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Monitoring non‑parametric profiles 
using adaptive EWMA control chart
Saddam Akber Abbasi1,2*, Ali Yeganeh3 & Sandile C. Shongwe4

To monitor the quality of a process in statistical process control (SPC), considering a functional 
relationship between a dependent variable and one or more independent variables (which is denoted 
as profile monitoring) is becoming an increasingly common approach. Most of the studies in the SPC 
literature considered parametric approaches in which the functional relationship has the same form in 
the in-control (IC) and out-of-control (OC) situations. Non-parametric profiles, which have a different 
functional relationship in the OC conditions are very common. This paper designs a novel control 
chart to monitor not only the regression parameters but also the variation of the profiles in Phase II 
applications using an adaptive approach. Adaptive control charts adjust the final statistic with regard 
to information of the previous samples. The proposed method considers the relative distance of the 
chart statistic to the control limits as a tendency index and provides some outcomes about the process 
condition. The results of Monte Carlo simulations show the superiority of the proposed monitoring 
scheme in comparison with the common non-parametric control charts.

Employing statistical process control (SPC) scheme for monitoring industrial processes has been widely devel-
oped throughout the past few decades. The main aim of this approach is to improve the quality of the products 
by reducing unfavorable variations. By controlling the manufacturing process of a product, SPC detects internal 
system inconsistencies and provides solutions to improve the production process with the help of some major 
tools involving Pareto chart, control chart, cause-and-effect diagram, scatter diagram, check sheet, stratification 
and histogram1,2.

In monitoring quality characteristics of industrial processes, control charts have been considered as the most 
acceptable and appropriate tool since the 1920s, for both Phase I and II processes. The aim of Phase I is the esti-
mation of process parameters based on an in-control data set and on the other hand, one tries to conduct on-line 
monitoring of the process parameters in Phase II. So, the major objective in Phase II is to identify where does 
the process change from IC (in-control) to OC (out-of-control) situation. To evaluate a control chart in Phase 
II, the well-known criteria, i.e., ARL (average run length) is usually employed. It measures the average number 
of generated statistics to reach an OC or IC signal (hereafter denoted with ARL1 (ARL0), respectively)3. More 
details about Phase II analysis of SPC could be found in Zou et al.4 and Mahmoud et al.5.

To develop a control chart in SPC, two major approaches could be utilized. The use of either the univariate 
or multivariate distribution of the quality characteristics. A user can adopt the state-of-the-art method which 
investigate the relationship between two or more quality characteristics as a regression model (i.e., the depend-
ent and independent variables could be representative of the process condition). Profile monitoring is usually 
referred to monitoring of such a regression relationship, that is, investigating the validation of the regression 
model over time is the main aim6. In this subject, different profile shapes (types) such as linear7–11, non-linear12,13, 
logistic14–16, Poisson17,18, circular and cylindrical19, mixture profiles20 and so forth, have been extended in the 
SPC field. Since the idea of this paper has been adopted from Phase II monitoring of non-parametric profiles; 
hence, a short literature review of these types of control charts only has been provided below. More details of 
profile control charts’ publications prior to the year 2018 can be found in the review paper by Maleki et al.21.

Literature review of non‑parametric profiles.  Questing the literature revealed that most of the existing 
profiles control charts are designed in the same way as the quality characteristics’ schemes have been designed. 
That is, the profiles charts are usually based on some fundamental assumptions (e.g., a parametric distribution) 
and if the underlying distribution is different, then the conclusion does not hold. As a common assumption in 
profile monitoring papers, see for instance7,9,22–24, parametric schemes constrain the OC form of the profiles to 
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follow the IC formulation. Note, the latter is not always a reasonable assumption because the OC model may 
not be easily determined (especially in complicated process, such as non-linear models) and it is often invalid in 
real-life practical applications. Moreover, it may increase the values of ARL1 and non-compatible products (due 
to a high false alarm rate).

To overcome these problems, several non-parametric control charts have been extended for monitoring qual-
ity characteristics. In most of the non-parametric methods, a distribution-free statistic such as Mann–Whitney 
test is computed for the monitoring purpose25. Besides, several other approaches could be found in the related 
literature26. In spite of the fact that there are several non-parametric control charts for monitoring quality char-
acteristics, few studies can be found for non-parametric profiles monitoring, especially in phase II applications. 
The following paragraphs provide a comprehensive review of the related literature in which the most focuses lie 
in the researches with different IC and OC models. Hereafter, similar to the main focus of this study, the profiles 
that have different IC and OC shapes are denoted as non-parametric profiles.

As the fundamental research, Williams et al.27 extended five metrics in monitoring non-linear profiles in Phase 
I based on measuring the deviations from the IC situation. Although these methods created a parametric control 
chart, they can also be considered as non-parametric if the user does not assign a prespecified distribution of 
parameters. Considering this work, Zou et al.28 developed a non-parametric multivariate EWMA (exponentially 
weighted moving average) statistic called NEWMA (non-parametric EWMA) for phase II profile monitoring. 
In this method, the coefficients and standard deviation parameters are firstly scaled and thereafter are taken 
into account as the previous samples to construct a MEWMA (multivariate EWMA) statistic. On the ground 
of simulations results of Zou et al.28’s paper, it can be counted as the most fundamental control chart in phase II 
of non-parametric profile monitoring. Some other extensions of this fundamental paper could be found in Qiu 
and Zou 29, Qiu et al.30, Hung et al.31, Chuang et al.32 and Li et al.33.

Designing EWMA3 statistics proposed by Kim, Mahmoud and Woodall7 considered as one of the most 
common approach in simple linear profiles (i.e. the EWMA3 statistic by Kim et al.7), Zhang et al.34 designed the 
corresponding non-parametric method. By consideration of changing the linear IC model to quadratic form, 
they compared the EWMA3 approaches with some hypothesis tests including LRT (likelihood ratio test), F and 
T2. The same approach has been utilized in Shang et al.17 by considering the binomial and Poisson IC models. 
Similarly, Zhang et al.34 and Zi et al.35 developed a non-parametric control chart for monitoring linear profiles, 
where the Wilcoxon rank estimator was employed (instead of the common least squares approach) and the 
simulation results showed the favorable properties of this approach.

Because non-parametric methods usually deal with complicated profiles, wavelet transformation has been 
employed to simplify the complexity of monitoring and enhancing the identification ability of OC sources36,37. 
Also, to ease the computations of wavelets in non-linear profiles, PCA (principal component analysis) techniques 
has been suggested in Paynabar, Jin and Pacella38. Increasing the detection ability of control charts in non-
parametric profiles with the aim of machine learning and ensemble learning could be found in Yeganeh et al.39 
in which more accurate control charts’ techniques are used instead of conventional approaches. Jones et al.6 pro-
vided some useful guidelines for the implementation of the non-parametric control charts in profile monitoring.

Most previous research on monitoring profiles focused on identical profile structure for OC and IC situa-
tions or parametric models; in other words, it is assumed that the OC models are restricted to have the same 
shape as the IC model. But this assumption may be violated in complicated real-life problems such as image and 
video processing, large-scale data, robotics, sensors’ surveillance in a way that different shape between IC and 
OC profiles would be probable6,17.

Neglecting this issue leads to two main flaws in the monitoring procedure. First, the estimation of parameters 
does not fit with the usual methods like ordinary least square (OLS) and secondly, the next challenge occurs 
when the IC model is nonlinear. In the latter case, some specific estimators are required but they may not have 
a reasonable performance in case of changing the OC model shape. Zou et al.28 discussed these situations and 
stated that definition of some non-parametric methods is necessary to avoid such similar problems. So, if there 
is an expectation of different IC and OC shape in a real problem, employing of non-parametric methods seems 
to be necessary to avoid false signals. It is also obvious that similar to parametric methods in phase II, quick shift 
detection ability for control charts (which is the main aim of this study) would be valuable.

