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ABSTRACT Multivariate memory-type control charts that use information from both the current and
previous process observations have been proposed. They are designed to detect shifts in both upper and
downward directions with equal precision when monitoring the process mean vector. The absence of
directional sensitivity can limit the charts’ application, particularly when users are interested in detecting
variations in one direction than the other. This article proposes one-sided and two one-sided multivariate
control charts for monitoring shifts in the process mean vector. The proposed charts are presented in the
form of the multivariate homogeneously weighted moving average approach that yields efficient detection of
shifts in the mean vector. We provide simulation studies under different shift sizes in the process mean vector
and evaluate the performance of the proposed charts in terms of their run length properties. We compare
the average run length (ARL) results of the charts with the conventional charts as well as the one-sided and
two one-sided multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative
sum (MCUSUM) charts. Our simulation results show that the proposed charts outperform the existing
charts used for the same purpose, particularly when interest lies in detecting small shifts in the mean
vector. We show how the charts can be designed to be robust to non-normal distributions and give a step-
by-step implementation efficient application of the charts when their parameters are unknown and need to
be estimated. Finally, an illustrative example is provided to show the application of the proposed charts.

INDEX TERMS Average run length, multivariate homogeneously weighted moving average, one-sided
control charts, two one-sided control charts, robustness, estimation.

I. INTRODUCTION

Multivariate process control (MPC) is used to monitor pro-
cesses comprising several correlated characteristics or fea-
tures. Several MPC tools, which are multivariate extensions
of univariate charts for monitoring single process charac-
teristic, have been proposed in practice. They are useful in
ensuring that any changes in the process are detected early
to avoid several anomalies on the final products. The first
MPC tool can be traced back to work by [1], who developed
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the x? chart. It is a multivariate analogue of the univariate
Shewhart chart [2]. The chart gives a signal of mean shift
whenever the chart’s statistic is greater than Xé, @y where
Xé, ) is the ™ upper percentage point of the chi-square
distribution with the p degrees of freedom.

The x? chart is useful for detecting large shifts in the mean
vector but less sensitive in detecting small to moderate shifts
in the process characteristics. To enhance the sensitivity of
the X2 chart to detect small shifts in the process mean vector,
different multivariate memory-type tools that use information
from both the current and previous process observations have
also been proposed in the literature. For example, [3] and [4]
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proposed multivariate cumulative sum (CUSUM) control
charts which are the multivariate extensions of the univariate
CUSUM chart proposed by [5]. [6] proposed the multivariate
exponentially weighted moving average (EWMA) control
chart, which is a multivariate extension of the univariate
EWMA chart by [7]. Also, [8] proposed the multivariate
homogeneously weighted moving average (MHWMA) con-
trol chart, which is a multivariate extension of the univariate
HWMA chart by [9]. Average run length (ARL) comparison
of the MHWMA chart with the competing charts, including
the chi-square chart, the MEWMA chart and the MCUSUM
chart, showed that the MHWMA chart outperformed the
other charts when interest lies in detecting small shifts in the
process mean vector.

Different enhancement of the MEWMA, MCUSUM
and MHWMA charts have been proposed in practice.
For example, [4] studied the zero-state and steady-state
average length (ARL) performance of the MEWMA
chart. [10] proposed optimal statistical design for multivari-
ate CUSUM (MCUSUM) chart. [11] integrated conforming
run-length chart with MCUSUM to propose a synthetic
MCUSUM chart. [12], [13] improved the sensitivity of
MCUSUM and MEWMA charts using shrinkage estimates of
the covariance matrix. [14] compared the performance of the
MEWMA, MCUSUM and MHWMA charts when the charts’
parameters are estimated. [15]-[17] proposed adaptive ver-
sions of MCUSUM and MEWMA charts for the process
mean based on fixed and variable sampling intervals. We refer
interested to [18]-[22] for some recent enhancements of the
MEWMA, MCUSUM and MHWMA charts.

The multivariate charts and their enhancements mentioned
above are directional invariant charts. They are proposed to
detect shifts in all directions (i.e., upper and downward) with
equal precision when monitoring the process mean vector.
The absence of directional sensitivity can limit the charts’
application, particularly when users are interested in detect-
ing variations or changes in some directions more than others.
Such directional charts could allow practitioners to detect an
increase or a decrease in quality characteristics. For example,
the use of the directional invariant chart or its modifications
may fail or ineffective to detect or give prompt warnings of
bioterrorist attacks or other arising health conditions, such
as high-level toxicity of drugs, increase or decrease in natu-
rally occurring disease outbreak or an increased health risk
to the public [23]-[25]. Specifically, directional invariant
charts may take a much longer time to detect signals when
the signals are far below the target than if they were close
to the target when the shift occurred. On the other hand,
using a one-sided chart can improve the speed in detect-
ing an upward or a downward change in the process mean
vector.

To this end, [24] proposed a one-sided MCUSUM chart.
The one-sidled MCUSUM due to [24] outperforms the
MCUSUM chart of [3] when detecting either upward or
downward shifts in the process mean vector. [23] proposed
a one-sided MEWMA chart for monitoring process mean
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vector. Recently, a directionally more sensitive one-sided
MEWMA chart was proposed by [26]. The one-sided
MEWMA chart due to [26] used a transformation that trun-
cates observations that is either above and below the process
mean vector. Also, [25] proposed a one-sided MCUSUM
chart for monitoring the mean vector of a multivariate nor-
mal process. However, unlike the one-sided MEWMA and
MCUSUM charts, one-sided MHWMA charts have received
no attention in SPC literature to the best of our knowledge.

Hence, two different one-sided MHWMA-based charts
that assume a known upward or downward shift are proposed
in this manuscript. The charts accumulate positive (or neg-
ative) deviations from the target. The first one-sided upper
chart (hereafter referred to as the OMHWMALI chart) accu-
mulates observations above the target and truncates observa-
tions below the target to the target value. The second upper
one-sided chart (hereafter referred to as the OMHWMALII
chart), on the other hand, accumulates observations above the
observed MHWMA statistic value and truncates observations
below the value to the target value. We also provide two
one-sided versions of the one-sided charts that can be used
to detect irregular changes (i.e., both upward and downward
shifts) in the process mean vector.

A brief introduction of the classical MHWMA chart and
the designs of the proposed one-sided and two one-sided
charts are discussed in Section II. The performance evaluation
of the charts and their comparison with existing one-sided and
two one-sided charts in literature are provided in Section III.
The sensitivity of the charts to non-normality is studied in
Section IV. We provide a step-by-step implementation of
the charts when their parameters are unknown in Section V.
An illustrative example of the proposed charts for moni-
toring aquatic toxicity level is given in Section VI. Lastly,
conclusions and directions for future work are presented in
Section VII.

Il. THE PROPOSED ONE-SIDED AND TWO ONE-SIDED
MHWMA CHARTS

A. BRIEF SUMMARY OF THE CLASSICAL MHWMA CHART
Suppose p x n independently and identically distributed multi-
variate normal random variables Y7, Yo, .. ., with mean vec-
tor u and covariance matrix X are available for monitoring.
We assume the in-control values of the parameters g and X
for the normal operating process are j( and X, respectively.
Also, we assume the values of p and X are known apriori
or there are well-defined Phase I in-control sample from
which they can be estimated. We standardized the random
variable Y; to obtain X; given as X; = Zal/z(Y,- — Ko)s
such that 1in general X is distriblllted aslN (my, ), where

M, = Z(;i(u—uo) and X, = 257 2287 . When the process
is in control, the transformed variable X is distributed as a
standard normal distribution(i.e., N (0, I,)), where I, isap xp
identity matrix.

The monitoring statistic of the MHWMA chart for moni-
toring the mean vector of an individual-observation is defined
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as
H; = wx; + (1 —wxi_y, (1)

where i = 1,2, ...,. X;_1 represents the sample average of
the previous information up to and including the i — 1 obser-
vation, and X9 = 0. The smoothing parameter w is selected
such that 0 < w < 1. The mean vector and covariance of the
statistic H; are given as puy; = 0 and

w?, ifi=1
T =

1 2
WL, (- ) @
i

ifi > 1,
respectively [8]. The MHWMA chart gives an out-of-control
signal whenever T? = H;Xg;"'H; > h. The parameters
h and w are chosen to achieve a desired in-control perfor-
mance measure of the chart, such as the desired in-control
ARL performance, and X; is the covariance matrix of H at
time point i. The MHWMA chart is a directionally invariant
chart; the ARL performance of the chart depends on pg
and Xg, only throuigh the non-centrality parameter given as
§ = (ul Xy m)
out-of-control process.

