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Abstract
Automatic crowd counting using density estimation has gained significant attention in computer vision research. As a result, 
a large number of crowd counting and density estimation models using convolution neural networks (CNN) have been 
published in the last few years. These models have achieved good accuracy over benchmark datasets. However, attempts to 
improve the accuracy often lead to higher complexity in these models. In real-time video surveillance applications using 
drones with limited computing resources, deep models incur intolerable higher inference delay. In this paper, we propose 
(i) a Lightweight Crowd Density estimation model (LCDnet) for real-time video surveillance, and (ii) an improved training 
method using curriculum learning (CL). LCDnet is trained using CL and evaluated over two benchmark datasets i.e., Dron-
eRGBT and CARPK. Results are compared with existing crowd models. Our evaluation shows that the LCDnet achieves a 
reasonably good accuracy while significantly reducing the inference time and memory requirement and thus can be deployed 
over edge devices with very limited computing resources.
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1  Introduction

Crowd counting is an interesting research area that involves 
computer vision and deep learning to estimate the number 
of people in an images or video frames. Recently, it has 
gained significant attention in the computer vision commu-
nity due to the significance of the problem. Crowd counting 
is generally implemented in two ways: (i) counting objects 
(input is an image and the output is a number i.e., total 
head count in the image.), and (ii) density map estimation 
(input is an image and the output is the density map of the 
crowd which is then integrated to get the total head count.). 
Traditional methods for crowd counting were all based on 

detecting hand-crafted local features such as full body [1, 
2], body parts [3–5], shapes [6], or global features such as 
foreground [7], edge [8], texture [9] and gradient features 
[10, 11] and then use machine learning models such as lin-
ear regression, ridge regression, Gaussian process, support 
vector machines (SVMs), random forest, gradient boost, and 
neural networks to provide the total count or a density map 
of the image. However, all the accuracy of these methods 
significantly degrades on images with dense crowds due to 
challenges such as occlusions, low resolution, foreshortening 
and perspectives.

Recent research on crowd counting shows the efficacy of 
deep learning methods for crowd counting [12]. Convolution 
neural networks (CNNs) due to their strong capability of 
auto feature extraction [13, 14]. Although even small CNN 
models [15] outperform traditional counting methods, their 
accuracy degrade on high density scenes.

To achieve higher accuracy in dense scenes, deeper mod-
els with a large size of parameters are developed [16–19]. 
These deep models although achieve good accuracy cre-
ate performance bottlenecks in real-time applications due 
to large memory requirement, higher training complexity, 
and large inference delay. In contrast, small-sized CNN 
models offer several benefits in real-time video surveillance 
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e.g., they incur low inference delay, require low memory 
for deployment on embedded devices, quickly update over-
the-air, and can be trained, fine-tuned and run in distrib-
uted manner [20]. However, lightweight and shallow CNN 
models are usually disregarded by some due to their limited 
accuracy. Contrary to that, we believe that leveraging best 
practices such as carefully designing the model architecture, 
the use of accurately annotated training data, and efficient 
learning strategies can jointly improve the accuracy of shal-
low models to a greater extent [21].

1.1 � Model design strategy

Generally a good choice of convolution filters play a crucial 
role in feature learning and contribute to reducing the size of 
the model. In essence, larger filters ( 5 × 5 ) are more expen-
sive and thus should be replaced by smaller filters ( 3 × 3 ). 
As an example, a stack of three ( 3 × 3 ) convolution layers 
is preferred over a single convolution layer of larger recep-
tive fields such as 7 × 7 or 9 × 9 because of the non-linear 
activations between them. It also has less number of param-
eters ( 3 × 32 × C2 < 1 × 72 × C2 i.e., 81% less parameters) 
and are computed faster. Further dimension reduction can 
be applied using a × 1 convolution before expensive con-
volutions (e.g., 5 × 5 or 3 × 3 ) [22]. Furthermore, spatially 
separable convolutions are preferred i.e., a 3 × 3 convolution 
can be decomposed in two sequential 1 × 3 and 3 × 1 convo-
lutions which leads to the same number of parameters and 
can even achieve better learning.

