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Abstract 

Background:  Mutated and non-mutated genes interact to drive cancer growth and metastasis. While research has 
focused on understanding the impact of mutated genes on cancer biology, understanding non-mutated genes that 
are essential to tumor development could lead to new therapeutic strategies. The recent advent of high-throughput 
whole genome sequencing being applied to many different samples has made it possible to calculate if genes are 
significantly non-mutated in a specific cancer patient cohort.

Methods:  We carried out random mutagenesis simulations of the human genome approximating the regions 
sequenced in the publicly available Cancer Growth Atlas Project for ovarian cancer (TCGA-OV). Simulated muta‑
tions were compared to the observed mutations in the TCGA-OV cohort and genes with the largest deviations from 
simulation were identified. Pathway analysis was performed on the non-mutated genes to better understand their 
biological function. We then compared gene expression, methylation and copy number distributions of non-mutated 
and mutated genes in cell lines and patient data from the TCGA-OV project. To directly test if non-mutated genes can 
affect cell proliferation, we carried out proof-of-concept RNAi silencing experiments of a panel of nine selected non-
mutated genes in three ovarian cancer cell lines and one primary ovarian epithelial cell line.

Results:  We identified a set of genes that were mutated less than expected (non-mutated genes) and mutated 
more than expected (mutated genes). Pathway analysis revealed that non-mutated genes interact in cancer associ‑
ated pathways. We found that non-mutated genes are expressed significantly more than mutated genes while also 
having lower methylation and higher copy number states indicating that they could be functionally important. RNAi 
silencing of the panel of non-mutated genes resulted in a greater significant reduction of cell viability in the cancer 
cell lines than in the non-cancer cell line. Finally, as a test case, silencing ANKLE2, a significantly non-mutated gene, 
affected the morphology, reduced migration, and increased the chemotherapeutic response of SKOV3 cells.

Conclusion:  We show that we can identify significantly non-mutated genes in a large ovarian cancer cohort that 
are well-expressed in patient and cell line data and whose RNAi-induced silencing reduces viability in three ovarian 
cancer cell lines. Targeting non-mutated genes that are important for tumor growth and metastasis is a promising 
approach to expand cancer therapeutic options.
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Background
High-grade serous ovarian carcinoma (HGS-OvC) is the 
most lethal gynecological cancer with around 22,000 new 
cases and 14,270 deaths per year in the United States. It 
is ranked 5th overall for cancer death in women [1–3]. 
The Cancer Genome Atlas (TCGA) program performed 
a comprehensive “omics” characterization of HGS-OvC 
(TCGA-OV). They studied 489 ovarian cancer samples 
integrating copy number variations, transcriptomic, 
methylation arrays, and micro-RNA expression data and 
performed exome sequencing for 316 of the samples [4]. 
Patients in the TCGA-OV project had advanced primary 
ovarian cancer with 5% diagnosed at stage 2, 79% at stage 
3 and 16% at stage 4.

TCGA-OV researchers identified mutations that are 
important in ovarian tumors by comparing pathogenic 
variants to those found in the Catalogue of Somatic 
Mutations in Cancer (COSMIC) and Online Mende-
lian Inheritance in Man (OMIM), and by predicting the 
mutations’ impacts on protein function. The TCGA-OV 
study further analyzed the significance of all mutated 
genes compared to the background mutation rate (BMR), 
which represents the rate of random mutation. These 
estimates assume that most observed mutations are neu-
tral and don’t have any selective advantage or disadvan-
tage [5, 6].

Estimating the significance of gene mutation done by 
the TCGA-OV research network relied mainly on fre-
quency-based criteria, where a gene is identified as hav-
ing a driver mutation if it is altered in significantly more 
patients than expected based on the background model. 
Mutations in some genes, such as TP53, are detected 
in large populations of different cancers whereas some 
mutations exhibit low rates in cancers. For each gene, 
they calculated the probability of seeing the observed set 
of mutations and reported nine significant mutations out 
of the 9986 observed mutated genes. TP53 was found to 
be mutated in more than 96% of all samples as previously 
reported [7–10]. BRCA1/2 variants were also found in 
22% of tumors (a combination of germline variation and 
somatic mutations). The TCGA-OV group also identified 
significantly mutated genes that occur at a low frequency, 
in only 2–6% of tumor samples. These genes are RB1, 
NF1, FAT3, CSMD3, GABRA6, and CDK12 [4].

