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ABSTRACT Multivariate memory-type control charts that use information from both the current and
previous process observations have been proposed. They are designed to detect shifts in both upper and
downward directions with equal precision when monitoring the process mean vector. The absence of
directional sensitivity can limit the charts’ application, particularly when users are interested in detecting
variations in one direction than the other. This article proposes one-sided and two one-sided multivariate
control charts for monitoring shifts in the process mean vector. The proposed charts are presented in the
form of the multivariate homogeneously weighted moving average approach that yields efficient detection of
shifts in the mean vector. We provide simulation studies under different shift sizes in the process mean vector
and evaluate the performance of the proposed charts in terms of their run length properties. We compare
the average run length (ARL) results of the charts with the conventional charts as well as the one-sided and
two one-sided multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative
sum (MCUSUM) charts. Our simulation results show that the proposed charts outperform the existing
charts used for the same purpose, particularly when interest lies in detecting small shifts in the mean
vector. We show how the charts can be designed to be robust to non-normal distributions and give a step-
by-step implementation efficient application of the charts when their parameters are unknown and need to
be estimated. Finally, an illustrative example is provided to show the application of the proposed charts.

INDEX TERMS Average run length, multivariate homogeneously weighted moving average, one-sided
control charts, two one-sided control charts, robustness, estimation.

I. INTRODUCTION
Multivariate process control (MPC) is used to monitor pro-
cesses comprising several correlated characteristics or fea-
tures. Several MPC tools, which are multivariate extensions
of univariate charts for monitoring single process charac-
teristic, have been proposed in practice. They are useful in
ensuring that any changes in the process are detected early
to avoid several anomalies on the final products. The first
MPC tool can be traced back to work by [1], who developed
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the χ2 chart. It is a multivariate analogue of the univariate
Shewhart chart [2]. The chart gives a signal of mean shift
whenever the chart’s statistic is greater than χ2

(p,α), where
χ2
(p,α) is the αth upper percentage point of the chi-square

distribution with the p degrees of freedom.
The χ2 chart is useful for detecting large shifts in the mean

vector but less sensitive in detecting small to moderate shifts
in the process characteristics. To enhance the sensitivity of
the χ2 chart to detect small shifts in the process mean vector,
different multivariate memory-type tools that use information
from both the current and previous process observations have
also been proposed in the literature. For example, [3] and [4]

80388 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7592-5460
https://orcid.org/0000-0002-7599-6928
https://orcid.org/0000-0003-1843-8863
https://orcid.org/0000-0002-2328-5171


N. A. Adegoke et al.: One-Sided and Two One-Sided Multivariate Homogeneously Weighted Moving Charts

proposed multivariate cumulative sum (CUSUM) control
charts which are the multivariate extensions of the univariate
CUSUM chart proposed by [5]. [6] proposed the multivariate
exponentially weighted moving average (EWMA) control
chart, which is a multivariate extension of the univariate
EWMA chart by [7]. Also, [8] proposed the multivariate
homogeneously weighted moving average (MHWMA) con-
trol chart, which is a multivariate extension of the univariate
HWMA chart by [9]. Average run length (ARL) comparison
of the MHWMA chart with the competing charts, including
the chi-square chart, the MEWMA chart and the MCUSUM
chart, showed that the MHWMA chart outperformed the
other charts when interest lies in detecting small shifts in the
process mean vector.

Different enhancement of the MEWMA, MCUSUM
and MHWMA charts have been proposed in practice.
For example, [4] studied the zero-state and steady-state
average length (ARL) performance of the MEWMA
chart. [10] proposed optimal statistical design for multivari-
ate CUSUM (MCUSUM) chart. [11] integrated conforming
run-length chart with MCUSUM to propose a synthetic
MCUSUM chart. [12], [13] improved the sensitivity of
MCUSUMandMEWMAcharts using shrinkage estimates of
the covariance matrix. [14] compared the performance of the
MEWMA,MCUSUM andMHWMA charts when the charts’
parameters are estimated. [15]–[17] proposed adaptive ver-
sions of MCUSUM and MEWMA charts for the process
mean based on fixed and variable sampling intervals.We refer
interested to [18]–[22] for some recent enhancements of the
MEWMA, MCUSUM and MHWMA charts.

The multivariate charts and their enhancements mentioned
above are directional invariant charts. They are proposed to
detect shifts in all directions (i.e., upper and downward) with
equal precision when monitoring the process mean vector.
The absence of directional sensitivity can limit the charts’
application, particularly when users are interested in detect-
ing variations or changes in some directions more than others.
Such directional charts could allow practitioners to detect an
increase or a decrease in quality characteristics. For example,
the use of the directional invariant chart or its modifications
may fail or ineffective to detect or give prompt warnings of
bioterrorist attacks or other arising health conditions, such
as high-level toxicity of drugs, increase or decrease in natu-
rally occurring disease outbreak or an increased health risk
to the public [23]–[25]. Specifically, directional invariant
charts may take a much longer time to detect signals when
the signals are far below the target than if they were close
to the target when the shift occurred. On the other hand,
using a one-sided chart can improve the speed in detect-
ing an upward or a downward change in the process mean
vector.

