 0.5], and i.i.d.
across different antennas. The windowing matrix 8 is an
M × M diagonal matrix where the diagonal elements are
the window coefficients. Moreover, the matrix 3̌(k)

W denotes
the new M × M effective channel matrix after applying the
windowing operation. Here, ǐ(k)W denotes the FD NBI vector at
the k th receive antenna. The concatenated received wireless
and PLC vector, denoted by y̌, is given by

y̌ , Ǧx+ ǐ+ ň, (23)

where themodified channel matrix Ǧ is the same asG defined
in (5) with 3(k)

W replaced with 3̌(k)
W . In addition, the vector ǐ,

which represents the combined NBI and IN vectors, is the

2Note that the assumptions on the NBI and IN statistical distributions
are only required in this Subsection and Subsection IV-B to evaluate the
covariance matrices. However, all other algorithms proposed in this paper
are independent of NBI and IN statistical distributions assumptions.

same as i defined in (5) but i(k)W is replaced with ǐ(k)W . Similar
to (8), we project y̌ onto the left-null space of Ǧ using the
projection matrix Q̌ = IM (K+β) − ǦǦ†. The projected
received signal y̌′ is given by

y̌′ , Q̌ Aǐeqv︸ ︷︷ ︸
,ǐ

+Q̌ň = Q̌eqv ǐeqv + ň′ (24)

where, ǐeqv ,
[
ǐ(1)

T

W . . . ǐ(K )T

W ī(1)
T

P . . . ī(β)
T

P

]T
, ň′ , Q̌ň,

and the modified measurement matrix Q̌eqv , Q̌A, where A
is defined in (7).

Although the windowing operation enhances sparsity,
we found that the OMP algorithm was not effective due to
the power leakage caused by the CFO. Therefore, we instead
estimate ǐeqv by solving the following convex optimization
problem using convex optimization techniques:

îeqv , argmin
i∈C(K+β)M

‖i‖1

subject to ‖Q̌eqvi− y̌′‖22 ≤ ε1 and ‖y̌− Ai‖22 ≤ ε2,

where ε1 and ε2 are set such that ε1 ≤ ‖ň′‖22 and ε2 ≤
‖Ǧx + ň‖22 with high probability. Note that, in contrast to
(9), the sparsity level of NBI is unknown due to the power
leakage. The constraint in OMP on the sparsity level ‖i‖0 =
S is effectively replaced here by the absolute squared error,
‖Q̌eqvi − y̌′‖22 ≤ ε1. In addition, to further improve the
ǐeqv estimate, we have introduced an additional constraint on
the received signal y̌ (before nulling the information signal)
based on (23), ‖y̌ − Ai‖22 ≤ ε2. The estimated îeqv can
now be used to find the support (non-zero indices) of ǐeqv.
In particular, we compare the power of each element j of the

vector îeqv, determined by
∣∣∣îeqv[j]∣∣∣2, with the average noise

power per element, determined by max{ε1,ε2}
(K+β)M ) , to estimate the

support vector I as follows:

I =
{
j :
∣∣∣îeqv[j]∣∣∣2 > max{ε1, ε2}

(K + β)M )

}
. (25)

IV. SPARSITY-BASED JOINT ESTIMATION
OF CONTIGUOUS NBI AND IN
In this section, we propose a sparse recovery framework
for estimating contiguous NBI and IN signals. In this case,
both NBI and IN are modeled as block sparse vectors with
few non-zero blocks, each block of a size dX elements and
X ∈ {W ,P}. Here, the blocks’ boundaries are assumed to be
known and each non-zero block can only start at one of the
following indices {1, dX +1, 2dX +1, . . . , (ζX −1)dX +1},
where ζX = M

dX
, X ∈ {W ,P}. In addition, we make the

assumption that the number of subcarriers per OFDM sym-
bol, denoted M , is an integer multiple of the block size3 dX .
Hence, i(k)W and ī(j)P can be decomposed into ζW and ζP blocks

3When M is not an integer multiple of the block size dX , the last few
elements that form an incomplete block will not be considered as a block
and, hence, will not be detected. In this case, ζX = b

M
dX
c, while everything

else in the proposed framework still holds.
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denoted by i(k)W ,bW and ī(j)P,bP , respectively, where bW ∈

{1 · · · ζW } and bP ∈ {1 · · · ζP}, and can be written as follows:

i(k)W =
[
i(k)W [1] · · · i(k)W [dW ]︸ ︷︷ ︸(

i(k)W ,1
)T

· · · i(k)W [M−dW+1] · · · i
(k)
W [M ]︸ ︷︷ ︸(

i(k)W ,ζW

)T
]T
,

(26)

ī(j)P =
[
ī(j)P [1] · · · ī(j)P [dP]︸ ︷︷ ︸(

ī(j)P,1
)T

· · · ī(j)P [M−dP+1] · · · ī
(j)
P [M ]︸ ︷︷ ︸(

ī(j)P,ζP

)T
]T
.