Literature review of adaptive control charts in profile monitoring.  In the previous literature of 
profile monitoring, there are several memory-type control charts especially for linear profiles. The idea of ranked 
set sampling was proposed by Riaz et al.40 and Huwang et al.41 in which the samples are taken as a memory to be 
ranked by some criteria. These rank-based monitoring schemes generates very sensitive statistic to small shifts. 
The Variable Sampling Interval (VSI) idea has also been studied in profile monitoring14,42–45. The main idea of 
VSI is that the samples’ interval is not constant and could be identified based on the OC occurrence probability.

As a general term, these approaches can be referred to as the adaptive control charts in which the sample size, 
statistic magnitude, interval between the sampling and other parameters are adjusted based on the estimation 
of the occurred shifts14,40,42,45–47. To the best of authors knowledge, except Mohammadzadeh et al.14 and Jeong 
et al.47, which have investigated adaptive methods based on the logistic and non-linear profiles, there are no 
other adaptive methods for complicated models such as the non-linear and non-parametric approaches. The 
main reason for this may be due to the weak performance and incompatibility with non-parametric limitations 
of adaptive approaches. Also, the complexity of parameter tunning could stir up some troubles in complicated 
profile structures.

The aims and innovations of the study.  In the present study, a novel adaptive approach is developed 
for non-parametric profile monitoring in which there is currently no research based on the adaptive control 
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charts in phase II SPC applications. The proposed approach, whose purpose is to improve the detection ability 
of NEWMA chart statistics, proposed by Zou et al.28, in term of ARL criterion, is developed based on a gener-
ally different scheme as compared to older adaptive mentioned methods. It considers the relative distance of 
NEWMA chart statistics to the OC situations as the major criteria in OC detection and then, converts the 
obtained relative distance to an EWMA statistics. To reach the best performance in phase II, i.e., minimum ARL1 
with a constant ARL0, a heuristic designing procedure of the parameters is implemented in this paper. The per-
formance evaluation is conducted through extensive non-parametric simulations. In addition to the NEWMA 
approach as the base statistic, some other non-parametric and adaptive based competitors are used to show its 
superiority (when integrated with the heuristic design approach). Although the proposed method has been 
extended based on the NEWMA statistic, it is able to combine with other base statistics in phase II monitoring. 
The main contributions of this study could be summarized as follows:

•	 Proposing an adaptive control chart in profile monitoring.
•	 Reaching the optimum control chart parameters with a heuristic approach.
•	 Combination of the proposed adaptive approach with NEWMA statistic for monitoring non-parametric 

profiles.
•	 Computing the detection ability of the proposed method in term of ARL in comparison with some non-

parametric and adaptive conventional methods.

The remainder of this paper is organized as follows: the concept of NEWMA control chart is illustrated in 
“NEWMA statistic for non-parametric profiles”. The proposed heuristic method of this study is discussed in 
“The proposed method”. “Simulation results” provides the simulation results for performance evaluation and the 
corresponding sensitivity analyses is conducted in “Sensitivity analysis”. A real-life example is used to illustrate 
the implementation of the proposed NEWMA chart in “Illustrative example”. Finally, the concluding remarks 
and recommendations for the future research are presented in “Conclusion”.

NEWMA statistic for non‑parametric profiles
As we focus on the monitoring of profiles that could be well summarized by non-parametric regression model in 
phase II, the notations and formulations are extended based on the NEWMA scheme28 as the most fundamental 
control chart in this field. Suppose that for the jth (j ≥ 1) random sample gathered over time, we have a set of 
observations entailing a nj-variate response vector (yj) and p × nj matrix of explanatory (Xj) variables with sample 
size nj and for simplicity, it is supposed that the sample sizes are the same in all the profiles, so nj is replaced with 
n. Also the assumption of the same values in explanatory variable is very common in the related literature (i.e., 
using X instead of Xj) so we have X = (x1,x2,…,xn). By these assumptions, the general IC model can be given by:

where g0 is the IC regression function and σ0
2 is the IC parameter obtained from phase I or previous information 

about the process, which are assumed to be known in phase II. Considering G0 = (g0 (x1), g0 (x2),…, g0 (xn)), to 
monitor the above model at the jth sampling time with the vector of response variables Yj = (y1j,y2j,…,ynj), Zou 
et al.28 defined the following statistic:

In Eq. (2), W is a symmetrical n × n smoothing matrix to be utilized in local linear estimator of response vari-
ables and obtained based on the explanatory variables, so it is fixed and constant in each new generated profile. 
To compute smoothing matrix, a symmetric probability density function and a bandwidth, denoted by hE are 
defined and each element of W are calculated based on them. For brevity, the formulas are not reported here but 
a MATLAB function for computation of W is provided by the authors and available upon request. For reaching 
optimum value of bandwidth, a relationship based on the explanatory variables was introduced in Eq. (10) of 
Zou et al.28. In that Equation, a constant parameter, denoted by c, is defined and the simulations are conducted 
based on different values of c.

For developing the MEWMA chart statistic, Zou et al.28 first transformed the σ̂ 2
j  to a standard normal variable:

In this transformation, φ−1 is the inverse of the standard normal CDF (cumulative distribution function) and 
φ can be approximated with the chi-square distribution in the way that:

(1)

yij = g0(xi)+ εij ,

εij ∼ N(0, σ 2
0 ),

i = 1, 2, . . . , n,

j = 1, 2, . . . ,

(2)
Zj =

Yj − G0

σ0
,

σ̂ 2
j =

1

n
(Zj −WZj)

′(Zj −WZj).

(3)
σ̃j = ϕ−1{ψ(nσ̂ 2

j ; In×n − V)},

V = W ′ +W −W ′W .
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Then, Uj, denoted as (Zj , σ̃j)
′ , which is an (n + 1)-variate vector and the (n + 1)-dimensional symmetric covari-

ance matrix is defined as 
∑

=

(

V 0
0 1

)

 . The proposed EWMA charting statistic then could be calculated as:

And finally, we have a positive chart statistic:

where λ is the EWMA constant (here is equal to 0.2). Considering Eq. (6), an OC signal is triggered if Qj is located 
beyond the IC region 

(

Qj > L �

2−�

)

 , where L is assigned based on desired ARL0.

The proposed method
The major idea of the current study is to propose an adaptive approach that is established based on the tendency 
(relative distance) of obtained statistics to the OC situations. As mentioned in Aly et al.48 and Haq and Khoo49, 
an adaptive control chart adjusts the chart statistic based on the shift size of the process in the current time. Fol-
lowing this idea, the proposed tendency or relative distance is computed according to the ratio of the statistic’s 
distance from upper control limit (UCL) and lower control limit (LCL). So, the tendency of the jth sample (Tj) 
is defined as:

In NEWMA approach, LCL is set at zero, so the above formula transforms to:

Basically, the lower the charting statistics are, the greater tendency would be. For better understanding, Fig. 1 
depicts the tendency values for three different NEWMA statistics when LCL and UCL are 0 and 2, respectively. 
For example, if the first NEWMA statistic is 0.5, T1 is calculated as 3.

Naturally, such an OC situation in an NEWMA control chart will cause more samples with lower tendency 
values; in other words, the average of tendencies would be decreased in case an OC situation has been observed. 
So, the average of tendencies (T*

j) is firstly computed by the following equation and then, it is mapped to a specific 
rate for applying in an adaptive approach.

(4)

nσ̂ 2
j − c3

c1
∼ χ2

c2
,

c1 =

√

tr(A2)

tr(A3)
,

c2 = tr(A3),

c3 = tr(A)−

√

tr(A2).tr(A3),

A = I − V .

(5)
Ej = �Uj + (1− �)Ej−1,

E0 = (0, 0, . . . , 0)1×(n+1),

0 < � ≤ 1.

