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Abstract 

In addition to their lipid-lowering functions, statins elicit additional pleiotropic effects on apoptosis, angiogenesis, 
inflammation, senescence, and oxidative stress. Many of these effects have been reported in cancerous and noncan-
cerous cells like endothelial cells (ECs), endothelial progenitor cells (EPCs) and human umbilical vein cells (HUVCs). Not 
surprisingly, statins’ effects appear to vary largely depending on the cell context, especially as pertains to modulation 
of cell cycle, senescence, and apoptotic processes. Perhaps the most critical reason for this discordance is the bias 
in selecting the applied doses in various cells. While lower (nanomolar) concentrations of statins impose anti-senes-
cence, and antiapoptotic effects, higher concentrations (micromolar) appear to precipitate opposite effects. Indeed, 
most studies performed in cancer cells utilized high concentrations, where statin-induced cytotoxic and cytostatic 
effects were noted. Some studies report that even at low concentrations, statins induce senescence or cytostatic 
impacts but not cytotoxic effects. However, the literature appears to be relatively consistent that in cancer cells, 
statins, in both low or higher concentrations, induce apoptosis or cell cycle arrest, anti-proliferative effects, and cause 
senescence. However, statins’ effects on ECs depend on the concentrations; at micromolar concentrations statins 
cause cell senescence and apoptosis, while at nonomolar concentrations statins act reversely.
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Introduction
Statins are the most widely used medications in the man-
agement and treatment of hypercholesterolemia. Based 
on their polarity, statins are categorized in two groups, 
lipophilic and hydrophilic statins. Lipophilic statins read-
ily cross the cell membrane, whereas hydrophilic ones 
employ carrier proteins to gain intracellular access. Lipo-
philic statins include atorvastatin, lovastatin, simvastatin, 
pitavastatin, and fluvastatin, while pravastatin and rosuv-
astatin are hydrophilic ones [1–4]. Considering their sim-
ple diffusion through membrane, the pleiotropic effects 
of lipophilic statins in extrahepatic tissues are exten-
sively studied [5–18]. In particular, simvastatin has been 
widely used in cancer studies [19]. Owing to their inabil-
ity to readily cross cell membranes, hydrophilic statins do 
not have pleiotropic effects in extrahepatic cells or their 
effects are not significant (see Tables  1 and 2) [20–22]. 
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This could explain why they are less investigated in can-
cer studies as compared to lipophilic ones.

In addition to inhibiting cholesterol synthesis, statins 
can also reduce non-sterol products of the mevalonate 
pathway, such as isoprenoids [23–30]. Farnesyl pyrophos-
phate (FPP) and geranylgeranyl pyrophosphate (GGPP), 
are the major isoprenoids involved in prenylation of pro-
teins [31]. Several proteins ranging from heterotrimeric 
G protein subunits to nuclear lamins have been found to 
undergo prenylation. However, the Ras superfamily of 
small GTPases is the most widely-known group of these 
proteins [32]. In this paper, we discuss some of the most 
important signaling pathways that are modulated by 
statins.

The Ras group of proteins plays a significant role in cell 
growth, proliferation, and survival [33–36]. Two major 
Ras-driven signaling cascades are the MAPK (Raf/MEK/
ERK) and PI3K/Akt/mTOR pathways, both of which reg-
ulate cellular proliferation and differentiation [34, 37–40]. 

The MAPK pathway promotes proliferation by activating 
several transcription factors and kinases including AP-1, 
Myc, Jun, Fos, p90RSK1, Elk, Ets, and MNK [34, 41–44]. 
Moreover, it regulates survival and apoptosis by modu-
lating the activity of several proteins like including JNK, 
SAPK, 14-3-3, and NF-Kβ [45, 46].

The second major downstream pathway of Ras is 
PI3K/Akt [34, 47]. PI3K is a lipid kinase that consists of 
a regulatory subunit, p85, and a catalytic subunit, p110. 
Ras interacts with p110 and recruits it to the cell mem-
brane resulting in the activation of PI3-K, which in turn 
recruits phosphoinositide-dependent kinase-1 (PDK1). 
PDK1 or the mammalian target of rapamycin mTOR can 
then activate Akt [48]. Consequently, phosphorylated 
Akt drives several pathways that promote cellular growth 
and evasion of apoptosis [40] (Fig. 1).

