
mathematics

Article

On Phase-I Monitoring of Process Location Parameter
with Auxiliary Information-Based Median
Control Charts

Shahid Hussain 1,2,*, Sun Mei 1,*, Muhammad Riaz 3 and Saddam Akber Abbasi 4

1 Faculty of Science, Institute of Applied Systems Analysis, Jiangsu University, Zhenjiang 212013, China
2 Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan
3 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia; riazm@kfupm.edu.sa
4 Department of Mathematics, Statistics, and Physics, Qatar University, Doha 2713, Qatar;

sabbasi@qu.edu.qa or saddamabbasi@yahoo.com
* Correspondence: shahidhussain@ujs.edu.cn or shahid_libra82@hotmail.com (S.H.); sunm@ujs.edu.cn (S.M.)

Received: 9 March 2020; Accepted: 21 April 2020; Published: 2 May 2020
����������
�������

Abstract: A control chart is often used to monitor the industrial or services processes to improve the
quality of the products. Mostly, the monitoring of location parameters, both in Phase I and Phase
II, is done using a mean control chart with the assumption that the process is free from outliers
or the estimators are correctly estimated from in-control samples. Generally, there are question
marks about such kind of narratives. The performance of the mean chart is highly affected in the
presence of outliers. Therefore, the median chart is an attractive alternative to the mean chart in this
situation. The control charts are usually implemented in two phases: Phase I (retrospective) and
Phase II (prospective/monitoring). The efficiency of any control chart in Phase II depends on the
accuracy of control limits obtained from Phase I. The current study focuses on the Phase I analysis
of location parameters using median control charts. We examined the performance of different
auxiliary information-based median control charts and compared the results with the usual median
chart. Standardized variance and relative efficacy are used as performance measures to evaluate the
efficiency of median estimators. Moreover, the probability to signal measure is used to evaluate the
performance of proposed control charts to detect any potential changes in the process. The results
revealed that the proposed auxiliary information based median control charts perform better in
Phase I analysis. In addition, a practical illustration of an industrial scenario demonstrated the
significance of the proposed control charts, in which the monitoring of concrete compressive strength
is emphasized.

Keywords: auxiliary information; median control charts; Phase I monitoring; probability to signal;
relative efficiency; standardized variance

1. Introduction

Quality improvement is a never-ending process in manufacturing industries. There is always a
need to increase the quality of a product by reducing process variations. Statistical Process Control
(SPC) is the core field of statistics that supports essential methods to complete this objective. SPC
consists of a toolkit that is employed to monitor industrial processes and to boost the quality of the
product(s) by reducing the variability in the product(s) [1]. The SPC toolkit contains a Pareto chart,
scatter diagram, cause and effect diagram, check sheet, histogram and control chart, the last one being
the most prominent and frequently used tool in the SPC toolkit. A control chart, initially developed in
1924 by Walter A. Shewhart, later published in [2], is a graphical display of the quality characteristic
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used for the monitoring of the process. The main innovative idea of Shewhart is to define the variability
of a production process using statistical thoughts and further divide the variation of a process into
common and special causes. At present, the choice of an appropriate statistical control chart has
become a prime concern of professionals for quality control in manufacturing industries [1].

The monitoring of process parameters (location or dispersion) by applying control charts is mainly
categorized into two phases: Phase I (retrospective phase) and Phase II (prospective/monitoring phase).
In Phase I, we attempt to adjust a process for stability (in-control state) with respect to different process
parameters, which usually happens at the first monitoring process (e.g., the output of production from
the first installation of a machine). There is a need for the small dataset from the process to apply the
Phase I control chart in order to know whether it is in-control or needs an amendment, if the process is
not in an in-control state. Usually, this exercise needs to be repeated a number of times until the process
is in-control. The next step for online monitoring, using a controlled structure in Phase I, is to construct
a control chart. The main goal for Phase II is the quick signaling of an out-of-control situation of the
process parameters. A control chart assumes that the process parameters of the in-control samples
are either known or correctly estimated from Phase I samples. In reality, the process parameters are
unknown or estimated from an inadequate number of samples, which influences the results of the
control chart in terms of detection ability (see, [3,4]). The effectiveness of any Phase II control chart is
determined by the accurate limits of the Phase I control chart. The main reason for the difference in
performance is the variability of the parameter estimates. A number of researchers have studied the
performances of control charts in Phase I analysis [5–7].

In SPC, it is a common practice to use mean (Y) or the variance (S2) in control charts for process
monitoring. However, other estimators like median (Ỹ) have received less attention for this purpose.
The mean chart is a more effective chart to detect out-of-control signals as compared to the median
chart under normality. However, in abnormal cases, where we come across outliers, the median chart
is a good substitute for the mean chart. The median chart is robust and very simple compared to
the mean chart in the presence of outliers (contamination) or small deviations from normality [8].
These characteristics (properties) strengthen the use of the median chart in a long running process
or without checking possible outliers. There is a relatively small body of literature concerned with
median control charts (see [9–13]). Furthermore, to investigate the effect of estimated parameters on the
deduction ability of the median control chart, Castagliola and Figueiredo [14] presented the Shewhart
median charting structure with estimated parameters. They also gave recommendations about the
selection of the number of initial subgroups by comparison of Shewhart median chart in both known
and unknown (estimated) parameter cases. The exponentially weighted moving average (EWMA)
median chart with estimated parameter for the monitoring of location parameters was proposed by
Castagliola et al. [8]. They showed that the large number of initial samples can reduce the difference
between known and estimated parameters. Castagliola et al. [15] proposed the estimated parameters
study for the cumulative sum (CUSUM) structure of the median control chart. Tran [16] suggested the
investigation of run rules median chart in the existence of measurement errors. Recently, Teng et al. [17]
presented the run rules median chart with estimated parameters. Motivated by the above research,
we proposed and investigated various median charts for the effective monitoring of process locations
under contaminated situations.

The supplementary extra (or auxiliary) information correlated or associated with the variable of
interest results into the reduction of the variance. The auxiliary information, i, enhances the precision of
estimator(s) or improves the sampling plan. There are several studies in literature of survey sampling
available for the use of auxiliary information and it has been conclusively shown that the use of auxiliary
information enhances the accuracy of estimators for population mean [18], population median [19] or
population variance [20].

In SPC literature, the use of auxiliary information has been proven successful to improve the
efficiency of control chart structures. Zhang [21] used the auxiliary variable regressed by the variable of
interest in the cause-selecting control chart. The study of [22,23] introduced control charts for location
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and dispersion monitoring, respectively, by using a regression estimator, and showed the enhancement
in the efficiency of the control chart based on the auxiliary variable. Some other useful literature
includes [24,25] for location parameter, and [13,26] for dispersion parameter.