(6)Qj = E′

j

∑

Ej ,

(7)Tj =
UCL− Qj

Qj − LCL
.

(8)Tj =
UCL− Qj

Qj
.

0.5
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UCL = 2
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T3 = 0.33
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Figure 1.   The tendency value for three different NEWMA statistics when LCL and UCL are 0 and 2.
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The aim of this paper is to use the proposed tendency index in Eq. (8) as an auxiliary adaptive approach for 
adjustment of the final NEWMA statistic. To have a quicker signal detection in OC conditions in the proposed 
adaptive approach, the NEWMA statistic (Qj) is increased (decreased) when the tendency index (Tj) is decreased 
(increased), respectively. The updating of the NEWMA statistic in the jth sample is done by using the tendency 
rate (defined by Trj) as follows:

To have a more sensitive control chart against OC shifts, it is expected that Trj to be lower than 1 when T*j 
has a large value (IC situation); note though, it can be greater than 1 when T*j has a small value (OC situation). 
Hence, a mapping function or relationship between Trj and T*j will be required to use the proposed adaptive 
approach. This approach has been carried out in previous works by definition of a score function48,50, improved 
estimators49, warning limits42,51 and so forth.

To compute Trj, a completely linear function is not employed in this paper and a hinge function (called map-
ping function in this paper), as shown in Fig. 2, is utilized. A hinge function hinders very small rates causing 
very late signalling especially in large shifts so it is not allowed to have smaller tendency rates than lower limit 
(LL) even the average of tendencies is greater than a predefined value b. In addition to a and LL, two parameters 
entailing B and upper limit UL have to be defined for obtaining the mapping function formulation. The dash line 
means that it is very unlikely to be a sample in that region.

Considering the known values for the a, b, LL and UL (designing of these parameters are discussed later), an 
OC signal will be triggered when Q*j is greater than UCL. This approach adapts the NEWMA statistic magnitude 
based on the previous samples in a way that the chart statistic becomes so large to easily reach an OC signal. It 
is shown through simulations that the proposed approach is able to gain tangibly lower ARL1 values rather than 
NEWMA chart.

For better understanding, the procedure of ARL1 simulations is depicted in Fig. 3. In this procedure, the OC 
profiles are generated to reach a signal in MaxIt times and the average of run lengths (signalling time) is reported 
as ARL1. Similar to ARL1, the standard deviation of run length (SdRL1) is computed for each predefined shift 
in the process.

In this approach, the designing procedure involves selection a proper value for of a, b, LL and UL. Due to 
complex close form formulation, the control limits are adjusted based on the simulation in this paper; it is a 
common approach in previous profile monitoring studies42,45,52.

The procedure of designing comprises three main directions. First, the value of UCL is only related to the 
ARL0 or equivalently, it is similar with the NEWMA approach. Considering the ration of sample in IC data 
generation for the coefficients i.e., a and b is the second one, and keeping the slope of mapping function at a 
predefined value is the third.

To this aim, 10,000 IC profiles are generated and Tj (T1, T2,…,T9999 and T10000) are computed. Then, the 45% 
and 95% quantile of these data are considered as proper values for a and b. These experimental values have been 
obtained after several investigations in different IC profiles. To adjust LL and UL, three following aims should 
be satisfied:

•	 LL < 1 < UL,
•	 − 3 < slope of mapping function < − 1,
•	 The final ARL0 is supposed to be very close to its desired value.

(9)T∗

j =
T1 + T2 + · · · + Tj

j
.

(10)Q∗
j = Qj × Trj .

T*j

Tr
j

ba

LL

UL

Figure 2.   The proposed linear mapping function for obtaining Trj.
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The rationale behind the first condition is that the proposed method tries to have greater statistics in OC situ-
ations. The second condition suggests a reasonable mapping function between Trj and T*

j. It has been obtained 
by several simulation studies in different IC profiles. Finally, the last one is the natural aim of each control chart 
in phase II application.

By three above conditions, we should be trying to reach the best values of LL and UL. In the above formula, LL 
is expected to be applied in IC condition while the chart statistic will become greater with UL in OC situation. In 
other words, the chart statistic is multiplied by a value which is less (greater) than one in large (small) tenden-
cies (or IC (OC) situation), respectively. The second condition has been suggested by several investigations in 
different IC profiles and the last one is the main criteria for phase II applications. The following steps summarize 
the designing procedure.

•	 Step 1: Adjust UCL to reach desired ARL0. It is the same as the NEWMA approach.
•	 Step 2: Generate 10,000 IC profiles and store T1, T2,…, T9999 and T10000.
•	 Step 3: Calculate the 45% and 95% quantile of these data as a and b.
•	 Step 4: Calculate LL and UL with regard to the three above conditions.
•	 Step 5: Obtain the mapping function formula.

Simulation results
To compare our proposed method, three different simulation setups in which the IC model respectively has the 
polynomial, exponential and linear form are adjusted here, based on the non-parametric approaches simulated 
in Zou et al.28 and Zhang et al.34. The IC model of these scenarios are defined in Table 1 for the jth generated 
profile (i = 1, 2,…, n).

Note that in all the models σ0 = 1. The competitive methods for the first and second scenarios are NEWMA, 
NM (naïve MEWMA) and PM (parametric MEWMA). All of these methods have been defined in Zou et al.28. It 

OC condition

Generate a random profile with 

sample size n

Calculate Uj

Set: iter = 1 and

RL = []. Adjust a, b, LL, UL and 

ARL0

j=j+1

RL = [RL; j]

iter = iter + 1

iter > MaxIt?

Set j = 1.

Consider a specific shift in the 

profile paramters

Calculate Ej

ARL1 = average of RL

SdRL1 = standard deviation of RL

Q*
j > UCL?

YES
NO

Calculate Qj Calculate Tj

Calculate T*
j Calculate Trj

Calculate Q*j

NO

YES

Figure 3.   The framework for ARL1 and SdRL1 computations in the proposed method.
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is noteworthy to mention that the NM and PM have not been extended for non-parametric profiles so one would 
not be surprised with their weak performance. Also, our proposed method has been denoted with ANEWMA 
hereafter.

Zou et al.28 evaluated NEWMA approach under three different setups of bandwidth constant (denoted as c) 
equal to 1, 1.5 and 2. This parameter pertains to W in Eq. (2) and for brevity, we only consider the last situation 
(c = 2) in the first and second scenarios. To start the designing procedure (discussed in previous section), the 
values of UCL are considered as the values reported in Tables 2 and 4 of Zou et al.28, i.e. it is computed with 
L �

2−�
 . In scenario 3, the competitive methods are KMW (it is the same as EWMA3 approach in Kim et al.7) 

and NEWMA with c = 1 (it was not simulated in Zhang et al.34 and the results have been obtained based on our 
simulations). To reach ARL0 equal to 200 in NEWMA approach, L is set to 19.58 and 20.75 for n = 13 and 25 (the 
initial values of UCL in our procedure). It is worthwhile to mention that Zhang et al.34 did not propose a clear 
manner for determination of control limits of KMW. But we speculate that they adjusted each separate chart to 
reach the same ARL0. Note that simulations were not conducted for the case of n = 5, this is due to the inability 
of NEWMA method to signal in some shifts when dealing with small sample sizes (for more details, see Remark 
1 in Zou et al.28).

We tried to define similar models as those in Zou et al.28 and Zhang et al.34; however, due to some inconsist-
ency in the results of second scenario in Zou et al.28, there are some differences in this case. The OC models in 
scenario 1 are defined as:

	 I.	 yij = b0 + b1xi + b2x
2
i + eij.

	 II.	 yij = b0 + b1xi + b2x
2
i + b3x

3
i + eij.