Extensive studies have established the effects of 
statins on cell cycle progression, apoptosis, and senes-
cence in different types of cells especially cancer cells 

Fig. 1  Activation of PI3K: Binding of an external ligand leads to the dimerization of receptor monomers and the heterologous autophosphorylation. 
Depending on the receptor, different proteins may bind to a phosphorylated domain. The insulin receptor substrate-1(IRS-1) binds to the activated 
IGF-1 receptor. IRS-1 serves as a binding and activation site for PI3K. In addition, PI3K may bind directly to a phosphorylated receptor tyrosine 
kinase, a completely different mechanism of PI3K. Activation begins with the small membrane bound GTPase Ras. By binding to active GTP-bound 
Ras, PI3K is activated, and migrates to the inner side of the cell membrane where it binds to phosphatidylinositol bisphosphate or PIP2. PI3K can 
phosphorylate PIP2 to PIP3, which can activate protein kinase B, also known as Akt. Akt binds to BAX and hinders its ability to form pores in the 
outer mitochondrial membrane, thus suppressing apoptosis. Moreover, Akt phosphorylates BAD leading to the release and activation of death 
inhibitory protein, which, as the name implies, inhibits apoptosis. Akt can also promote protein synthesis by first activating Rheb, which activates 
mTOR. mTOR itself interacts with and activates the translation factor S6K, thereby promoting mRNA translation and protein synthesis. In addition, 
Akt-induced phosphorylation of FOXO promotes the transfer of ubiquitin peptides onto the protein causing FOXO to undergoe proteasomal 
degradation
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and endothelial cells [49]. Interestingly, the cell-context 
appears to be a critical factor in determining the effect of 
statins on cell behavior. For instance, in endothelial cells, 
statins inhibit cytostatic and pro-apoptotic effects (see 
Table 1), whereas in cancer cells, the opposite effects are 
reported (Table 2). While the type of cells is an important 
parameter to consider in these discordant results, the 
concentrations/doses used could be the factor that tips 
the balance. Indeed, there is a large discrepancy among 
statin concentrations used in various studies. Pleiotropic 
effects of statins have been reported to appear at con-
centrations of 1–50  μM. However, at therapeutic doses, 
the mean concentration of statins in human serum only 
ranges from 1 to 15 nM. Additionally, 95–99% of statins 
in the blood are bound to proteins, therefore only 0.01–
0.5 nM of them is the free fraction, and hence the phar-
macologically active. Similarly, the therapeutic dosage in 
humans is approximately 0.1–1 mg/kg bodyweight, while 
doses of 1–100 or even 500 mg/kg body weight have been 
used in most studies in rodents. Indeed, statins concen-
trations used to induce pleiotropic effects in animal stud-
ies are much greater than those used in patients, reaching 
1000 fold higher in some studies [50]. In this review, we 
discuss the effects of statins on endothelial cells (as mod-
els of non-cancerous cells) as well as on a battery of can-
cer cells.

Cytoprotective effects of statins
In cells of cardiovascular origins such as endothelial cells, 
statins appear to protect against oxidative damages and 
apoptosis through a series of mechanisms.

Cytoprotective effects of statins via reduction 
of free radicals’ production
The antioxidative activities of statins have been primarily 
ascribed to downregulation of ROS-generating enzymes 
such as NADPH oxidase and upregulating HO-1 rather 
than superoxide scavenging [51].