The International Organization for Standardization (ISO) is a global organization of national
standard bodies which encourage international trade in goods and services, promote international
cooperation in intellectual, scientific, technological and economical activities and support the
development of international standardization activities. No universal agreement has been reached in
the past on the use of control charts. Various companies had various rules. A number of international
regulatory standards, such as ISO 7870-1 [27], ISO 7870-2 [28], ISO 7870-3 [29], ISO 7870-4 [30], ISO
7870-5 [31] and ISO 7870-6 [32] are being developed and are widely accepted with massive business
exchanges in countries of different levels of quality. This is in addition to the international regulatory
standards [33] and [34]. The international standard provides a guide on the application and knowledge
of the methods of statistical control of a process by the Shewhart control chart known as ISO 7870-2:2013
Control charts. There are different parts for ISO 7870-2:2013, in which the second part is related to
Shewhart control charts and deals with statistical methods for process control using Shewhart charts.
Some additional information related to Shewhart charts, like process capability, analysis of trend
pattern and use of warning limits is briefly included.

The control process in Phase I can be iterative and control limits are generally seen as trail limits,
as defined in [1]. When statistical checks are developed in order to satisfy the user, any in-control
data (also known as reference data) in unknown quantities (parameters) are estimated to lead to
the development of control charts in order to allow for the efficient process monitoring in Phase II.
It is therefore no wonder that the effectiveness of the Phase II process monitoring critically depends
on the performance of the related Phase I study. Motivated by the above-cited literature, auxiliary
information-based median control charts for location monitoring, particularly for Phase I analysis, is
the main idea of this study, because Phase I analysis for any monitoring plays a crucial role in the
monitoring of parameters. The organization of this article is as follows: the details about median
estimators with their biases and mean square errors are presented in Section 2. The control charting
structure of auxiliary information based median control charts are given in Section 3. Section 4 presents
the information about performance measures used to evaluate the charting structures. The results
discussion and comparative analysis is provided in Section 5. An illustrative example with a real
dataset for the application of control charts is included in Section 6, and finally, the summary and
conclusions of the study are given in Section 7.

2. Auxiliary Information Based Location Median Estimators and Their Properties

Let us assume that the characteristic of interest (study variable) is represented by Y and the
auxiliary characteristic (variable) is represented by X—follow the bivariate normal distribution with
means µy and µx, respectively, with standard deviations σy and σx, medians My and Mx, coefficient of
variations Cy and Cx, coefficient of kurtosis β2(y) and β2(x) and correlation coefficient ρyx. Similarly,
let (yi, xi) for (i = 1, 2, 3, . . . , n) be a bivariate ransom sample of size n. The notations for sample
quantities are explained as; the sample means of Y and X are y and x, respectively, sample standard
deviations are sy and sx and the sample medians are M̂y and M̂x. On the basis of this preliminary
information, we considered some auxiliary information-based efficient median estimators for the
estimation of the median of quality characteristic My. Let the correlation coefficient between (M̂x, M̂y)

be ρ
(M̂x, M̂y)

= ρc = 4P11(x, y) − 1, where P11(x, y) = P(X ≤Mx ∩Y ≤My) is the probability of the

population units with X ≤Mx and Y ≤My. It is further assumed the limiting distribution of (X, Y) is a
continuous distribution with marginal densities fx(x) and fy(y) and also the quantities fx(Mx) and
fy(My) are positive.

These median estimators Ma (a = 1, 2, . . . , 6) with their respective bias, B(.) And mean square
error, MSE(.) are presented below:
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(i) The usual median estimator

The most commonly used estimator for the median is sample median, which is an unbiased
estimator defined as:

M1 = M̂y (1)

Up to the first degree of approximation, the MSE of the usual estimator is

MSE(M1) = λM2
yC2

My
= Var(M1) (2)

where λ = 1
4 (

1
n −

1
N ) and CMy = 1

[My fy(My)]
.

(ii) Ratio estimator

The ratio estimator for the population median with known population median of auxiliary variable
(Mx) has been introduced by Kuk and Mak [35], defined as:

M2 = M̂R = M̂y

(
Mx

M̂x

)
(3)

The bias and MSE of the ratio estimator up to the first-degree approximation is

B(M2) = λMy(C2
Mx
−CMyx)

MSE(M2) = λM2
y(C2

My
+ C2

Mx
− 2CMyx)

 (4)

where CMx = 1
[Mx fx(Mx)]

and CMyx = ρcCMyCMx . The constants λ and CMy are already defined above.

(iii) Ratio type estimators

Singh et al. [36] introduced a variety of ratio-type estimators for the population median with a
known coefficient of variation (Cx) and coefficient of kurtosis (β2(x)) of auxiliary variable, which are
defined as:

M3 = M̂y

(
Mx + Cx

M̂x + Cx

)
(5)

M4 = M̂y

Mx + β2(x)

M̂x + β2(x)

 (6)

M5 = M̂y

Mxβ2(x) + Cx

M̂xβ2(x) + Cx

 (7)

M6 = M̂y

MxCx + β2(x)

M̂xCx + β2(x)

 (8)

The biases of the above mentioned ratio-type estimators for population median up to the
first-degree approximation are

B(M3) = λMy(1 + φ2
1C2

Mx
−φ1CMyx)

B(M4) = λMy(1 + φ2
2C2

Mx
−φ2CMyx)

B(M5) = λMy(1 + φ2
3C2

Mx
−φ3CMyx)

B(M6) = λMy(1 + φ2
4C2

Mx
−φ4CMyx)


(9)
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Similarly, the mean square errors (MSEs) for above mentioned ratio-type estimators for population
median up to the first-degree approximation are

MSE(M3) = λM2
y(C2

My
+ φ2

1C2
Mx
− 2φ1CMyx)

MSE(M4) = λM2
y(C2

My
+ φ2

2C2
Mx
− 2φ2CMyx)

MSE(M5) = λM2
y(C2

My
+ φ2

3C2
Mx
− 2φ3CMyx)

MSE(M6) = λM2
y(C2

My
+ φ2

4C2
Mx
− 2φ4CMyx)


(10)

where φ1 = Mx
Mx+Cx

, φ2 = Mx
Mx+β2(x)

, φ3 =
Mxβ2(x)

Mxβ2(x)+Cx
and φ4 = MxCx

MxCx+β2(x)
. The other constant terms

are already defined above.

3. Proposed Phase I Monitoring of Process Location by Median Charts

The location monitoring of the process is carried out using different median estimators defined
in Section 2. The abovementioned median estimators Ma(a = 1, 2, . . . , 6) have already been used in
literature for the monitoring of location parameters in Phase II analysis. For example, the usual median
estimator (M1) has been extensively examined in different charting structures under known and
unknown parameters (cf. [8,14,15,17,37]. The other auxiliary information-based median estimators
(M2 −M6) have only been studied in Phase II studies [12,13,38]. Therefore, none of the above-mentioned
median estimators (M1 −M6) have been studied under the case of Phase I control charting structure.