, where p1 is the mean vector for the

B. THE PROPOSED ONE-SIDED AND TWO ONE-SIDED
MHWMA CHARTS

1) ONE-SIDED MHWMA CHARTS

Two different one-sided upper MHWMA-based charts,
referred to as OMHWMAI and OMWMAII charts, that
assume upward shifts in the mean vector are provided in this
section. The OMHWMALI chart is obtained by transform-
ing the vector of observation X; into X f, given as X ,+ =
4+ max(0, X;), and then define MHWMA structure based on
X +, where + max {.} returns the (parallel) maxima of the
input vectors. The vector X l+ accumulates observations that
are above the zero vector and truncated the observations
that are less than the X; to zero vector. When the process
is in control, the mean vector and covariance matrix of the
transformed variable X f are given by

1
hxr = g T @
and
1 1 1/2
Zx; = (5 - 5) Ipe @

respectively, where 1, is a column vector. Let I l+ be the
MHWMA sequence based on X f, given by

=+
IF = wX[ — py) + (1 -wX o)
where X 3— = 0. The OMHWMAI chart involves plotting

2 _ gty —lg+
T: =1 ):Ii+li , Where

W Ey+ ifi=1
3= ’ Ty 6)
G PV —W)Z% ifi>1
1 l_
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The chart detects out-of-control upper signal whenever

T2 =121} > h

The OMHWMAII chart on the other hand uses the transfor-
mation Z;r = + max(0, H;), where the vector H; is given in
equation (1). The statistic Z;’ accumulates observations that
are above the 0 and truncated the observations that are less
than the H; to the zero vector. When the process is in control,
we approximate the mean vector and covariance matrix of the
transformed variable Zj' by

w><1 ifi=1
hy = ™
\/(w +(1— —)x1 ifi>1
and
e ifi=1
T, = Tyt ®)
% W2t +(1—w)2% ifi>1
1 l_

respectively. The OMHWMAII chart detects out of-control
upper signal whenever T} = (Z; — u,Z+)/ Z+(Z — nz+)
> h. The smoothing parameters w of the OMHWMAI and
OMHWMAII charts are selected such that 0 < w < 1. The
values of 1 and w of the charts are chosen to achieve a desired
in-control ARL.

2) THE PROPOSED TWO ONE-SIDED MHWMA CHARTS

In order to devise MHWMA charts that can detect both
increases and decreases in the process mean vector, we inte-
grate two one-sidled MHWMA charts for detecting upper
and lower mean shifts into a single chart. We consider two
multivariate normal vectors that can take either positive or
negative values. The MHWMA charting procedure is then
applied to these vectors to obtain the two one-sided MHWMA
charts for detecting increase and decrease shifts in the process
mean vector. Here, we provide two one-sided MHWMA
charts, referred to as TMHWMAI and TMWMAII charts, for
monitoring increasing and decreasing changes in the process
mean vector. The TMHWMAI and TMWMAII charts are
two one-sided versions of the OMHWMAI and OMWMAII
charts, respectively.

Similar to the OMHWMALI chart, the TMHWMALI chart
is obtained by first transforming the observation X; into
X?‘ = +max(0, X;) and X; = —min(0, X;), respectively,
and then define MHWMA structure based on X l+ and X,
where + max {.} and — min {.} return the (parallel) maxima
and minima of the input vectors, respectively. The vector X f
accumulates observations that are above the zero and trun-
cated the observations that are less than the X; to zero vector.
In contrast, X;” accumulates observations that are below the
zero and truncated the observations that are greater than X;
to the zero vector. When the process is in control, the mean
vector and covariance matrix of the transformed variable X *
are py+ (given in equation 3) and ¥ X+ (given in equation 4)
respectlvely Also, the mean vector and covariance matrix of
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the transformed variable X ;™ are py- = —py+ and Ty- =
X y+, respectively. Let I l+ and I; be the two MHWMA
sequences based on X l+ and X, respectively, given by

If = wiX{ = py) + (1 =X, ©

1

I7 = wX; —py)+ (1 -wX; (10)

where X, = X, = 0. The TMHWMAI chart detects out-
of-control upper or lower signals whenever I i+/2;+11 l+ >
horl ;’Z;}I ;> h, respectively, where X I is given in
equation (65.

The TMHWMAII chart (the two one sided version of the
OMWMALII chart) is obtained by transforming H; (in equa-
tion (1)) into Zj = +max(0, H;) and Z; = —min(0, Hj;).
The statistic Z;r accumulates observations that are above the
0 and truncated the observations that are less than H; to
the zero vector. On the other hand, the statistic Z; accu-
mulates observations that are below the 0, and truncated the
observations that are greater than H; to zero vector. When
the process is in control, the mean vector and covariance
matrix of the transformed variable Zl.+ are fy+ (given in
equation 7) and X ,+ (given in equation 8), respecltively. Also,
the mean vector and covariance matrix of the transformed
variable Z;” are u,- = —p,+ and X,- = X+, respectively.
The TMHWMAII chart detects out-of-control upper or lower
signals whenever (Zl.+ — ;LZ[+)/E; (Z:r - ILZiJr) > hor(Z; —
;LZ;)’ ):;(Zf — MZF) > h, respectively. The smoothing
parametérs of the TMHWMAI and TMHWMAII charts w are

selected such that 0 < w < 1. Also, the values of 4 and w for
the charts are chosen to achieve a desired in-control ARL.

Ill. PERFORMANCE EVALUATION AND COMPARISON

In this section, we study the zero-state and steady-state
run-length performance of the charts in monitoring shift in the
process mean. The zero-state performance is obtained under
the assumption that the process shift occurred during the ini-
tial stage, while the steady-state performance is study under
the assumption that the process shift occurred after the pro-
cess had been in control for some time. Several approaches,
including integral equations, Markov chain methods and
Monte Carlo simulation have been examined in statistical
process control literature to obtain the run-length properties
of control charts. Here, we employ the most commonly used
approach based on Monte Carlo Simulation (developed in
R software [27]) in our work.

A detailed evaluation of the charts in detecting shifts
in the process mean is provided in terms of their aver-
age run length (ARL) and standard deviation of the run
length (SDRL) performance. ARL is the average num-
ber of plotted statistics on the chart before a shift is
detected [12], [13]. The in-control (IC) ARL, denoted by
ARLy, is the ARL value for an IC process. In contrast, the
out-of-control (OOC) ARL, denoted by ARL, is the ARL
value for an OOC process. SDRL is used to measure the
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variation of the run-length distribution for a given value of
shift. Similarly, SDRL( and SDRL are the SDRL for the IC
and OOC process, respectively. When comparing two charts,
the ARL is fixed to a desired value. The chart with a smaller
value of ARL; is more effective in detecting the shift in the
process parameters, as compared to the other charts. We aim
to recommend the choice of the one-sided or two one-sided
control chart that gives the best performance. The effects of
8 and the smoothing parameter w on the proposed charts are
also studied.

A. ZERO-STATE RUN-LENGTH PERFORMANCE
EVALUATION OF THE CHARTS
We examined the zero-state run-length performance of the
charts with w € {0.05, 0.10}, and find the corresponding
value of & for each value of w that fixes ARL to the desired
level. We used the binary search algorithm similar to the one
employed in [12], [28] to obtain the values of % that fix ARLg
values of the charts to 200 or 370. The values of 4 for different
combinations of w (the smoothing parameter) that fix ARLg
of the charts are given in the last column of Tables 1 to 4.
It is seen from the tables that for a fixed value of w (or p),
the value of & increases with an increase in the value of p (or
w, respectively).

The ARL and SDRL values of the charts are investigated
under different shift, §, sizes, and obtained from extensive
simulation studies as follows:

1. Ateach time i, we generate individual-observation mul-
tivariate normally distributed sample with shift of size §
in the IC mean vector g, and covariance matrix Xy =
I, p, where § = O1implies there is no shiftin the process.

2. We compute the plotting statistic of the charts and com-
pare it against the chart’s limit.

3. If the chart statistic falls below the limit (in step
2), the process is declared to be IC, then repeats
steps (1-2) for the monitoring of the next test sample
i + 1. Alternatively, if the test statistic falls outside the
limit, the process is said to have shifted to an OOC state.
Consequently, the monitoring process terminates, and
we record the iteration number that gives the first OOC
signal as a single run length.

We repeat the iterations 100, 000 times, and compute the
ARL and SDRL as the mean and standard deviation of the
100,000 run-lengths. The zero-state ARL values of the OMH-
WMAI OMHWMAII, TMHWMAI and TMHWMAII charts
across simulations are reported in Tables 1 to 4, respectively.
Also, the zero-state SDRL values of the charts are provided
in Tables 5 to 8, respectively.