While characterizing the spectrum of somatic muta-
tions in ovarian cancer in the TCGA-OV study has a high 
impact, cancer arises from a complex interplay between 
genes in cells and environmental factors [11] and both 

mutated and non-mutated genes interact to enable the 
acquisition of the hallmarks of cancer [12]. Understand-
ing which non-mutated genes are important for tumors 
could lead to the development of new and more effective 
drug targets. Most studies have focused only on mutated 
genes because it is difficult to assign significance to 
non-mutated genes since most genes in a single patient 
would be non-mutated. However, using high-throughput 
sequencing data of many patients, it is possible to esti-
mate the significance of non-mutated genes by compar-
ing observed mutation frequencies to expected mutation 
frequencies and identifying genes with lower mutation 
frequencies than expected.

In this study, we used a computational biology 
approach and set up in-silico mutagenesis experiments. 
This allowed us to identify a subset of genes that were 
observed to have fewer mutations in observed data than 
expected from simulation data  which we called non-
mutated genes. We hypothesized that non-mutated 
genes were essential to tumor function. Pathway analy-
sis showed that non-mutated genes interact in cancer-
related pathways. Gene expression studies showed that 
non-mutated genes were well-expressed in cell lines and 
ovarian cancer tissues from patients. We also verified the 
relevance of these genes to tumor biology using proof-
of-concept siRNA-based experiments. We conclude that 
non-mutated genes are potentially important for ovarian 
cancer tumor biology and could lead to new therapeutic 
strategies.

Methods
In‑silico mutagenesis approach
We obtained somatic mutation data from the TCGA 
Ovarian Cancer Project from the GDC Data Portal 
(https://​portal.​gdc.​cancer.​gov/). We implemented a 
method to efficiently simulate mutations across a set of 
nucleotide sequences in Matlab as previously described 
in Malek, Halabi and Rafii [13]. The TCGA-OV data 
consisted of 316 patients, so we performed a simula-
tion run 316 times. Since mutations were random, each 
simulated run of 316 patients was also repeated 100 
times. In total, there were 31,600 simulated runs. Each 
simulation run consisted of simulating the mutagenesis 
of 140,362,938 nucleotide bases. Furthermore, since dif-
ferent bases undergo different mutation rates, it was 
necessary to implement a way to differentially mutate dif-
ferent sets of nucleotide bases. The sequence space was 
therefore divided into nucleotide bases that were (1) A 
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or T (2) C or G (3) CG or GC. Mutations at these dif-
ferent sets were assigned different mutation rates. We 
used the background mutation rates (BMR) published in 
the TCGA study [4] in Additional file 1: Table S2.2b (A/T 
mutations: 8.54 × 10–7, C/G mutations: 1.2 × 10–6, CG/
GC mutations: 4.31 × 10–6 and insertions-deletions 
at 2.2 × 10–7).    Since no information about insertions-
deletion sequence specificity was available, we added the 
indel mutation rate to the other categories. Three differ-
ent random mutation vectors were generated of a length 
equal to the number of bases in the A/T, C/G, and CG/
GC vectors. Each random mutation vector consisted of 
0’s and 1’s with the frequency of 1’s occurring randomly 
at a density equal to the TCGA published background 
mutation rate. The three different mutation vectors 
were then combined to form the final mutation vector 
that had within it all simulated mutations.  We used a 
reduced sequence library corresponding to the sequences 
that overlapped with the Agilent SureSelect v2 probe 
sequences. Obtaining the chromosomal locations of each 
probe from Agilent generated this reduced library. We 
then identified the regions corresponding to those probes 
by detecting the overlaps between the exon coordinates 
and the probe coordinates. The final exon sequence 
library consisted of 40,362,938 bases.  After carrying out 
simulated mutagenesis, the total number of mutations 
per gene was calculated by identifying all the exons cor-
responding to a gene. All exons sharing the same gene 
symbol were considered the same gene.

Identification and pathway analysis of specific candidate 
genes
With the ability to calculate the simulated mutation 
frequency for each gene, it is possible to compare the 
observed mutation frequency in a gene with the expected 
simulated mutation frequency. To prioritize the genes 
with the largest deviations from random simulation 
expectation, we looked at the top 50 genes where the 
observed mutation rate was lower or higher than the 
expected mutation rate, comparing the observed and 
simulated frequencies based on rank  of the observed/
expected from simulation mutation frequency ratio. 
To guarantee coverage in the TCGA-OV dataset, we 
restricted our analysis to genes that were mutated at least 
once in the TCGA data since the publicly available data 
only included a list of mutations per patient and not the 
coverage across all positions.