	 III.	 yij = 1+ 2xi + 3x2i + b1sin(2pb2xi) + eij.

In this scenario, six different OC shifts have been employed based on Table 2.
In the second scenario, the OC models are:

	 I.	 yij = 1− b1exp(−xb2i ) + eij.
	 II.	 yij = 1− exp(−xi) + b1cos(pb2(xi− 0.5)) + eij.
	 III.	 yij = 1+ b1− exp(xi)+ b2x

2
i + eij.

In this scenario, six different OC shifts have been employed based on Table 3.
In the third scenario, Zhang et al.34 supposed that the IC model changed to quadratic form by adding the 

γ (x∗2i − η) term to the IC model in the way that γ = δσ. Note that the EWMA constant is assumed equal to 0.2 
in all scenarios.

Considering ARL0 equal to 200, the values of UCL in each scenario based on the Zou et al.28’s method 
(NEMWA approach) are reported in Table 4. Note that the results of first and second scenario are the same as 
Tables 2 and 4 in Zou et al.28. Also, the design parameters for each scenario were gathered in Table 4.

In the following subsections, our proposed method is compared with other competitors based on the ARL1 
criteria in each of the predefined scenarios.

Table 1.   The IC model of different scenarios in the jth generated profile.

Scenarios 1 2 3

IC model yij = 1+ 2xi + 3x2i + εij yij = 1− e−xi + εij
yij = 3+ 2x∗i + εij
x∗i = xi − x

xi
i−0.5

n
i−0.5

n 2+ (8−2)(i−1)
n−1

n 20, 40 20, 40 13, 25

Table 2.   The OC shifts in scenario 1.

Shift type

Model (I) Model (II) Model (III)

β0 β1 β2 σ β0 β1 β2 σ β1 β2 σ

(i) 1.0 2.0 3.1 1.0 0.8 4.4 − 3.0 1.0 0.1 1.0 1.0

(ii) 1.0 2.1 3.1 1.0 0.8 4.4 − 3.0 1.0 0.2 1.0 1.0

(iii) 1.1 2.1 3.1 1.0 0.8 4.4 − 3.2 1.0 0.2 0.8 1.0

(iv) 1.0 2.0 3.0 1.0 1.0 4.4 − 3.2 1.0 0.2 1.3 1.0

(v) 1.0 2.0 3.0 0.7 0.8 4.4 − 3.0 1.1 0.3 1.5 1.0

(vi) 1.1 2.1 3.1 1.1 0.8 4.5 − 3.0 1.1 0.3 1.5 1.1
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The simulated ARL1 values for scenario 1.  The results of ARL1 with respect to the above OC models are 
gathered in Table 5. These results reveal that the proposed method (ANEWMA) is effective for all of the shifts. 
For large shifts in the process parameter, its performance is roughly better than competing methods. As can be 
seen in the results of model (II) and (III), the more complicated the OC model is, the better the outperformance.

Table 3.   The OC shifts in scenario 2.

Shift type

Model (I) Model (II) Model (III)

β1 β2 σ β1 β2 σ β1 β2 σ

(i) 1.00 1.30 1.00 0.20 3.00 1.00 0.05 0.01 1.00

(ii) 1.00 1.50 1.00 0.30 3.00 1.00 0.05 0.05 1.00

(iii) 1.10 1.00 1.00 0.20 2.00 1.00 0.05 0.00 1.05

(iv) 1.30 1.00 1.00 0.30 2.00 1.00 0.00 0.30 1.00

(v) 1.20 1.00 1.10 0.20 4.00 1.10 0.00 0.10 1.10

(vi) 1.00 1.20 0.70 0.20 4.00 1.30 0.50 0.00 1.10

Table 4.   The control chart parameters in each scenario (ARL0 = 200).

Scenario 1 2 3

n 20 40 20 40 13 25

c 2 2 2 2 1 1

UCL 1.74 1.83 1.74 1.83 2.18 2.31

a 2 1.99 2 1.99 1.71 1.55

b 4 3.98 4 3.98 3.18 2.87

LL 0.65 0.54 0.65 0.54 0.45 0.47

UL 4.95 3.7 4.95 3.7 2 1.84

Intercept 9.25 6.86 9.25 6.86 3.78 3.44

Slope − 2.15 − 1.59 − 2.15 − 1.59 − 1.04 − 1.04

Table 5.   ARL1 values for different shifts in scenario 1. Best values are in bold. *Denotes that the related 
approach has not been able to detect that type of shift.

Model

n = 20 n = 40

NEWMA

NM PM ANEWMA

NEWMA

NM PM ANEWMAc = 1 c = 1.5 c = 2 c = 1 c = 1.5 c = 2

I

(i) 150.10 144.70 140.00 171.30 137.10 81.54 120.60 115.30 110.10 162.30 103.10 55.43

(ii) 66.60 60.80 56.70 98.20 54.20 29.53 37.90 34.00 31.80 79.40 29.20 16.43

(iii) 20.70 18.30 17.50 33.10 16.50 9.54 11.20 10.30 9.80 22.40 9.10 6.56

(iv) 30.50 27.40 27.00 43.70 26.50 11.64 17.50 16.20 15.50 30.50 14.80 7.93

(v) 8.20 6.60 5.90 * 5.30 4.64 4.20 3.70 3.50 * 3.20 2.69

(vi) 12.5 11.4 11 17.3 10.8 6.92 7.4 7.00 6.7 11.8 6.3 4.75

II

(i) 104.60 104.20 113.40 132.20 199.70 48.64 66.50 64.00 67.50 114.20 200.10 25.63

(ii) 89.40 87.50 92.50 119.20 154.10 38.75 55.20 50.30 52.10 99.30 120.20 24.32

(iii) 78.80 75.70 79.20 109.30 121.00 29.15 45.00 42.40 42.80 89.30 84.90 16.36

(iv) 24.20 22.10 21.10 38.90 22.80 11.54 12.70 11.60 11.20 26.20 12.20 7.53

(v) 24.50 23.70 22.60 35.80 25.70 10.52 13.90 13.00 12.80 24.40 14.00 7.28

(vi) 22.4 20.60 20.30 32.30 22.50 8.51 12.60 12.00 11.60 21.70 12.60 5.52

III

(i) 106.80 103.10 102.30 137.20 119.60 48.53 69.90 66.70 66.20 122.00 81.30 35.27

(ii) 37.80 35.60 34.80 60.10 47.10 15.32 20.00 18.40 18.00 43.10 43.10 9.03

(iii) 35.80 32.20 31.30 57.70 31.50 13.64 19.00 16.90 16.50 40.60 40.60 8.98

(iv) 37.30 36.20 38.20 58.10 51.80 15.01 19.50 18.30 18.60 41.70 41.70 10.41

(v) 18.00 18.30 20.40 29.50 27.40 9.93 9.70 9.50 10.00 18.30 18.30 6.43

(vi) 11.2 11.1 11.4 15.5 13.4 5.89 6.8 6.6 6.6 10.6 10.6 4.9
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The simulated ARL1 values for scenario 2.  Three different types of OC models with six different shifts 
are defined in this subsection based on Table 3 (it is the same as Table 3 in Zou et al.28). We may be asked about 

the changing of the third OC model from Zou et al.28’s proposed model 
(

yij =
1

1+β1x
β2
i

+ εij

)

. This is due to our 

inability to produce the same results with Zou et al.28’s paper. We even re-simulated the results of the NM method 
(PM was not able to detect these types of shifts) to make sure there was nothing wrong with our simulations, but 
unfortunately those results were also not obtained. It may be possible that the third model was written incor-
rectly in that paper.

The results of ARL1 with respect to the above OC models are gathered in Table 6. These results reveal that 
the proposed method is effective for all of the shifts and the same conclusions with scenario 1 can be drawn and 
only in few cases, ANEWMA is not the best approach.

The simulated ARL1 values for scenario 3.  The results of ARL1 for these types of shifts for n = 13 and 
25 are reported in Tables 7 and 8, respectively. In these tables, the results of EWMA3 approach are shown with 
KMW notation.