To this end, [24] proposed a one-sided MCUSUM chart.
The one-sided MCUSUM due to [24] outperforms the
MCUSUM chart of [3] when detecting either upward or
downward shifts in the process mean vector. [23] proposed
a one-sided MEWMA chart for monitoring process mean

vector. Recently, a directionally more sensitive one-sided
MEWMA chart was proposed by [26]. The one-sided
MEWMA chart due to [26] used a transformation that trun-
cates observations that is either above and below the process
mean vector. Also, [25] proposed a one-sided MCUSUM
chart for monitoring the mean vector of a multivariate nor-
mal process. However, unlike the one-sided MEWMA and
MCUSUM charts, one-sided MHWMA charts have received
no attention in SPC literature to the best of our knowledge.

Hence, two different one-sided MHWMA-based charts
that assume a known upward or downward shift are proposed
in this manuscript. The charts accumulate positive (or neg-
ative) deviations from the target. The first one-sided upper
chart (hereafter referred to as the OMHWMAI chart) accu-
mulates observations above the target and truncates observa-
tions below the target to the target value. The second upper
one-sided chart (hereafter referred to as the OMHWMAII
chart), on the other hand, accumulates observations above the
observedMHWMA statistic value and truncates observations
below the value to the target value. We also provide two
one-sided versions of the one-sided charts that can be used
to detect irregular changes (i.e., both upward and downward
shifts) in the process mean vector.

A brief introduction of the classical MHWMA chart and
the designs of the proposed one-sided and two one-sided
charts are discussed in Section II. The performance evaluation
of the charts and their comparisonwith existing one-sided and
two one-sided charts in literature are provided in Section III.
The sensitivity of the charts to non-normality is studied in
Section IV. We provide a step-by-step implementation of
the charts when their parameters are unknown in Section V.
An illustrative example of the proposed charts for moni-
toring aquatic toxicity level is given in Section VI. Lastly,
conclusions and directions for future work are presented in
Section VII.

II. THE PROPOSED ONE-SIDED AND TWO ONE-SIDED
MHWMA CHARTS
A. BRIEF SUMMARY OF THE CLASSICAL MHWMA CHART
Suppose p×n independently and identically distributedmulti-
variate normal random variables Y1,Y2, . . ., with mean vec-
tor µ and covariance matrix 6 are available for monitoring.
We assume the in-control values of the parameters µ and 6
for the normal operating process are µ0 and60, respectively.
Also, we assume the values of µ0 and 60 are known apriori
or there are well-defined Phase I in-control sample from
which they can be estimated. We standardized the random
variable Y i to obtain X i given as X i = 6

−1/2
0 (Y i − µ0),

such that in general X is distributed as N (µ∗,6∗), where

µ∗ = 6
−

1
2

0 (µ−µ0) and6∗ = 6
−

1
2

0 66
−

1
2

0 .When the process
is in control, the transformed variable X is distributed as a
standard normal distribution(i.e.,N (0, Ip)), where Ip is a p×p
identity matrix.

The monitoring statistic of the MHWMA chart for moni-
toring the mean vector of an individual-observation is defined
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as

Hi = wxi + (1− w) ¯xi−1, (1)

where i = 1, 2, . . . ,. x̄i−1 represents the sample average of
the previous information up to and including the i− 1 obser-
vation, and x̄0 = 0. The smoothing parameter w is selected
such that 0 < w ≤ 1. The mean vector and covariance of the
statistic H i are given as µH = 0 and

6H i =

w
2Ip if i = 1

w2Ip + (1− w)2
Ip
i− 1

if i > 1,
(2)

respectively [8]. The MHWMA chart gives an out-of-control
signal whenever T 2

i = Hi
′6Hi

−1Hi > h. The parameters
h and w are chosen to achieve a desired in-control perfor-
mance measure of the chart, such as the desired in-control
ARL performance, and 6Hi is the covariance matrix of H at
time point i. The MHWMA chart is a directionally invariant
chart; the ARL performance of the chart depends on µ0

and 60, only through the non-centrality parameter given as

δ =
(
µ′16

−1
0 µ1

)1/2
, where µ1 is the mean vector for the

out-of-control process.

B. THE PROPOSED ONE-SIDED AND TWO ONE-SIDED
MHWMA CHARTS
1) ONE-SIDED MHWMA CHARTS
Two different one-sided upper MHWMA-based charts,
referred to as OMHWMAI and OMWMAII charts, that
assume upward shifts in the mean vector are provided in this
section. The OMHWMAI chart is obtained by transform-
ing the vector of observation X i into X+i , given as X+i =
+max(0,Xi), and then define MHWMA structure based on
X+i , where +max {.} returns the (parallel) maxima of the
input vectors. The vector X+i accumulates observations that
are above the zero vector and truncated the observations
that are less than the X i to zero vector. When the process
is in control, the mean vector and covariance matrix of the
transformed variable X+i are given by

µX+i
=

1
√
2π
× 1p (3)

and

6X+i
=

(
1
2
−

1
2π

)1/2

Ip×p, (4)

respectively, where 1p is a column vector. Let I+i be the
MHWMA sequence based on X+i , given by

I+i = w(X+i − µX+i )+ (1− w)X̄
+

i−1, (5)

where X̄
+

0 = 0. The OMHWMAI chart involves plotting
T 2
i = I+′i 6

−1
I+i
I+i , where

6I+i
=


w26X+i

if i = 1

w26X+i
+ (1− w)2

6X+i
i− 1

if i > 1
(6)

The chart detects out-of-control upper signal whenever
T 2
i = I+′i 6

−1
I+i
I+i > h.