Halting NADPH oxidase activity
ROS play critical roles in modulating various cellu-
lar processes and phenotypes [52, 53]. NADPH oxidase 
is considered the primary source of ROS, particularly 
superoxide radicals, in a multitude of cells [54]. The 
functional structure of NADPH oxidase consists of two 
membrane-bound components: gp91phox (Nox2) and 
p22phox, in addition to other cytosolic regulatory subu-
nits including p40phox, p47phox, p67phox, and Rac. 
Phosphorylation and subsequent membrane transloca-
tion of the cytosolic subunits followed by interaction 
with p22phox and Nox2 are crucial steps in the activation 
of NADPH oxidase [55, 56]. The small GTP-binding pro-
tein Rac-1, a member of the Rho protein subfamily, plays 

a pivotal role in the assemblage and activation of the 
NADPH oxidase [57, 58]. In various cells including mac-
rophages, human and rat smooth muscle cells, human 
vascular endothelial cells, cardiovascular cells, neuronal 
cells, cancer cells, and THP-1 derived monocytes statins 
have been shown by blocking prenylation of Ras and 
Rho families prevent the formation of NADP-oxidase 
subunits into a functional unit [59–67]. This reduces the 
production of ROS, and hence, a cytoprotective effect is 
achieved.

Induction of HO‑1 activity
The role of HO-1 as a cardio-vasculoprtective player 
has been established. It appears that by virtue of its abil-
ity to induce anti-inflammatory, anti-proliferative, anti-
apoptotic, and antioxidative activities in the vasculature, 
HO-1 protects vessels from a multitude of pathologic 
conditions, prime of which is atherosclerosis [61]. HO-1 
acts by catalyzing the oxidative degradation of heme to 
carbon monoxide, biliverdin, and free iron [68]. Impor-
tantly, statins have been shown to induce HO-1 activity, 
apparently via p38- and PI3K/Akt-dependent mecha-
nism, as inhibition of these two pathways seem to abro-
gate statin-induced HO-1 expression. [59–61]. This is in 
line with other reports showing that statins act via PI3K/
Akt to stabilize HO-1 mRNA [62, 65].

Cytoprotective and cytotoxic effects of statins 
via activation PI3K/Akt in endothelial cells
PI-3 K/Akt and AMPK are two extensively studied path-
ways underpinning the anti-apoptotic effects of statins 
in noncancerous cells such as EPCs and HUVEC. These 
cytoprotective effects of statins have been studied par-
ticularly in endothelial cells, largely because of the abil-
ity of these drugs to modulate angiogenesis. In regard 
to concentrations used, it is important to cautions that 
statins act as a double-edged sword in endothelial cells 
and angiogenesis [69]. While nanomolar concentra-
tions of statins induce angiogenesis in human umbilical 
vein endothelial cells, micromolar concentrations exert 
reverse effects [70], which has been attributed to the 
ability of these drugs to inhibit proliferation and migra-
tion as well as inducing apoptosis in these cells [71, 72]. 
Importantly, Akt appears to mediate these effects via a 
endothelial nitric oxide synthase (eNOS), a key regula-
tor of vascular homeostasis [73–76]. Ineed, activated Akt 
stimulates post-transcriptional phosphorylation, hence 
activation, of eNOS which in turn activates the VEGF-
mediated migration of mature endothelial cells and sub-
sequently stimulates angiogenesis [69, 70, 77–79] (see 
Fig. 2).

Clinically relevant doses (0.01 to 0.1  µM) of atorv-
astatin activate endothelial Ras and promote Akt and 
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eNOS phosphorylation activation. In contrast, higher 
concentrations (> 0.1  µM) of atorvastatin block angio-
genesis and migration of endothelial cells by inducing 
apoptosis [69, 80].

In vitro, atorvastatin or mevastatin (0.1, 0.05, and 
0.01 µM) inhibits the onset of endothelial progenitor 
cell senescence in a dose-dependent manner. Moreover, 
atorvastatin increases EPC proliferation and colony-
forming capacity. GGPP, mevalonate, and FPP reverse 
the  senescence  inhibitory effect of atorvastatin. Con-
textually, atorvastatin’s anti-senescence effect appears 
to be to an increase in the expression of  cell  cycle-
promoting  genes including cyclins as well as suppres-
sion of p27Kip1, a cell cycle-inhibitory protein [81] 
(Figure  2). Likewise, pitavastatin induces migration, 
proliferation, and viability of human microvascular 
endothelial cells (HMVECs) at low concentrations (0.01 
mM) but suppresses these cellular processes at higher 
concentrations (1 mM) [59, 82]. At nanomolar con-
centrations, atorvastatin, pravastatin, and pitavastatin 
suppressed hydrogen peroxide-induced senescence in 
human umbilical vein endothelial cells (HUVECs). This 
effect occurred via statin’s ability to activate Akt and 

subsequently upregule eNOS, SIRT1, and catalase. [83] 
(Figure 2).