1.2 � Data annotation strategy

In crowd density estimation, the point annotations on top 
of the heads in crowd image form a sparse “dot-map” or 
“localization-map” which is converted into a density map 
by convolving the head position with a Gaussian kernel. The 
scale parameter in the Gaussian kernel visually creates a 
blob around the point (pixel). A good density map is more 
accurate if the blob size covers the entire head and do not 
non-overlap with neighboring heads. However, due to the 
camera perspective effect, the size of heads vary in the same 
image. Adaptive kernels are used to select different values 
of the scale parameter which solve this problem to some 
extent. To cope with the perspective distortion and scale 
variations in crowd images, recent works propose often very 
deep models with complex architectures. However, unlike 
images captured with CCTV camera, in aerial images cap-
tured from drones, the perspective distortion is minimum 
and the scale variation is directly related to the drone alti-
tude. If the drone-altitude is known, it can be used to gener-
ate accurate density maps.

1.3 � Model learning strategy

The idea of curriculum learning (CL) in neural network was 
first presented in [23]. The idea behind CL is the natural 
learning process in humans and animals i.e., humans learn 
better when concepts are presented in specific order of com-
plexity i.e., from simpler to difficult tasks. Unlike traditional 
learning methods, in curriculum learning the training sam-
ples are sorted by order of (typically increasing) complex-
ity. CL has been demonstrated as an effective strategy to 
improve the learning capability and faster convergence in 
various tasks e.g., computer vision [24–26], natural lan-
guage processing (NLP) [27, 28], reinforcement learning 
[29–31] etc. Recent studies [32, 33] inspire to adopt CL in 
our research.

This work leverages the aforementioned three strategies 
for generating ground truth density maps and to design and 
train an extremely lightweight crowd density estimation 
model. In the first step, we designed the model (LCDnet) 
by carefully choosing convolution filters of different sizes 
in different layers. To keep the model more compact, we 
used less number of filters in the initial layers so even with 
the larger input feature maps, the computational load is 
controlled. To further alleviate the computational complex-
ity, we used rectangular filters of size ( 1 × 3 ) and ( 3 × 1 ) 
instead of square filters. This also improves the learning 
performance as indicated in [22]. The resultant CNN model 
is a shallow network with only 0.05 Million parameters. 
Next, to train the shallow model with drone-captured aerial 
images, we generated high quality (accurate) density maps. 
We tested different scale values of the Gaussian function and 
empirically found the most accurate values for each image. 
Lastly, the curriculum learning technique is employed to 
improve the learning performance of the model.

The contribution of our work is as follows:

•	 A lightweight CNN model (LCDnet) with fewer param-
eters, low memory requirement, and faster run-time than 
existing models.

•	 Generate density maps from sparse localization maps by 
considering drone-altitude to create adaptive Gaussian 
kernels to improve learning.

•	 Propose an efficient strategy based on curriculum-learn-
ing approach to further improve model training and con-
vergence.

•	 Experimental demonstration of reasonably good perfor-
mance using LCDnet on benchmark datasets. The accu-
racy is comparable to existing models of double-size than 
LCDnet.
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2 � Related work

A number of crowd counting datasets exists each of which 
can be divided into three categories. Surveillance-view 
datasets containing indoor or outdoor images collected by 
surveillance cameras (e.g., Mall [34], UCSD [35], Worl-
dExpo’10 [15], ShanghaiTech Part B [36], Free-view 
dataset containing images from different sources includ-
ing Internet (e.g., UCF-CC-50 [37], UCF-QNRF [38], 
ShanghaiTech Part A [36]), and Drone view datasets con-
taining images collected using drones (e.g., DroneRGBT 
[39], CARPK [40]). Most of the earlier research works on 
crowd counting have been using the datasets in the first 
two categories. The drone-view datasets have been avail-
able recently.