The superiority of the NEWMA to KMW is predictable due to the linear structure of the KMW control chart. 
Also, NEWMA has better performance than the other competitors reported in Zhang et al.34 when n = 13. How-
ever, when n = 25, the ANEWMA outperformed the other competitors in small shifts only, while the NEWMA 
is the best for the detection of moderate and large shifts. Since the ANEWMA naturally improves the detection 
ability of NEWMA, it gives logically the best performance for the detection of all the shifts.

The simulated SdRL1 values for scenario 3.  To evaluate control charts in phase II, SdRL1 could be used 
in addition to ARL1

53–55 and such a proper approach is expected to have lower SdRL1 values. Figure 4 illustrates 
the SdRL1 values for ANEWMA, NEWMA and KMW schemes. We can see that the proposed approach was able 
to reduce SdRL1 for ANEWMA chart in comparison with NEWMA chart. The same results have been generated 
by other scenarios but they have been omitted for the sake of brevity.

Sensitivity analysis
In this section, two different simulations are provided to show the superiority of the proposed method. In the 
first simulation, two conventional adaptive approaches are prepared for monitoring non-parametric profiles. 
In the first approach, following the Zou et al.23 and Mohammadzadeh et al.14, VSI scheme is implemented and 
the proposed adaptive method in Haq46 is the second one. These methods hereafter called VSINEWMA and 
HQNEWMA are incorporated with NEWMA statistic to have a fair comparision. For brevity, the details of 
designing have not been provided here.

To show the effectiveness of the proposed adaptive method, the NM statistic28 are combined with the proposed 
adaptive approach [denoted with ANM (Adaptive NM)] in the second simulation, the purpose of which is to 
compare the detection ability of ANM and NM. To this aim, tendency rate based on Eqs. (9) and (10) is multiplied 

Table 6.   ARL1 values for different shifts in scenario 2. Best values are in bold.

Model

n = 20 n = 40

NEWMA

NM ANEWMA

NEWMA

NM ANEWMAc = 1 c = 1.5 c = 2 c = 1 c = 1.5 c = 2

I

(i) 144.50 139.90 134.20 168.30 100.42 110.30 103.10 100.60 155.00 54.31

(ii) 99.10 93.00 86.20 131.20 25.64 63.80 58.70 55.10 113.30 24.85

(iii) 113.70 109.10 102.20 143.00 52.61 79.50 72.70 67.40 129.10 35.79

(iv) 19.90 17.80 16.60 31.80 9.92 10.60 9.80 9.40 21.00 6.93

(v) 17.90 16.60 15.70 25.40 7.68 10.30 9.70 9.20 17.10 6.92

(vi) 8.2 6.5 5.8 * 4.46 4.2 3.70 3.5 * 3.03

II

(i) 39.40 40.90 45.90 59.30 21.41 20.30 20.10 21.40 43.30 12.41

(ii) 17.90 18.10 20.60 27.10 9.83 9.70 9.40 9.90 18.40 7.52

(iii) 37.90 35.20 34.40 60.20 18.62 20.00 18.40 17.80 43.40 10.19

(iv) 17.30 16.00 15.50 27.00 9.01 9.40 8.80 8.70 18.30 6.38

(v) 17.40 17.80 19.00 24.10 8.42 9.80 9.90 10.30 16.10 7.93

(vi) 5.4 5.00 4.90 8.50 2.85 3.50 3.30 3.30 6.00 1.91

III

(i) 136.43 128.94 120.98 156.64 89.42 108.31 96.15 92.94 146.81 50.33

(ii) 102.42 105.19 108.32 148.42 49.67 75.42 68.42 66.31 125.40 27.53

(iii) 64.09 61.78 63.81 71.51 23.62 39.42 39.60 36.51 55.22 19.32

(iv) 42.41 38.11 35.63 66.27 16.41 21.42 19.91 19.51 50.19 11.51

(v) 27.49 26.42 25.19 41.62 11.51 15.89 14.79 13.91 29.42 9.64

(vi) 4.91 3.81 3.79 5.5 3.85 2.94 2.74 2.65 4.20 2.67
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by NM statistic instead of NEWMA statistic. The designing procedure is the same as the ANEWMA and for 
the brevity the details are neglected. Also, the results of the first scenario are only reported due to page limit.

Comparison of ANEWMA with other adaptive approaches.  Figure 5 reports the ARL1 values of the 
first scenario for model (I) and (II) when n is 20 and 40. Note that the ANEWMA results have been gathered 
from Table 5. The superiority of the proposed method over two adaptive competitors is obvious from the follow-
ing simulations. Except the shift type (v) in model (I) when n = 20, ANEWMA has the minimum ARL1 value in 
all of the simulations. Also, VSINEWMA is nearly better than the HQNEWMA in these simulations.

The effect of proposed adaptive approach in combination with NM statistic.  Figure 6 reports 
the ARL1 values of the first scenario for model (I) and (II) when n is 20 and 40. In all of the shifts, ANM had 
the better performance over NM control chart which is an indicator of the capability of the proposed adaptive 
approach. Also, ANEWMA outperformed ANM for all the shifts which is due to the better detection ability of 
NEWMA, compared to NM. The supririty of the proposed method over two adaptive competitors is obvious 
from the following simulations. Except the shift type (v) in model (I) when n = 20, ANEWMA has the minimum 
ARL1 value in all of the simulations. Also, VSINEWMA is better than HQNEWMA in these simulations.

The above two simulations revealed two main findings. First, the proposed method not only outperformed 
non-parametric and parametric control charts but also had the superiority over conventional adaptive meth-
ods. As the second finding, it may be possible to reach better performance than the Haq46’s method by using 
the optimisation of the parameters regarding the non-parametric profiles; however, it is not in the scope of this 
paper and would be valuable for the future research.

Table 7.   ARL1 values for different shifts in scenario 3 when n = 13. Best values are in bold.