We also performed pathway analysis using Ingenuity 
Pathway Analysis software (IPA from Qiagen, content 
version March 12, 2022). IPA software consists of a data-
base of published relationships between genes with tools 
to analyze and visualize pathways. A list of the top 50 
non-mutated genes with the observed/expected ratio of 

each gene was generated and uploaded to IPA. Network 
diagrams were generated among the genes in the list with 
genes colored in shades of red based on their observed/
expected ratio with the reddest indicating the lowest 
ratio. Networks were either built using the IPA tools 
(CONNECT, PATHWAY EXPLORER, TRIM, KEEP) 
or identified automatically by IPA software as indi-
cated. Automatically generated network significance was 
assessed with an IPA generated score which represents 
the negative exponent of the right-tailed Fisher’s exact 
test result (described in the IPA documentation: http://​
qiagen.​secure.​force.​com/​Knowl​edgeB​ase/​artic​les/​Basic_​
Techn​ical_Q_​A/​Listi​ng-​of-​Netwo​rks).

Cell culture
We used three ovarian cancer cell lines for silenc-
ing experiments: SKOV3, OVCAR3 and APOCC. 
SKOV3 and OVCAR3 were purchased from ATCC and 
APOCC was derived in-house from ascites of a patient 
with Stage III serous adenocarcinoma. These cell lines 
were all maintained in DMEM high glucose (Hyclone, 
Thermo Scientific), 10% FBS (Hyclone, Thermo Scien-
tific), 1% Penicillin-Streptomycin-Amphotericin B solu-
tion (Sigma), 1X Non Essential Amino-Acid (Hyclone, 
Thermo Scientific). Additionally, one non-cancer pri-
mary ovarian epithelial cell line was purchased from 
Sciencell (Cat. No. 7310) and cultured in poly-L-lysine-
coated culture vessel (2  μg/cm2, T-75 flask) following 
ScienCell recommendations in  Ovarian Epithelial Cell 
Medium (OEpiCM, Cat. No. 7311), 1% Ovarian Epithe-
lial Cell Growth Supplement (OEpiCGS, Cat. No.7352) 
and 1% penicillin/streptomycin solution (p/s, Cat.No 
0503). All cultures were incubated in humidified 5% 
CO2 incubators and the media was replaced every three 
days. For RNA sequencing, we used ovarian cancer cell 
lines SKOV3, APOCC, GOC-2, and GOC-A2 [14, 15], 
non-cancer ovary derived fibroblasts (ScienCell, Cat. No. 
7330) and non-cancer primary ovarian epithelial cell lines 
(ScienCell, Cat. No. 7310). GOC-2 cells were isolated 
from a papillary serous ovarian cancer obtained after 
neoadjuvant chemotherapy while GOC-A2 were derived 
from a stage IIIc serous ovarian cancer [14]. GOC-2, 
GOC-A2 and fibroblasts were cultured in DMEM high 
glucose as previously described.

Gene expression analysis of cell Lines and TCGA‑OV patient 
data
RNA from six different cell lines were isolated using 
Qiagen Allprep DNA/RNA miniprep kit as per manu-
facturer instructions. Library preparation was done with 
Nugen’s Ovation Single Cell RNA-Seq System. Sequenc-
ing (Illumina 100 bp paired-end reads) was done on Illu-
mina HiSeq 2500. Alignment was done with RNA Star to 

http://qiagen.secure.force.com/KnowledgeBase/articles/Basic_Technical_Q_A/Listing-of-Networks
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GRCH37 [16]. Mapping to genes was done with Rsub-
read using the FeatureCounts function [17]. Normaliza-
tion and quantification of gene expression was done with 
edgeR [18]. All genes with any read count were included. 
The reads per kilobase of transcript per million mapped 
reads (RPKM) measure was calculated for all genes in all 
cell lines and used for distribution comparison.

Publicly available gene expression data from the 
TCGA-OV project was downloaded from the GDC 
data portal (https://​portal.​gdc.​cancer.​gov/​legacy-​archi​
ve) using the following filters: Primary-site = Ovary, 
Data-category = Gene expression and Platform = HT_
HG-U133A. This data consisted of gene-level, robust 
multiarray analysis (RMA) normalized and background-
corrected expression values for 12,042 genes from pri-
mary ovarian cancer biopsies. The RMA values were used 
as provided. The gene expression data files were further 
filtered to include only those that had somatic mutation 
data. Somatic mutation data was similarly obtained from 
the GDC data portal (https://​portal.​gdc.​cancer.​gov). The 
intersection between gene expression data and somatic 
mutation data files resulted in 315 samples for further 
expression analysis.