While there has been different approaches for crowd 
counting, density estimation using CNN is the most widely 
used method. The first known CNN model for density esti-
mation and counting is CrowdCNN [15]. The CrowdCNN 
model consists of three convolution layers followed by 
three fully connected layers. Following this, numerous 
works proposed different CNN-based models for crowd 
counting.

A multi-column CNN (MCNN) model is proposed in 
[36] which consists of three CNN columns, each con-
taining filters of receptive fields of different sizes (small, 
medium large). The outputs of the three columns are 
combined to predict the final density map. MCNN exhib-
its good performance to adapt to the scale variations in 
images due to perspective effects or different image resolu-
tions. A two column CNN model (CrowdNet) is proposed 
in [41]. The model consists of two CNN columns i.e., a 
deep network (five CNN layers) and a shallow network 
(three CNN layers). The outputs of both networks are 
combined to predict the final density map. A Switched 
CNN (SCNN) is proposed in [42], which consists of two 
parts, a Switch and a CNN regressor. The CNN regressor 
consists of three independent columns each with differ-
ent size receptive fields. Patches from the input image are 
first fed to the Switch network, which relay it to one of the 
CNN regressor to predict the density map. The intuition 
in SCNN is to build CNN model which can adapt to the 
large scale variations without increasing the model compu-
tational complexity i.e., a patch is passed through only one 
column in the regressor. This reduces the computational 
complexity when compared to other multi-column CNN 
models e.g., MCNN and CrowdNet.

Unlike multi-column CNN models, authors in [43] 
proposed a single column network called multi scale 
CNN (MSCNN) to learn the scale variations. MSCNN 
uses three Inception modules [22] called multi-scale 
blobs (MSBs). Each MSB consists of multiple filters with 

different kernel size and is able to extract scale-relevant 
features. The aforementioned CNN models can adapt to 
the scale variations introduced in the training data but may 
fail to generalize well [18]. A cascaded multi-task learn-
ing (CMTL) model [18] is proposed to adapt to the wide 
variations of density levels in images. CMTL is also a two 
column network. The first column is a high-level prior 
that classify an input image into groups based on the total 
count in the image. The features learned by the high level 
prior are shared with the second column that estimates the 
respective density map.

The previous models mostly used multi-column archi-
tectures to learn scale-relevant features in crowd images 
achieves good results. To further improve the counting 
accuracy in highly congested scenes, authors in [16] pro-
pose deeper architecture by utilizing transfer learning. The 
Congested Scene Recognition (CSRNet) model [16] uses 
VGG16 [44] (first 10 layers) as the front-end to extract fea-
tures, and a back-end network with dilated convolution to 
substitute the pooling layers thus avoiding the loss of spa-
tial information. Transfer learning an improve the feature 
extraction capability of the crowd counting model and has 
been recently adopted in CANNet [45], GSP [46], TEDnet 
[47], Deepcount [48], SASNet [49], M-SFANet [19], and 
SGANet [50].

The aforementioned models often produces output den-
sity maps of lower resolution than the input image and uses 
patch-based training. The Trellis Encoder–Decoder Network 
(TEDnet) is proposed [47] which uses whole image as the 
model input and preserve the size of the density map to the 
actual resolution. Another encoder-decoder model with 
special Inception [22]-like modules is scale aggregation 
network (SANet) proposed in [17]. Like TEDnet, SANet 
also produces high resolution density map but has a simpler 
model structure.

Our proposed model LCDnet simultaneously achieves 
two benefits as compared to the aforementioned models. 
First, it is extremely lightweight as compared to other mod-
els and can run faster even at edge devices with limited com-
pute resources (a comparison is shown later in the paper). 
Secondly, it also produces density maps of better quality 
of size ( 1

2
 ) of input size as compared to other methods e.g., 

CSRNet ( 1
8
 ) and MCNN ( 1

4
 ). It also requires least amount of 

memory to fit in on-chip caches.