Assume that there are m (> 1) independent subgroups each with size n (> 1). The data point
are represented by Y ji, which symbolizes the ith observation in jth subgroup, i = 1, 2, . . . , n and
j = 1, 2, . . . , m. In addition, assume that the underlying process distribution is continuous (e.g., normal).
If the mean (µ0) and standard deviation (σ0) in-control process parameters are not known, then the
initial subgroups ( j = 1, 2, . . . , m) each of size n

{
Y j,1, Y j,2, . . . , Y j,n

}
(called Phase I dataset) are used to

estimate the unknown parameters. Suppose that the subgroups are independent (within and between
subgroups) and Y j,i ∼ N(µ0, σ2

0). There are numerous methods to estimate µ0 and σ0, but the most
common method for estimating them is defined as:

µ̂0 =
1
m

m∑
j=1

Y j (11)

σ̂0 =
1

c4,n

 1
m

m∑
j=1

S j

 (12)

In Equations (11) and (12), the mean and standard deviation of jth subgroup are denoted by Y j

and S j, respectively, and in normal case, the constant c4,n is defined as c4,n = E
(

S j
σ0

)
. Generally, this

combination is used in the case of the mean (Y) control chart, but not suitable for the median (Ỹ)
control chart. We used the following estimates of µ0 and σ0 to increase the efficiency of the median
control chart.

µ̂′0 = median(medians) =


Ỹ j,(m+1

2 ) i f m is odd
Ỹ j,( m

2 )+Ỹ j,( m
2 +1)

2 i f m is even
(13)

where
{
Ỹ j,(1), Ỹ j,(2), . . . , Ỹ j,(n)

}
are the ordered medians of jth subgroup. Similarly, the standard deviation

(σ0) is estimated with the median absolute deviation (MAD), which is defined as the median of the
absolute deviations from the median, mathematically represented as MADi = 1.4826 ∗median(|Yi − Ỹ j|),
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and is a robust measure in the case of outliers or non-normality. The details about MAD can be seen
in [26,39–41]. An unbiased MAD-based estimator of σ0 is described as:

σ̂′0 =
1

d2,MAD

 1
m

m∑
j=1

MAD j

 (14)

where d2,MAD is a constant formulated for the normal distribution. If the process parameters µ0 and σ0

are unknown, then replace them by their estimators µ̂′0 and σ̂′0 to generate the data for the estimation of
ga (mean of estimator Ma) and da (standard deviation of estimator Ma). The value of µ̂′0 is calculated as
the median of medians for m subgroups and σ̂′0 is the median absolute deviation (MAD) of m subgroups.
The Phase I control chart is the plot of all charting statistics of m subgroups on the estimated control
limits. The estimated control limits for random variable charting statistic Ma are defined as

L̂CLa = µ̂′0 −Ka
σ̂′0

√
n∗d2,MAD(a)

ĈLa = µ̂′0
ÛCLa = µ̂′0 + Ka

σ̂′0
√

n∗d2,MAD(a)

 f or a = 1, 2, . . . , 6 (15)

In the known parameter case, the lower control limit (LCL) and upper control limit (UCL) are
constant, but for unknown parameter case, L̂CLa and ÛCLa are not constant and treated as random
variables. It should be noted that, in the case of unknown parameters, the value of Ka depends on the
choices of n, m, ρxy and the prefixed false alarm rate (α) or the in-control average run length (ARL0).
For a given probability of type-I error,

P(L̂CLa ≤Ma ≤ ÛCLa) = 1− α, f or a = 1, 2, . . . , 6 (16)

We will use the respective sample statistic Ma ( f or a = 1, 2, . . . , 6) as the plotting quantity on its
corresponding charting structure. Furthermore, after introducing the shift in the mean of the study
variable, an out-of-control signal will be observed after setting the limits for a specific control chart
satisfying Equations (15) and (16). The process location parameter is said to be in-control if Ma falls
inside its respective control limits, otherwise it is out-of-control.

4. Performance Evaluation of Median Control Charts in Phase I

In this section, by using some performance measures, we compared the efficiency of all median
control charts mentioned in Section 2. In the Phase I and Phase II analysis, there are several measures
available to assess the performance of the control chart, including variance, mean square error (MSE),
relative mean square error (RMSE), relative efficiency (RE), average time to signal (ATS), probability
to detect out-of-control data in Phase I, average run length (ARL), probability to signal and different
run length properties (cf. [1,22,26,42–45] and the references therein). We considered the relative
efficiency (RE) measure for the comparison of estimators and the probability to signal measure to
compare the performances of the proposed control charts using the Monte Carlo simulations approach.
We computed the standardized variance of the median estimators (denoted as SVMa), proposed by
Rousseeuw and Croux [46] and the relative efficiencies of the median estimators as exercised by [47,48]
for comparison, and to assess the efficiency of the median estimators considered in this study. The SVMa

of a median estimator Ma ( f or a = 1, 2, . . . , 6) is calculated as

SVMa =
nVAR(Ma)

[E(Ma)]
2 (17)
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To get the natural measuring of the accuracy for a parameter, the denominator [E(Ma)]
2 is required

(cf. [49]). By using SVMa , for any median estimator, the mathematical formula to compute relative
efficiency (RE) is described as

REMa =
min(SVMa)

SVMa

(18)

SVMa and REMa are computed by generating 105 samples of sizes n = 5, 7, 10 and 12 and
considering correlations ρ = 0.20, 0.50, 0.80 and 0.95 by using the normal distribution. SVMa are
presented numerically in Table 1 and REMa are presented graphically in Figure 1 for comparison
purposes. In each plot, the relative efficiencies are plotted on the y-axis and sample sizes are on
the x-axis.

Table 1. d2,MAD and standardized variance for different median estimators.

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

n ρ d2,MAD Standardized Variance (SVMa )

5

0.20 0.5363 0.7254 0.7094 0.5966 0.7199 0.5349 0.0576 0.1032 0.0989 0.0707 0.1017 0.0572
0.50 0.5363 0.6210 0.6075 0.5222 0.6163 0.5037 0.0576 0.0760 0.0729 0.0544 0.0749 0.0508
0.80 0.5362 0.4558 0.4462 0.4084 0.4524 0.4605 0.0575 0.0412 0.0396 0.0334 0.0406 0.0425
0.95 0.5358 0.2676 0.2626 0.2917 0.2657 0.4238 0.0575 0.0143 0.0138 0.0171 0.0141 0.0361

7

0.20 0.4584 0.6172 0.6041 0.5103 0.6127 0.4577 0.0589 0.1051 0.1008 0.0725 0.1036 0.0586
0.50 0.4585 0.5321 0.5210 0.4490 0.5283 0.4318 0.0589 0.0784 0.0753 0.0563 0.0773 0.0522
0.80 0.4581 0.3999 0.3917 0.3566 0.3970 0.3960 0.0588 0.0445 0.0427 0.0356 0.0439 0.0440
0.95 0.4578 0.2458 0.2412 0.2585 0.2441 0.3645 0.0587 0.0169 0.0163 0.0188 0.0166 0.0373