The zero-state ARL values (in Tables 1 to 4) and SDRL
values (in Tables 5 to 7) can be summarized as follows:

e« The ARL; values of charts are smaller than the corre-
sponding ARLy for any choice of § examined, which
shows the charts are ARL unbiased.
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TABLE 1. The zero-state ARL values of the OMHWMAI chart, the chart’s parameters w and h are chosen to fix ARL, to 200 or 370.

ARLg w P o h
0 0.05 0.1 0.2 0.5 0.75 1 1.5 2 3 5
200 0.05 2 201.02 15094 116.64 69.41 20.37  10.11 6.30 328 212 128 1.00 7.618
3 199.70  156.30  120.38 73.37 22.87 1141 7.27 347 234 135 1.00 10.027
4 198.80  160.02  128.57 79.76 25.10  12.55 7.72 383 245 140 1.01 12.226
5 200.53 16521  130.33 83.43 2694 14.09 824 401 259 147 101 14.164
10 20097 174.13  142.59 93.37 3225 16.51 9.71 467 291 1.60 1.02 22471
0.10 2 200.57 15592 119.64 79.02 27.89  14.70 8.77 438 270 147 1.01 11.965
3 199.02 15829  129.10 86.31 3122 1679 1006 486 3.02 1.60 1.01 14.880
4 20033  163.24  132.02 89.17 33.61 1829 11.11 521 3.19 1.68 1.02 17374
5 198.58 166.82  137.21 94.09 3594 1990 1186 555 340 174 1.03 19.687
10 19954 168.16 14274 102.08 43.11 2336 1425 6.68 390 198 1.04 29.011
370 0.05 2 370.78 25946  187.79 10499 29.79 1445 8.43 406 262 144 1.01 10.708
3 370.63  275.60 206.68 119.25 34.65 17.00 9.68 465 291 156 1.01 13.597
4 370.96  283.74 212.68 126.03 37.43 1821 10.67 495 3.06 1.64 1.01 15952
5 369.56  283.79 22044 132.19 3982 1985 11.38 524 322 171 1.02 18.018
10 370.88 300.63 243.65 15048 4879 24.15 1390 636 376 192 1.05 27.160
0.1 2 369.31  268.89 202.84 121.51 39.02 1952 11.67 544 327 171 1.02 16.003
3 369.33 279.74 21333 133.02 4350 2225 1324 6.08 370 1.88 1.03 19.199
4 369.82  283.02 222.62 13943 4756 2426 1445 6.61 393 198 1.04 21.792
5 370.58  291.19 22954 14695 50.50 2625 15,60 7.12 412 209 1.05 24339
10 369.02 303.13 24394 164.00 6090 3143 1920 862 493 239 1.10 34372
TABLE 2. The zero-state ARL values of the OMHWMAII chart, the chart’'s parameters w and h are chosen to fix ARL, to 200 or 370.
ARLg w D 4 h
0.00 0.05 0.10 0.20 0.50 0.75 1.00 1.50 2.00 3.00 5.00
200 0.050 2 199.08  116.04 76.87 38.83  12.09 6.88 4.66 280 198 124 1.00 7.253
3 201.50 12554 80.57 4281 13.64 7.67 5.25 3.04 219 134 100 10.214
4 200.85  125.66 83.93 4710 14.63 8.58 5.51 332 236 141 1.01 12750
5 199.05  125.50 86.78 4827 1583 8.77 5.72 344 247 147 1.01 15.006
10 199.51 128.28 92.58 5225 17.45 10.06 6.83 380 275 164 1.02 24409
0.100 2 200.31  126.89 89.07 4930 17.34 9.71 6.31 364 245 145 101 11.981
3 199.08  134.72 94.12 55.60 18.69  10.57 7.02 394 270 156 1.01 15.419
4 200.07  138.68 97.90 5744 1993 1142 7.38 426 293 170 1.02 18.238
5 199.84 13645 96.89 59.24  21.09 11.80 7.84 442 296 176 1.03 20.692
10 200.39 143.01 10432 6132 2280 13.34 889 491 336 198 1.06 30.940
370 0.05 2 369.88  198.02 12446 60.70 17.44 9.41 6.16 350 243 142 1.01 10.812
3 370.46  204.80 13037 66.11 19.72 10.47 6.83 388 267 156 101 14.102
4 369.95 21351  136.63 7195 20.59 1133 736 415 283 1.68 1.02 16991
5 369.76  217.03 14145 7476  22.05 12.02  7.67 437 299 175 1.03 19452
10 37157 22627 150.63 80.50 2498 13.78 8.83 497 338 199 1.06 29.749
0.1 2 37026 21271 13943  72.84 22.64 1231 7.85 436 295 1.69 1.02 16.155
3 37025  225.67 148.13  79.48 2493  13.77 869 475 323 185 1.03 19918
4 37095 23045 150.66 8342 26.51 14.45 9.25 513 342 196 1.04 22905
5 369.84  231.68 15395 8434 2750 14.89 9.61 530 355 205 1.06 25.46
10 369.08 235.65 16046 89.52 3025 16.86 1085 597 392 230 1.12 36.247

o In all cases, as § increases, the ARL; values approach
one, which shows that the charts detect large shifts
promptly.

o For a fixed value of §, the charts are more efficient when
a smaller value of w is used, which shows that a small
value of w helps to detect a shift in the process mean
faster.

e ARL comparison between the one-sided charts,
i.e., the OMHWMA and OMHWMAII charts, show that
the OMHWMAII chart (cf. Tables 2) outperforms the
OMHWMALI chart (cf. Tables 1). The advantage of the
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OMHWMAII chart over the OMHWMALI chart is true
for all values of w considered, especially for small values
of §.

Also, ARL comparison between the two one-sided
charts, i.e., the TMHWMA and TMHWMAII charts,
show that the TMHWMALII chart (cf. Tables 4) outper-
forms the TMHWMALI chart (cf. Tables 3) for all values
of w, especially for small values of 5.

SDRL comparison of the one-sided charts, i.e., the
OMHWMA and OMHWMAII charts, show the OMH-
WMAII chart’s run-length values (cf. Tables 7) are less
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TABLE 3. The zero-state ARL values of the TMHWMAI chart, the chart’s parameters w and h are chosen to fix ARL, to 200 or 370.

ARLg w D ) h
0 0.05 0.1 0.2 0.5 0.75 1 1.5 2 3 5

200 0.05 2 200.80 186.11  153.60 93.07 27.11 13.25 8.08 4.00 257 143  1.01 10.299
3 200.00 187.53 156.08 100.22 30.07 15.24 9.00 4.40 279 155 1.01 12.876

4 19932  187.04 163.52 104.07 32.06 16.70 9.70 4.73 295 158 1.01 15.108

5 200.19 18997 164.01 109.04 3444 17.68 10.38 4.87 311 166 1.02 17.145

10 200.08 190.19 17243 12128 4134 2093 1255 582 349 185 1.03 25971

0.1 2 20020 182.61 163.66 107.86 36.05 18.63 11.03 521 322 1.68 1.01 15273

3 19982 187.38 167.28 117.36 4047 2123 1245 585 353 1.82 1.02 18312

4 20053 19591 171.73 12256 4425 2271 13.62 637 376 193 1.03 20877

5 19924 19331 172.81 12479 46.13 2416 1440 674 390 202 1.04 23.120

10 199.68 19346 176.71 13484 5499 2933 1757 824 463 229 108 32.859

370 0.05 2 36990 333.84 252.09 14198 38.66 18.62 10.78 505 3.09 1.64 1.0l 13.833
3 369.29 33271  266.88 155.06 4322 21.01 12.06 5.57 337 176 1.02 16.651

4 370.99  341.13 280.01 166.28 46.96 23.16 13.26 6.02 3,59 187 1.03 19.22

5 369.41 336.12 279.81 170.22 49.59 2459 13.85 6.35 378 195 1.03 21.306

10 371.69 34726 296.86 19243 5998 29.57 17.18 7.57 442 221 1.07 30.775

0.1 2 369.78 339.86 27774 16596 49.43 2401 14.02 637 380 195 1.03 19.493

3 369.05 34598 286.54 179.73 54773 2721 1611 725 419 211 1.05 22743

4 370.18 34578 29578 187.08 59.82 2954 1739 779 452 227 1.07 25487

5 36999 34730 300.04 19693 63.19 32.11 18.68 837 474 235 1.08 27.896

10 37170 355.09 311.76 21892 75.11 3884 2277 1026 570 2.69 1.16 38.371

TABLE 4. The zero-state ARL values of the TMHWMAII chart, the chart’s parameters w and h are chosen to fix ARL, to 200 or 370.