3 � Proposed method

The aforementioned CNN-based crowd models are designed 
to improve counting accuracy. However, in a typical crowd 
monitoring system, the user may be interested in a rough 
estimation of crowd densities (e.g., low, medium, high, very 
high etc.) located in a geographical area rather than the exact 
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count. Our goal in this paper is to develop a very lightweight 
model which can reasonably detect the presence of crowd 
scenes to an extent useful in analyzing crowds but essentially 
run faster on edge devices with limited computing resource. 
To this end, we propose a crowd density estimation model 
(LCDnet).

3.1 � Network architecture

The architecture of LCDnet is shown in Fig. 1. It consists of 
six convolution (Conv) layers. Conv1 consists of 64 ( 5 × 5 ) 
filters. The output of Conv1 layer is fed to Conv2 and Conv3, 
each having 32 ( 3 × 3 ) filters. The outputs from Conv2 and 
Conv3 is fed to Conv4 and Conv5 both has 64 ( 3 × 3 ) fil-
ters respectively. The outputs of Conv4 and Conv5 is con-
catenated and fed to Conv6 which consists of 128 ( 1 × 1 ) 
filters to predict the final density map. It is worthy to note 
that LCDnet returns the density map rather than the crowd 
density class. There are two benefits for this. First, the den-
sity map preserves the location information of crowd which 
can be used to localize the crowd in the real-world. Sec-
ond, it is easy to determine the total count (whole scene) or 
local count (specific part of the scene) from the predicted 
density map and even use the count information to config-
ure user-defined crowd densities based on the application 
requirement.

In the proposed LCDnet architecture, the first convolution 
layer is used to detect features such as edges. These detected 
features are then used in two columns. Both columns contain 
three layers i.e., two layers of 32 filters of size 1 × 3 , and 
3 × 1 (in reverse order in column 2), respectively, which is 

followed by a layer of 64 filters of 3 × 3 size. The outputs 
of both columns are concatenated and fed to a 1 × 1 conv 
layer of size 128, which generates a density map. The output 
density map is half size of the input image.

3.2 � Ground truth generation

If xi is a pixel containing the head position, it can be rep-
resented by a delta function �(x − xi) . The density map is 
generated by convolving the delta function with a Gaussian 
kernel G�.

where, N is the total number of annotated points (i.e., total 
count of heads) in the image. The integral of density map Y 
is equal to the total head count in the image. Visually, this 
operation creates a blurring of each head annotation using 
the scale parameter � . There are various kernel settings to 
generate a variety of density maps. The most basic approach 
is to keep � fixed value, which means that the density map 
will apply same kernel to all head positions irrespective of 
their scale in the image [17]. As head sizes in image can vary 
due to camera prospective, a single value of � may not be a 
good choice. Hence, some recent works propose to use adap-
tive Gaussian kernels to create density maps. The value of � 
is calculated as the average distance to k-nearest neighbor-
ing head annotations. Visually, it generates lower degree of 
Gaussian blur for dense crowds and higher degree for region 
of sparse density in crowd scene. Typical settings includes 

(1)Y =

N∑

i=1

�(x − xi) ∗ G� ,

Fig. 1   LCDnet with curriculum 
learning
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k = 1 [38], k = 10 [17, 43]. Although adaptive Gaussian ker-
nel may produce better results on images with large scale 
variations, our intuition is that drone images typically have 
less scale variations as compared to surveillance images e.g., 
from CCTV. The scale variations in drone images result 
from drone flying altitudes which do not vary too much due 
to regulatory measures. Thus, the scale variations are limited 
and a single value of � can be experimentally determined to 
produce density maps. In our experiments, we empirically 
determined the value of � based on the drone altitudes. The 
datasets used in this study contain images captured from dif-
ferent altitudes. Thus, we first segregated images into differ-
ent groups by drone altitudes and empirically found separate 
values of � for each group.