η

δ

Method0.025 0.050 0.075 0.10 0.15 0.20 0.30 0.50

0.50

87.94 25.09 11.79 7.24 4.18 2.99 2.07 1.20 NEWMA

99.88 33.87 15.33 9.21 4.93 3.38 2.19 1.31 KMW

42.22 17.53 8.66 6.67 3.91 2.31 1.37 1.00 ANEWMA

1.00

95.02 28.08 12.93 8.14 4.63 3.28 2.20 1.40 NEWMA

115.12 46.76 21.62 12.58 6.30 4.16 2.52 1.61 KMW

62.73 17.50 10.47 6.87 4.74 2.69 1.54 1.00 ANEWMA

1.50

104.03 36.18 15.57 9.32 5.08 3.66 2.36 1.60 NEWMA

135.00 64.18 31.71 18.38 8.47 5.24 2.94 1.80 KMW

59.53 19.70 12.06 8.59 4.79 2.94 1.71 1.10 ANEWMA

2.00

107.70 36.63 17.63 10.51 5.44 3.85 2.52 1.75 NEWMA

157.66 91.66 50.91 29.04 12.40 6.91 3.39 1.88 KMW

72.61 23.69 11.78 8.82 5.11 3.38 1.85 1.24 ANEWMA

2.50

119.04 42.27 20.19 11.17 6.08 4.10 2.66 1.86 NEWMA

173.51 124.74 78.02 46.93 18.48 9.00 3.77 1.91 KMW

77.61 24.98 13.49 9.24 5.88 3.80 1.93 1.43 ANEWMA

3.00

120.81 47.94 21.16 12.68 6.33 4.30 2.78 1.89 NEWMA

185.24 150.37 108.27 69.96 25.26 10.58 3.87 1.42 KMW

82.22 25.85 13.78 9.84 6.34 4.19 2.26 1.45 ANEWMA

3.5

116.57 49.59 22.12 12.53 6.62 4.43 2.81 1.91 NEWMA

187.90 163.05 123.14 78.84 27.55 10.89 3.93 1.91 KMW

85.98 29.03 14.66 10.69 6.16 4.05 2.18 1.46 ANEWMA

4

115.99 47.63 21.02 11.82 6.30 4.36 2.74 1.89 NEWMA

186.84 153.71 108.74 70.44 24.92 10.56 3.91 1.91 KMW

74.27 28.96 14.49 9.39 6.45 4.03 2.21 1.46 ANEWMA

4.5

118.92 46.69 19.82 11.84 6.16 4.19 2.64 1.84 NEWMA

172.67 122.59 78.28 46.87 18.70 8.91 3.74 1.91 KMW

75.61 26.36 12.49 9.29 6.23 3.35 2.03 1.32 ANEWMA

5

113.03 40.75 17.88 10.25 5.53 3.90 2.52 1.77 NEWMA

155.49 91.49 50.08 28.94 12.27 6.92 3.42 1.88 KMW

65.43 21.97 12.68 8.92 5.50 3.44 1.79 1.31 ANEWMA
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Illustrative example
A real case is provided in this section to show the practical application of the proposed scheme. It was selected 
from the semiconductor device fabrication in which there is a deep reactive ion-etching process. The aim of this 
process is to check an etched wafer by an electron microscopy scanner in scientific labs. Employing of this wafer 
is needed to run complicated mechanical–chemical reactions for a complex automotive system23,24,28,56. In these 
reactions, one key factor is to determine the profile of a trench in the system because it can change the outcome 
of the downstream operations and also the final quality of the product.

To establish a suitable monitoring approach for such a trench profile, Zou et al.23 suggested a new method 
based on the profile monitoring control charts. By using the Scanning Electronic Microscope (SEM) data rather 
direct measurements, they were able to reach at a proper monitoring scheme.

They suggested an IC polynomial model (Eq. 11) for this problem with the following transformation zi = xi 
and z2i = x2i −

∑11
i=1

x2i
11.

(11)

yij = 1.55+ 0zi + 0.62z2i + εij ,

i = 1, 2, . . . , 11; j = 1, 2, . . . ,

xi = −2.5 : 0.5 : 2.5,

εij ∼ N(0, 0.16),

Table 8.   ARL1 values for different shifts in scenario 3 when n = 25. Best values are in bold.

η

δ

Method0.025 0.05 0.08 0.10 0.15 0.20 0.30 0.35

0.50

59.11 16.09 8.09 5.27 3.22 2.37 1.86 1.00 NEWMA

73.75 21.14 10.06 6.29 3.64 2.60 1.83 1.02 KMW

36.37 13.24 8.04 5.18 2.76 2.62 2.04 1.24 ANEWMA

1.00

71.02 19.16 8.99 5.77 3.53 2.61 1.94 1.02 NEWMA

94.56 31.58 14.49 8.47 4.64 3.20 2.10 1.16 KMW

38.34 14.64 8.91 5.93 4.81 3.52 2.63 1.52 ANEWMA

1.50

78.50 22.10 10.08 6.63 3.88 2.83 2.01 1.09 NEWMA

119.29 48.61 22.36 13.08 6.44 4.15 2.46 1.41 KMW

48.57 15.63 9.14 7.13 3.24 3.77 2.31 1.46 ANEWMA

2.00

88.80 24.91 11.58 7.15 4.22 3.05 2.08 1.23 NEWMA

145.96 78.33 39.65 22.50 9.63 5.60 2.86 1.56 KMW

57.30 16.85 9.88 7.11 3.41 2.06 1.77 1.28 ANEWMA

2.50

92.78 28.77 12.98 7.78 4.54 3.27 2.16 1.37 NEWMA

169.95 117.23 72.62 41.92 15.32 7.25 3.11 1.57 KMW

58.64 18.10 10.48 7.85 3.86 2.28 1.15 1.11 ANEWMA

3.00

101.36 27.81 13.66 8.21 4.68 3.34 2.20 1.46 NEWMA

185.12 153.22 105.28 64.41 20.00 8.18 3.18 1.58 KMW

69.71 19.37 11.18 8.94 4.52 2.49 1.29 1.23 ANEWMA

3.5

103.04 30.46 13.48 8.28 4.69 3.32 2.21 1.44 NEWMA

186.83 150.01 107.13 64.76 20.13 8.10 3.16 1.57 KMW

63.45 19.58 10.57 8.38 4.29 2.72 1.37 1.21 ANEWMA

4

89.06 28.81 12.70 7.85 4.53 3.21 2.16 1.38 NEWMA

170.40 118.56 72.39 42.00 15.60 7.29 3.10 1.58 KMW

56.52 18.82 10.44 8.49 4.54 3.35 2.19 1.44 ANEWMA

4.5

85.83 26.00 11.50 7.15 4.19 3.01 2.08 1.22 NEWMA

147.63 77.19 39.26 22.03 9.67 5.57 2.87 1.56 KMW

60.10 16.76 9.62 7.22 4.12 2.84 2.25 1.24 ANEWMA

5

80.03 22.03 10.38 6.44 3.84 2.84 2.02 1.10 NEWMA

117.41 48.97 22.55 12.96 6.38 4.14 2.45 1.43 KMW

47.53 15.93 8.72 6.63 3.87 2.95 2.15 1.21 ANEWMA
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where the dependent and independent variables are the shape of the profile. Due to complexity of getting real 
data, the new samples were generated by simulations in Zou et al.23. To have an ARL0 equal to 370, UCLNEWMA 
was set at 2.01 (L = 18.00) when c = 1.528. So, the design parameters (as described in “The proposed method”) 
are a = 2.3, b = 4.6, LL = 0.46, and UL = 2.85. The mapping function’s intercept and slope were obtained as 5.24 and 
− 1.04 and 1.41 by the proposed designing scheme.

By changing the standard deviation to 0.48 from 0.4 (it is equal to a shift magnitude of 1.2σ), the OC profiles 
were generated. Table 9 gathers the details of the 15 OC generated profiles. As can be seen, NEWMA was able to 
trigger an OC signal in the 15th sample while ANEMWA only needed 7 samples to detect this shift.

For better understanding, the computations of Trj (in the second and last sample) are illustrated here. In the 
second sample, T2 = 2.01−0.366

0.366 = 4.49 , T*2 = 4.8, Tr2 = max(0.46,5.24–1.04 × 4.8) = 0.46 and Q*2 = 0.37 × 0.46 = 0.17. 
In a similar way, we have, T7 = 2.01−1.69

1.69 = 0.19 , T*7 = 2.88, Tr7 = max(0.46,5.24–1.04 × 2.88) = 2.24 and 
Q*7 = 1.69 × 2.24 = 3.79. The charting statistic in ANEWMA and NEWMA for the above data are depicted in 
Fig. 7 with green and black lines, respectively. The values of Trj are shown in red.

Conclusions
In this paper, an effective adaptive approach for improvement of the non-parametric profile monitoring in Phase 
II was proposed. The adaptive approach was combined with the NEWMA control chart proposed by Zou et al.28, 
to enhance the OC detection in Phase II monitoring. To compute the control limits, a simulation-based designing 
procedure was proposed based on the Monte Carlo theory. The results showed that the proposed method not 
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Figure 4.   The results of SdRL1 for the scenario 3.
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only improved the performance of NEWMA approach in phase II, but also outperformed some of the existing 
control charts, such as NM, EWMA3 and other adaptive methods, for most shifts in terms of ARL criterion. In 
these simulations, three different scenarios (IC models) entailing polynomial, exponential and linear models 
have been investigated to show the robustness of the proposed scheme. In the case study, an example from the 
semiconductor device fabrication was implemented in which remarkable ability of the proposed method for the 
detection of OC shifts was demonstrated. For future research, we suggest the development of a control chart based 
on the combination of this approach and other adaptive control schemes. Also, obtaining the exact distribution 
of the chart statistics and control limits for adaptive control charts would be a novel idea.
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Figure 5.   The results of ARL1 for ANEWMA, VSINEWMA and HQNEWMA methods (the figures on top and 
bottom are for n = 20 and 40 respectively).
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Figure 6.   The results of ARL1 for ANEWMA, NM and ANM methods (the figures on top and bottom are for 
n = 20 and 40 respectively).