ARLy w D 0 h
0.00 0.05 0.10 0.20 0.50 0.75 1.00 150 2.00 3.00 5.00
200 0.050 2 19538 17327 129.68 69.87 19.81 1048 699 3.86 266 154 1.01 12.742
3 201.34  176.28  133.93 72.94 2224  11.74 7.59 417 292 166 1.02 15.899
4 198.63  179.32  134.29 76.55 2292 1230 8.06 443 302 176 1.02 18.559
5 196.60 175.71  135.51 79.23 2375  12.80 8.31 465 309 185 1.04 200933
10 19525 178.65 140.04 81.92 26.79 14.77 9.35 5.16 352 206 1.07 31.059
0.100 2 201.37 18233 14245 79.27 24.07 13.18 8.46 470 316 179 1.02 17.702
3 19205 174.81 14246 84.19 2575 1440 921 494 331 1.839 1.03 20.900
4 19624 17742 146.06 8791  28.19 1507 9.81 524 353 202 105 23.882
5 200.17 185.14 146,72  88.78 2874 1569 10.14 549 366 2.11 1.07 26515
10 201.08 18557 154.16 9253 31.16 17.61 1137 6.17 4.03 236 1.13 37.329
370 0.05 2 37009 305.08 203.64 98.68 2596 1355 855 469 3.17 1.80 1.02 16914
3 37082 314.18 20999 10546 2892 1491 933 508 343 196 1.04 20.347
4 370.74  312.06 216.73 109.20 3041 15.63 9.90 536 359 206 1.05 23.22
5 369.03 308.69 21447 109.87 31.65 1651 1034 554 371 214 1.07 25.653
10 371.28 319.58 231.26 119.81 3477 1858 11.68 6.17 4.16 243 1.14 36.627
0.1 2 370.20 31525 222.82 108.86 30.18 15.80 10.08 533 3,57 203 1.04 21.864
3 370.97 32321 228.74 114.62 32,61 17.15 1098 572 379 218 1.07 25471
4 37043 317.64 23147 12060 34.14 1823 11.60 6.05 4.00 232 1.08 28.454
5 37081 323.70 237.19 122776 3566 19.17 1198 634 4.13 237 112 31.162
10 370.08 327.82 241.80 129.81 39.00 21.03 1325 7.06 456 266 122 42375

variable than the run-length values of the OMHWMAI
chart (cf. Tables 5) when § > 0.10, for all values of w.
In contrast, the OMHWMALI chart gives less variable
run-length results than the OMHWMAII chart when
8 <0.05.

o Similarly, SDRL comparison of the two one-sided
charts, i.e., the TMHWMA and TMHWMAII charts,
show the TMHWMAII chart’s run length (cf. Tables 7)
are less variable than the run length of the TMHWMALI
chart (cf. Tables 5) when § > 0.10, for all values of
w (especially for small values of p). In contrast, the
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OMHWMALI chart gives less variable run-length results
than the OMHWMAII chart when § < 0.10.

For all values of w considered, the charts’ SDRL values
approach zero as the value of § increases, demonstrating
the charts’ ability to detect a large shift promptly.

B. STEADY-STATE ARL PERFORMANCE OF THE CHARTS

To study the steady-state ARL performance of the charts,
we adopted the scheme employed by [12], [29], by assum-
ing that for a fixed integer s, the process is under con-
trol for the first s — 1 samples and out-of-control after the
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TABLE 5. The zero-state SDRL values of the OMHWMAI chart, the chart’s parameters w and h are chosen to fix ARL, to 200 or 370.

charts w P )

0.00 0.05 0.10 0.20 0.50 0.75 1.00 1.50 200 3.00 5.00

200 005 2 171.14  128.8 97.01 60.28 1827 899 534 245 145 07  0.09

3 157.46 13273  100.52 6324  20.13 10.28 6.19  2.58 1.6 078 0.08

4 160.28  130.13  104.83 67.72 2244 11.3 654 286 171 083 0.09

5 158.44 135.1 108.22  70.03 2396 12.53 7.07 304 183 091 0.11

10 158.74 136.52 11479 7747 2795 14.86 8.62 374 214 103 0.21

0.1 2 14796 114.31 86.66 55.98 20.25  10.67 6.37 291 1.69 085 0.09

3 13851  111.07 89.47 59.74 2146 1179 7.02  3.15 1.9 095 0.14

4 140.44  110.29 89.97 60.83 2371  12.68 7.82 3.5 202 1.01 0.16

5 137.04 113.5 91.42 63.54 2448 13.48 8.28 379 215 1.06 02

10 133.87 112.9 92.36 6732 2833 1572 989 466 255 122 0.26

370 0.05 2 26776 18621 134.04  77.68 2345 11.33 6.45 284 1.69 085 0.10

3 25684 18997 14564 8528 26.02 13.05 744 328 1.89 097 0.13

4 24976 19476  148.05 88.19  28.05 14.02 8.13 349 197 1.02 0.15

5 24798 190.04 150.09 90.99  29.63 15.16 8.74 367 210 107 0.18

10 242.04 197.18 161.56 101.56 3526 18.02 1061 4.63 251 124 029

0.1 2 26491 188.89 138.88  79.63 2438 1256  7.62 337 188 1.00 0.15

3 254.42 19375  143.58 8549 26775 14.00 843 374 213  1.10 0.20

4 249.27 19198 146.35 87.71 28.52  15.11 9.09 4.07 227 116 024

5 251.69 191.74 151.00 92.09 3030 1579 959 440 240 121 0.28

10 240.01 197.07 155.10 10148 3505 1833 11.63 526 294 139 040

TABLE 6. The zero-state SDRL values of the OMHWMAII chart, the chart’s parameters w and h are chosen to fix ARLy to 200 or 370.

charts w P 6

0.00 0.05 0.10 0.20 0.50 0.75 1.00 150 200 3.00 5.00

200 005 2 238.64 13198 8491 40.51 1145 569 343 180 124 0.64 0.05

3 228.79  138.64 86.26 4371 1271 6.49 390 199 138 075 0.08

4 226.11 135.42 87.66 47779  13.26 7.22 406 214 141 081 0.11

5 21660 13275 90.05 4829 1404 728 425 219 149 087 0.13

10 21421 13424 9536 5130 15.61 822 511 250 165 098 020

0.10 2 19529 117.02  80.02  41.61 1291 696 425 215 137 080 0.09

3 190.82  121.78 80.85 4597 13.90 7.43 454 229 146 088 0.14

4 195.54  124.43 85.05 47.82 14.49 800 489 241 157 095 0.15

5 183.92 12372 83,53 48.00 15.14 808 501 247 157 098 021

10 183.00 12734  87.18 49.63 1647 898 574 280 1775 1.08 0.29

370 005 2 37508 190.86 118.10 5444 1443 705 420 208 143 082 0.09

3 365.06 194.81 119.68 5889 1575 785 464 228 152 092 0.13

4 364.17 20148 12340 6192 16.24 8.33 500 244 158 099 0.16

5 361.83  201.13 12495 64.02 17.58 8.82 524 252 161 1.02 023

10 360.83 205.03 13229 67.85 19.50 1008 6.00 291 182 1.13 033

0.1 2 33469 18636 11722 56,51 1572 798 4778 232 150 094 0.16

3 34796 198.13 12350 61.68 1677 874 516 252 158 1.01 0.19

4 34950 19990 121.31 6248 17.65 9.12 548 267 1.66 1.04 0.25

5 34320  199.85 12577 6294 18.29 9.32 575 277 171 1.08 029

10 337.58 203.63 12943 67.10 1999 1048 646 3.14 191 1.15 041

(s + 1)th sample. Hence, the steady-state out-of-control ARL
is obtained by subtracting s — 1 from a simulated run length.
Without loss of generality, we used s = {10, 20, 50 or 100}.
Table 9 presents the steady-state ARL values of the charts
when p = 3 or 5, w = 0.1 and ARLy = 200. Similar to
the zero-state ARL comparison of the charts (see Tables 1
to 4 for the zero-state ARL values of the charts), steady-state
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ARL comparisons of the one-sided charts show that the
OMHWMALII chart outperforms the OMHWHI chart. Also,
the steady-state ARL comparisons of the two-sided charts
show that the TMHWMAII chart outperforms the TMWH-
MAI chart. The results in Table 9 show that the steady-state
performance of the charts depends on the choice of s and
the size of shift §. As shown on the table, the use of a
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TABLE 7. The zero-state SDRL values of the TMHWMAI chart, the chart’s parameters w and h are chosen to fix ARL, to 200 or 370.