3.3 � Training

The image resolutions in the datasets used in this study 
are not very high, thus we use whole image-based train-
ing operations without extracting patches or downsampling 
operations on training images. However, to avoid model 
overfitting, data augmentations techniques such as horizon-
tal flipping, and random brightness and contrast are applied. 
The kernels in all Conv layers are randomly initialized using 
Gaussian distribution with the value of standard deviations 
0.01. We used Adam optimizer with a base learning rate 
0.0001. The loss function used is pixel-wise euclidean dis-
tance between the target and predicted density maps which 
is defined in Eq. (2).

where N is the number of samples in training data, D(Xi;Θ) 
is the predicted density map with parameters Θ for the input 
image Xi , and Dgt

i
 is the ground truth density map.

We further applied curriculum learning technique to 
improve the learning performance of our model. In CL set-
tings, we used transfer learning using CSRNet to determine 
the difficulty level of each image. Based on the counting 
error, images are sorted in ascending order before packing 
them into mini-batches. Thus, mini-batches are created in 
the order of their cumulative complexity.

4 � Experiments and results

The proposed model (LCDnet) was trained on a single GPU 
(Nvidia RTX-8000) using PyTorch deep learning frame-
work. We also implemented and trained other models used 
in this study from the scratch for fair comparison.

(2)L(Θ) =
1

N

N∑

1

||D(Xi;Θ) − D
gt

i
||2
2
, 4.1 � Datasets

We evaluate the proposed model on two benchmark data-
sets i.e., DroneRGBT and CARPK. The DroneRGBT data-
set contains images of people whereas the CARPK dataset 
contains images of cars, both captured from drones.

4.1.1 � DroneRGBT

The dataset contains 3600 RGB and thermal image pairs 
with a spatial resolution of 512 × 640 pixels. The images 
cover a wide range of scenes e.g., campus, streets, parks, 
parking lots, playgrounds, and plazas. The dataset is 
divided into training set (1807 samples) and test set (912 
samples) in such a way that both the training and test set 
include diverse images (i.e., different scenes, crowd den-
sities, illumination, and scales) to avoid overfitting. The 
dataset provides head annotations of people. The count 
distribution and sample images from the dataset are pre-
sented in Fig. 3 and Fig. 2, respectively.

Fig. 2   Sample images (top) and their corresponding density maps 
(bottom) from DroneRGBT dataset

Fig. 3   Count distribution in DroneRGBT dataset
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4.1.2 � CARPK

The dataset contains 1 images of cars from 4 different park-
ing lots captured with a drone. The dataset is divided into 
a training set containing 989 images and a test set contain-
ing 459 images. The dataset has a total number of 89, 777 
cars. The original dataset contains bounding box annota-
tions, however we transformed the original annotations to 
dot annotation by taking the center of the bounding box. The 
count distribution and sample images from the dataset are 
presented in Figs. 5 and 4, respectively.

4.2 � Evaluation metrics

Most of the existing works on crowd counting use mean 
absolute error (MAE) and Grid average mean absolute error 
(GAME) to evaluate the accuracy of the model. MAE is 
the average of absolute error in predicted counts and actual 
counts of all images. It is calculated using 3:

(3)MAE =
1

N

N∑

1

(en − ĝn),

where, N is the total number of images in the dataset, gn 
is the ground truth (actual count) and ên is the prediction 
(estimated count) in the nth image. While MAE is the most 
widely used metric in crowd counting research and is often 
used to compare various models, MAE provide image-wide 
counting and does not provide where the estimations have 
been done in the image. Owing to the possible estimation 
errors in MAE, authors in [51] proposed Grid Average Mean 
absolute Error (GAME). In GAME, an image is divided into 
4L non-overlapping patches and compute MAE separately 
for each patch. Thus, GAME poses a more robust and accu-
rate estimation for crowd counting applications. It is defined 
in Eq. 4.