TheOMHWMAII chart on the other hand uses the transfor-
mation Z+i = +max(0,Hi), where the vector Hi is given in
equation (1). The statistic Z+i accumulates observations that
are above the 0 and truncated the observations that are less
than theHi to the zero vector. When the process is in control,
we approximate the mean vector and covariance matrix of the
transformed variable Z+i by

µZ+i
=


1
√
2π

w× 1p if i = 1

1
√
2π

√
(w2 + (1− w)2

1
i− 1

)× 1p if i > 1
(7)

and

6Z+i
=


w26X+i

if i = 1

w26X+i
+ (1− w)2

6X+i
i− 1

if i > 1
(8)

respectively. The OMHWMAII chart detects out-of-control
upper signal whenever T 2

i = (Z+i − µZ+i )
′6−1

Z+i
(Z+i − µZ+i )

> h. The smoothing parameters w of the OMHWMAI and
OMHWMAII charts are selected such that 0 < w ≤ 1. The
values of h and w of the charts are chosen to achieve a desired
in-control ARL.

2) THE PROPOSED TWO ONE-SIDED MHWMA CHARTS
In order to devise MHWMA charts that can detect both
increases and decreases in the process mean vector, we inte-
grate two one-sided MHWMA charts for detecting upper
and lower mean shifts into a single chart. We consider two
multivariate normal vectors that can take either positive or
negative values. The MHWMA charting procedure is then
applied to these vectors to obtain the two one-sidedMHWMA
charts for detecting increase and decrease shifts in the process
mean vector. Here, we provide two one-sided MHWMA
charts, referred to as TMHWMAI and TMWMAII charts, for
monitoring increasing and decreasing changes in the process
mean vector. The TMHWMAI and TMWMAII charts are
two one-sided versions of the OMHWMAI and OMWMAII
charts, respectively.

Similar to the OMHWMAI chart, the TMHWMAI chart
is obtained by first transforming the observation X i into
X+i = +max(0,Xi) and X−i = −min(0,Xi), respectively,
and then define MHWMA structure based on X+i and X−i ,
where +max {.} and −min {.} return the (parallel) maxima
and minima of the input vectors, respectively. The vector X+i
accumulates observations that are above the zero and trun-
cated the observations that are less than the X i to zero vector.
In contrast, X−i accumulates observations that are below the
zero and truncated the observations that are greater than X i
to the zero vector. When the process is in control, the mean
vector and covariance matrix of the transformed variable X+i
are µX+i (given in equation 3) and6X+i

(given in equation 4),
respectively. Also, the mean vector and covariance matrix of
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the transformed variable X−i are µX−i = −µX
+

i
and 6X−i

=

6X+i
, respectively. Let I+i and I−i be the two MHWMA

sequences based on X+i and X−i , respectively, given by

I+i = w(X+i − µX+i )+ (1− w)X̄
+

i−1 (9)

I−i = w(X−i − µX−i )+ (1− w)X̄
−

i−1 (10)

where X̄
+

0 = X̄
−

0 = 0. The TMHWMAI chart detects out-
of-control upper or lower signals whenever I i+′6−1I+i

I+i >

h or I−′i 6
−1
I−i
I−i > h, respectively, where 6I+i

is given in
equation (6).

The TMHWMAII chart (the two one sided version of the
OMWMAII chart) is obtained by transforming Hi (in equa-
tion (1)) into Z+i = +max(0,Hi) and Z−i = −min(0,Hi).
The statistic Z+i accumulates observations that are above the
0 and truncated the observations that are less than Hi to
the zero vector. On the other hand, the statistic Z−i accu-
mulates observations that are below the 0, and truncated the
observations that are greater than Hi to zero vector. When
the process is in control, the mean vector and covariance
matrix of the transformed variable Z+i are µZ+i (given in
equation 7) and6Z+i

(given in equation 8), respectively. Also,
the mean vector and covariance matrix of the transformed
variable Z−i areµZ−i = −µZ

+

i
and6Z−i

= 6Z+i
, respectively.

The TMHWMAII chart detects out-of-control upper or lower
signals whenever (Z+i −µZ+i )

′6−1
Z+i

(Z+i −µZ+i ) > h or (Z−i −

µZ−i
)′6−1

Z−i
(Z−i − µZ−i

) > h, respectively. The smoothing
parameters of the TMHWMAI and TMHWMAII chartsw are
selected such that 0 < w ≤ 1. Also, the values of h and w for
the charts are chosen to achieve a desired in-control ARL.