(27)

In particular, i(k)W and ī(j)P are block-sparse vectors

and ρ
(k)
W ,B ,

∑ζW
bW=1

1
{
‖i(k)W ,bW ‖2

}
and ρ

(j)
P,B ,∑ζP

bP=1
1
{
‖i(j)P,bP‖2

}
count the number of non-zero blocks

in i(k)W and ī(j)P , respectively. The indicator function 1{.} is
equal to 1 for a non-zero argument and is 0 otherwise. For
dW = dP = 1, ρ(k)W ,B and ρ(j)P,B count the number of non-zero

elements in i(k)W and ī(j)P , respectively.
Following the same procedure in (6) through (8), the prob-

lem of contiguous NBI and IN recovery can be reduced to
the estimation of a block sparse vector ieqv with SB non-zero
entries, where SB ,

∑K
k=1 ρ

(k)
W ,B +

∑β

j=1 ρ
(j)
P,B. Exploiting

this block-sparse structure, we can estimate ieqv from (8) by
solving the following optimization problem [21]:

îeqv, argmin
i∈C(K+β)M

M ( K
dW
+

β
dP

)∑
l=1

‖il‖2, subject to ‖Qeqvi−y′‖226ε,

where il denotes the block number l in the vector i.
As an alternative, several greedy algorithms from the CS

literature can be applied to solve this problem efficiently. One
example is the block orthogonal matching pursuit (BOMP)
algorithm [21], which is an extension of the traditional OMP
algorithm [24]. BOMP constructs the blocks of ieqv iteratively
by determining the sub-block of the measurement matrix
Qeqv that is most correlated with the measurements in (8)
followed by solving the LS problem using the selected sub-
blocks. These sub-blocks are constructed from the column
vectors of Qeqv with a size of M (K + β) × d each, where
d = min{dW , dP}, and Qeqv is defined as follows:

Qeqv= [qeqv[1]···qeqv[d]︸ ︷︷ ︸
Qeqv,1

· · · qeqv[M (K+β)−d+1] ··· qeqv[M (K+β)]︸ ︷︷ ︸
Q
eqv,M (K+β)

d

],

(28)

where qeqv[b] denotes the bth column of Qeqv. For com-
pleteness, we summarize the BOMP algorithm main steps in
Algorithm 3 using the notation of this paper.

Note that in case of the size of the non-zero blocks d in
the vector ieqv is known but the boundaries of those blocks
are not known, the BOMP performance will be significantly
degraded because the modified measurement matrix Qeqv

Algorithm 3 BOMP for Joint Estimation of Contiguous NBI
and IN
Inputs:Matrix Qeqv, vector y′, and block sparsity level SB.
Initialization: Define set index I0 = {}, set residual r0 = y′,
estimate îeqv = 0(K+β)M×1, and iteration count l = 1.
The lth iteration:

1) Calculate δi = ‖
(
Qeqv,i

)H rl−1‖2 for all i /∈ Il−1.
2) Select index of the next non-zero block at the l th itera-

tion as cl = argmax
i

δi.

3) Update the non-zero blocks indices as Il = Il−1 ∪ {cl}.
4) Solve the following optimization problem to find

îeqv,l(j) for j ∈ Il :

min
{i(j)}∈Il

∣∣∣∣∣∣
∣∣∣∣∣∣y′ −

∑
j∈Il

Qeqv,ji(j)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (29)

5) Calculate the residual error term in the l th iteration as

rl = y′ −
∑
j∈Il

Qeqv,j îeqv,l(j). (30)

6) If l = SB then exit, else set l = l + 1 and go to Step 1.

cannot be partitioned into sub-matrices that are aligned per-
fectly with the blocks of ieqv. This challenge is investigated
in the next section.

Next, for our proposed joint estimation of contiguous NBI
and IN algorithm, we investigate the following extensions.4

First, in Subsection IV-A, we consider the general prob-
lem of unknown NBI and IN bursts’ boundaries. Second,
in Subsection IV-B, we exploit knowledge of the second order
statistics of NBI and IN to enhance their estimation for the
contiguous NBI and IN sparse recovery problem. Finally,
in Subsection IV-C, we exploit the high spatial correlation
of the NBI and IN signals across different antennas/wires to
convert a generally non-contiguous sparse recovery problem
to a multi-level contiguous sparse recovery problem.