The GAME metric is more robust to localisation errors in 
density estimation by calculating localized error among the 
target and predicted density maps. We set the value of L = 4 , 
thus each density map is divided into a grid size of 4 × 4 cre-
ating 16 patches. The absolute difference in the head count 
for each patch is measured and summed for all patches of the 
same density map, then averaged over the whole dataset. We 
compared the LCDnet model against existing models over 
the two metrics to provide a fair evaluation of the model 
accuracy. However, the true benefit of LCDnet is the lower 
model complexity at the cost of tolerable counting error. 
In addition, the performance is measured over two other 
metrics i.e., structural similarity index (SSIM), peak signal-
to-noise ratio (PSNR). Both SSIM and PSNR evaluate the 
quality of the predicted density maps and are measured in 
Eq. (5) and (6) as follows:

where �x,�y, �x, �y represents the means and standard devia-
tions of the actual and predicted density maps, respectively.

where Max(I2) the maximal in the image data. If it is an 8-bit 
unsigned integer data type, the Max(I2) = 255.

4.3 � Evaluation results

We compared the proposed model (LCDnet) against two 
mainstream crowd density estimation models i.e., MCNN 
[36], and CSRNet [16]. MCNN is a relatively small-sized 
CNN model which has gained good counting accuracy over 
several benchmark datasets as compared to other models of 
similar size. CSRNet on the other hand is a deep CNN model 

(4)GAME =
1

N

N∑

n=1

(

4L∑

l=1

|el
n
− gl

n
|)

(5)SSIM(x, y) =
(2�x�y + C1)(2�x�yC2)

(�2
z
�2
y
+ C1)(�

2
z
�2
y
+ C2)

,

(6)PSNR = 10log10

(
Max(I2)

MSE

)
,

Fig. 4   Sample images (top) and their corresponding density maps 
(bottom) from CARPK dataset

Fig. 5   Count distribution in CARPK dataset
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that uses VGG-16 [44] as a front-end and has shown high 
accuracy in dense crowd scenes. Both models have been 
used for comparison in many crowd counting studies and 
thus we chose them as candidate models for small-sized and 
large-sized models in this study.

We compare the performance of LCDnet in terms of 
counting accuracy at the cost of model size and complex-
ity against the MCNN and CSRNet on DroneRGBT and 
CARPK datasets. While the primary comparison is done 
against MCNN and CSRNet, we additionally provide com-
plexity comparison against some other well-known counting 
models to highlight the benefit of the proposed model (LCD-
net). The model complexity comparison is shown in Table 1 
whereas the accuracy comparison is depicted in Table 2. The 
inference time is computed on GPU server (Nvidia RTX 
8GB), and two different edge devices (Nvidia Jetson Xavier 
and Jetson Nano). The system details of these devices are 
as follows:

•	 Server: GPU (Nvidia Quadro RTX-8000).
•	 Jetson Xavior NX: 64bit system with Processor (6-core 

NVIDIA Carmel ARM), Memory (8GB), GPU (NVIDIA 
Volta architecture with 384 NVIDIA CUDA cores and 
48 Tensor cores).

•	 Jetson Nano: 64bit system with Quad-Core Arm Cortex-
A57 MPCore, Memory (4GB), GPU (128-core NVIDIA 
Maxwell GPU).

On DroneRGBT dataset, LCDnet achieves MAE of 21.4 
which is comparable with that of MCNN (17.9). In terms of 

complexity, LCDnet has almost half the number of parame-
ters and half number of multiply-add-calculations (GMACs). 
LCDnet also incurs much lower ( 1

2
× ) inference delay as 

compared to MCNN. Although the accuracy of CSRNet is 
much higher than both LCDnet ( 3× ) and MCNN ( 2.2× ), it 
has a very huge size requiring large memory size and much 
higher ( 20× ) inference delay than LCDnet.