III. PERFORMANCE EVALUATION AND COMPARISON
In this section, we study the zero-state and steady-state
run-length performance of the charts inmonitoring shift in the
process mean. The zero-state performance is obtained under
the assumption that the process shift occurred during the ini-
tial stage, while the steady-state performance is study under
the assumption that the process shift occurred after the pro-
cess had been in control for some time. Several approaches,
including integral equations, Markov chain methods and
Monte Carlo simulation have been examined in statistical
process control literature to obtain the run-length properties
of control charts. Here, we employ the most commonly used
approach based on Monte Carlo Simulation (developed in
R software [27]) in our work.

A detailed evaluation of the charts in detecting shifts
in the process mean is provided in terms of their aver-
age run length (ARL) and standard deviation of the run
length (SDRL) performance. ARL is the average num-
ber of plotted statistics on the chart before a shift is
detected [12], [13]. The in-control (IC) ARL, denoted by
ARL0, is the ARL value for an IC process. In contrast, the
out-of-control (OOC) ARL, denoted by ARL1, is the ARL
value for an OOC process. SDRL is used to measure the

variation of the run-length distribution for a given value of
shift. Similarly, SDRL0 and SDRL1 are the SDRL for the IC
and OOC process, respectively. When comparing two charts,
the ARL0 is fixed to a desired value. The chart with a smaller
value of ARL1 is more effective in detecting the shift in the
process parameters, as compared to the other charts. We aim
to recommend the choice of the one-sided or two one-sided
control chart that gives the best performance. The effects of
δ and the smoothing parameter w on the proposed charts are
also studied.

A. ZERO-STATE RUN-LENGTH PERFORMANCE
EVALUATION OF THE CHARTS
We examined the zero-state run-length performance of the
charts with w ∈ {0.05, 0.10}, and find the corresponding
value of h for each value of w that fixes ARL0 to the desired
level. We used the binary search algorithm similar to the one
employed in [12], [28] to obtain the values of h that fix ARL0
values of the charts to 200 or 370. The values of h for different
combinations of w (the smoothing parameter) that fix ARL0
of the charts are given in the last column of Tables 1 to 4.
It is seen from the tables that for a fixed value of w (or p),
the value of h increases with an increase in the value of p (or
w, respectively).

The ARL and SDRL values of the charts are investigated
under different shift, δ, sizes, and obtained from extensive
simulation studies as follows:

1. At each time i, we generate individual-observation mul-
tivariate normally distributed sample with shift of size δ
in the IC mean vector µ0 and covariance matrix 60 =

Ip×p, where δ = 0 implies there is no shift in the process.
2. We compute the plotting statistic of the charts and com-

pare it against the chart’s limit.
3. If the chart statistic falls below the limit (in step

2), the process is declared to be IC, then repeats
steps (1-2) for the monitoring of the next test sample
i + 1. Alternatively, if the test statistic falls outside the
limit, the process is said to have shifted to an OOC state.
Consequently, the monitoring process terminates, and
we record the iteration number that gives the first OOC
signal as a single run length.

We repeat the iterations 100, 000 times, and compute the
ARL and SDRL as the mean and standard deviation of the
100,000 run-lengths. The zero-state ARL values of the OMH-
WMAI, OMHWMAII, TMHWMAI and TMHWMAII charts
across simulations are reported in Tables 1 to 4, respectively.
Also, the zero-state SDRL values of the charts are provided
in Tables 5 to 8, respectively.
The zero-state ARL values (in Tables 1 to 4) and SDRL

values (in Tables 5 to 7) can be summarized as follows:

• The ARL1 values of charts are smaller than the corre-
sponding ARL0 for any choice of δ examined, which
shows the charts are ARL unbiased.
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TABLE 1. The zero-state ARL values of the OMHWMAI chart, the chart’s parameters w and h are chosen to fix ARL0 to 200 or 370.

TABLE 2. The zero-state ARL values of the OMHWMAII chart, the chart’s parameters w and h are chosen to fix ARL0 to 200 or 370.

• In all cases, as δ increases, the ARL1 values approach
one, which shows that the charts detect large shifts
promptly.

• For a fixed value of δ, the charts are more efficient when
a smaller value of w is used, which shows that a small
value of w helps to detect a shift in the process mean
faster.

• ARL comparison between the one-sided charts,
i.e., the OMHWMA and OMHWMAII charts, show that
the OMHWMAII chart (cf. Tables 2) outperforms the
OMHWMAI chart (cf. Tables 1). The advantage of the

OMHWMAII chart over the OMHWMAI chart is true
for all values ofw considered, especially for small values
of δ.

• Also, ARL comparison between the two one-sided
charts, i.e., the TMHWMA and TMHWMAII charts,
show that the TMHWMAII chart (cf. Tables 4) outper-
forms the TMHWMAI chart (cf. Tables 3) for all values
of w, especially for small values of δ.

• SDRL comparison of the one-sided charts, i.e., the
OMHWMA and OMHWMAII charts, show the OMH-
WMAII chart’s run-length values (cf. Tables 7) are less
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TABLE 3. The zero-state ARL values of the TMHWMAI chart, the chart’s parameters w and h are chosen to fix ARL0 to 200 or 370.