A. JOINT ESTIMATION OF NBI-IN WITH UNKNOWN
BURSTS’ BOUNDARIES
In this subsection, we relax our assumption of the known
blocks boundaries and extend the recovery algorithm to cover
the general case of unknown bursts’ boundaries, i.e., the non-
zero bursts of ieqv may not align with the predefined sub-
matrices ofQeqv in (28). Instead, only the number of non-zero
entries, denoted by S, and the number of bursts, denoted by
C, are assumed to be known.
In [22], a new CS recovery algorithm, called the (S, C)

algorithm, was introduced. The (S, C) algorithm exploits
the bursts’ sparse structure without any prior knowledge
of the bursts’ boundaries, i.e., only knowledge of S and
C is needed. The (S, C) algorithm builds on the matching

4We do not discuss the asynchronous case for the contiguous NBI and
IN recovery problem since it is similar to the non-contiguous NBI and IN
recovery problem.
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pursuit (CoSaMP) algorithm [26] with modified pruning
based on dynamic programming principles. For complete-
ness, we summarize the key steps of the (S, C) algorithm in
Algorithm 4 using the notation of this paper.

Algorithm 4 (S, C) Algorithm for Joint Estimation of Con-
tiguous NBI and IN With Unknown Bursts’ Boundaries
Inputs:MatrixQeqv, vector y′, number of non-zero entries S,
burst sparsity level C and the normalized difference between
the estimated vector in two consecutive iterations, denoted by
µ, where µ quantifies the performance-complexity trade-off
(smaller µ results in better estimates with more iterations).
Initialization: Set residual r0 = y′, estimate îeqv,0 =
0(K+β)M×1, and iteration count l = 1.
The lth iteration:

1) Update the residual as rl = y′ −Qeqv îeqv,l−1.
2) Calculate e = QH

eqvrl .
3) Prune e using |e| to calculate the best 2S indices set �

for 2C bursts based on the pruning algorithm in [22].
4) Form set T = � ∪ supp

(
îeqv,l−1

)
, where supp (x)

denotes indices of the non-zero entries of x.
5) Define the vector b = 0(K+β)M×1 and estimate the

elements in the set T by applying the LS estimator
as follows: b(T ) = Qeqv(:,T )†y′, where Qeqv(:,T ) is
formed from the Qeqv columns indexed by T .

6) Prune the vector b using the absolute values |b| to
calculate the best S non-zero entries in C bursts and
compute îeqv,l .

7) The stopping criterion will depend on the convergence

of the estimated îeqv,l . If
‖îeqv,l−îeqv,l−1‖

‖îeqv,l‖
≤ µ, then exit,

else set l = l + 1 and go to Step 1.

The main idea behind the pruning algorithm in [22] is to
use dynamic programming principles to construct the bursts
iteratively. In each pruning iteration, either new entries are
added to the constructed bursts, or those bursts are split into
more bursts until all of the S non-zero elements in the C bursts
are calculated. The reader is referred to [22] for more details.

B. LMMSE BASED BOMP
Similar to Subsection III-B, replacing LS with LMMSE in
BOMP entails computing the covariance matrices of ieqv
and n′. The noise covariance matrix Rn′ can be evaluated
exactly as in (21). However, we need to derive the covari-
ance matrix of ieqv, denoted R̃ieqv , and capture the sparsity
profile of the contiguous NBI and IN vectors. Similar to
Subsection III-B, since the NBI and IN vectors are assumed
to be independent from each other and independent across
the antennas/wires, the covariance matrix R̃ieqv is a block
diagonal matrix of submarices R̃(u)

ieqv,X
as in (17). In addition,

each submatrix R̃(u)
ieqv,X

can be expressed as in (18). However,
evaluation of the expression in (18) will be different here
since the sparsity profile set for the block sparse NBI and IN,
denoted by ŨX , includes only the block sparse profiles which

is different than the sparsity profile set of the non-contiguous
sparse NBI and IN assumed in Subsection III-B. In particular,
assume that the NBI/IN blocks are of width dX , X ∈ {W ,P},
and assume dX to be an odd number. The center of the block c
is selected uniformly at random from all valid indices of the
OFDM symbols which are given by the set { dX−12 +1,

dX−1
2 +

2, · · · ,M − dX−1
2 }. Note that indices less than

dX−1
2 + 1 and

greater than M − dX−1
2 are not valid indices for the center of

block c since they can not construct a complete block. The
probability density function (PDF) of activating the ω̃X block
in an OFDM symbol with M subcarriers can be defined by
characterizing the PDF of the center of block which can be
written as follows:

p(ω̃c,X ) =


1

Ñ
,

dX − 1
2

< c ≤ M −
dX − 1

2
,

0, otherwise,
(31)

where c is the center index of the selected ω̃ block and Ñ =
M − dX + 1. Hence, each submatrix R̃(u)

ieqv,X
can be evaluated

as follows:

R̃(u)
ieqv,X

= EX ×



m

Ñ
, 1 ≤ m < dX ,

dX
Ñ
, dX ≤ m ≤ M − dX + 1,

N − dX + 1

Ñ
, M − dX + 1 < m ≤ M .

(32)

C. MULTI-LEVEL BOMP
Here, we exploit the NBI and IN spatial correlation across the
receive ports (either antennas or wires for the wireless or PLC
systems, respectively) to convert the non-contiguous NBI and
IN estimation problem to a block sparse recovery problem
to enhance the estimation performance and/or reduce the
complexity. In practice, the NBI tends to affect the same
subcarriers over different receive antennas while the IN tends
to occur at the same time samples on different receive wires.
Thus, the NBI and IN signals share the same support indices
over different antennas and wires, respectively.

In other words, although the problem formulationwas orig-
inally non-contiguous (non-block sparse) NBI and IN recov-
ery, we can convert it to a block sparse NBI and IN recovery
problem by stacking the per subcarrier/time-sample received
signal over the different antennas/wires. As a result, the non-
block sparse NBI (in the frequency domain) will be converted
to block sparse NBI with a block size equal to the number of
antennas K . Similarly, the non-block sparse IN (in the time
domain) will be converted to block sparse INwith a block size
equal to the number of wires β. Moreover, we assume that
NBI and IN affect the same subcarrier/samples indices over
different antennas/wires which results in the same sparsity
level for all antennas, i.e., ρ(k)W = ρW for all k ∈ {1, . . . ,K },
and the same sparsity level for all wires, i.e., ρ(j)P = ρP for
all j ∈ {1, . . . , β}. Hence, the problem can be considered
as a multi-level block sparse recovery problem with only
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two block sizes K and β (since K and β are generally
unequal), unlike the multi-level OMP recovery problem in
Subsection III-A which assumed different sparsity levels for
the different antennas/wires.

To reap the benefits of this spatial correlation in SIMO
hybrid powerline-wireless transmission, we extend the con-
ventional BOMP algorithm in [21] to support multiple block
sparsity levels as described in the sequel.

Mathematically, in contrast to concatenating the FD
received signals of the wireless and PLC links as shown in
(5), here, we stack the FD wireless received signal on top of
the TD PLC received signal as follows:

y(1)W
...

y(K )
W
ȳ(1)P
...

ȳ(β)P


︸ ︷︷ ︸

,ỹ

=



3
(1)
W
...

3
(K )
W

H̄(1)
P FHM
...

H̄(β)
P FHM


︸ ︷︷ ︸

,G̃

x+



i(1)W
...

i(k)W
ī(1)P
...

ī(β)P


︸ ︷︷ ︸

,ĩ

+



n(1)W
...

n(K )
W
n̄(1)P
...

n̄(β)P


︸ ︷︷ ︸

,ñ

. (33)

Using the hybrid frequency-time domain structure in (33),
the received signal samples can be permuted such that the
NBI and IN vectors at particular subcarriers and time samples
from different antennas and wires form blocks of size K and
β, respectively. This can not be accomplished in the pure
frequency-domain structure in (5) because of the DFT matrix
multiplying the IN vector. In particular, the received signal
samples are permuted as follows:

y(1)W [1]
...

y(K )
W [1]
...

y(1)W [M ]
...

y(K )
W [M ]
ȳ(1)P [1]
...

ȳ(β)P [1]
...

ȳ(1)P [M ]
...

ȳ(β)P [M ]


︸ ︷︷ ︸

,r̃

=

[
SW 0βM×βM

0KM×KM SP

]
︸ ︷︷ ︸

,S



y(1)W [1]
...

y(1)W [M ]
...

y(K )
W [1]
...

y(K )
W [M ]
ȳ(1)P [1]
...

ȳ(1)P [M ]
...

ȳ(β)P [1]
...