Despite the aforementioned evidence, high concentra-
tions of statins can evoke endothelial release of VEGF and 
an increase in endothelial apoptosis, most probably by 
inhibition of geranylgeranylation of Rho, which is known 
to play a paradoxical role in angiogenesis. Indeed, Rho 
modulates the activity of VEGFR-2, which is employed by 
VEGF to activate Rho GTPases [71, 72, 84]. Rho GTPases 
can then act via regulatory and effector proteins, most 
notable of which is ROCK, to influence angiogenic pro-
cesses [85, 86] (Fig. 3).

Interestingly, statins upregulate the expression of 
eNOS via inhibition of Rho activity [77, 87–89]. Despite 
the angiogenic functions, Rho GTPase may downregu-
late eNOS expression via destabilizing its mRNA. As 
such, statins upregulate the expression of eNOS by pro-
longing its mRNA half-life through inhibiting the Rho/
ROCK pathway [86]. Contextually, inhibition of the Rho/
ROCK pathway activates PI3K/Akt and leads to the rapid 
phosphorylation (acute) activation of eNOS [86, 90]. 
This suppression of PI3K/Akt is assumed to arise from 
decreasing PTEN activity, since RhoA/ROCK is required 

Fig. 2  Low doses of statins (left-top) potentiate HO-1 activity via PI3K/Akt. In addition, PI3K/Akt stimulates eNOS, thereby causing increased catalase 
activity which prevents free radical-induced senescence. Moreover, eNOS upregulates VEGF, which is a main angiogenic factor. Low doses of statins 
induce cell cycle progression and reduce senescence by regulating the expression of several proteins including p27Kip1. They also activate caMKKβ 
which drives the activation of AMPK and LKB1. In addition, by virtue of its ability to stimulate Rac 1, AMPK can also regulate NAPDH oxidase and 
eNOS-mediated angiogenesis. An alternative pathway by which low doses of statins induce Rac-1 is by inhibiting Rho. On the other hand, high 
doses (top-right) induce apoptosis by inhibiting PI3K/Akt-modulated activity of death inhibitory protein (DIP) and BAX. Moreover, statins at high 
concentrations, can also induce apoptosis by inhibiting Rho-induced Bcl-2 or TNF-α-induced NFkB
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for intracellular localization and phosphorylation of 
PTEN, which in turn is crucial for the phosphatase 
activity of PTEN that antagonizes the PI3K/Akt path-
way [91]. Therefore, despite its pro-angiogenic role, the 
Rho/ROCK pathway may negatively regulate the acute 
activation of angiogenesis via two distinct mechanisms, 
namely, eNOS expression and eNOS activity [86].

Cytoprotective effects of statins through activating 
AMPK in endothelial cells
AMPK (AMP-activated protein kinase) is a cellular 
energy sensor that is activated in response to an increase 
in the intracellular AMP: ATP ratio. It stimulates ATP- 
producing catabolic pathways and inhibits ATP- con-
suming anabolic pathways. For instance, AMPK inhibits 
fatty acid and cholesterol synthesis through direct phos-
phorylation of anabolic enzymes including Acetyl-CoA 
carboxylase (ACC) and HMG-CoA reductase (HMGR) 
[92]. While the AMPK pathway is traditionally thought 
of as a regulator of metabolism, recent studies have 
demonstrated that AMPK may play a significant part in 
maintaining normal endothelial function through AMP-
independent activation of AMPK [75, 93–96]. LKB1 and 
the calcium/calmodulin-dependent kinase (CaMKK) are 
protein kinases that phosphorylate AMPK. The path-
ways that regulate LKB1 remain elusive. CaMKK seems 
to play a key role in modulating effects of statins by 

phosphorylation of LKB1 and AMPK, as well as by direct 
activation of Rac-1 [97](see Fig. 2).