TABLE 4. The zero-state ARL values of the TMHWMAII chart, the chart’s parameters w and h are chosen to fix ARL0 to 200 or 370.

variable than the run-length values of the OMHWMAI
chart (cf. Tables 5) when δ ≥ 0.10, for all values of w.
In contrast, the OMHWMAI chart gives less variable
run-length results than the OMHWMAII chart when
δ ≤ 0.05.

• Similarly, SDRL comparison of the two one-sided
charts, i.e., the TMHWMA and TMHWMAII charts,
show the TMHWMAII chart’s run length (cf. Tables 7)
are less variable than the run length of the TMHWMAI
chart (cf. Tables 5) when δ ≥ 0.10, for all values of
w (especially for small values of p). In contrast, the

OMHWMAI chart gives less variable run-length results
than the OMHWMAII chart when δ < 0.10.

• For all values of w considered, the charts’ SDRL values
approach zero as the value of δ increases, demonstrating
the charts’ ability to detect a large shift promptly.

B. STEADY-STATE ARL PERFORMANCE OF THE CHARTS
To study the steady-state ARL performance of the charts,
we adopted the scheme employed by [12], [29], by assum-
ing that for a fixed integer s, the process is under con-
trol for the first s − 1 samples and out-of-control after the
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TABLE 5. The zero-state SDRL values of the OMHWMAI chart, the chart’s parameters w and h are chosen to fix ARL0 to 200 or 370.

TABLE 6. The zero-state SDRL values of the OMHWMAII chart, the chart’s parameters w and h are chosen to fix ARL0 to 200 or 370.

(s+ 1)th sample. Hence, the steady-state out-of-control ARL
is obtained by subtracting s− 1 from a simulated run length.
Without loss of generality, we used s = {10, 20, 50 or 100}.
Table 9 presents the steady-state ARL values of the charts
when p = 3 or 5, w = 0.1 and ARL0 = 200. Similar to
the zero-state ARL comparison of the charts (see Tables 1
to 4 for the zero-state ARL values of the charts), steady-state

ARL comparisons of the one-sided charts show that the
OMHWMAII chart outperforms the OMHWHI chart. Also,
the steady-state ARL comparisons of the two-sided charts
show that the TMHWMAII chart outperforms the TMWH-
MAI chart. The results in Table 9 show that the steady-state
performance of the charts depends on the choice of s and
the size of shift δ. As shown on the table, the use of a
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TABLE 7. The zero-state SDRL values of the TMHWMAI chart, the chart’s parameters w and h are chosen to fix ARL0 to 200 or 370.

TABLE 8. The zero-state SDRL values of the TMHWMAII chart, the chart’s parameters w and h are chosen to fix ARL0 to 200 or 370.

small value of s leads to better performance when interest
lies in detecting a large shift in the process mean—however,
a large value of s leads to faster detection of a large shift in
the mean. Also, the charts’ zero-state and steady-state ARL
values show better detection ability under zero-state than the
steady-state.

C. COMPARISON WITH EXISTING CHARTS
We provide the zero-state ARL comparisons of the proposed
one-sided and two one-sided charts with the classical as well
as the one-sided and two one-sided versions of the classical
MEWMA chart [6], and MCUSUM chart [3]. The one-sided
and two one-sided versions of the MCUSUM charts are
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TABLE 9. The steady-state ARL values of the charts when p = 3 or 5, the charts’ parameters w and h are chosen to fix ARL0 to 200.

TABLE 10. The zero-state ARL values of the proposed and the existing charts when p = 2, the charts’ parameters w and h are chosen to fix ARL0 to 200.

proposed by [25]. Also, [26] proposed the one-sided and
two one-sided versions of the classical MEWMA chart.
In what follows, the one-sided versions of the MCUSUM
and MEWMA charts are referred to as the OMCUSUM
and OMEWMA charts, respectively. Also, the two one-sided
versions of the MCUSUM and MEWMA charts are referred
to as the TMCUSUM and TMEWMA charts, respectively.
We refer the interested reader to [25], [26] for detailed

information on the one-sided and two one-sided MEWMA
and MCUSUM charts.

The zero-state ARL results of the proposed charts, as well
as the existing charts, are provided in Tables 10 to 13, for
p ∈ {2, 4, 5, or 10}. The chart’s parameters are chosen to
fix ARL0 of the charts to 200. As shown in the tables, com-
parisons among the one-sided charts show that the proposed
OMHWMAII chart outperforms the competing charts for all
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TABLE 11. The zero-state ARL values of the proposed and the existing charts when p = 4, the charts’ parameters w and h are chosen to fix ARL0 to 200.

TABLE 12. The zero-state ARL values of the proposed and the existing charts when p = 5, the charts’ parameters w and h are chosen to fix ARL0 to 200.

values of p considered. The advantage of the OMHWMAII
chart over the competing charts is uniform across all values
of δ, except when δ ≥ 3, where the OMHWMAI chart outper-
form the OMHWMAII chart. Also, comparisons among the
two one-sided charts show that the proposed TMHWMAII
chart outperforms the competing charts for all values of p
considered. The advantage of the TMHWMAII chart over the
competing charts is also uniform across all values of δ, except
when δ ≥ 3, where the TMHWMAI chart also outperform the
TMHWMAII chart.