ȳ(β)P [M ]


︸ ︷︷ ︸

,ỹ

, (34)

where SW and SP are permutation matrices. Note that in (34),
the elements of vector r̃ are arranged such that for each sub-
carrier, we stack the received samples of all antennas/wires
together. In contrast, the elements of vector ỹ are arranged

such that for each antenna/wire, we stack all subcarriers
together. From (33) and (34), we can write

r̃ = Sỹ , SG̃x+ Sĩ+ Sñ. (35)

Similar to (6), we null the desired signal by projecting r̃ on
to the left null space of Geqv = SG̃ to get

r′ , Q̃eqvr̃ = Q̃eqvSĩ+ ñ′, (36)

where Q̃eqv = IM (K+β) −GeqvG
†
eqv and ñ′ , Q̃eqvSñ.

Let ĩeqv , Sĩ denote the permuted version of the ĩ vector.
Since ĩeqv is a block sparse vector, this reduces the problem
of estimating ĩeqv to a conventional block-sparse recovery
problem with the main difference being that the sizes of the
blocks are known but not equal. Consequently, wemodify the
conventional BOMP algorithm presented in [21] by dividing
the measurement matrix Q̃eqv into two submatrices to accom-
modate different block sizes as follows:

Q̃eqv =

[
Q̃(W )

eqv,1, · · · , Q̃
(W )
eqv,M , Q̃

(P)
eqv,1, · · · , Q̃

(P)
eqv,M

]
,

where Q̃(W )
eqv,i and Q̃(P)

eqv,i, i ∈ {1, · · · , M} are submatrices
that consist of K and β columns, respectively. Our proposed
multi-level BOMP is summarized in Algorithm 5.

Algorithm 5Multi-level BOMP for Joint Estimation of NBI
and IN

Initialization: Define index set Ĩ (W )
0 = I (W )

0 = {} and Ĩ (P)0 =

I (P)0 = {}, set residual r0 = r′, ˆ̃ieqv = 0(K+β)M , iteration
count l = 1, and set zX = 0 where X ∈ {W ,P}.
The lth iteration:

1) Compute δ(W )
i = ‖rHl−1Q̃

(W )
eqv,i‖2/‖Q̃

(W )
eqv,i‖ and δ

(P)
j =

‖rHl−1Q̃
(P)
eqv,j‖2/‖Q̃

(P)
eqv,j‖ ∀ i /∈ I

(W )
l−1 and j /∈ I (P)l−1.

2) Find the index cW = argmax
i

δ
(W )
i and the index cP =

argmax
j

δ
(P)
j . If δ(W )

cW > δ
(P)
cP , then cl = cW and X = W ,

else cl = cP and X = P. Update zX = zX + 1.
3) If zX > ρX , then set I (X )l = {1, · · · , M} and go to

Step 1, else proceed to the next step.
4) Update the indices of non-zero blocks as I (X )l = I (X )l−1 ∪

{cl} and Ĩ
(X )
l = Ĩ (X )l−1 ∪ {cl}.

5) Construct the row block matrix Q̃l from Q̃(W )
eqv,i and

Q̃(P)
eqv,j indexed by i ∈ Ĩ (W )

l and j ∈ Ĩ (P)l , respectively.

Compute ˆ̃ieqv(�l) =
(
Q̃l

)†
r′, where ˆ̃ieqv(�l) denotes

the elements of ˆ̃ieqv that are indexed by �l defined as
{(i− 1)K + 1, · · · , iK : i ∈ Ĩ (W )

l } ∪ {(j− 1)β + 1+
KM , · · · , jβ + KM : j ∈ Ĩ (P)l }.

6) Calculate the residual error term at the l th iteration as
rl = r′ − Q̃l

ˆ̃ieqv(�l) and set zX = zX + 1.
7) If zW > ρW and zP > ρP, then exit, else go to Step 1.

Note that the complexity reduction in the multi-
level BOMP algorithm is mainly due to converting the
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noncontiguous sparse problem (which can be solved using
OMP algorithm) into a block sparse problem (which can
be solved using BOMP algorithm). It is well known that
BOMP algorithm complexity is much less than the OMP
algorithm complexity. However, the multi-level block sizes
in the multi-level BOMP algorithm are mainly to account for
the general case where the number of antennas is different
than the number of wires (i.e., K 6= β), not for complexity
reduction.