In cultured vascular endothelial cells (e.g. ovine aortic 
endothelial cells), simvastatin (10  μM) increased activ-
ity of Rac-1 via CaMKKβ, AMPK and LKB1. The impor-
tance of Rac-1 aictivation becomes evidence in light of 
the notion that Rac-1 plays a key role in eNOS activation. 
Indeed, siRNA-mediated AMPK knockdown was shown 
to suppress Rac-1 activation and subsequently prevents 
activation of eNOS. Interestingly, it has been shown that 
Rac-1 in turn regulates LKB1 phosphorylation [98].

Activation of small GTPases like Rho and Rac-1 
requires geranylgeranylation and subsequent translo-
cation to the cell membrane. Interestingly, some stud-
ies showed that statins, by inhibiting, prenylation, 
paradoxically activate Rac-1 [99]. For example, simvasta-
tin (10 μM) caused a 34-fold increase in Rac-1 activation 
in endothelial cells despite its inhibition of prenylation 
and activity of Rho [98]. One plausible explanation for 
this paradoxical observation is that statins, by reducing 
geranylgeranylation, preferentially inhibit Rho, which is a 
tonic inhibitor of Rac-1. This inhibition effectively leads 
to Rac-1 activation [100]. Alternatively, it is possible that 
statins dissociate the inhibitory interaction of Rac-1 with 
guanine nucleotide dissociation inhibitors (RhoGDI) 
[98].

Cytotoxic (apoptotic) and cytostatic effects 
of statins in cancer cells
Statins can induce apoptosis via different mechanisms 
[39]. Indeed, they can activate the intrinsic pathway of 
apoptosis via disturbing the mitochondrial membrane 
potential and releasing the second mitochondria-derived 
activator of caspases (Smac/DIABLO) [116]. Moreo-
ver, upregulation of proapoptotic proteins Bax and Bim 
besides the downregulation of antiapoptotic protein 
Bcl-2 are considered the main mechanisms of induction 
of apoptosis by statins. Statins have also been revealed to 
activate procaspase 3, 7, 8, and 9 [78, 116–118].

The effects of statins’ concentrations on Bcl-2 have 
been studied widely. Indeed, in high concentrations, 
statins may induce apoptosis by reducing Bcl-2 level, 
while in lower concentrations, they tend to suppress 
apoptosis and cell death by increasing Bcl-2 expres-
sion [119]. (Fig. 2). As is known, the expression of Bcl-2 
gene has been shown to be upregulated by NF-κB. In 
this context, it is noteworthy that high concentrations 
of simvastatin (50 μM) were found to reduce Bcl-2 pro-
tein levels through inhibition of TNF-α, protein that 
is for NF-κB activation [120]. Similarly, simvastatin 
(20 μM) was shown to reduce Bcl-2 mRNA and induce 
apoptosis in a battery of human cancer cell lines includ-
ing MCF7 breast cancer cells, NCI-N87 human gastric 

Fig. 3  Role of Rho in angiogenesis in Endothelial cells. The activation 
of the Rho/ROCK pathway via induction of phosphatase activity of 
PTEN, which in turn inhibits the activation of Akt and via reducing 
the stability of eNOS mRNA abolishes the acute activation of 
angiogenesis by statins; however, this pathway induces all process 
involved in angiogenesis including endothelial (ES) migration, 
vascular permeability, extracellular matrix (ECM) degradation, 
endothelial cell (EC) proliferation, lumen formation, and inhibition 
of apoptosis; therefore in long term period, Rho/Rock pathway may 
increase angiogenesis by statins
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cancer cells, HepG2 human hepatocellular carcinoma 
and non-small cell lung carcinoma (NCH lung) cells. 
However, normal cells (SAEC human normal small air-
way epithelial cells) did not seem to exhibit the same 
response [121]. Other lipophilic statins (1  μM for 
cerivastatin and 10  μM for atorvastatin and simvasta-
tin) promoted apoptotic programs by inhibiting RhoA 
activity, which caused decreased phospho-p42/p44-
MAPK and Bcl-2 levels [122].

Cytostatic effects of statins on cancer cells have 
also been reported. These effects occur mainly via 
the upregulation of cell cycle inhibitors including 
p21WAF1/CIP1 or p27KIP1 [42]. Simvastatin (10  μM) 
downregulates the transcriptional activity of ATF-2 
and c-jun, which then causes a dramatic decrease in the 
proliferative capacity of glioma cells [123].

