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Abstract: In this study, a new finite volume method is developed for shallow water equations on a rotating 
frame. Most upwind methods, which perform well for gravity waves, lead to large oscillations and/or 
numerical damping for Rossby waves. We propose an upwind finite volume method on unstructured grids 
which provides accurate results both for Rossby and gravity waves. This method uses a high-order upwind 
scheme for the calculation of the numerical flux, and a fourth-order Adams method with an operator splitting 
approach for temporal integration. The Coriolis term is integrated analytically before and after solving the 
conservation law. The proposed method can successfully suppress the short-wave numerical noise without 
damping the long waves. The balance between the flux and Coriolis terms is preserved. This method 
presents more accurate results than some well-known upwind schemes. 
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1 Introduction 

 
Many physical phenomena are governed by shallow water equations (SWEs) in the atmosphere, oceans, 
rivers, etc. In shallow flows, vertical scales are much smaller than horizontal ones, the velocity profile has 
small changes throughout the depth, and the pressure is assumed to have a hydrostatic profile. 
 
The upwind finite volume method (UFV) schemes use exact or approximate methods to solve the Riemann 
problem at the interface of computational cells. The most popular scheme which uses the exact solution of 
the Riemann problem is Godunov’s method (1959). Roe’s method (1981), which is applied in this work, is 
the most popular approximate method, but it requires an accurate method to estimate the parameter values 
near the interface on both sides of the computational cell.  
 
In SWEs with the presence of a source term, some special techniques may be applied for balancing the 
source and flux terms. Many previous studies had this objective, such as Vazquez-Cendon (1999), 
Mohammadian et al. (2005, 2006), and Stewart et al. (2011). Other studies have been conducted for 
large-scale shallow flows to evaluate the performance of the schemes (e.g., Le Roux and Pouliot, 2008; 
Hanert et al., 2009; Le Roux et al., 2011). A few studies for UFV schemes have been conducted (e.g., Lin et 
al., 2003; Mohammadian et al., 2008; Beljadid et al., 2012a). Temporal schemes can greatly improve the 
performance of numerical methods. The most popular temporal scheme is the Total Variation Diminishing 
(TVD) temporal integration method, developed by Shu and Osher (1988). TVD methods are recommended 
for their ability to avoid oscillations of the solutions. Beljadid et al. (2012b) studied the performance of UFV 
schemes using the third-order TVD Runge-Kutta (TVDRK3) method for temporal integration. Several 
aspects were examined, including mass and energy conservation, numerical diffusion, and numerical 
oscillations for Kelvin, Yanai, Poincaré, and gravity waves The upwind-centred scheme combined with the 
TVDRK3 method was found to be a good choice for these types of waves. The results are insensitive to the 
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values of CFL numbers and present highly accurate results over a wide range of CFL numbers. However, 
this method fails in the modeling of Rossby waves. These waves have a particular behavior and are difficult 
to capture by several well-known upwind schemes. 
In this paper, a new upwind finite volume method is proposed for linear SWEs on unstructured grids. This 
method provides accurate results both for Rossby and gravity waves. A high-order spatial scheme based 
on polynomial fitting is used. Operator splitting and the fourth-order Adams method are used for temporal 
integration. 
 
The paper is organized as follows: SWEs are presented in Section 2. In Section 3, the proposed finite 
volume method is described. Section 4 presents some numerical experiments for Rossby and gravity 
waves using the proposed method for linear SWEs. Finally, concluding remarks complete the study. 

 
2 Shallow water equations 

 
Linear shallow water equations are considered in this work. The 2-D linear SWEs in conservative form are 
written as: 

 

[1]   
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and the parameters U, E, G, and S are defined by:  
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where   represents the water surface elevation, u  and v  are the depth-averaged velocity components 

in the x-and y-directions respectively, f  is the Coriolis parameter, (H+ ) is the total water depth, and g  

is the gravity acceleration The source term S includes the variable Coriolis parameter ( =f y ), where 

  is the linear coefficient of variation of f with respect to y . 

 
The linear SWEs can be written in the dimensionless form. The following reference values are used as 
reference time, length, and velocity scales to convert Equations 1 and 2 into a dimensionless form:  
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The resulting system, the Jacobian matrix, and the corresponding eigenvalues and eigenvectors are given 
in Appendix I. 

 
3   Finite volume method 

 
3.1  Unstructured grid implementation 
 
An upwind finite volume method on an unstructured grid is employed in this paper. The variables are 
located at the geometric centers of the triangles used as computational grids. The SWEs are integrated 
over every triangle, which are used as control volumes. 
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where   denote the area of the domain. 
The previous flux integral is transformed into a boundary integral by using the divergence theorem, as: 
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where  F = E,G
t
 is the flux vector, and n is the unit outward normal vector to boundary  of the domain. 