IV. ROBUSTNESS TO NON-NORMALITY OF THE
PROPOSED CHARTS
The proposed charts described in Section II rely on the
assumption that the process variable is multivariate normally
distributed. In industrial application, the normality assump-
tions do not always hold [30], [31]. Hence, we study the
robustness of the charts to non-normality in this section.
A control chart is robust to non-normal distributions if its
IC run-length distribution remains stable when the normality
distributional assumption is violated [32]. That is, when the
ARL0 value of the chart under a non-normal distribution is
similar (or close) to the ARL0 of the chart from a normal
distribution.

Following [31]–[34], we study the sensitivity of the
charts to non-normality by considering a skewed distribu-
tion (the multivariate gamma distribution) and a heavy-tailed

distribution (the multivariate Student’s t-distribution). The
probability density function (pdf) of the multivariate gamma
distribution is denoted by G(α × 1p, β × 1p), where α > 0
and β > 0 are the shape and scale parameters, respectively.
Also, the pdf of a multivariate t-distribution is denoted by
t2(v), where v > 0 is the size of the degrees of freedom.
We refer the interested reader to [31] for details on these
multivariate distributions. We investigate the robustness of
the charts under a large range of the shape parameter, i.e., α ∈
{1, 2, 3, 4, 5, 10, 50, 100, 1000}; without loss of generality,
we considered scale parameter, β = 1. For the t-distribution,
we consider a range of degrees of freedom (v); namely, v ∈
{4, 6, 8, 10, 15, 20, 30, 40, 50, 100, 1000}.
The mean vector, µX+i and covariance matrix, 6X+i

, of the

statistic X+i = +max(0,Xi) under multivariate gamma dis-
tribution with shape (α) and scale parameter (β = 1) can be
are given as:

µX+i
=

1
0(α)

exp−α αα × 1p (11)

and

6X+i
=

(
exp−α

(1+ α)0(α)
K1−

(
1

0(α)
exp−α αα

)2
)
Ip×p (12)

respectively, where K1 =
(
expα 0(2+ α, α)− α(1+α)

)
,

0(a, s) =
∫
∞

x ta−1e−tdt, s > 0, a ∈ R is the upper
incomplete Gamma function [35], [36]. Also, µX+i and 6X+i
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TABLE 13. The zero-state ARL values of the proposed and the existing charts when p = 10, the charts’ parameters w and h are chosen to fix ARL0 to 200.

under multivariate t-distribution with v degrees of freedom
are:

µX+i
=

√
v

(v− 1)Beta(
v
2
,
1
2
)
× 1p (13)

and

6X+i
=

 v
2(v− 2)

−
v

(v− 1)2Beta(
v
2
,
1
2
)2

 Ip×p (14)

where Beta(a, s) =
0(a)0(s)
0(a+ s)

is the beta function.

Similarly, the mean vector, µX−i and covariance matrix,

6X−i
of the statistic X−i = −min(0,Xi) under multivariate

gamma distribution with shape (α) and scale parameter (β =
1) are given as:

µX+i
= −

1
0(α)

exp−α αα × 1p (15)

and

6X+i
=

(
exp−α

(1+ α)0(α)
K2−

(
1

0(α)
exp−α αα

)2
)
Ip×p, (16)

respectively, where K2=
(
α(1+α)+expα 0(2+α)−expα 0(2+α,α)

)
.

Also, mean vector, µX−i and covariance matrix, 6X−i
under multivariate t-distribution with v degrees of freedom
are:

µX−i
= −

√
v

(v− 1)Beta(
v
2
,
1
2
)
× 1p (17)

and

6X−i
=

 v
2(v− 2)

−
v

(v− 1)2Beta(
v
2
,
1
2
)2

 Ip×p (18)

respectively. Equation (11) through equation (18) are solved
in Mathematica version 12.2 package [37].

We investigate the ARL0 performance of the pro-
posed charts from the multivariate gamma and multivariate

t-distributions when the charts’ limits h under multivariate
normal distributions (given in the last column of Tables 1 to 4)
are used to construct the charts’ limits. The ARL0 values of
the charts under multivariate t and gamma distributions when
ARL0 are fixed to 200, w ∈ {0.03, 0.05, 0.10, 0.25, 0.5,
0.75}, and p = 5 are given in Table 14 and Table 15, respec-
tively. The ARL0 values of the charts under the multivariate
t and gamma distributions are summarized below:

• The charts’ ARL0 values depend on the choice of
the process distributions. The ARL0 values are greatly
affected (i.e., deviate from their nominal values) when
a skewed distribution characterizes the process (like
the multivariate gamma distribution) and less affected
under a heavy-tailed distribution (like the multivariate
t-distribution).

• For a fixed value of the degrees of freedom, v,
(in Table 14), or shape parameter, α, (in Table 15),
the ARL0 performance of the charts depends on the
smoothing parameter choice. The results show that the
charts are more robust to non-normality when a small
value of w is used. This implies that small values of
w (i.e., w = 0.03 and 0.05) are fairly useful when the
underlying distribution is unknown or not normal.

• Comparison between the robustness of the OMHWMAI
and OMHWMAII charts shows that ARL0 values of the
OMHWMAI chart are more affected and less robust to
non-normality when compared to theARL0 values of the
OMHWMAII chart, especially for small values of w and
v (or α).