0.50 0.75 1.00 1.50 200 3.00 5.00

21.53 1031 6.25 2.8 1.66 085 0.1
2381 11.66 696 3.06 181 095 0.12
2524 1284 749 342 195 099 0.14
2671 13.68 807 348 204 104 0.17
31.81 1623 972 433 243 1.2 025

2296 12.07 723 328 184 098 0.13
2553 1348 817 363 206 107 0.17
2747 1472 854 403 219 115 02
2851 1526 918 422 23 1.18  0.25
33.67 17.9 10.85 5.19 277 137 037

2646 1297 755 322 187 1.00 0.14
28.74 14,57 843 362 203 1.08 0.19
3058 1552 9.04 392 221 115 0.21
32.13 1634 948 420 233 120 0.24
3774  19.04 1162 512 281 137 035

charts w P )
0.00 0.05 0.10 0.20

200 005 2 15526 14339 11831  73.36
3 152.22 143.7 120.48  78.30

4 15096 144.02 12524  81.00

5 151.36 14434 123.71 84.73

10  149.83 146.16 132.11  90.85

0.1 2 132.68 12434 110.88  71.56

3 126.52 12425 109.18  74.79

4 13083 127.26 11099  79.72

5 128.23 125.6 108.31 79.87

10 12498 122.68 111.6 83.47

370 005 2 23975 218.61 17055 93.87
3 23206 211.28 172.53 100.83

4 23403 21553 177.01 105.32

5 228.02 20875 178.35 107.35

10 22878 212.63 18436 118.88

0.1 2 24527 22604 181.07 106.84

3 23970 22503 187.17 112.63

4 23641 22123 189.62 117.55

5 234.67 219.84 188.48 120.39

10 23231 221.67 191.84 130.78

2932 1420 840 367 203 1.09 0.20
3204 1576 943 420 229 1.18 0.26
3425 17.05 1008 452 247 125 032
3556  17.84 1070 485 2.61 128 034
40.82 2090 1249 585 323 145 049

TABLE 8. The zero-state SDRL values of the TMHWMAII chart, the chart’s parameters w and h are chosen to fix ARL, to 200 or 370.

0.50 0.75 1.00 150 200 3.00 5.00

1539 751 463 218 150 091 0.13
1739 849 499 240 160 098 0.17
1759 874 546 255 161 1.03 020
1824 913 556 266 166 1.07 025
2034 1064 629 290 183 1.14 035

16.25 825 499 243 155 098 0.18
1696 894 544 255 160 1.02 022
1877 944 576 275 169 1.07 0.26
1855 946 595 287 176 1.08 0.31
20.34 1083 6.63 3.17 193 1.15 043
1855 946 595 287 176 1.08 0.31

1822 883 523 244 162 1.04 0.18
1973 974 576 266 165 1.09 0.25
20.64 10.12 6.05 280 173 1.13 0.28
21.32 1062 621 287 178 1.15 034
23,50 1190 7.04 327 201 122 048

charts w P é
0.00 0.05 0.10 0.20
200 0.05 2 179.56 15859 12097 61.29
3 181.57 163.46 120.78 62.38
4 181.26 16327 121.71 64.52
5 18240 16193 12476  67.75
10 185.19 167.86 128.85 69.36
0.10 2 160.32 14420 11350 60.06
3 15893 142.37 11459 64.10
4 164.02 141.74 11779 67.49
5 16590 15545 117.61 66.90
10 17228 152.72  126.37 69.28
20 16590 15545 117.61 66.90
370 0.05 2 29640 251.60 164.32 75.37
3 302.17 256.57 17041  79.00
4 30492 25365 17294 82.72
5 30206 25375 170.07 8243
10 31040 262.64 184.69 87.42
0.1 2 30592 259.15 17934 79.93
3 31244 268.21 18296 84.34
4 31420 257.62 187.09 86.61
5 310.00 269.17 190.82 89.90
10 31879 275.19 19621 94.51

18.63 936 563 259 160 106 0.24
2008 992 598 281 1.68 1.08 0.32
2095 1040 636 297 177 1.11 035
21.82 10.88 656 3.13  1.82 1.12 041
2388 11.89 725 347 205 1.18 0.55

small value of s leads to better performance when interest
lies in detecting a large shift in the process mean—however,
a large value of s leads to faster detection of a large shift in
the mean. Also, the charts’ zero-state and steady-state ARL
values show better detection ability under zero-state than the
steady-state.
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C. COMPARISON WITH EXISTING CHARTS

We provide the zero-state ARL comparisons of the proposed
one-sided and two one-sided charts with the classical as well
as the one-sided and two one-sided versions of the classical
MEWMA chart [6], and MCUSUM chart [3]. The one-sided
and two one-sided versions of the MCUSUM charts are
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TABLE 9. The steady-state ARL values of the charts when p = 3 or 5, the charts’ parameters w and h are chosen to fix ARL, to 200.

Charts D s )
0 0.05 0.1 0.2 0.5 0.75 1 1.5 2 3 5
OMHWMAI 3 10 197.56  158.84 130.43 88.78 37.27 22.18 15.06 8.63 5.81 346  2.00
20 196.50 161.26  128.19 88.87 38.63 24.04 16.59 9.70 6.44 3.60 1.75
50 198.82  160.76  131.96 93.48 42.56  26.62 18.55 10.52 6.65 327 129
100 201.17 162.83  135.51 95.82 4530 2834 19.87 10.76 6.32 277 112
5 10 201.63 16697 13923 99.54 4248 2573 1740 9.96 6.72 395 223
20 197.40 164.09 140.21 98.19 4471  27.68 1933 11.24 7.51 425 201
50 197.31 163.90 140.30 100.00 47.64 30.84 2148 1229 795 391 145
100 203.87 169.68 141.82 106.27 5092 3298 2285 12,67 7.73 331 121
OMHWMAIl 3 10 19793 133.96  98.40 59.04 2345 1500 10.83  6.89 5.07 334 209
20 196.13  135.19  99.37 61.21 2606 1673 1229 7.79 566 354 194
50 19797 13931 102.17 66.52  29.23 19.51 14.18  8.82 6.10 336 149
100  200.03 140.69 10596  69.79 32777 2184 1572 922 6.04 293 1.21
5 10 199.84 13835 101.65 63.89 2599 1646 1182 7.57 556  3.62 224
20  196.03 13795 103.23 6570 28.39 1845 13.31 8.49 6.12 386 211
50  202.72 13990 107.08  71.31  32.12 21.01 1545 9.75 680 3.80 1.66
100 204.42 14392 112.01 73,60 3515 2350 17.15 1026 6.80 344 1.32
TMHWMALI 3 10 199.64 189.03  170.57 121.71 4795 2795 1838 10.31 6.90 4.02 224
20 197.79 191.29 171.68 12346 5147 30.83 20.78 11.82 7.85 436  2.06
50  201.90 196.79 175.10 130.69 5698 3523 2429 1339 853 401 1.37
100 199.57 191.56 174.63 133.69 61.87 38.37 2588 13.78 8.00 324 1.14
5 10 200.65 193.37 17556 133.04 5485 31.89 21.55 1201 807 470 257
20 197.839 19197 17730 13256 5842 3529 2428 1390 934 521 245
50  197.04 192.79 17695 138.06 64.31 40.64 2822 16.11 10.39 500 1.62
100 19892 19271 178.19 14291 7020 4480 30.84 1661 996 4.06 125
TMHWMAIl 3 10 197.89 18197 147.81 89.37 32.10 19.50 13.66 8.50 6.05 395 240
20 195.68 180.44 14637  91.07 3497 2197 1548 9.77 696 429 231
50  200.01 185.23 153.04 100.06 41.05 2631 19.14 11.68 8.04 441 1.82
100 19732 183.17 157.03 107.77 47.64 30.70 22.18 13.08 837 411 142
5 10  198.04 18241 15159 9453 3429 2120 1484 9.06 655 416 255
20  200.11 182.74 150.17 9577 37.58 2346 1686 1047 7.53 469 251
50 20044 183.13 157.51 102.14 43.87 2823 2032 1257 8.67 489 2.04
100 198.10 186.12 16046 109.63 50.44 3325 23.84 1417 940 462 158

TABLE 10. The zero-state ARL values of the proposed and the existing charts when p = 2, the charts’ parameters w and h are chosen to fix ARL, to 200.