 
Using equations 4 and 5, we obtain: 
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where F ,k  n ,k  k  and ,kl  are, respectively, outward flux, the unit outward normal vector, the triangle 

edges, and the corresponding length. and k is a variable with k=1,2,3. 
 

For most schemes, the convective fluxes Fk  may be written in the following form:  

 

[8]    F = 0.5 F F FR L

   where  F = F uL L  and  F = F uR R  are the left and right flux vectors. 

 

Roe’s linearization is used to calculate the flux difference F , which plays the role of stabilization. 
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Appendix I gives the details on the projection coefficients k , the eigenvalues ka , and the eigenvectors 

ek  of the approximate Jacobian matrix. 

 

In the   scheme, U ,L  and UR  are calculated at the interface as: 
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 where wL  and eL  are defined in Figure 1. 

 
The slope limiter s  is calculated using:  

 

[11]   
2 2

2
= , > 0s 


 

 

 

  
 with = U Uw ww   and = U Ue w  . 

 
Depending on  , this method leads to the following schemes:  
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Figure 1: Parameters at the right (R) and left (L) sides of the interface of computational cells 
 

The case = 1k   corresponds to the second-order upwind scheme. Based on Beljadid et al. (2012b), 

since this second-order scheme leads to inaccurate results for Kelvin, Yanai, and Poincaré waves, it is not 
considered in this paper. 

 
3.2  The proposed high-order upwind scheme 
 
Upwind finite volume methods can be improved if the values of the parameters on both sides of the 
interface are estimated with more accuracy. In the proposed method we use a high-order upwind 

interpolation scheme. We use the third-order Lagrange polynomials in x  and linear interpolation in y , 

where the variable x  denotes the axis perpendicular to the interface and y  coincides with the interface. 

The value of UL  is obtained by using interpolation on the basis of three grid points upstream of the 

interface and one grid point downstream of the interface. The parameter U( , )x y  is obtained by the 

following interpolation:  
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associated with the cell i , obtained from the parameters of three cells on the left-hand side and one cell on 
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The parameter UL  is obtained by integration along the left-hand side of the interface as:  



[15]   2

2

1
U = U(0 , )

l

lL y dy
l





  

where l  is the length of the interface of the computational cell. 
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The form of the above equation allows defining the polynomial 
( )lQ  without a constant. Then, for the linear 

case, the polynomial 
( )lQ  is defined by ( ) =Q y y . 

 
Figure 2: Cells used in the proposed method  

 
In the proposed method, the following first-order expansion is used at the interface extremities:  
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To estimate the values of 
2

PU  and 
1

PU , the following linear interpolations are used:  
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To get an accurate interpolation, we choose i  for each node by using barycentric coefficients in order to 

have 
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3.3  Temporal integration method 

 



In most finite volume models, a Runge-Kutta method is used for temporal integration. In Beljadid et al. 
(2012b), it was shown that   schemes combined with the TVD RK3 method led to good results for Kelvin, 
Yanai, gravity, and inertia gravity waves, and that the upwind-centered scheme is the best one. The 
schemes combined with the TVD RK3 method lead to inaccurate results for Rossby waves. 
In this work, the fourth-order Adams method is used as the temporal scheme, with operator splitting for the 
Coriolis and flux terms. The process includes three stages: in the first and third steps the Coriolis term is 
integrated analytically, and in the second step the flux term is integrated numerically. In the following, the 
temporal integration method is explained for linear SWEs. Following Beljadid et. al. (2012a), first, the effect 
of the source term (the Coriolis effect) is considered:  
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Then, the flux term is added:  
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The system with Coriolis term only, i.e., 
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can be solved analytically as:  
 

[23]  0 0= cos( ) sin( )u u ft v ft , 0 0= cos( ) sin( )v v ft u ft , 0   

 

In the following, t  represents the time-step size and 
n , 

nu , and 
nv  are respectively the water 

surface elevation and the x  and y  velocities at time =nt n t . 

 
First, equation 20 is integrated over half of the time step:  
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Then, equation 21 is integrated over the entire time step: 
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and finally, equation 20 is integrated over the second half of the time step, i.e.,  
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The fourth-order Adams method (Appendix I) is used for the temporal integration, as explained below, 
where the following notation is used:  
 

[27]   C = U Un n  

 
The fourth-order Adams method uses the fourth-order explicit Adams-Bashforth scheme as the predictor 
step:  
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and the fourth-order Adams-Moulton method for the corrector step as: 
 

[29]   
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where C  is the right-hand side of the system calculated using U . In the numerical experiments, we do 

not need to consider any iteration or modifier at the corrector step. Note that in the above algorithm, the 
right-hand side of 21, which is the most computationally expensive part, is required to be calculated only 
twice. The computational cost for the fourth-order Adams method is about half the cost of the fourth-order 
Runge-Kutta method, in which the right-hand side of 21 must be calculated four times. The fourth-order 
Adams method uses the values of the parameters and the derivative of the flux function in the earlier steps. 
Therefore, the first three time steps are required in order to begin the method. In this paper, the first three 
steps are calculated by using a fourth-order Runge-Kutta method for temporal integration in order to remain 
consistent in the order of accuracy.  
 