There are many studies indicating the major mecha-
nism underlying the cytotoxic and cytostatic effects 
of statins on cancer cells arise from reduction of gera-
nylgeranyl pyrophosphate (GGPP) which is crucial 
for membrane localization and activation of small G 
proteins like Rho. These studies report that supplying 
cells with mevalonate or GGPP reverses the inhibitory 
effect of statins and prevent induction of apoptosis or 
cell cycle arrest by statins. Lovastatin (0.3  µM) was 
shown to induce senescence and G1 cell cycle arrest in 
human prostate cancer cells, and supplementation with 
GGPP or mevalonate, but not FPP, reversed cell cycle 
arrest and senescence. In addition, constitutively active 
RhoA (caRhoA) reversed lovastatin-induced senes-
cence in caRhoA-transfected PC-3 cells. This indicates 
that statins could act through the inhibition of Rho 
activity to induce cytotoxic effects, at least in this cell 
line [124].

Pitavastatin (10 μM) enhanced the effects of radiation 
on cellular senescence in breast cancer and melanoma 
tumors. However, 5  mM mevalonic acid was sufficient 
to restore these effects of pravastatin [30]. Likewise, 
simvastatin (100 nM) was shown to exert cytostatic and 
senescent effects and partially induce apoptosis in pros-
tate epithelial cells. In contrast, 10  μM simvastatin had 
a cytotoxic effect both on normal and cancer cells. A 
combination of LDL-cholesterol and  mevalonate sup-
plementation was able to rescue the cytostatic/cytotoxic 
of 10  μM simvastatin [125]. Others report that lovasta-
tin (0.3 µM) causes senescence and G1 cell cycle arrest in 
human prostate cancer cells. GGPP or mevalonate, but 
not FPP, reversed the cell cycle arrest and cell senescence 
induced by lovastatin. Moreover, constitutively active 
RhoA (caRhoA) abolishes the senescence induced by 
statins in caRhoA-transfected PC-3 cells [124]. Table  2 
provides highlights and an overview of further studies 
regarding the effect of statins on cancer cells.

Conclusion and perspective
The effects of statins on endothelial cells can be either 
protective via boosting cytoprotective effects such as 
antioxidant levels in the cells, or destructive via inhi-
bition of growth signaling and induction of apoptosis. 
Although the type of effect depends on the  applied 
concentration, an absolute threshold/dose could not be 
definitively determined. However, it seems that at lower 
doses -particularly in nanomolar concentrations—
statins act more in line with cytoprotection rather than 
halting the cell cycle or inducting apoptosis in ECs. 
Moreover, it seems that the effects of different concen-
trations of statins on endothelial cells largely depends 
on their effects on the Rho activity. Negative feedback 
mechanisms may be yet another underlying mechanism 
that could explain the contradictory effects of statins 
in cancer cells versus EPCs. Statins block the produc-
tion of isoprenoid units required for the prenylation of 
proteins, which ultimately results in the deceleration 
of cell cycle progression. The reduced rate of cell cycle 
progression is sensed by the cell, which then reduces 
the expression and activity of cell cycle inhibitory pro-
teins as a feedback response. Afterward, the cell cycle 
is regulated by the positive inducers (proto-oncogenes) 
like the Ras superfamily rather than negative regulators 
(tumor-suppressors) such as p53 and p27.

Cancer cells normally have a high proliferation rate 
and, as a result, there may be permanently increased 
levels of cytostatic proteins; however, cancer cells 
are not responding to high levels of these proteins. 
Therefore, low concentrations of statins probably are 
not able to exert the same effects in EPCs and cancer 
cells. However, how low concentrations of statins can 
induce apoptosis in cancer cells is a question yet to be 
answered. As a possible mechanism, cancer cells may 
be more dependent on cell cycle stimulatory factors 
and even the low concentration of statins can impose 
cytostatic effects. To determine the precise effects 
of statins on cancer cells, the effects of the nanomo-
lar concentrations of these medications on these cells 
should be further studied.
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