10

0.20 0.3720 0.4936 0.4835 0.4109 0.4901 0.3704 0.0554 0.0965 0.0927 0.0673 0.0952 0.0549
0.50 0.3717 0.4204 0.4119 0.3577 0.4174 0.3477 0.0553 0.0702 0.0675 0.0511 0.0692 0.0484
0.80 0.3715 0.3079 0.3018 0.2790 0.3057 0.3177 0.0552 0.0378 0.0363 0.0311 0.0373 0.0404
0.95 0.3714 0.1829 0.1797 0.2005 0.1817 0.2931 0.0552 0.0134 0.0129 0.0161 0.0132 0.0344

15

0.20 0.3186 0.4244 0.4158 0.3538 0.4214 0.3181 0.0609 0.1073 0.1031 0.0749 0.1058 0.0607
0.50 0.3186 0.3687 0.3614 0.3132 0.3662 0.3008 0.0609 0.0811 0.0780 0.0588 0.0800 0.0543
0.80 0.3189 0.2843 0.2788 0.2534 0.2823 0.2776 0.0610 0.0483 0.0465 0.0385 0.0477 0.0463
0.95 0.3189 0.1895 0.1861 0.1913 0.1883 0.2571 0.0610 0.0215 0.0208 0.0220 0.0212 0.0397

Usually, samples in rational subgroups are obtained from the process introduced by Shewhart,
to apply the control charting structure. The main aim of the rational subgroups is to maximize
the chances of differences between subgroups and to minimize differences within subgroups in the
presence of assignable causes [1]. For our study, we considered 30 subgroups (m = 30) each of size
n (n = 5, 7, 10 and 15) from the normal probability distribution. We divided subgroups into two
portions as m0 and m1 (as m = m0 + m1). The stable subgroups are considered to be m0 while m1

(remaining subgroups) have variations in the form of shifts in parameter. The probability of signaling
for m1 = 3, 6, 9 and 12 was computed, which means that 3, 6, 9 or 12 samples out of 30 are considered
to be contaminated with shift (δ). Phase I analysis is aimed preliminary, as quickly as possible, at
the identification of these inconsistent (contaminated) samples. For the in-control (stable) samples,
observations with a normal in-control mean and variance as µ0 = 5 and σ0 = 1, respectively, were
taken into account without loss of generality, whereas for the out-of-control situation, the sample
observations are contaminated with the shift in mean of µ1 = µ0 + δσ0, where δ is the shift amount.
The mean vector µ with the in-control mean of study variable Y as µ0 and known mean of auxiliary

variable X as µX and sigma matrix Σ with population variances of study and auxiliary variables as σ2
Y

and σ2
X, respectively for this bivariate normally distributed process are expressed as:

µ =

(
µ0 + δσY
µX

)
=

(
5 + δ

5

)
, Σ =

(
σ2

Y Cov(Y, X)

Cov(X, Y) σ2
X

)
=

(
1 ρ
ρ 1

)
(19)
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Figure 1. Comparison of relative efficiency of different median estimators at correlations: (a) ρ = 0.30;
(b) ρ = 0.50; (c) ρ = 0.80; (d) ρ = 0.95.

For the dataset of m samples (subgroups), the control limits specified in Section 3 are determined
for the structures described in Section 2. For all control charts, the values of control limit multipliers
(K) are correctly chosen to achieve a pre-selected value of α (false alarm probability). We presented
values of K for n = 10 and correlations as ρ = 0.20, 0.50, 0.80 and 0.95 in Table 2.

Table 2. Control chart multipliers (Ka) for obtaining α = 0.01 using n = 10 at different levels of ρ.

ρ M1 M2 M3 M4 M5 M6

0.20 5.824 7.712 7.581 6.210 7.630 5.640
0.50 5.800 7.011 6.720 5.474 6.872 5.340
0.80 5.680 4.910 4.803 4.360 4.838 4.900
0.95 5.712 2.905 2.806 3.151 2.859 4.462

First of all, we observe the probability that a single sample will be signaled (denoted by α∗) and
then, by using the relationship α = 1− (1− α∗)m, we can calculate the overall false alarm probability
(α) for m samples. One may see [6,26,50,51] for further details. Once the control charts limits are fixed,
median estimators Ma ( f or a = 1, 2, . . . , 6) were used to detect out-of-control signals according to their
respective control limits. We repeat this process 10,000 times to fix the α = 0.01 and chose values of
K using m = 30 and n = 5, 7, 10 and 15 for all median control charts. We also considered different
values of m1 as 3, 6, 9 and 12 and considered correlations ρ = 0.20, 0.50, 0.80 and 0.95 to investigate
the signaling probabilities. Such m1 values indicate the different situations in which the samples out of
30 are known to have a change in mean with shift δ. The probability of signaling various δ values for
m1 = 3, 6, 9 and 12 are graphically illustrated (see Figures 2–8).
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Figure 2. Probability to signal plot for different auxiliary information based median charts using n = 10,
m = 30, ρ = 0.30 and α = 0.01 at (a) m1 = 3, (b) m1 = 6, (c) m1 = 9, (d) m1 = 12.Mathematics 2020, 8, x FOR PEER REVIEW 9 of 21 
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Figure 3. Probability to signal plot for different auxiliary information based median charts using n = 10,
m = 30, ρ = 0.50 and α = 0.01 at (a) m1 = 3, (b) m1 = 6, (c) m1 = 9, (d) m1 = 12.



Mathematics 2020, 8, 706 10 of 21

Mathematics 2020, 8, x FOR PEER REVIEW 10 of 21 

 

defined in Equation (18). Table 2 represents the control chart multipliers 𝐾, defined in Equation (15) 
for correlations 𝜌 = 0.20, 0.50, 0.80 and 0.95 and 𝑛 = 10.  

 
Figure 4. Probability to signal plot for different auxiliary information based median charts using 𝑛 = 10, 𝑚 =  30, 𝜌 = 0.80 and 𝛼 =  0.01 at (a) 𝑚ଵ = 3, (b) 𝑚ଵ = 6, (c) 𝑚ଵ = 9, (d) 𝑚ଵ = 12. 

 
Figure 5. Probability to signal plot for different auxiliary information based median charts using 𝑛 = 10, 𝑚 =  30, 𝜌 = 0.95 and 𝛼 =  0.01 at (a) 𝑚ଵ = 3, (b) 𝑚ଵ = 6, (c) 𝑚ଵ = 9, (d) 𝑚ଵ = 12. 