4 Numerical experiments 
 
4.1 Numerical experiments for Rossby waves 

 
Equatorial Rossby waves are found near the equator, hence their name. These waves play an important 
role in the transfer of energy in the ocean and atmosphere. They propagate westward and are slow 

(low-frequency) and long. For the equatorial  -plane approximation =f y , Rossby waves are exact 

solutions of linear SWEs, and they are steady state in a moving frame. However, most well-known schemes 
fail to preserve these solutions. In this section, the analytical solution of SWEs corresponding to the 
symmetric equatorial Rossby waves of Index 1 is used as the initial condition to test the proposed method. 

We consider a domain [0, ] [0, / 2]L L  with = 32L (non-dimensional) and = / 2X L . The analytical 

solution is given as: 
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where =r u     and =r u     are the Riemann invariants and   is the root smallest in 

magnitude of the dispersion relation: 
2 2 = 3

k
k


   

The tests are performed using both the proposed method and the   schemes, with a fourth-order Adams 
method as a temporal integration scheme. Figure 3 shows the water surface elevation using the proposed 

method, the   schemes, and the analytical solution at time =10t T , where T  is the period of the wave. 

As can be observed in this figure, while the   schemes have highly damped the waves, the proposed 
method leads to accurate results for Rossby waves in terms of amplitude and phase errors.  

Figure 4 shows the view of the solution in 2-D at time =10t T , and confirms that the solution does not have 



any deformation and is preserved in moving frame. 

 
  Figure 3: Comparison of numerical solutions using the proposed method,   schemes, and the analytical 

solution for Rossby waves at time =10t T  with = 0.1CFL  and = 0.01cell area   

 

 
Figure 4: 2-D view of water surface elevation for Rossby waves using the proposed method at time 

=10t T  with = 0.1CFL  and = 0.01cell area   

4.2   A Gravity Wave Test Case 
The following Gaussian distribution of water surface elevation is assumed as the initial condition: 
 

[31]   
2 2( )( , ,0) = x yx y Ce   
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We consider the domain [ 150,150] [ 150,150]    and the non-dimensional parameter
3=10 
, as well 

as =1H  and = 0.6C . Figure 5 shows the solutions for the proposed method with = 0.40CFL  and 

cell area = 2.25m  at time = 40t . For the reference solution, the upwind-centred scheme combined 

with the TVDRK3 method, which is a good choice for the gravity waves, is used with a very fine mesh with 

cell area =1m . The results confirm that the proposed method leads to good results for gravity waves. 



 
Figure  5: Comparison of the solution using the proposed method and the reference solution at time 

= 40t  with = 0.40CFL  and = 2.25cell area  

 
CONCLUSION 
The proposed method is accurate for linear shallow water equations on unstructured grids for both gravity 
and Rossby waves. This method uses polynomial fitting with high accuracy for the calculation of the 
numerical flux. A fourth-order Adams method with an operator splitting approach is used for temporal 
integration. The proposed method can successfully suppress the short-wave numerical noise without 
damping the long waves. The numerical experiments confirm that the balance between the flux and Coriolis 
terms is preserved, which is not the case for the other schemes considered in this paper. Currently we are 
working on extending this method to non-linear shallow water equations on unstructured grids. 
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Appendix I: The Jacobian matrix for SWEs 
 
I.1 The Jacobian matrix for linear equations 

The matrix J  satisfies F = J u   with  
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The eigenvalues of J  are given by 1 2 3= , = 0, = ,a c a a c  with the corresponding eigenvectors  
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The coefficients k , k=1,2,3, are computed as 

 

[34] 1

0

1
=

2 2
x y

h
u n v n




     , 2

0

1
= x yv n u n


    , 3

0

1
=

2 2
x y

h
u n v n




      

 
The eigenvalues and eigenvectors of the nondimensional system can be calculated using those of the 

original system, by simply setting = =1H g . 

 
I.2 The fourth-order adams method  
 
For an ODE defined by  

[35]   = ( , )
dU

f U t
dt

 

 
The fourth-order Adams method uses the fourth-order Adams-Bashforth scheme as predictor  

[36]   
1 2 355 59 37 9

=
24 24 24 24

n n n n nU U t f f f f   
     

 
 

 and the fourth-order Adams-Moulton scheme as corrector 
 

[37]   
1 1 29 19 5 1

=
24 24 24 24

n n n n nU U t f f f f   
     

 
 where = ( , )n nf f U n t  