Type Chart ) h
0.00 0.05 0.10 0.20 0.50 0.75 1.00 1.50  2.00 3.00 5.00
One-sided MCUSUM 200.30 189.90 164.64 109.12 29.60 1536 9.79 579 412 269 182 550
MEWMA 200.97 193.80 161.14 9994  28.16 1527 1013 6.10 441 292 197 8.66
MHWMA 200.02  185.23  143.61 82.60 2492 1335 8.58 463 3.13 1.79 1.02 8.97
OMCUSUM 199.18 155,50  120.82 75.13 25.06 13.71 8.78 492 340 216 1.23 6.06
OMEWMA 199.65 151.67 116.92 71.60 24.13 1347 8.91 507 353 226 132 9.23
OMHWMA  200.57 15592 119.64 79.02 27.89 1470 877 438 270 147 1.01 1197
OMHWMAII 20231 126.89 89.07 4930 17.34 9.71  6.31 364 245 145 101 1198
Two-sidled TMCUSUM 20036 197.79 171.31 116.61 33.10 1673 1047 577 392 244 146 7.14
TMEWMA 201.85 192.15 165.67 110.01 32.61 1679 1056 584 397 248 150 11.66
TMHWMA  200.20 182.61 163.66 107.86 36.05 18.63 11.03 521 322 168 1.01 1527
TMHWMAIl 20137 182.33 14245 79.27 24.07 13.18 8.46 470 3.16 1.79 1.02  17.70

proposed by [25]. Also, [26] proposed the one-sided and
two one-sided versions of the classical MEWMA chart.
In what follows, the one-sided versions of the MCUSUM
and MEWMA charts are referred to as the OMCUSUM
and OMEWMA charts, respectively. Also, the two one-sided
versions of the MCUSUM and MEWMA charts are referred
to as the TMCUSUM and TMEWMA charts, respectively.
We refer the interested reader to [25], [26] for detailed
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information on the one-sided and two one-sided MEWMA
and MCUSUM charts.

The zero-state ARL results of the proposed charts, as well
as the existing charts, are provided in Tables 10 to 13, for
p € {2,4,5, or 10}. The chart’s parameters are chosen to
fix ARLg of the charts to 200. As shown in the tables, com-
parisons among the one-sided charts show that the proposed
OMHWMAII chart outperforms the competing charts for all
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TABLE 11. The zero-state ARL values of the proposed and the existing charts when p = 4, the charts’ parameters w and h are chosen to fix ARL, to 200.
Type Chart 0 h
0.00 0.05 0.10 0.20 0.50 0.75 1.00 1.50 2.00 3.00 5.00

One-sided MCUSUM 19920 18943 16535 108.62 33.05 1832 1235 757 548 3.61 2.19 8.15
MEWMA 198.72 19553 16935 116.78 3468 1839 12.04 720 517 341 211 12.73

MHWMA 201.73  187.74 15345 9547 2997 1595 1025 547 363 2.09 1.05 13.11

OMCUSUM  200.42 164.90 13023 8386 29.65 1638 11.05 647 455 283 178 8.54
OMEWMA 200.70  164.30  128.83 82.87 2995 1671 1095 625 431 269 169 1390

OMHWMA 200.33  163.24  132.02 89.17 3361 1829 11.11 521 319 1.68 1.02 17.37
OMHWMAII  200.07 138.68  97.90 5744 1993 1142 738 426 293 170 1.02 1824

Two-sided TMCUSUM  201.43 19039 169.79 11894 3653 19.64 1291 740 5.15 3.18 196 9.72
TMEWMA 199.59 190.81 17559 126.64 4023 20.59 1296 7.07 482 294 184 16.56

TMHWMA 203.53 19591 171.73 12256 4425 2271 13.62 637 376 193 1.03 20.88

TMHWMAII  199.24 17742 146.06 8791 28.19 15.07 981 524 353 202 105 23.88

TABLE 12. The zero-state ARL values of the proposed and the existing charts when p = 5, the charts’ parameters w and h are chosen to fix ARL, to 200.
Type Chart ) h
0.00 0.05 0.10 0.20 0.50 0.75 1.00 1.50 2.00 3.00 5.00

One-sided MCUSUM 200.82  200.51 17577 11593 35.66 1979 13.64 843 6.17 405 252 946
MEWMA 200.19 195.61 176,55 12234 37.65 19.83 1298 7.65 546 359 219 1456
MHWMA 201.97 186.07 157.59 9648 3146 17.14 1097 576 381 221 1.07 1492

OMCUSUM  201.02 163.92 131.51 85.67 3147 1773 1213 725 506 3.17 196 9.68
OMEWMA 200.84  160.67  132.58 87.10 31.69 1756 11.76 6.71 461 286 1.80 15.86

OMHWMA 198.58 166.82 137.21 94.09 3594 1990 11.86 555 340 174 1.03 19.69

OMHWMAII  196.84 13645  96.89 5924 2109 1180 784 442 296 176 1.03 20.69

Two-sided  TMCUSUM 199.55 195.02 17211 11590 38.62 21.17 1426 813 572 352 210 10.93
TMEWMA 199.07 188.65 17438 128.66 43.07 2213 13.80 750 5.12 312 193 18.60
TMHWMA 199.24 19331 17281 12479 46.13 24.16 1440 6.74 390 2.02 1.04 23.12
TMHWMAII  200.17 185.14 146.72 88.78 28.74 15.69 10.14 549 3.66 211 1.07 2652

values of p considered. The advantage of the OMHWMAII
chart over the competing charts is uniform across all values
of §, except when § > 3, where the OMHWMALI chart outper-
form the OMHWMAII chart. Also, comparisons among the
two one-sided charts show that the proposed TMHWMAII
chart outperforms the competing charts for all values of p
considered. The advantage of the TMHWMAII chart over the
competing charts is also uniform across all values of §, except
when § > 3, where the TMHWMAI chart also outperform the
TMHWMALII chart.

IV. ROBUSTNESS TO NON-NORMALITY OF THE
PROPOSED CHARTS
The proposed charts described in Section II rely on the
assumption that the process variable is multivariate normally
distributed. In industrial application, the normality assump-
tions do not always hold [30], [31]. Hence, we study the
robustness of the charts to non-normality in this section.
A control chart is robust to non-normal distributions if its
IC run-length distribution remains stable when the normality
distributional assumption is violated [32]. That is, when the
ARL value of the chart under a non-normal distribution is
similar (or close) to the ARLg of the chart from a normal
distribution.

Following [31]-[34], we study the sensitivity of the
charts to non-normality by considering a skewed distribu-
tion (the multivariate gamma distribution) and a heavy-tailed

VOLUME 9, 2021

distribution (the multivariate Student’s ¢-distribution). The
probability density function (pdf) of the multivariate gamma
distribution is denoted by G(a x 1,, B x 1,), where o« > 0
and B > 0 are the shape and scale parameters, respectively.
Also, the pdf of a multivariate 7-distribution is denoted by
t(v), where v > 0 is the size of the degrees of freedom.
We refer the interested reader to [31] for details on these
multivariate distributions. We investigate the robustness of
the charts under a large range of the shape parameter, i.e., o €
{1,2,3,4,5,10, 50, 100, 1000}; without loss of generality,
we considered scale parameter, 8 = 1. For the ¢-distribution,
we consider a range of degrees of freedom (v); namely, v €
{4,6,8, 10, 15, 20, 30, 40, 50, 100, 1000}.

The mean vector, uy+ and covariance matrix, X y+, of the
statistic X l+ =+ max((), X;) under multivariate garrllma dis-
tribution with shape («) and scale parameter (8 = 1) can be
are given as:

Hx+ exp Ya% x 1, (11)

i T T
and

N\ oxore ' \r@™® ¢ Pxp

respectively, where K| = (exp“ re+oa,a)— a(l+“)),
[(a,s) = fxoo t“le7'dt,s > 0,a € R is the upper
incomplete Gamma function [35], [36]. Also, pty+ and X y+

80397



IEEE Access

N. A. Adegoke et al.: One-Sided and Two One-Sided Multivariate Homogeneously Weighted Moving Charts

TABLE 13. The zero-state ARL values of the proposed and the existing charts when p = 10, the charts’ parameters w and h are chosen to fix ARL, to 200.
Type Chart ) h
0.00 0.05 0.10 0.20 0.50 0.75 1.00 1.50 2.00 3.00 5.00
One-sided MCUSUM 199.50 191.63 169.82 119.11 4292 26.10 18.61 11.94 880 585 3.62 1490
MEWMA 199.98 195.12 18341 13850 48.10 24.87 1597 9.18 655 428 2.69 22.67
MHWMA 199.17 189.23  165.13  109.10 37.84 20.72 13.15 697 455 263 119 23.08
OMCUSUM  200.85 173.55 144.77  99.98 3938 2435 17.17 1061 753 474 275 15.08
OMEWMA 199.83  170.79 13996  97.65 38.82  21.67 14.19 819 563 351 2.08 2446
OMHWMA 199.54 168.16 14274 102.08 43.11 2336 14.25 6.68 390 198 1.04 29.01
OMHWMAII 20039 143.01 104.32 61.32 2280 1334 8.89 491 336 198 1.06  30.94
Two-sided  TMCUSUM  201.32 194.09 17242 122779 4642 27771 1929 11.84 838 523 299 1657
TMEWMA 199.74  193.08 183.57 140.77 52.44 27.04 16.75 9.19 621 377 217 2751
TMHWMA 199.68 19346 176.71 13484 5499 2933 17.57 824 463 229 1.08 32.86
TMHWMAII  201.08 185.57 15416 9253 31.16 17.61 1137 6.17 403 236 1.13 3733

under multivariate t-distribution with v degrees of freedom
are:

Jv
v 1
v— l)Beta(E, 5)

Hy+ = x 1, (13)

and

V y
y+

Tl2v-2) Iy (19

1%
_lth _’_2
v—1 ea(2 2)

I'(a)l"
M is the beta function.
I'(a+s)

Similarly, the mean vector, uy- and covariance matrix,
1

where Beta(a, s) =

X y- of the statistic X, = —min(0, X;) under multivariate
U . . . .

gamma distribution with shape («) and scale parameter (8 =

1) are given as:

exp ¢

1 o
My+ = — a” x 1, (15)

i ')

and

oo g ! —““21 16
s=\arara(Fwere) e 09

respectively, where  Kr=(a'*¥+exp® [(2+a)—exp® [(2+a,a)).
Also, mean vector, py- and covariance matrix, Xy-

. . . £ . . i
under multivariate t-distribution with v degrees of freedom
are:

S

.1 a7
v— 1)Beta(§, E)

Bx-=— x 1

and

v v
Yy- =

; 2(V — 2) - Ip><p (18)

v 1
_lth _’_2
v—=1) ea(2 2)

respectively. Equation (11) through equation (18) are solved
in Mathematica version 12.2 package [37].