Custom scripts in Matlab software (Mathworks) were 
used for further analysis and visualization. To analyze 
the distribution of gene expression of both cell lines and 
TCGA-OV we used the non-parametric, two-sample 
Kolmogorov–Smirnov test as implemented in Matlab 
software (version 2019a).

Methylation and copy number analysis of TCGA‑OV 
primary ovarian cancer samples
We downloaded from the GDC data portal (data release 
32) methylation Beta value data obtained from Illumina 
human methylation 27 chip from 605 samples. Beta val-
ues represent the fraction of methylation at a specific 
site with 0 representing no methylation and 1 represent-
ing complete methylation. We then excluded from the 
analysis non-primary and non-cancer samples which 
resulted in 582 samples for further analysis. We aggre-
gated the Beta value data from all patients for the top 50 
non-mutated (41 matches) and top 50 mutated genes (33 
matches) and compared their distribution using the two-
sample Kolmogorov–Smirnov test implemented in Mat-
lab software (version 2021a). When one gene matched 
multiple methylation sites, the beta values were aggre-
gated across the gene.

Similarly, for copy number analysis we downloaded 
from the GDC data portal (data release 32) ‘Gene Level 
Copy Number’ data obtained from the Affymetrix snp 
6.0 array from 589 samples. We excluded non-primary 
cancer samples to obtain 562 samples for comparison. 
We matched 48 of the top 50 non-mutated genes and 43 

of the top 50 mutated genes and aggregated all the copy 
number data across all samples. Distributions were com-
pared using the non-parametric, two- sample Kolmogo-
rov–Smirnov test as implemented in Matlab software 
(version 2021a).

siRNAs screening system
Double-stranded siRNAs targeting each gene were 
obtained from Invitrogen (Silencer® Select Pre-Designed 
siRNA LPP gene, Cat. No 4392420, siRNA ID: s8270, 
Silencer® Select Pre-Designed siRNA TRAPPC9 gene, 
Cat. No 4392420, siRNA ID: s38115, Silencer® Select 
Pre-Designed siRNA ELFN2 gene, Cat. No 4392420, 
siRNA ID: s41621, Silencer® Select Pre-Designed siRNA 
ANKLE2 gene, Cat. No 4392420, siRNA ID: s23124, 
Silencer® Select Pre-Designed siRNA PGR gene, Cat. 
No 4392420, siRNA ID: s10415, Silencer® Select Pre-
Designed siRNA MAP1B gene, Cat. No 4392420, siRNA 
ID: s8499, Silencer® Select Pre-Designed siRNA VEGFA 
gene, Cat. No 4392420, siRNA ID: s461, Silencer® Select 
Pre-Designed siRNA SLC12A9 gene, Cat. No 4392420, 
siRNA ID: s224445, Silencer® Select Pre-Designed siRNA 
CELSR1 gene, Cat. No 4392420, siRNA ID: s18485). We 
also selected from Qiagen RNAi Human/Mouse starter 
kit Cat. No 301799, positive siRNA targeted against the 
protein kinase MAPK1, also called ERK2, and a non-
targeting negative or non-silencing control siRNA that 
exhibits minimal nonspecific effects on gene expression 
and phenotype. Both the positive and negative controls 
were included in each 96-well plate.

To assess the degree of knockdown, cells were seeded 
in 96-well culture plates at a density of 5000  cells/well. 
cDNA synthesis was carried out 72  h after cell siRNA 
using TaqMan Gene Expression Cells-to-Ct kit (Thermo-
Fisher). Normalization was done using the included 
B-actin probe in the Cells-to-Ct Control kit (Thermo-
Fisher). All qPCR reactions were performed in triplicate 
and Cq values were averaged.