V. NUMERICAL RESULTS
In this section, we investigate the performance of our pro-
posed sparsity-based algorithms for joint NBI and IN mit-
igation in SIMO hybrid PLC-wireless links. Unless stated
otherwise, we assume that K = 3, β = 3, M = 64, and
our comparison is with respect to the benchmark of sparsity-
based separate wireless and PLC receive signal processing.
We assume wireless channel with a uniform power delay
profile, LW = 8, CIR taps are zero-mean complex Gaussian,
and normalized powers; i.e. E

[
|h̄(k)HW h̄(k)W |

2
]
= 1, k ∈

{1, 2, 3}. Moreover, we assume synchronous NBI where each
NBI signal has a fixed width of 3 contiguous subcarriers,
i.e., ρ(k)W = ρ

(k)
W ,B = 3, ∀ k ∈ {1, 2, 3}, and whose

values are i.i.d. zero-mean complex Gaussian with fixed NBI-
to-background Gaussian noise (NBI-GN) ratio, defined as
E
[
i(k)HW i(k)W

]
σ 2W

=
EW
σ 2W
, ∀ k ∈ {1, 2, 3}. This scenario is similar to a

Bluetooth signal (with 1 MHz bandwidth) interfering with an
IEEE 802.11n WLAN signal (with 20 MHz bandwidth [27],
and is important in practice due to the coexistence of Blue-
tooth andWLAN signals in the 2.4GHz unlicensed frequency
band.

Furthermore, we assume synchronous IN which spreads
over 3 contiguous time samples,5 i.e., ρ(j)P = ρ

(j)
P,B = 3, ∀ j ∈

{1, 2, 3}. Moreover, we assume a fixed IN-to-background

Gaussian noise (IN-GN) ratio, defined as
E
[
ī(j)HP ī(j)P

]
σ 2P

=
EP
σ 2P
, j ∈

{1, 2, 3}. In addition, we assume that each PLC CIR consists
of two equal-power taps, i.e., Lp = 2, having uniformly-
distributed phases and lognormal distributedmagnitudes with
standard deviations of 0.6 [3], [28]. Once again, we assume
unit-power channels; i.e. E

[
|h̄(j)HP h̄(j)P |

2
]
= 1, ∀ j ∈ {1, 2, 3}.

Finally, for simplicity, we assume that both the PLC and
wireless links have the same signal to noise ratio (SNR), i.e.
E
[
xH x

]
σ 2W
=

E
[
xH x

]
σ 2P

, although they could be different in practice.

In Fig. 2, we compare the bit error rate (BER) of four
scenarios to quantify the performance gain of joint over sep-
arate processing in the presence of non-contiguous NBI and
IN. In the first scenario, the NBI and IN signals are treated
as noise and maximum ratio combining (MRC) is used to
combine the received wireless and PLC signals. The sec-
ond scenario corresponds to separate processing where the

5Note that since the contiguous NBI/IN is a special case of non-contiguous
NBI/IN, we can test the performance of the proposed non-contiguous sparse
recovery techniques on the assumed contiguous NBI/IN, i.e., non contiguous
NBI/IN techniques will not exploit the fact that NBI and IN are contiguous.

FIGURE 2. BER performance for non-contiguous NBI and IN with
R = 4 bits/sec/Hz with solid and dashed lines for S-NBI and S-IN
ratios equal to −10 dB and −5 dB, respectively.

receiver of each link individually estimates and cancels the
non-contiguous NBI and IN followed by MRC to com-
bine both signals. Since it is shown in [11] and [20] that
sparsity-based techniques outperform traditional NBI and
IN mitigation techniques, the second scenario corresponds
to sparsity-based individual NBI and IN estimation. Fig. 2
demonstrates that the NBI/IN signals cannot be completely
canceled in the second scenario and the residual NBI/IN
signals result in an error floor. The third scenario represents
the case of NBI and INmitigation using our proposed method
which can eliminate the error floor of [11] and [20]. More
specifically, our proposed method approaches the perfor-
mance of the fourth scenario that corresponds to NBI-free
and IN-free links. Next, we quantify the performance gains
of joint processing over separate processing in Fig. 3. This
figure shows the BER as a function of the NBI and IN widths
per receive signal port, which we are assume to be the same
at each antenna/wire. Increasing the NBI and/or IN widths
results in a higher BER since the sparsity is reduced. How-
ever, joint processing still outperforms separate processing
significantly in this reduced-sparsity setting.

In Fig. 4, we investigate the performance of the multi-level
OMP algorithm presented in Subsection III-A to exploit apri-
ori knowledge of the sparsity level at each receive antenna and
wire. It is clear that multi-level OMP achieves the same per-
formance as OMP with much lower complexity by reducing
the search space as discussed in Subsection III-A. In Fig. 5,
we plot the computational complexity saving ratio of the
multi-level OMP algorithm relative to the OMP complexity
as a function the ratio ρ/M . The complexity ratio for the
best and worst cases of the multi-level OMP algorithm are
defined as CMOMP,b−COMP

COMP ×100 and CMOMP,w−COMP
COMP ×100. The

quantitiesCOMP,CMOMP,b andCMOMP,w are computed using
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FIGURE 3. BER performance for non-contiguous NBI and IN with S-NBI
and S-IN equal to −5 dB while SNR = 20 dB, and R = 4 bits/sec/Hz.