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

 M1  M2  M3  M4  M5  M6
Pr

ob
 to

 S
ig

na
l

Shift

Pr
ob

 to
 S

ig
na

l

Shift

Pr
ob

 to
 S

ig
na

l

Shift

(a)

(c) (d)

(b)

Pr
ob

 to
 S

ig
na

l

Shift

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

 M1  M2  M3  M4  M5  M6

Pr
ob

 to
 S

ig
na

l

Shift

Pr
ob

 to
 S

ig
na

l

Shift

Pr
ob

 to
 S

ig
na

l

Shift

(a) (b)

(c) (d)

Pr
ob

 to
 S

ig
na

l

Shift

Figure 4. Probability to signal plot for different auxiliary information based median charts using n = 10,
m = 30, ρ = 0.80 and α = 0.01 at (a) m1 = 3, (b) m1 = 6, (c) m1 = 9, (d) m1 = 12.

Mathematics 2020, 8, x FOR PEER REVIEW 10 of 21 

 

defined in Equation (18). Table 2 represents the control chart multipliers 𝐾, defined in Equation (15) 
for correlations 𝜌 = 0.20, 0.50, 0.80 and 0.95 and 𝑛 = 10.  

 
Figure 4. Probability to signal plot for different auxiliary information based median charts using 𝑛 = 10, 𝑚 =  30, 𝜌 = 0.80 and 𝛼 =  0.01 at (a) 𝑚ଵ = 3, (b) 𝑚ଵ = 6, (c) 𝑚ଵ = 9, (d) 𝑚ଵ = 12. 

 
Figure 5. Probability to signal plot for different auxiliary information based median charts using 𝑛 = 10, 𝑚 =  30, 𝜌 = 0.95 and 𝛼 =  0.01 at (a) 𝑚ଵ = 3, (b) 𝑚ଵ = 6, (c) 𝑚ଵ = 9, (d) 𝑚ଵ = 12. 

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

 M1  M2  M3  M4  M5  M6
Pr

ob
 to

 S
ig

na
l

Shift

Pr
ob

 to
 S

ig
na

l

Shift

Pr
ob

 to
 S

ig
na

l

Shift

(a)

(c) (d)

(b)

Pr
ob

 to
 S

ig
na

l

Shift

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

 M1  M2  M3  M4  M5  M6

Pr
ob

 to
 S

ig
na

l

Shift

Pr
ob

 to
 S

ig
na

l

Shift

Pr
ob

 to
 S

ig
na

l

Shift

(a) (b)

(c) (d)

Pr
ob

 to
 S

ig
na

l

Shift

Figure 5. Probability to signal plot for different auxiliary information based median charts using n = 10,
m = 30, ρ = 0.95 and α = 0.01 at (a) m1 = 3, (b) m1 = 6, (c) m1 = 9, (d) m1 = 12.
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Figure 6. Probability to signal plot for different sample sizes using m = 30, ρ = 0.95 and α = 0.01 of:
(a) M3 and m1 = 6; (b) M3 and m1 = 9; (c) M4 and m1 = 6; (d) M4 and m1 = 9.
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Figure 7. Probability to signal plot for different correlations using m = 30, n = 10 and α = 0.01 of:
(a) M3 and m1 = 6; (b) M3 and m1 = 9; (c) M4 and m1 = 6; (d) M4 and m1 = 9.
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Figure 8. Probability to signal plot for different m1 values using m = 30, n = 10 and α = 0.01 of: (a) M3

and ρ = 0.50; (b) M3 and ρ = 0.95; (c) M4 and ρ = 0.50; (d) M4 and ρ = 0.95.

5. Discussion and Comparative Analysis

In this section, we present a comparative debate based on calculations conducted in Section 4
for the various median control charts investigated in this study. The charts that have the highest
probability of signaling out-of-control samples are considered better than others for a fixed false alarm
probability (α). The results include the values of a constant d2,MAD(n) and standardized variance
SVMa defined in Equation (17), and are presented in Table 1. Figure 1 represents the graphical
comparison of estimators considered in this study with respect to their relative efficiencies, defined
in Equation (18). Table 2 represents the control chart multipliers Ka, defined in Equation (15) for
correlations ρ = 0.20, 0.50, 0.80 and 0.95 and n = 10.

Similarly, the comparison of the median control charts (M3 and M3) with respect to correlations
is presented in Figure 7 for m = 30, n = 10, m1 = 6 and 9. Figure 8 represents the effect of unstable
(or stable) subgroups effect on the efficiency of median charts (M3 and M3) for m = 30, n = 10,
ρ = 0.5 and 95. The signaling probabilities of the median charts are provided in Table 3 for m = 30,
n = 10, ρ = 0.80, m1 = 3, 6, 9 and 12 at various values of shift (δ). Similarly, the signaling
probabilities for the median control charts are also presented in graphical forms for m = 30, n = 10,
m1 = 3, 6, 9 and 12 ρ = 0.20, 0.50, 0.80 and 0.95 at various values of shift (δ) in Figures 2–5. The effect
of sample size on the performance of the median control charts (M3 and M3) is presented in Figure 6
for m = 30, m1 = 6 and 9 ρ = 0.95.

From Table 1, we can observe that the auxiliary information-based median estimators have less
standardized variance as compared to the usual median estimator. Furthermore, within the comparison
of auxiliary information based median estimators, M6 has the lowest standardized variance for a small
correlation between the study and auxiliary variables (ρ), M4 has the lowest standardized variance
for a moderate correlation (ρ) and M3 has the lowest standardized variance for a large value of the
correlation (ρ). Alternatively, M2 has the largest standardized variance for a low correlation and the
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usual median estimator M1 has the largest standardized variance for a moderate and high correlation.
Similar behavior can be observed from Figure 1 in the form of relative efficiencies.

Table 3. Probability to signal values for the different median charts when m = 30, n = 10, ρ = 0.80 at
various levels of δ and m1 when α = 0.01.