We investigate the ARL( performance of the pro-
posed charts from the multivariate gamma and multivariate
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t-distributions when the charts’ limits 4 under multivariate
normal distributions (given in the last column of Tables 1 to 4)
are used to construct the charts’ limits. The ARLg values of
the charts under multivariate r and gamma distributions when
ARLy are fixed to 200, w € {0.03,0.05,0.10, 0.25,0.5,
0.75}, and p = 5 are given in Table 14 and Table 15, respec-
tively. The ARL values of the charts under the multivariate
t and gamma distributions are summarized below:

o The charts’ ARLy values depend on the choice of
the process distributions. The ARLg values are greatly
affected (i.e., deviate from their nominal values) when
a skewed distribution characterizes the process (like
the multivariate gamma distribution) and less affected
under a heavy-tailed distribution (like the multivariate
t-distribution).

o For a fixed value of the degrees of freedom, v,
(in Table 14), or shape parameter, o, (in Table 15),
the ARLy performance of the charts depends on the
smoothing parameter choice. The results show that the
charts are more robust to non-normality when a small
value of w is used. This implies that small values of
w (i.e., w = 0.03 and 0.05) are fairly useful when the
underlying distribution is unknown or not normal.

« Comparison between the robustness of the OMHWMAI
and OMHWMALII charts shows that ARLg values of the
OMHWMALI chart are more affected and less robust to
non-normality when compared to the ARLg values of the
OMHWMALII chart, especially for small values of w and
v (or o).

« Comparison between the robustness of the TMHWMAI
and TMHWMALII charts shows that ARL values of the
TMHWMALI chart is less robust to non-normality when
compared to the OMHWMAII chart under multivariate
t distribution, especially for small values of w and v (or
o). However, when the TMHWMAI and TMHWMAII
charts are constructed under multivariate gamma distri-
bution, our results show that the TMHWMALI chart is
more robust than the TMHWMAII chart.

o The ARLg values of both charts increase as the shape
parameter « (for the case of the gamma distribution)
or size of the degrees of freedom v (for the case of the
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TABLE 14. The ARL values of the charts under multivariate t-distributions when p = 5.

ARLg w v
4 6 8 10 15 20 30 40 50 100 1000
OMHWMAI  0.03 132.18 14193 152.15 162.09 17275 177.06 190.57 188.61 194.33  204.41 202.43
0.05 111.64 12533 137.37 144774 159.08 169.56 174.14 18320 187.41 192.58  202.07
0.10 84.70 96.84 109.70  119.23  136.53 150.74 164.78 16997 17826 187.52  198.97
0.25 54.83 63.61 74.88 83.99 102.69  117.13 13542 149.83 159.02 178.37 202.71
0.50 42.78 50.37 59.62 68.74 85.13 101.16 12148 13256 143.86 167.16 197.71
0.75 40.07 47.32 55.48 63.41 82.18 95.52 117.96 13295 141.63 16646 195.06
OMHWMAIl  0.03 135.73 14841 15257 161.21 176.67 176.26  188.74 19195 187.73  194.11 199.68
0.05 11622 128.07 138.81 151.00 163.00 170.11 176.81 18223  182.53 192.89 198.21
0.10 87.03 100.86  111.72  123.01 140.17 15234 16293 173.10 176.50 18547 197.33
0.25 54.70 64.99 74.49 83.00 104.19 11795 135.18 148.82 156.56 177.58 199.43
0.50 42.58 51.25 58.67 68.49 84.98 10040  118.01 131.15 141.10 165.25 19192
0.75 40.91 47.34 56.71 63.90 82.12 95.50 119.05 131.71 139.03 165.86 191.23
TMHWMAI 0.03 113.12 12420 136.68 14448 161.36 166.66 177.13  183.69 185.09 192.51 192.62
0.05 94.31 107.12 11934 13040 14844 15773 171.22 17733  181.25 193.23  200.38
0.10 68.01 81.18 92.53 103.16 12273  135.41 151.99 161.71 16795 18292 198.42
0.25 41.34 48.37 57.73 66.14 84.10 98.35 116.99 129.58 14147 166.01 196.24
0.50 30.42 36.73 44.53 51.10 67.82 81.05 101.26 11930 130.33 16092  198.89
0.75 27.70 33.12 40.02 46.61 61.76 77.18 99.18 11293 12339  156.15 194.42
TMHWMAII 0.03 125.61 136.27 14542 15331 169.63 175.18 180.78 188.27 186.98 19554 199.59
0.05 102,52 117.00 131.19 13827 153.03 161.89 17092 17742 183.73 191.51 195.38
0.10 72.15 85.74 95.64 106.59 123.64 13697 15338 161.30 166.91 184.65 197.98
0.25 40.77 48.47 57.75 64.70 83.08 96.00 117.89  128.66 14277 16498 198.76
0.50 29.47 35.23 42.88 49.67 67.01 78.93 99.82 114.47 12457 153.89  195.02
0.75 27.97 33.43 40.24 47.07 63.88 77.38 98.25 11470  125.67 160.22  198.04
TABLE 15. The ARL values of the charts under multivariate gamma distributions when p = 5.
Charts w fe!
1 2 3 4 5 10 50 100 1000
OMHWMAI  0.03 126.79 138.61 144.02 15190 155.68 165.72 183.05 190.25 198.49
0.05 107.69 119.59 12942 13531 137.62 154.19 173.14 181.85 194.42
0.10  82.24 94.56 102.13  108.69 11345 129.89 15692 169.13 187.59
0.25 49.96 61.07 67.79 73.80 78.51 94.50 131.26 146,55 179.14
0.50 37.45 46.41 52.83 58.17 62.51 77.17 117.23  136.57 171.70
0.75 34.35 42.56 48.39 53.78 57.19 72.52 113.45 133.34  169.67
OMHWMAII 0.03 18271 190.69 194.27 195774 197.69 203.15 197.58 198.24  199.70
0.05 14023 15473 16295 16554 16746 17698 190.62 193.51 199.24
0.10 96.62 110.60 118.72 124.13  128.58 140.85 166.99 173.16 194.65
0.25 53.81 66.11 73.38 77.68 81.51 97.18 13296 149.78  176.88
0.50  37.77 47.24 53.51 57.90 63.29 77.62 11438 13159 171.50
0.75 34.25 42.75 48.40 53.07 58.40 72.13 111.37  128.04 170.48
TMHWMAI  0.03 158.69 170.87 178.71 180.66  184.00 191.49 196.31 198.04  196.16
0.05 138.12 15390 16526 174.00 177.18 18490 198.19 195.69 200.70
0.10 103.75 121.58 13458 144.79 14949 166.65 191.12 194.13  198.67
0.25 63.18 78.64 90.25 99.16 107.74 13286 180.44  191.88  200.32
0.50 47.90 62.43 73.43 83.39 88.37 11535 172.64 18549  201.96
0.75 44.17 57.78 67.77 76.46 83.57 111.50 170.68 184.79  194.12
TMHWMAII  0.03 27.55 52.20 70.12 85.42 97.97 132.00 184.64 189.35 199.83
0.05 25.11 45.78 62.67 7591 84.43 11928 176.23  186.39  195.20
0.10 19.51 33.29 43.71 5291 60.46 87.89 154.59 173.02  195.96
0.25 10.37 16.98 21.39 25.96 29.67 46.42 106.87 139.38  194.23
0.50 6.41 9.93 13.05 16.01 18.57 30.69 85.26 116.73  179.24
0.75 5.28 8.07 10.98 13.90 16.38 27.29 82.23 114.28 186.77

t-distribution) increases. Hence, the ARL values of the
charts tend to converge to the desired nominal ARLg
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value of the chart based on the normal distribution, when
a large value of v or « is used.
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V. ESTIMATION OF PARAMETERS

The proposed charts described in Section II were formulated
assuming that the process parameters g and X are both
known. It may be possible that the underlying process param-
eters are not known and need to be estimated in practice.
In such cases, the charts’ implementations are in two phases
(Phase I and Phase II). In Phase I, a large in-control historical
sample is analysed to establish the in-control state, estimate
the process parameters and the chart’s limits.