FIGURE 4. BER performance versus SNR for R = 6 bits/sec/Hz and
NBI-S=IN-S=3 dB using the modified multi-level OMP recovery algorithm
for 3 antennas and 3 wires hybrid wireless-PLC system.

(13), (14) and (15), respectively. As shown in Fig. 5, for very
small values of ρ/M , the worst and best cases achieve the
same complexity reduction of close to 50%. In practice, this
ratio ρ/M is expected to be small (less than 0.1) as shown
in Fig. 6. For the parameters’ default settings given in this
section (ρ = 3, M = 64 and K + β = 6), the best case
complexity reduction is 40%while the worst-case complexity
reduction is 15%. Moreover, in Fig. 6, we show the complex-
ity reduction calculated based on simulation of themulti-level
OMP over the SNR range of (0 : 40 dB). As shown in Fig. 6,
the complexity reduction based on simulations is bounded
by the best and worst cases’ curves computed based on our
derived mathematical expressions. Furthermore, we can see
that the complexity is slightly reduced with increasing K+β.

FIGURE 5. Computational savings in multi-level OMP relative to OMP as a
function of the ratio ρ/M.

FIGURE 6. A zoomed view of computational savings in multi-level OMP
relative to OMP as a function of the ratio ρ/M.

In Fig. 7, we examine the effect of Hamming
windowing under asynchronous NBI6 with CFO that is
uniformly-distributed as defined in Subsection II. In addition,
assuming that the NBI and IN bursts have the samewidth of 3,
we set NBI-GN=IN-GN, and we use the proposed algorithm
in Section III-C. As illustrated in this figure, the weaker the
desired signal is, the higher is the performance gain due to
windowing since the NBI effect becomes more pronounced.
Furthermore, the BER simulations show up to 3 dB SNR gain
at BER = 5× 10−4 due to time-domain windowing.

To study the performance of the block-sparse recovery
algorithms, we set the number of PLC and wireless receive

6Note that all simulation results assume synchronous NBI and IN except
Fig. 7 which assumes asynchronous NBI.
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FIGURE 7. BER performance versus SNR for R = 4 bits/sec/Hz and
NBI-GN=IN-GN=40 dB using the CS recovery algorithm in Section III-C.

FIGURE 8. AEVM versus IN-GN with NBI-GN=40dB for SISO systems. Here,
NBI and IN bursts are assumed to be of width 5.

ports to K = β = 1 to isolate any performance gain
due to the processing of multiple receive signals. In Fig. 8,
we use the performance metric of average error vector mag-

nitude (AEVM), which we define as η ,
∑U

u=1 ‖ieqv−îeqv‖
2
2∑U

u=1 ‖ieqv‖
2
2

with U denoting the number of channel realizations (U =
5000 in these experiments). Note that a smaller value of η
indicates better estimation performance. As a performance
lower bound, we show the (ideal) LS performance assuming
that the locations of the non-zero elements in the sparse IN
and NBI vectors are perfectly known. We assume that the
NBI and IN bursts have the same width of 5 and can occur
anywhere within the OFDM symbol, i.e., we do not know
the locations of the burst boundaries. For BOMP, we have a
mismatch between the bursts’ boundaries and the predefined
sub-matrices of Qeqv in (28). As Fig. 8 shows, the BOMP

FIGURE 9. BER performance versus SNR for R = 4 bits/sec/Hz,
NBI-GN=40 dB and IN-GN=20 dB. Both NBI and IN have the same
width of 5.

performance is significantly degraded when compared with
the performance of the OMP and (S, C) algorithms and this
degradation increases as the IN-GN level increases. More-
over, the (S, C) algorithm outperforms the traditional OMP
algorithm over the entire IN-GN range. At high IN-GN levels,
the performance gap between the (S, C) and the traditional
OMP algorithm diminishes because the higher power levels
of the NBI and IN signals (relative to the thermal noise power
level) enable accurate sparse recovery using both algorithms
without the need for exploiting the bursty nature of the NBI
and IN signals. Furthermore, the performances of both algo-
rithms approach the ideal LS lower bound.