Cell viability assay
We used Promega’s CellTiter-Glo® assay in 96 well plates. 
Briefly, cells were seeded at 5000 cells per well in 96-well 
plates and allowed to attach overnight at 37 °C. Twenty-
four hours after attachment, cells were transfected with 
individual siRNAs at 10  nM using Lipofectamine Max 
(Thermo Fisher). Twenty-four hours after siRNA treat-
ment the transfection media was replaced with serum-
free media. We used the same siRNA concentrations 
and transfection reagents in all cell lines and experi-
ments. In addition, positive and negative siRNA con-
trols were added in different wells. Seventy-two hours 
after transfection, 100  μl of CellTiter-Glo® reagent was 
added to 100 μl of medium containing cells in a 96-well 

https://portal.gdc.cancer.gov/legacy-archive
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plate and viability was evaluated using EnVision Work-
station version 1.12 from PerkinElmer. All experiments 
were performed in triplicates. Student’s t-test was used 
to compare the proliferation fraction of the knockdowns 
with that of the negative control. A p-value less than 0.05 
was considered significant.

Morphological marker staining
Cells were incubated 72 h after transfection with Invitro-
gen’s Live Cell stain CellMask Orange/Red for the plasma 
membrane and Hoechst 33342. Both the cell morphology 
of the cells and the nuclear morphology were visualized 
by confocal microscopy (Zeiss LSM 510).

Wound healing assay
Cancer cells (50000 cells/well) were plated in 24-well 
plates in triplicate. Twenty-four hours after siRNA 
transfection, cells were starved from serum. A scratch 
was made in all the wells with a 1  μL pipette tip forty-
eight hours after siRNA transfection. Images were taken 
directly after the scratch (0H) and again after 24 h (24H) 
and 48  h (48H). Edges were identified with manual 
inspection and wound healing was quantified as the ratio 
of the pixel distance at the timepoints relative to the 0H 
distance. Student’s t-test was used to calculate signifi-
cance of differences between the ANKLE2 knockdown 
and the control by combining the 24H and 48H data.

Chemotherapy
Paclitaxel/taxol and carboplatin were purchased from 
National Center for Cancer Care and Research (NCCCR; 
Doha, Qatar) pharmacy. Briefly, cancer cells (5000 cells/
well) were plated in 96-well plates in triplicate for each 
condition. Twenty-four hours after siRNA treatment, 
the cells were starved from serum. Forty-eight hours 
after siRNA transfection, each drug suspended in phos-
phate buffered saline (PBS) was added to each well at a 
concentration of 50 µM and viability was analyzed after 
24 h. Student’s t-test was used to compare the prolifera-
tion fraction of different pairs. A p-value less than 0.05 
was considered significant.

Results
In‑silico identification and pathway analysis 
of non‑mutated genes
We obtained the publicly available mutation data from 
the TCGA-OV project as described in the methods. The 
mutation data consisted of somatic mutations from ovar-
ian cancer tissues in 316 patients. To determine which, 
if any, genes were potentially significantly non-mutated, 
we performed simulated mutagenesis on a reduced exon 
sequence library (Fig. 1a). We then compared the simu-
lated mutagenesis results to the observed mutation data. 

Our comparison of simulated mutations to the observed 
mutations showed that most  genes had a mutation rate 
similar to what is expected randomly, as the observed/
simulated ratio was close to 1:1 for the vast majority of 
genes (Fig. 1b). However, a few genes were observed with 
mutatio n rates both higher and lower than expected 
(Fig.  1b, Table  1, Additional file  1: Table  S1a). Among 
well-known genes, TP53 and MMP8 are mutated the 
most (Additional file  1: Table  S1b). Notably, among the 
genes that mutated the least is vascular endothelial 

Fig. 1  Identifying non-mutated genes. a Schematic of mutagenesis 
simulation. To approximate the data used in the patient exome 
sequencing, a reduced exon library was used consisting of the 
exons approximating those used in the TCGA trial. Simulated 
mutagenesis depicted as red lines is subjected to repeated trials 
using the observed background mutation frequencies. The mutation 
frequencies are then compared between the simulated and observed 
data. b Log ratio distribution of observed/simulated data. The inset 
limits the y-axis to 25 to see the distribution at the tails more clearly; 
the genes that are most extreme are labelled. Gray dashed lines show 
the top 50 non-mutated genes and top 50 mutated genes that are 
used for subsequent analysis (corresponding to the values less than 
0.007 quantile and greater than the 99.23 quantile of the dataset)
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growth factor (VEGFA), a molecule that plays an estab-
lished role in tumor angiogenesis [12].

We then conducted a detailed literature search on the 
top 20 genes mutated less than expected to understand 
if they could be playing an important role in tumor biol-
ogy (Table  1). Although we found no relevant cancer 
literature for several of these genes, others were found 
to be highly interesting in terms of cell biology includ-
ing TRAPPC9, which plays a role in NF-κB signaling, 
ANKLE2, which plays a role in mitosis, and VEGFA, 

which plays a role in angiogenesis (references provided in 
Table 1).