On CARPK dataset, LCDnet achieves better results. It 
achieves MAE 13.1, which is close to MCNN (10.1) and 
slightly less than CSRNet (6.12). Some sample predictions 
using MCNN, CSRNet and the proposed LCDnet models 
over DroneRGBT and CARPK datasets, respectively, are 
shown in Figs. 6 and 7. It can be visualized that LCDnet has 
good detection capability and produces better quality density 
maps than MCNN for DroneRGBT dataset. We believe this 
is due to the use of small sized filters ( 1 × 3 and 3 × 1 ). The 
better quality of density map is expected and evident from 
the higher values of SSIM and PSNR.

5 � Conclusion

This paper proposes a lightweight crowd density esti-
mation model (LCDnet) for deployment over resource-
constrained embedded devices (e.g., drones) suitable for 
real-time applications (e.g., surveillance) scenarios. The 
paper outlines various design principles and best practices 
used to develop efficient CNN architectures. LCDnet is 
designed by adopting three efficient strategies; (i) compact 
CNN model (ii) improved ground truth generation from 
head annotations and drone altitudes, and (iii) improved 

Table 1   Comparison of 
proposed scheme (LCDnet 
trained with curriculum 
learning) against SOTA models 
for number of parameters (in 
Million), GMACs, size (in 
MB), and inference time (in 
milliseconds) for fixed input 
size

Model Output Parameters (M) Size (MB) GMACs Inference time (s)

Server Jetson Xavier Jetson Nano

CrowdCNN [15] 1/4 1.66 6.65 3.96 0.071 0.073 0.23
MCNN [36] 1/4 0.13 0.53 8.82 0.05 0.10 0.21
CMTL [18] 1/4 2.45 9.82 39.82 0.098 0.31 0.62
CSRNet [16] 1/8 16.26 65.05 135.4 0.19 1.01 1.88
SANet [17] 1/4 0.25 1.02 8.97 0.075 0.12 0.23
LCDnet (ours) 1/2 0.05 0.21 4.85 0.006 0.05 0.10

Table 2   Accuracy 
comparison of the proposed 
scheme (LCDnet trained 
with curriculum learning) 
against SOTA models over 
DroneRGBT dataset [39] and 
CARPK dataset [40]

Method DroneRGBT CARPK

MAE GAME SSIM PSNR MAE GAME SSIM PSNR

CrowdCNN [15] 26.6 48.2 0.52 17.3 15.6 49.1 0.63 18.8
MCNN [36] 17.9 44.49 0.54 18.2 10.3 42.40 0.76 19.21
CMTL [18] 18.1 40.5 0.53 17.1 10.2 41.3 0.73 19.0
CSRNet [16] 7.6 25.7 0.72 21.70 6.12 21.8 0.82 20.52
SANet [17] 16.2 34.5 0.59 19.4 9.8 27.2 0.76 19.8
LCDnet (ours) 21.4 46.9 0.60 21.39 13.1 45.2 0.79 20.14
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Fig. 6   Comparison of predictions on on DroneRGBT dataset. The 
first two columns shows crowd images and their corresponding 
ground truth. Columns 3–4 shows predictions using MCNN [36] and 

CSRNet [16] without curriculum learning. Column 5 shows predic-
tions using LCDnet (ours), respectively

Fig. 7   Comparison of predictions on on CARPK dataset. The first 
two columns shows crowd images and their corresponding ground 
truth. Columns 3–4 shows predictions using MCNN [36] and CSR-

Net [16]. without curriculum learning. Column 5 shows predictions 
using LCDnet (ours), respectively
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training mechanism using curriculum learning. LCDnet 
is evaluated on two different datasets of drone-captured 
images i.e., DroneRGBT, CARPK. Our experimental anal-
ysis shows that LCDnet achieves reasonably good accu-
racy at much lower computational cost. The small memory 
footprint and lower inference time makes LCDnet a good 
fit for drone-based video surveillance.
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