• Comparison between the robustness of the TMHWMAI
and TMHWMAII charts shows that ARL0 values of the
TMHWMAI chart is less robust to non-normality when
compared to the OMHWMAII chart under multivariate
t distribution, especially for small values of w and v (or
α). However, when the TMHWMAI and TMHWMAII
charts are constructed under multivariate gamma distri-
bution, our results show that the TMHWMAI chart is
more robust than the TMHWMAII chart.

• The ARL0 values of both charts increase as the shape
parameter α (for the case of the gamma distribution)
or size of the degrees of freedom v (for the case of the
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TABLE 14. The ARL values of the charts under multivariate t-distributions when p = 5.

TABLE 15. The ARL values of the charts under multivariate gamma distributions when p = 5.

t-distribution) increases. Hence, the ARL0 values of the
charts tend to converge to the desired nominal ARL0

value of the chart based on the normal distribution, when
a large value of v or α is used.
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V. ESTIMATION OF PARAMETERS
The proposed charts described in Section II were formulated
assuming that the process parameters µ and 6 are both
known. It may be possible that the underlying process param-
eters are not known and need to be estimated in practice.
In such cases, the charts’ implementations are in two phases
(Phase I and Phase II). In Phase I, a large in-control historical
sample is analysed to establish the in-control state, estimate
the process parameters and the chart’s limits.

The unknown process parameterµmay be estimated using
the unbiased estimator from m Phase I samples given as
Ȳ =

∑m
i=1 Y
m . Some other approaches for estimating µ

have been proposed in practice. For example, [38] showed
that the usual estimate Ȳ under sum of squares of the
errors is only admissible for p ≤ 2, but inadmissible if
p ≥ 3. He showed that there exist an estimator β(Y1, . . . ,Yp),
such that L(β(Y1, . . . ,Yp),µ0) ≤ L(Ȳ ,µ0). Strict inequal-
ity holds for some µ0 when p ≥ 3, where L(β(.),µ0)
is the sum of squares of the errors of β(.) from µ0 given
as E((β(.) − µ0)′60

−1(β(.) − µ0)). Hence, he proposed
a shrinkage estimator, β(Y1, . . . ,Yp), of the mean vector,
that has smaller sum of squares of the errors than the usual
estimator. Specifically, [38] showed that

βJS =

(
1−

p− 2

mȲ
′
Ȳ

)
Ȳ

dominates Ȳ for any p ≥ 3 under the assumption that 60 =

Ip, where I is the p×p identitymatrix. [39] gave an alternative
form of the James-stein estimator for the case 60 = σ 2Ip,
where σ 2 is a common variance of the p random variables.
The proposed estimate of µ by [39] is given by

βJS1 =

(
1−

p− 2

(mȲ
′
Ȳ )/σ 2

)
Ȳ .

More generally, when 60 is non-diagonal, the James-stein
estimator has a form [40], [41]

βJS2 =

(
1−

p− 2

mȲ
′
60
−1Ȳ

)
Ȳ .

Since the work of [38], several James-stein estimators
have been proposed in Literature, for example, an improved
estimator given as:

βJSI =

(
1−

p− 2

mȲ
′
60
−1Ȳ

)+
Ȳ ,

where

y+ =

{
y if y > 0
0 otherwise

was used by [42]. Also, to overcome the singularity prob-
lem, [43] considered a special situation where 60 is diag-
onal, and constructed a hierarchical Bayesian model. They
proposed estimator of the following form

βT =

(
1−

(p− 2)(p− 1)

m(m− 3)Ȳ
′
K−1m Ȳ

)
Ȳ ,

where Km = Diag(60).

For the case of estimating the covariance matrix, 6,
of individual-observations, one typical approach is to esti-
mate it using the unbiased estimate, given as S =

1
m− 1

∑m
i=1(yi− ȳ)(yi− ȳ)

′ [2]. Also, the use of mean square

successive difference (MSSD) approach for estimating the

variance-covariance matrix, given by 6̂MSSD =
V ′V

2(m− 1)
,

where vi = yi+1 − yi , i = 1, 2, . . . ,m − 1, and V is
a column vector, given by V = (vT1 , v

T
2 , · · · , v

T
(m−1))

′ was
proposed by [44]. [45] proposed estimator of the form 6̂SW =∑m

j=1 Fj
m− 1

, where Fi = Fi−1 + (yi − ȳ)(yi − ȳ)′ where,F0 =

0, i = 1, 2, . . . ,m. Also, use of shrinkage estimates of
covariance matrix have been examined in SPC literature. For
example, [12], [13] investigated the use of weighted average
of the empirical unbiased estimate S and a target matrix
T , given as 6̂S = λT + (1 − λ)S, where λ ∈ [0, 1]
represents the shrinkage parameter, λ = 1 gives 6̂S = T ,
and λ = 0 implies 6̂S = S. The optimal value of λ was
obtained by minimizing R(λ) = ||6̂S − 60||

2
F , where, ||.||

2
F

is the squared Frobenius norm. Some other approaches for
estimating the covariance matrix include, the use of adaptive
thresholding [46], penalized likelihood estimation [47]–[49],
or ridge penalized likelihood ratio [50], [51].