M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

δ m1=3 m1=6

0.0 0.0104 0.0101 0.0101 0.0102 0.0104 0.0101 0.0104 0.0101 0.0101 0.0102 0.0104 0.0101
0.1 0.0092 0.0094 0.0091 0.0105 0.0101 0.0104 0.0082 0.0096 0.0095 0.0088 0.0097 0.0108
0.2 0.0091 0.0094 0.0088 0.0107 0.0102 0.0101 0.0099 0.0097 0.0100 0.0097 0.0099 0.0088
0.3 0.0094 0.0115 0.0106 0.0101 0.0117 0.0115 0.0093 0.0101 0.0101 0.0098 0.0111 0.0106
0.4 0.0110 0.0136 0.0146 0.0143 0.0142 0.0132 0.0105 0.0111 0.0115 0.0104 0.0121 0.0113
0.5 0.0132 0.0186 0.0200 0.0241 0.0207 0.0173 0.0102 0.0133 0.0131 0.0134 0.0141 0.0116
0.6 0.0172 0.0275 0.0289 0.0365 0.0290 0.0252 0.0134 0.0158 0.0162 0.0206 0.0165 0.0137
0.7 0.0273 0.0429 0.0460 0.0609 0.0463 0.0404 0.0146 0.0207 0.0225 0.0293 0.0222 0.0195
0.8 0.0404 0.0677 0.0712 0.1001 0.0710 0.0625 0.0207 0.0339 0.0347 0.0459 0.0358 0.0294
0.9 0.0608 0.1025 0.1099 0.1598 0.1092 0.0992 0.0271 0.0489 0.0542 0.0779 0.0524 0.0442
1.0 0.0886 0.1504 0.1662 0.2358 0.1610 0.1497 0.0395 0.0768 0.0852 0.1309 0.0825 0.0692
1.3 0.2077 0.3419 0.3720 0.5002 0.3620 0.3497 0.1033 0.2081 0.2316 0.3625 0.2249 0.2056
1.5 0.3971 0.5802 0.6125 0.7416 0.6028 0.5918 0.2467 0.4450 0.4855 0.6692 0.4730 0.4558
1.8 0.6018 0.7708 0.7939 0.8726 0.7851 0.7809 0.4681 0.7075 0.7474 0.8859 0.7322 0.7272
2.0 0.7650 0.8779 0.8896 0.9277 0.8857 0.8819 0.7010 0.8880 0.9104 0.9692 0.9028 0.9009
2.5 0.9137 0.9459 0.9486 0.9546 0.9475 0.9460 0.9505 0.9888 0.9912 0.9965 0.9903 0.9901
3.0 0.9491 0.9564 0.9568 0.9576 0.9567 0.9564 0.9926 0.9976 0.9979 0.9985 0.9977 0.9977
4.0 0.9576 0.9577 0.9577 0.9578 0.9577 0.9578 0.9986 0.9987 0.9988 0.9988 0.9987 0.9987
5.0 0.9577 0.9577 0.9577 0.9578 0.9577 0.9578 0.9988 0.9988 0.9988 0.9988 0.9988 0.9988

m1 = 9 m1 = 12

0.0 0.0104 0.0101 0.0101 0.0102 0.0104 0.0101 0.0104 0.0101 0.0101 0.0102 0.0104 0.0101
0.1 0.0089 0.0102 0.0103 0.0104 0.0114 0.0108 0.0094 0.0115 0.0121 0.0099 0.0125 0.0101
0.2 0.0094 0.0108 0.0104 0.0110 0.0105 0.0083 0.0086 0.0114 0.0107 0.0101 0.0126 0.0084
0.3 0.0080 0.0090 0.0094 0.0085 0.0100 0.0082 0.0088 0.0096 0.0103 0.0083 0.0102 0.0066
0.4 0.0092 0.0089 0.0087 0.0067 0.0089 0.0085 0.0073 0.0058 0.0060 0.0047 0.0065 0.0062
0.5 0.0082 0.0066 0.0064 0.0061 0.0072 0.0080 0.0054 0.0041 0.0037 0.0030 0.0042 0.0040
0.6 0.0075 0.0047 0.0049 0.0050 0.0050 0.0060 0.0040 0.0026 0.0024 0.0014 0.0025 0.0018
0.7 0.0068 0.0050 0.0051 0.0054 0.0053 0.0047 0.0026 0.0010 0.0011 0.0016 0.0014 0.0012
0.8 0.0063 0.0042 0.0049 0.0067 0.0046 0.0050 0.0016 0.0006 0.0006 0.0009 0.0006 0.0006
0.9 0.0058 0.0055 0.0052 0.0100 0.0056 0.0062 0.0009 0.0000 0.0000 0.0008 0.0000 0.0003
1.0 0.0081 0.0076 0.0080 0.0155 0.0085 0.0082 0.0005 0.0000 0.0002 0.0010 0.0000 0.0001
1.3 0.0138 0.0280 0.0339 0.0643 0.0310 0.0269 0.0003 0.0000 0.0001 0.0010 0.0001 0.0001
1.5 0.0352 0.0971 0.1109 0.2059 0.1063 0.0947 0.0001 0.0008 0.0009 0.0040 0.0008 0.0007
1.8 0.0969 0.2456 0.2765 0.4538 0.2663 0.2448 0.0005 0.0030 0.0042 0.0137 0.0034 0.0045
2.0 0.2236 0.4724 0.5228 0.7366 0.5046 0.4876 0.0032 0.0140 0.0167 0.0444 0.0156 0.0138
2.5 0.6493 0.8884 0.9157 0.9813 0.9060 0.9076 0.0294 0.0994 0.1168 0.2489 0.1114 0.1020
3.0 0.9369 0.9923 0.9948 0.9993 0.9940 0.9941 0.1354 0.3540 0.4088 0.6732 0.3891 0.3771
4.0 0.9995 0.9999 0.9999 1.0000 0.9999 0.9999 0.7266 0.9497 0.9668 0.9967 0.9610 0.9590
5.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9910 0.9998 0.9999 1.0000 0.9998 0.9998

The charting structure of the M6 control chart showed the highest signaling probability or best
detection ability to detect an out-of-control signal at large values of shift (δ) followed by the usual
median control chart M1 for the small correlation coefficient (ρ), while the control chart structure of
M2 performs worst for the same situation at different values of m1 (see Figure 2). Similarly, the control
charting structure of M5 performs better for small shifts (i.e., δ < 0.8). Similarly, at ρ = 0.5, control
charting structures M4 and M6 have the largest signaling probabilities at small (i.e. , δ < 1.0) and large
(i.e., δ ≥ 1.0) shift values, respectively. Meanwhile, the structure of M2 chart has the lowest signaling
probabilities (see Figure 3).
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From Figure 4 and Table 3, we observed that the design structure of the M4 median chart exhibited
the best performance while the M1 median chart structure showed the worst performance at both large
and small shift values for ρ = 0.8 and m1 = 3 and 6. With the increasing value of m1, the outer design
structure of M4 performs at a large value of shift (i.e. , δ ≥ 1.0) while the M1 structure showed the best
performance at small shift values (i.e., δ < 1.0).

The design structure of the M3 median chart showed the best performance at ρ = 0.95 for different
values of m1 (see Figure 5). There are some other charts which showed their performances at different
values of m1. For example, the m1 = 3, M3 chart has the largest signaling probabilities at shift values
(δ ≤ 2.0), and at shift values (2.0 < δ ≤ 3.0), the M4 control chart has the largest signaling probabilities,
and for (δ ≥ 3.0), the M6 chart has the highest detection ability. Similarly, for m1 = 6, the M3 median
chart showed the best performance at δ ≤ 2.5 and the outer design structure of the M4 chart performs
at δ > 2.5. For m1 = 9 and 12, the usual median control chart M1 showed the best performance at a
small shift (i.e., δ ≤ 0.8) and the structure of the M3 median chart has the largest signaling probabilities
at moderate and large shift values (i.e., δ > 0.8).

Performance tests for the median charts (M1 −M6) indicate that all charts boost the probability of
signaling in order to detect an out-of-control signal for an increased sample size (n) and correlation
coefficient (ρ). We present this comparison for charts M3 and M4 at ρ = 0.95 and m1 = 6 and 9 in
Figures 6 and 7. From Figure 6, the M3 median design structure showed the best performance at
n = 10, while the M4 median control chart showed the best performance at n = 15. Both charting
structures M3 and M4 exhibited poor performance at a small sample size.