Table 9.   The details of 15 OC generated profiles in illustrative example.

j yij Qj Tj Trj Q*j
1 3.88 2.88 1.50 − 0.30 − 0.10 − 0.14 1.03 1.06 1.37 3.11 3.37 0.33 5.11 0.46 0.15

2 3.71 3.16 2.12 0.97 0.39 − 0.28 0.51 0.22 1.67 2.62 4.42 0.37 4.49 0.46 0.17

3 3.67 2.79 1.78 0.19 0.23 0.77 0.21 0.47 1.61 2.35 4.09 0.42 3.76 0.61 0.26

4 3.81 2.47 1.62 1.27 0.37 0.79 − 0.82 0.40 1.51 2.08 3.26 0.46 3.33 0.90 0.42

5 4.17 2.77 1.53 0.81 − 0.26 − 0.24 0.10 0.29 1.55 3.62 3.64 0.57 2.52 1.25 0.71

6 4.19 1.98 2.04 0.15 0.26 − 0.30 0.40 0.63 1.37 3.90 3.57 1.13 0.79 1.78 2.00

7 3.85 3.77 0.84 0.89 − 0.36 0.49 0.31 0.93 1.26 2.60 4.58 1.69 0.19 2.24 3.79

8 2.78 1.70 1.59 0.31 0.01 − 0.72 − 0.28 0.43 1.05 2.06 3.67 0.64 – – –

9 3.42 3.12 0.92 1.49 − 0.02 − 0.70 − 0.14 1.07 1.90 2.56 4.01 1.33 – – –

10 4.18 1.78 1.12 − 0.26 − 0.06 0.46 0.50 1.72 1.48 1.44 4.69 1.62 – – –

11 4.49 2.20 1.50 0.99 0.34 0.33 0.10 0.60 1.44 2.10 4.56 0.92 – – –

12 3.88 2.81 0.98 0.10 0.11 − 0.12 0.73 0.91 1.65 1.79 3.41 0.65 – – –

13 3.97 2.31 2.01 1.26 − 0.12 0.42 0.82 0.77 2.17 2.99 3.98 0.95 – – –

14 4.30 2.57 1.20 0.79 0.17 − 0.18 1.01 0.73 2.71 2.34 4.15 1.83 – – –

15 4.63 3.79 1.54 0.24 0.54 − 0.63 0.02 0.75 2.11 3.17 3.86 2.73 – – –



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14336  | https://doi.org/10.1038/s41598-022-18381-8

www.nature.com/scientificreports/

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Received: 16 February 2022; Accepted: 10 August 2022

References
	 1.	 Montgomery, D. C. Introduction to Statistical Quality Control Vol. 8 (Wiley, 2019).
	 2.	 Khan, N. et al. Monitoring of production of blood components by attribute control chart under indeterminacy. Sci. Rep. 11(1), 

922 (2021).
	 3.	 Liu, L. et al. Multivariate nonparametric chart for influenza epidemic monitoring. Sci. Rep. 9(1), 17472 (2019).
	 4.	 Zou, C., Zhang, Y. & Wang, Z. A control chart based on a change-point model for monitoring linear profiles. IIE Trans. 38(12), 

1093–1103 (2006).
	 5.	 Mahmoud, M. A., Saad, A. E. N. & El Shaer, R. Phase II multiple linear regression profile with small sample sizes. Qual. Reliab. 

Eng. Int. 31(5), 851–861 (2015).
	 6.	 Jones, C. L., Abdel-Salam, A. S. G. & Mays, D. A. Practitioners guide on parametric, nonparametric, and semiparametric profile 

monitoring. Qual. Reliab. Eng. Int. 37(3), 857–881 (2021).
	 7.	 Kim, K., Mahmoud, M. A. & Woodall, W. H. On the monitoring of linear profiles. J. Qual. Technol. 35(3), 317–328 (2003).
	 8.	 Gupta, S., Montgomery, D. C. & Woodall, W. H. Performance evaluation of two methods for online monitoring of linear calibration 

profiles. Int. J. Prod. Res. 44(10), 1927–1942 (2006).
	 9.	 Saeed, U. et al. Simultaneous monitoring of linear profile parameters under progressive setup. Comput. Ind. Eng. 125, 434–450 

(2018).
	10.	 Yeganeh, A. & Shadman, A. Monitoring linear profiles using Artificial Neural Networks with run rules. Expert Syst. Appl. 168, 

114237 (2021).
	11.	 Yeganeh, A., Shadman, A. & Abbasi, S. A. Enhancing the detection ability of control charts in profile monitoring by adding RBF 

ensemble model. Neural Comput. Appl. 34, 9733–9757 (2022).
	12.	 Steiner, S. et al. Nonlinear profile monitoring for oven-temperature data. J. Qual. Technol. 48(1), 84–97 (2016).
	13.	 Fan, S.-K.S., Jen, C.-H. & Lee, T.-Y. Modeling and monitoring the nonlinear profile of heat treatment process data by using an 

approach based on a hyperbolic tangent function. Qual. Eng. 29(2), 226–243 (2017).
	14.	 Mohammadzadeh, M., Yeganeh, A. & Shadman, A. Monitoring logistic profiles using variable sample interval approach. Comput. 

Ind. Eng. 158, 107438 (2021).
	15.	 Yeh, A. B., Huwang, L. & Li, Y.-M. Profile monitoring for a binary response. IIE Trans. 41(11), 931–941 (2009).
	16.	 Alevizakos, V., Koukouvinos, C. & Lappa, A. Comparative study of the Cp and Spmk indices for logistic regression profile using 

different link functions. Qual. Eng. 31(3), 453–462 (2019).
	17.	 Shang, Y., Wang, Z. & Zhang, Y. Nonparametric control schemes for profiles with attribute data. Comput. Ind. Eng. 125, 87–97 

(2018).
	18.	 Mammadova, U. & Özkale, M. R. Profile monitoring for count data using Poisson and Conway–Maxwell–Poisson regression-based 

control charts under multicollinearity problem. J. Comput. Appl. Math. 388, 113275 (2021).
	19.	 Zhao, C. et al. Circular and cylindrical profile monitoring considering spatial correlations. J. Manuf. Syst. 54, 35–49 (2020).
	20.	 Wang, Y.-H.T. & Wang, H. On the monitoring of mixture simple linear profiles. J. Stat. Comput. Simul. 86(15), 3009–3024 (2016).
	21.	 Maleki, M. R., Amiri, A. & Castagliola, P. An overview on recent profile monitoring papers (2008–2018) based on conceptual 

classification scheme. Comput. Ind. Eng. 126, 705–728 (2018).
	22.	 Kang, L. & Albin, S. L. On-line monitoring when the process yields a linear profile. J. Qual. Technol. 32(4), 418–426 (2000).
	23.	 Zou, C., Tsung, F. & Wang, Z. Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. 

Technometrics 49(4), 395–408 (2007).
	24.	 Huwang, L. et al. Monitoring general linear profiles using simultaneous confidence sets schemes. Comput. Ind. Eng. 68, 1–12 

(2014).

0.46 0.46 0.61 0.90
1.25

1.78

2.24

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q
j

Sample Number

Figure 7.   The chart statistic of ANEWMA (green) and NEWMA (black) control charts for the simulated data.