Once µ and 6 are estimated, the proposed charts can be
constructed for monitoring shifts in the process mean vector
in Phase II, where the process monitoring is initiated. The
estimated parameters, along with the specified smoothing
parameter w and the charts’ limits (h), are used. At each
time i in Phase II where the process might have shifted
from µ0 to µ1, draw a random sample from the process.
Compute the charts’ statistics and compare them against their
corresponding limits. For any of the proposed charts, if the
chart’s statistic is plotted above its limit, the process at time
i is reported to be OOC; otherwise, the process is considered
to be IC.

VI. ILLUSTRATIVE EXAMPLE
We illustrate the performance of the proposed charts using
the Kulpa data set reported by Santoz-Fernandez [52]. The
data set consists of p = 2 and m = 113 observations. Since
the true mean vector and covariance parameters of the data
are unknown. Here, we estimate them using Ȳ (the unbiased
sample mean vector) and S̄ (the unbiased sample covariance
matrix), respectively. The unbiased estimates Ȳ and S̄ are
given as:

Ȳ =
[
0.04452212 2.40780531

]
and

S =
[
0.36733143 0.02028655
0.02028655 0.53718052,

]
respectively.

To investigate the detection ability of the charts in Phase
II, a shift of size δ = 0.1 unit is added to the m = 113
observations. The results of the classical charts: MCUSUM,
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FIGURE 1. Results of the classical charts.

FIGURE 2. Results of the two one-sided charts.
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FIGURE 3. Results of the one-sided charts.

MEWMA and MHWMA charts are given in Figure 1. The
results of the two-sided charts, including the TMCUSUM,
TMEWMA, TMHWMAI and TMHWMAII charts, are pro-
vided in Figure 2. Also, the results of the one-sided charts,
including the OMCUSUM, OMEWMA, OMHWMAI and
OMHWMAII charts, are provided in Figure 3. The values of
h given in Table 10 are used to fixed the in-control ARL of
the charts to 200.

As shown in Figure 1, the MCUSUM, MEWMA and
MHWMA charts detect six, five and fifteen out-of-control
samples. In the case of monitoring both upward and down-
ward shifts, the TMCUSUM, TMEWMA, TMHWMAI and
TMHWMAII charts (in Figure 2) trigger one, two, zero,
and fifteen out-of-control samples, respectively. Lastly, the
OMCUSUM, OMEWMA, OMHWMAI and OMHWMAII
charts used for monitoring upward shifts (in Figure 3) trig-
ger five, six, seven, and thirty-three out-of-control samples,
respectively. The results in Figures 1 to 3 demonstrate the
advantage of the OMHWMAII chart (in Figure 3) over the

classical MHWMA chart. The results show that using the
directional sensitive OMHWMAII chart detects the shifts
faster than the classical MHWMA directional invariant chart.
The results also show the advantage of one-sided charts over
the two one-sided charts. Finally, the results show the advan-
tage of the OMHWMAII chart (or the TMHWMAII chart)
over the competing charts when interest lies in monitoring
upward shift (or both upward and downward shift, respec-
tively) in the process mean vector.

VII. CONCLUSION
We proposed new one-sided and two one-sided control charts
for monitoring shifts in the process mean vector. The pro-
posed charts are obtained in the forms of the multivari-
ate homogeneously weighted moving average approach that
yield an efficient way to detect small shifts in the process
mean. We provided simulation results under different shift
sizes in the process mean vector and evaluated the perfor-
mance of the proposed charts in terms of their run length
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properties. Our simulation results showed that the proposed
OMHWMAII chart for the case monitoring upward shifts (or
proposed two one-sided TMHWMAII chart) detects smaller
shifts in the mean vector more rapidly than the larger shift.
In contrast, the proposed OMHWMAI chart, for the case
of monitoring upward shifts (or proposed two one-sided
TMHWMAI chart), detects larger shifts in the mean vector
more rapidly than smaller shifts.

The average run length (ARL) comparisons of the pro-
posed charts with the classical, one-sided and two one-sided
charts versions of the MEWMA and MCUSUM charts
showed that the proposed OMHWMAII chart (or TMHW-
MAII chart) is more efficient than the existing charts used for
the same purpose, especially when interest lies in detecting
a small shift in the process mean. In contrast, the proposed
OMHWMAI chart (or TMHWMAI chart) outperformed the
existing charts when interest lies in detecting a large shift in
the process mean vector.

We investigated the charts’ sensitivity to non-normal dis-
tributions and showed how they could be designed to be
robust to non-normality. Simulation results showed that the
proposed charts are particularly robust to non-normalitywhen
a smaller value of w is used. In particular, the charts can be
designed to have IC run-length performance that is very close
to that of the chart based on normal distribution when a small
smoothing parameter is used. We gave a step-by-step imple-
mentation of the proposed charts when their parameters are
unknown and need to be estimated from historical in-control
samples. We consider that more research work on the effects
of parameters estimation on the performance of the charts (in
Phase II) is required in the future. Also, optimal parameters
of the charts warrant study.
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