All charting structures improved the performance with increments in correlation. From Figure 7,
we observe that the design structures of the M3 and M4 median control charts exhibited the best
performance at a large correlation coefficient (i.e.,ρ = 0.95) and poor performance at a small value of
correlation coefficient (i.e., ρ = 0.3).

The comparison of different values of m1 for the M3 and M4 median control charts in Figure 8
revealed that, for ρ = 0.5, both the M3 and M4 median control charts have the largest signaling
probabilities at m1 = 3 against small and moderate values of shift (i.e., δ ≤ 2.5) followed by at m1 = 6.
Similarly, for ρ = 0.5, both charting structures M3 and M4 have the following pattern of largest
signaling probabilities at different values of shifts as: largest signaling probabilities at m1 = 3 against
δ ≤ 1.0, at m1 = 6 against 1.0 < δ ≤ 2.0, at m1 = 9 against 2.0 < δ ≤ 3.0 and at m1 = 12 against shift
values δ > 3.0.

6. Practical Implementation

In this section, we considered the practical implantation of our proposed Phase I monitoring
of location parameters with some real processes. For this purpose, we first considered some real
process data, which are available online, and we selected the study variable and correlated the auxiliary
variable from the process data. From the dataset, we selected random subgroups m, each of size n.
After this, we calculated control limits for in-control initial sample m1 to obtain prefixed false alarm
rate α. After obtaining the control limits, we added shift δ in the mean of study variable and calculated
plotting statistics, and then observed the out-of-control samples. All of this algorithm is developed
using R software.

6.1. Case Study-I

In this section, a real-life example is shown in the application of the proposed Phase I median
control charts. For this purpose, we considered real data from the cement industry where the
compression strength of concrete is crucial for the quality of cement production. In a laboratory
experiment, this set of data on concrete compressive strength for a particular mixture were calculated
and were firstly proposed in [52], before being used in many research articles (see [13]).

In this multivariate process, the study variable concrete compressive strength was monitored with
some other auxiliary variables, such as cement, blast, fly ash, water, superplasticizer, coarse aggregate,
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fine aggregate, and age. For our study, we considered bivariate data on the measurement for concrete
compressive strength (measured in MPa), containing the study variable Y and the quantity of cement
(measured in kg in m3 mixture) as auxiliary variable X.

These variables were not scaled, so first we scaled these variables to make their mean set to five,
with a variance of one for the similarity of the simulation study, mentioned in Section 4. The dataset
contains 1030 observations, and we randomly selected 30 subgroups (as m = 30) each of size 10
(as n = 10). For this dataset, we considered the values of m1 as six and nine, which means that
out of 30 subgroups, six and nine samples are contaminated with shift (δ) 2.6 and 3, respectively.
For illustration purposes, we considered two median estimators (M4 and M6) based on auxiliary
variables and compared their performance with the usual median estimator (M1). First, we constructed
their control limits based on in-control samples (m0) and then analyzed their detection ability by
introducing the shift (δ) in the mean of study variable. The values of plotting statistics (M1, M4 and
M6) for both cases m1 = 6 with δ = 2.5 and m1 = 9 with δ = 3 are presented in Table 4 and their control
limits (LCL and UCL) are presented in Table 5. Similarly, the graphical display of plotting statistics
with their respective control limits against m1 = 6 with δ = 2.5 and m1 = 9 with δ = 3 are shown in
Figure 9.

Table 4. Plotting statistics of the median charts based on M1, M4 and M6 for concrete data.

m1=6, δ=2.5 m1=9, δ=3.0

M1 M4 M6 M1 M4 M6

1 4.972 5.084 5.016 4.972 5.084 5.016
2 4.677 5.096 4.836 4.677 5.096 4.836
3 4.440 4.462 4.448 4.440 4.462 4.448
4 4.777 3.859 4.362 4.777 3.859 4.362
5 5.106 5.292 5.179 5.106 5.292 5.179
6 5.243 4.689 5.006 5.243 4.689 5.006
7 7.375 6.721 7.099 7.375 6.721 7.099
8 4.758 5.061 4.874 4.758 5.061 4.874
9 5.387 4.500 4.993 5.387 4.500 4.993
10 4.375 4.545 4.441 4.375 4.545 4.441
11 5.801 5.165 5.529 5.801 5.165 5.529
12 4.685 5.506 4.982 4.685 5.506 4.982
13 6.705 5.721 6.273 6.705 5.721 6.273
14 7.016 6.393 6.753 7.016 6.393 6.753
15 4.413 5.203 4.698 4.413 5.203 4.698
16 4.761 4.937 4.830 4.761 4.937 4.830
17 4.176 3.901 4.061 4.176 3.901 4.061
18 4.711 5.155 4.879 4.711 5.155 4.879
19 4.723 5.407 4.975 4.723 5.407 4.975
20 5.082 4.649 4.899 5.082 4.649 4.899
21 5.665 5.029 5.392 5.665 5.029 5.392
22 3.917 4.549 4.148 6.917 7.549 7.148
23 4.035 4.328 4.147 7.035 7.328 7.147
24 4.158 4.688 4.355 7.158 7.688 7.355
25 7.840 7.275 7.599 8.340 7.775 8.099
26 6.288 6.797 6.476 6.788 7.297 6.976
27 6.906 7.704 7.194 7.406 8.204 7.694
28 6.593 7.253 6.834 7.093 7.753 7.334
29 8.377 9.223 8.688 8.877 9.723 9.188
30 7.898 7.641 7.793 8.398 8.141 8.293
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Table 5. Control limits of the median charts based on M1, M4 and M6 for the concrete data.

M1 M4 M6

LCL UCL LCL UCL LCL UCL

m1 = 6, δ = 2.5 2.836 7.217 3.521 6.730 3.170 6.805
m1 = 9, δ = 3.0 2.297 8.333 3.236 7.259 2.916 7.278
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Figure 9. Graphical displays of plotting statistics corresponding to their control limits at (a) m1 = 6
and δ = 2.5; (b) m1 = 9 and δ = 3.0.

From the results, it is observed that the plotting statistic M1 detects shift at subgroup numbers 25,
29 and 30, whereas M4 detects shift at subgroups 25, 26, 27, 28, 29 and 30. Similarly, M6 detects shift at
subgroups 25, 27, 28, 29 and 30 in case of m1 = 6 with δ = 2.5. These results showed the superiority
of M4 chart over M6 and M1. Similarly, in the case of m1 = 9 with δ = 3, again, the M4 chart detects
all nine out-of-control shifts, whereas M6 and M1 detect six and three, respectively, out-of-control
subgroups. Similar findings of a higher detection ability of the control structure M4 may be seen in
Figure 9. It should be noted in both of the m1 choices in the two cases, the charting structure M4

displayed the superior detection ability compared to M6 and M1. The superiority of the M4 control
chart may also be expected with the comparison of other charts considered in this study, which is
based on the findings of Section 5.