The unknown process parameter g may be estimated using
the unbias"el:d estimator from m Phase I samples given as
Y = % Some other approaches for estimating w
have been proposed in practice. For example, [38] showed
that the usual estimate Y under sum of squares of the
errors is only admissible for p < 2, but inadmissible if
p > 3. He showed that there exist an estimator (Y1, ..., Yp),
such that L(B(Y1, ..., Yp), po) < L(l_/, o). Strict inequal-
ity holds for some wg when p > 3, where L(B(.), o)
is the sum of squares of the errors of §(.) from pg given
as E((B() — MO)’ZO_I(/S(.) — o). Hence, he proposed
a shrinkage estimator, B(Y1,...,Y)), of the mean vector,
that has smaller sum of squares of the errors than the usual
estimator. Specifically, [38] showed that

—2\ -
IBJS:<l_p_/_>Y
mYY

dominates Y for any p > 3 under the assumption that g =
I,,, where I is the p x p identity matrix. [39] gave an alternative
form of the James-stein estimator for the case X9 = 021,
where o2 is a common variance of the p random variables.
The proposed estimate of u by [39] is given by

) _
g =(1- L= )y
(mY'Y)/o?
More generally, when X is non-diagonal, the James-stein
estimator has a form [40], [41]

-2 _
BS? — (1 - p—) Y.
mY X0~ 'Y

Since the work of [38], several James-stein estimators
have been proposed in Literature, for example, an improved
estimator given as:

IBJSI — (1 _

P—2 \";
ml_//):o_ll_/) ’
where
+ |y ify>0
YT {O otherwise
was used by [42]. Also, to overcome the singularity prob-
lem, [43] considered a special situation where Xg is diag-

onal, and constructed a hierarchical Bayesian model. They
proposed estimator of the following form

ﬁT:O_ @—m@—n>-

-/ 1 —_ Y1
mm—3)Y K'Y
where K, = Diag(Xg).
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For the case of estimating the covariance matrix, X,
of individual-observations, one typical approach is to esti-
mate it using the unbiased estimate, given as § =
— Y i —¥)(y;—¥) [2]. Also, the use of mean square
successive difference (MSSD) approach for estimating the

. . . . - vV'v
variance-covariance matrix, given by Xssp = ﬁ
" —
where v; = y;0; —y;,i = 1,2,...,m —1,and V is

. — T T T ’
a column vector, given by V. = (v{,v,, - ’v(m—ll) was

pro}gosed by [44]. [45] proposed estimator of the form X gy =

ij, where F; = F;_1 + (yi — y)(y; —y) where, Fy =
O,m i = 1,2,...,m. Also, use of shrinkage estimates of
covariance matrix have been examined in SPC literature. For
example, [12], [13] investigated the use of weighted average
of the empirical unbiased estimate S and a target matrix
T, given as s = AT + (1 — A)S, where A € [0, 1]
represents the shrinkage parameter, A = 1 gives ) s =T,
and A = O implies 5 = S. The optimal value of A was
obtained by minimizing R(}) = ||)A:S — ):0||12v, where, ||.||127
is the squared Frobenius norm. Some other approaches for
estimating the covariance matrix include, the use of adaptive
thresholding [46], penalized likelihood estimation [47]-[49],
or ridge penalized likelihood ratio [50], [51].

Once p and X are estimated, the proposed charts can be
constructed for monitoring shifts in the process mean vector
in Phase II, where the process monitoring is initiated. The
estimated parameters, along with the specified smoothing
parameter w and the charts’ limits (&), are used. At each
time i in Phase II where the process might have shifted
from py to py, draw a random sample from the process.
Compute the charts’ statistics and compare them against their
corresponding limits. For any of the proposed charts, if the
chart’s statistic is plotted above its limit, the process at time
i is reported to be OOC; otherwise, the process is considered
to be IC.

VI. ILLUSTRATIVE EXAMPLE

We illustrate the performance of the proposed charts using
the Kulpa data set reported by Santoz-Fernandez [52]. The
data set consists of p = 2 and m = 113 observations. Since
the true mean vector and covariance parameters of the data
are unknown. Here, we estimate them using Y (the unbiased
sample mean vector) and S (the unbiased sample covariance
matrix), respectively. The unbiased estimates ¥ and § are
given as:

Y = [0.04452212 2.40780531]
and
S— 0.36733143  0.02028655
~10.02028655  0.53718052,
respectively.

To investigate the detection ability of the charts in Phase
II, a shift of size § = 0.1 unit is added to the m = 113
observations. The results of the classical charts: MCUSUM,
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FIGURE 2. Results of the two one-sided charts.
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FIGURE 3. Results of the one-sided charts.

MEWMA and MHWMA charts are given in Figure 1. The
results of the two-sided charts, including the TMCUSUM,
TMEWMA, TMHWMAI and TMHWMAII charts, are pro-
vided in Figure 2. Also, the results of the one-sided charts,
including the OMCUSUM, OMEWMA, OMHWMAI and
OMHWMALII charts, are provided in Figure 3. The values of
h given in Table 10 are used to fixed the in-control ARL of
the charts to 200.

As shown in Figure 1, the MCUSUM, MEWMA and
MHWMA charts detect six, five and fifteen out-of-control
samples. In the case of monitoring both upward and down-
ward shifts, the TMCUSUM, TMEWMA, TMHWMALI and
TMHWMALII charts (in Figure 2) trigger one, two, zero,
and fifteen out-of-control samples, respectively. Lastly, the
OMCUSUM, OMEWMA, OMHWMAI and OMHWMAII
charts used for monitoring upward shifts (in Figure 3) trig-
ger five, six, seven, and thirty-three out-of-control samples,
respectively. The results in Figures 1 to 3 demonstrate the
advantage of the OMHWMALII chart (in Figure 3) over the
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classical MHWMA chart. The results show that using the
directional sensitive OMHWMAII chart detects the shifts
faster than the classical MHWMA directional invariant chart.
The results also show the advantage of one-sided charts over
the two one-sided charts. Finally, the results show the advan-
tage of the OMHWMAII chart (or the TMHWMALII chart)
over the competing charts when interest lies in monitoring
upward shift (or both upward and downward shift, respec-
tively) in the process mean vector.

VIl. CONCLUSION

We proposed new one-sided and two one-sided control charts
for monitoring shifts in the process mean vector. The pro-
posed charts are obtained in the forms of the multivari-
ate homogeneously weighted moving average approach that
yield an efficient way to detect small shifts in the process
mean. We provided simulation results under different shift
sizes in the process mean vector and evaluated the perfor-
mance of the proposed charts in terms of their run length
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properties. Our simulation results showed that the proposed
OMHWMALII chart for the case monitoring upward shifts (or
proposed two one-sided TMHWMAII chart) detects smaller
shifts in the mean vector more rapidly than the larger shift.
In contrast, the proposed OMHWMAI chart, for the case
of monitoring upward shifts (or proposed two one-sided
TMHWMALI chart), detects larger shifts in the mean vector
more rapidly than smaller shifts.

The average run length (ARL) comparisons of the pro-
posed charts with the classical, one-sided and two one-sided
charts versions of the MEWMA and MCUSUM charts
showed that the proposed OMHWMAII chart (or TMHW-
MAII chart) is more efficient than the existing charts used for
the same purpose, especially when interest lies in detecting
a small shift in the process mean. In contrast, the proposed
OMHWMALI chart (or TMHWMALI chart) outperformed the
existing charts when interest lies in detecting a large shift in
the process mean vector.

We investigated the charts’ sensitivity to non-normal dis-
tributions and showed how they could be designed to be
robust to non-normality. Simulation results showed that the
proposed charts are particularly robust to non-normality when
a smaller value of w is used. In particular, the charts can be
designed to have IC run-length performance that is very close
to that of the chart based on normal distribution when a small
smoothing parameter is used. We gave a step-by-step imple-
mentation of the proposed charts when their parameters are
unknown and need to be estimated from historical in-control
samples. We consider that more research work on the effects
of parameters estimation on the performance of the charts (in
Phase II) is required in the future. Also, optimal parameters
of the charts warrant study.
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