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14336  | https://doi.org/10.1038/s41598-022-18381-8

www.nature.com/scientificreports/

	25.	 Celano, G. & Chakraborti, S. A distribution-free Shewhart-type Mann–Whitney control chart for monitoring finite horizon 
productions. Int. J. Prod. Res. 59, 1–18 (2020).

	26.	 Hou, S. & Yu, K. A non-parametric CUSUM control chart for process distribution change detection and change type diagnosis. 
Int. J. Prod. Res. 59, 1–21 (2020).

	27.	 Williams, J. D., Woodall, W. H. & Birch, J. B. Statistical monitoring of nonlinear product and process quality profiles. Qual. Reliab. 
Eng. Int. 23(8), 925–941 (2007).

	28.	 Zou, C., Tsung, F. & Wang, Z. Monitoring profiles based on nonparametric regression methods. Technometrics 50(4), 512–526 
(2008).

	29.	 Qiu, P. & Zou, C. Control chart for monitoring nonparametric profiles with arbitrary design. Stat. Sin. 20(4), 1655–1682 (2010).
	30.	 Qiu, P., Zou, C. & Wang, Z. Nonparametric profile monitoring by mixed effects modeling. Technometrics 52(3), 265–277 (2010).
	31.	 Hung, Y.-C. et al. Nonparametric profile monitoring in multi-dimensional data spaces. J. Process Control 22(2), 397–403 (2012).
	32.	 Chuang, S.-C. et al. A framework for nonparametric profile monitoring. Comput. Ind. Eng. 64(1), 482–491 (2013).
	33.	 Li, C.-I., Pan, J.-N. & Liao, C.-H. Monitoring nonlinear profile data using support vector regression method. Qual. Reliab. Eng. 

Int. 35(1), 127–135 (2019).
	34.	 Zhang, Y. et al. Directed control charts for detecting the shape changes from linear profiles to quadratic profiles. Int. J. Prod. Res. 

52(11), 3417–3430 (2014).
	35.	 Zi, X., Zou, C. & Tsung, F. A distribution-free robust method for monitoring linear profiles using rank-based regression. IIE Trans. 

44(11), 949–963 (2012).
	36.	 Chicken, E., Pignatiello, J. J. & Simpson, J. R. Statistical process monitoring of nonlinear profiles using wavelets. J. Qual. Technol. 

41(2), 198–212 (2009).
	37.	 Paynabar, K. & Jin, J. Characterization of non-linear profiles variations using mixed-effect models and wavelets. IIE Trans. 43(4), 

275–290 (2011).
	38.	 Paynabar, K., Jin, J. & Pacella, M. Monitoring and diagnosis of multichannel nonlinear profile variations using uncorrelated mul-

tilinear principal component analysis. IIE Trans. 45(11), 1235–1247 (2013).
	39.	 Yeganeh, A. et al. An ensemble neural network framework for improving the detection ability of a base control chart in non-

parametric profile monitoring. Expert Syst. Appl. 204, 117572 (2022).
	40.	 Riaz, M. et al. Linear profile monitoring using EWMA structure under ranked set schemes. Int. J. Adv. Manuf. Technol. 91(5), 

2751–2775 (2017).
	41.	 Huwang, L., Lin, J.-C. & Lin, L.-W. A spatial rank-based EWMA chart for monitoring linear profiles. J. Stat. Comput. Simul. 88(18), 

3620–3649 (2018).
	42.	 Hafez Darbani, F. & Shadman, A. Monitoring of linear profiles using generalized likelihood ratio control chart with variable 

sampling interval. Qual. Reliab. Eng. Int. 34(8), 1828–1835 (2018).
	43.	 Abdella, G. M., Yang, K. & Alaeddini, A. Multivariate adaptive approach for monitoring simple linear profiles. Int. J. Data Anal. 

Tech. Strateg. 6(1), 2–14 (2014).
	44.	 Li, Z. & Wang, Z. An exponentially weighted moving average scheme with variable sampling intervals for monitoring linear profiles. 

Comput. Ind. Eng. 59(4), 630–637 (2010).
	45.	 Haq, A., Bibi, M. & Shah, B. A. A novel approach to monitor simple linear profiles using individual observations. Commun. Stat. 

Simul. Comput. 24, 1–14 (2020).
	46.	 Haq, A. Adaptive MEWMA charts for univariate and multivariate simple linear profiles. Commun. Stat. Theory Methods. 1–29 

(2020).
	47.	 Jeong, Y.-S., Kim, B. & Ko, Y.-D. Exponentially weighted moving average-based procedure with adaptive thresholding for monitor-

ing nonlinear profiles: Monitoring of plasma etch process in semiconductor manufacturing. Expert Syst. Appl. 40(14), 5688–5693 
(2013).

	48.	 Aly, A. A., Saleh, N. A., Mahmoud, M. A. An adaptive EWMA control chart for monitoring zero-inflated Poisson processes. Com-
mun. Stat. Simul. Comput. 1–14 (2019).

	49.	 Haq, A. & Khoo, M. B. C. Memory-type control charts with multiple auxiliary information for process mean. Qual. Reliab. Eng. 
Int. 37, 2348–2364. https://​doi.​org/​10.​1002/​qre.​2861 (2021).

	50.	 Haq, A. & Khoo, M. B. An adaptive multivariate EWMA chart. Comput. Ind. Eng. 127, 549–557 (2019).
	51.	 Perdikis, T. & Psarakis, S. A survey on multivariate adaptive control charts: Recent developments and extensions. Qual. Reliab. 

Eng. Int. 35(5), 1342–1362 (2019).
	52.	 Yeganeh, A. et al. Run rules-based EWMA charts for efficient monitoring of profile parameters. IEEE Access 9, 38503–38521 (2021).
	53.	 Abbas, T. et al. On monitoring of linear profiles using Bayesian methods. Comput. Ind. Eng. 94, 245–268 (2016).
	54.	 Abbas, T. et al. Efficient phase II monitoring methods for linear profiles under the random effect model. IEEE Access 7, 148278–

148296 (2019).
	55.	 Abbas, T. et al. Phase II monitoring of linear profiles with random explanatory variable under Bayesian framework. Comput. Ind. 

Eng. 127, 1115–1129 (2019).
	56.	 Yeganeh, A., Shadman, A. & Amiri, A. A novel run rules based MEWMA scheme for monitoring general linear profiles. Comput. 

Ind. Eng. 152, 107031 (2021).

Acknowledgements
The authors would like to acknowledge the support provided by their respective Universities for providing excel-
lent research facilities. For this article, open access funding is provided by the Qatar National Library.

Author contributions
S.A.A.: Conceptualization, methodology, validation, formal analysis, investigation, resources, writing—review 
and editing, supervision, project administrationA.Y.: Conceptualization, methodology, software, validation, 
formal analysis, investigation, resources, data curation, writing—original draft, visualization.S.C.S.: Concep-
tualization, methodology, validation, formal analysis, investigation, resources, writing—review and editing, 
supervision, project administration.

Funding
The publication of this article was funded by Qatar National Library.

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1002/qre.2861


17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14336  | https://doi.org/10.1038/s41598-022-18381-8

www.nature.com/scientificreports/

Additional information
Correspondence and requests for materials should be addressed to S.A.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Monitoring non-parametric profiles using adaptive EWMA control chart
	Literature review of non-parametric profiles. 
	Literature review of adaptive control charts in profile monitoring. 
	The aims and innovations of the study. 
	NEWMA statistic for non-parametric profiles
	The proposed method
	Simulation results
	The simulated ARL1 values for scenario 1. 
	The simulated ARL1 values for scenario 2. 
	The simulated ARL1 values for scenario 3. 
	The simulated SdRL1 values for scenario 3. 

	Sensitivity analysis
	Comparison of ANEWMA with other adaptive approaches. 
	The effect of proposed adaptive approach in combination with NM statistic. 

	Illustrative example
	Conclusions
	References
	Acknowledgements