6.2. Case Study-II

In this section, we provide another case study to demonstrate the application of our proposed
auxiliary information-based median control charts for the Phase I monitoring of location parameters.
For this purpose, we used real-life data of the non-iso-thermal continuous stirred tank chemical reactor
(CSTR) process, as first provided by Marlin [53]. At a sampling interval of 30 s, the dataset was collected
with 1024 values. The CSTR process mechanism includes nine process variables, and Yoon and
MacGregor [54] and Xiangrong et al. [55] provide details of those variables of the process. The CSTR
process has been extensively used for defect detection and diagnosis (see [54,55]). In this study, we
considered outlet temperature T (measured in K) as the study variable Y and cooling temperature TC
(measured in K) as the auxiliary variable X. We randomly selected 30 subgroups (as m = 30) each of
size 10 (as n = 10) from the dataset consisting of 1024 values. Again, for this dataset, we considered
the values of m1 as three and six, which means that out of 30 subgroups, three and six samples are
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contaminated with shift (δ) 2.0 and 3.0, respectively. Again, in this case study, for illustration purposes,
we considered two median estimators (M4 and M6) based on the auxiliary variable and compared their
performance with the usual median estimator (M1).

Initially, we constructed their control limits based on m0 (in-control samples), which are presented
in Table 6 and the values of plotting statistics (M1, M4 and M6) for both cases m1 = 3 with δ = 2.0 and
m1 = 6 with δ = 3 are presented in Table 7. The graphical presentation of results are presented in
Figure 10.

Table 6. Control limits of the median charts based on M1, M4 and M6 for the non-iso-thermal continuous
stirred tank chemical reactor (CSTR) data.

M1 M4 M6

LCL UCL LCL UCL LCL UCL

m1 = 3, δ = 2.0 3.267 6.067 3.525 6.582 3.545 6.636
m1 = 6, δ = 3.0 2.531 8.057 3.386 6.779 2.995 7.280

Table 7. Plotting statistics of the median charts based on M1, M4 and M6 for CSTR Data.

m1=3, δ=2.0 m1=6, δ=3.0

M1 M4 M6 M1 M4 M6

1 5.297 4.485 4.939 5.297 4.485 4.939
2 5.291 5.737 5.461 5.291 5.737 5.461
3 3.671 4.632 4.003 3.671 4.632 4.003
4 4.629 5.094 4.804 4.629 5.094 4.804
5 5.988 5.534 5.798 5.988 5.534 5.798
6 5.630 5.527 5.588 5.630 5.527 5.588
7 5.445 4.693 5.117 5.445 4.693 5.117
8 5.243 5.035 5.158 5.243 5.035 5.158
9 5.092 4.940 5.030 5.092 4.940 5.030
10 4.821 4.709 4.776 4.821 4.709 4.776
11 5.010 5.147 5.064 5.010 5.147 5.064
12 4.388 4.940 4.593 4.388 4.940 4.593
13 5.685 5.071 5.423 5.685 5.071 5.423
14 3.023 3.543 3.211 3.023 3.543 3.211
15 3.208 4.571 3.642 3.208 4.571 3.642
16 5.490 5.442 5.471 5.490 5.442 5.471
17 3.291 3.774 3.469 3.291 3.774 3.469
18 6.795 6.190 6.539 6.795 6.190 6.539
19 4.334 4.137 4.253 4.334 4.137 4.253
20 5.525 5.340 5.449 5.525 5.340 5.449
21 4.509 4.748 4.602 4.509 4.748 4.602
22 4.456 4.232 4.364 4.456 4.232 4.364
23 4.131 4.684 4.336 4.131 4.684 4.336
24 5.373 5.360 5.368 5.373 5.360 5.368
25 4.979 4.745 4.882 7.979 7.745 7.882
26 5.456 5.444 5.452 8.456 8.444 8.452
27 5.034 6.101 5.413 8.034 9.101 8.413
28 7.921 7.457 7.726 8.921 8.457 8.726
29 6.153 6.213 6.177 7.153 7.213 7.177
30 7.036 6.865 6.966 8.036 7.865 7.966

From the results of CSTR dataset, it is observed that the plotting statistic M1 detects only two
out-control samples at subgroup numbers 28 and 30, whereas M4 detects four out-control samples at
subgroups 17, 28, 29 and 30. Similarly, M6 detects five out-control samples at subgroups 14, 17, 28, 29
and 30 in case of m1 = 3 with δ = 2.0.
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Figure 10. Graphical displays of plotting statistics corresponding to their control limits at (a) m1 = 3
and δ = 2.0; (b) m1 = 6 and δ = 3.0.

These results showed the superiority of the M6 chart over M4 and M1. Similarly, in the case of
m1 = 6 with δ = 3, the M4 chart detects all six out-of-control shifts at subgroups 25, 26, 27, 28, 29
and 30, whereas the M6 chart detects five out-control shifts at subgroups 25, 26, 27, 28 and 30 and M1

detects only two out-of-control shifts at subgroups 26 and 28.
Similar findings of a higher detection ability of the auxiliary information-based control charts can

be seen in Figure 10. The superiority of auxiliary information-based control charts may also be expected
with the other combinations of m1 at different shifts, which is based on the findings of Section 5.

7. Conclusions

In this paper, we proposed the Phase I analysis of different auxiliary information-based median
control charts for location monitoring. The control chart is a very common tool of SPC used to monitor
process inconsistencies in quality characteristic(s) of interest. In the context of Phase I analysis, control
charts often play a significant role alongside the use of both statistical exploratory (e.g., graphic) and
confirmatory processes (e.g., hypothesis testing). They lead to a better understanding of what is
really happening over time, to identify and promote the elimination of root(s) of assignable causes.
A thorough Phase I analysis is the key part of the overall control and monitoring of the statistical
process. Shewhart control charts are especially useful for Phase I analysis as they are simple to create
and interpret, and they are efficient at detecting large changes in process parameters. There is no
study available in literature which presents the Phase I analysis of location parameters using median
charts. Therefore, we considered several median estimators to construct control limits in Phase I.
This study examined the selection of an appropriate auxiliary information-based median control
chart to monitor the process location parameters effectively in Phase I. We analyzed five auxiliary
information-based median charts and compared them with usual median control chart. The efficiency
of all six median estimators is evaluated in terms of standardized variance and relative efficiency, while
probability to signal measure is used to evaluate the performance of control charts considered in this
study. All auxiliary information-based control charts perform well in Phase I analysis. Furthermore,
within the comparison of auxiliary information-based control charts, for small values of m1, M6 chart
performs well, whereas, M4 and M3 control charts showed the best performance at a large value of
m1. The design structures of M5 and M2 also show reasonable performance for some special cases.
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The findings of the simulation study were also verified with the real-life industrial example which
describes the applications of the proposed charts of this study.
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