To further quantify the performance gain realized by
exploiting the block-sparse structure, Fig. 9 compares the
BERs of the aforementioned joint NBI/IN estimation algo-
rithms. The (S, C) algorithm achieves more than 2 dB and
5 dB SNR gain at BER = 10−4 over the traditional OMP
and BOMP algorithms, respectively. In addition, as SNR
increases, the (S, C) algorithm’s performance approaches the
LS performance assuming perfect knowledge of NBI and IN
locations. Fig. 10 shows the BER performance for the case of
a more generic scenario where the NBI and IN bursts have
different widths of 3 and 5, respectively. Here, the perfor-
mance gain of the (S, C) algorithm over the BOMP algorithm
is higher compared to the equal-width scenario in Fig. 9. For
example, at BER = 10−3, an SNRgain of 5 dB is achieved for
different-width NBI and IN bursts while only a gain of 2.5 dB
is achieved when the NBI and IN bursts have the same width.

In Fig. 11, we plot the BER versus SNR for a fixed signal-
to-NBI (S-NBI) and signal-to-IN (S-IN) ratios, defined as
E
[
xH x

]
E
[
i(k)HW i(k)W

] and E
[
xH x

]
E
[
i(j)HP i(j)P

] ∀ k, j ∈ {1, 2, 3}, respectively, equal
to -3 dB. In this figure, we exploit the fact that NBI and
IN share the same support set over different antennas and
wires, respectively, for the case of 3 antennas and 2 wires.
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FIGURE 10. BER performance versus SNR for R = 4 bits/sec/Hz,
NBI-GN=40 dB and IN-GN=20 dB, with NBI and IN widths of 3 and 5,
respectively.

FIGURE 11. BER versus SNR for R = 6 bits/sec/Hz, S-IN=S-NBI=−3 dB
and K = 3 and β = 2.

It is evident that the proposed multi-level BOMP algorithm in
Subsection IV-C results in significant performance gain to the
extent that it approaches the LS with known support indices.

In Fig. 12, we show η for both joint (our proposed
approach) and separate processing for different non-
contiguous NBI-GN and IN-GN levels. We make the follow-
ing two conclusions based on this figure. First, the higher
the NBI-GN and IN-GN levels are, the better the estimation
performance of both joint and separate processing will be.
Second, our proposed joint processing always results in better
performance than separate processing.

Finally, in Fig. 13, we examine the effect of replacing LS
with LMMSE on the performance of the OMP algorithm.
We plot BER for a 3-antenna and 3-wire system versus the
NBI-GN and IN-GN levels that are assumed to be equal.

FIGURE 12. AEVM for non-contiguous NBI and IN with joint (solid lines)
and separate (dashed lines) processing for different NBI-GN and IN-GN
levels.

FIGURE 13. BER versus NBI and IN power for R = 4 bits/s/Hz.

For weak NBI and IN, we observe significant performance
improvement over OMP and LS due to apriori knowledge
about the NBI and IN statistics.

VI. CONCLUSION
We proposed a new framework to model and jointly estimate
and mitigate non-contiguous and contiguous NBI and IN
in SIMO hybrid PLC-wireless transmissions by exploiting
their sparsity in the frequency and time domains, respectively.
To enhance the sparse estimation performance, we investi-
gated several NBI and IN properties and compared sparse
recovery algorithms that can effectively exploit them.

Specifically, for non-contiguous NBI and IN, studied the
practical scenario of asynchronous NBI and investigated
the application of time-domain windowing to enhance the
NBI’s sparsity level and, hence, improve performance of

VOLUME 6, 2018 30293



M. Elgenedy et al.: Sparsity-Based Joint NBI and Impulse Noise Mitigation

sparsity-based NBI signal estimation. In addition, we
exploited prior knowledge of the generally unequal sparsity
levels at different antennas and wires and developed a multi-
level OMP algorithm to further reduce the complexity of the
sparse recovery algorithm.

For contiguous NBI and IN, the presented joint NBI and IN
mitigation framework exploits their inherent block sparsity
with or without knowledge of the bursts’ boundaries. More-
over, we exploited the spatial correlation across the receive
antennas and across the three-phase powerlines to convert
the non-contiguous NBI and IN problem to a block sparse
NBI and IN problem, after which we proposed a multi-level
BOMP algorithm that can efficiently exploit the new block-
sparse structure.

For both contiguous and non-contiguous NBI and IN with
known second-order statistics, we quantified the performance
gains of LMMSE-based sparse recovery algorithms over the
conventional LS-based recovery of joint NBI and IN with
known support indices. Finally, we quantified the NBI/IN
mitigation performance gains of the investigated algorithms
through extensive simulations and demonstrated the superior-
ity of the joint PLC-wireless processing approach over PLC-
only or wireless-only processing approaches.
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