To understand further if these genes were acting inde-
pendently or could be part of pathways, we performed 
network analysis on the set of 50 top non-mutated genes. 
We observed, with a constructed pathway, that ten of 
these genes interact directly or indirectly through the 
AKT and NF-κB pathways (Fig. 2). The activation of the 
AKT/ NF-κB pathways is associated with resistance to 
therapy in advanced ovarian cancer [14, 96]. IPA also 

Table 1  List of genes and known functions of the top 20 genes mutated less than expected

Ratio: The ratio of the observed number of mutations to the simulated number of mutations. Obs. Rank: observed rank with 1 being the most mutated in the TCGA 
data. Sim. Rank: simulated rank with 1 being the most mutated in simulations.

Loc.: cellular localization, PM: Plasma membrane, NU: Nuclear, UK: Unknown, CY: Cytoplasm, ES: Extracellular space

\ Gene name Ratio Obs. rank Sim. rank Annotation Loc Function Refs

1 TRAPPC9 0.07 5891 2 trafficking protein particle complex 9 PM NF-kappa-B signaling [19]

2 LPP 0.11 3611 11 LIM domain containing preferred trans‑
location partner in lipoma

NU Localized at focal adhesions and 
cell–cell contact sites; shuttles to the 
nucleus where it affects transcription

[20–25]

3 ELFN2 0.12 4446 13 extracellular leucine-rich repeat and 
fibronectin type III domain containing 2

UK Unknown –

4 ANKLE2 0.13 3107 16 ankyrin repeat and LEM domain 
containing 2

NU Mitosis [26, 27]

5 SHROOM3 0.14 4931 28 shroom family member 3 CY Regulating cell shape in certain tissues [28–33]

6 PGR 0.14 3798 27 progesterone receptor NU Regulation of gene expression and 
affect cellular proliferation and differen‑
tiation in target tissues

[34–37]

7 MAP1B 0.15 6400 39 microtubule-associated protein 1B CY Microtubule assembly [38–44]

8 OBSL1 0.15 5649 38 obscurin-like 1 PM Links internal cytoskeleton to cell 
membrane

[45–47]

9 CELSR1 0.15 6483 57 cadherin, EGF LAG seven-pass G-type 
receptor 1

PM Involved in cell adhesion [48, 49]

10 DBNL 0.16 5544 50 drebrin-like CY For organ development and immune 
response. Promote proliferation, colony 
formation, migration, invasion

[50–53]

11 PHF21A 0.16 3552 36 PHD finger protein 21A NU Repression of neuron-specific genes 
through repressor element-1 or neural 
restrictive silencer

[54–56]

12 TRPV6 0.16 5245 48 transient receptor potential cation 
channel, subfamily V, member 6

PM Calcium channels required for assem‑
bly and regulation

[57–63]

13 VEGFA 0.16 4406 47 vascular endothelial growth factor A ES Angiogenesis, endothelial cell growth, 
cell migration, apoptosis

[64–84]

14 GRIP2 0.17 3298 51 glutamate receptor interacting protein 
2

OM Bind AMPA receptors and target AMPA 
receptors to synapses

[85, 86]

15 RALGDS 0.17 4874 61 ral guanine nucleotide dissociation 
stimulator

CY effectors of Ras-related GTPases that 
participate in signaling

[87, 88] [89]

16 CCDC144A 0.17 4302 58 coiled-coil domain containing 144A UK Unknown –

17 RAI1 0.17 3399 55 retinoic acid induced 1 CY associated with severity and response 
to medication in schizophrenia 
patients

[90–92]

18 TBC1D2B 0.17 3106 52 TBC1 domain family, member 2B UK Unknown –

19 SMG1 0.17 5523 82 smg-1 homolog phosphatidylinositol 
3-kinase-related kinase

CY Involve in tumorigenesis as a new 
tumor suppressor

(93–95)

20 BRWD1 0.18 4873 85 bromodomain and WD repeat domain 
containing 1

NU Unknown –
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automatically identified a set of genes that significantly 
interact with the NF-κB pathway shown as network 2 in 
Additional file  1: Figure S1a. Furthermore, three addi-
tional networks were automatically identified by IPA 
among the Top 50 non-mutated genes (Additional file 1: 
Figure S1a). We show one network consisting of 12 genes 
including ANKLE2, SHROOM3 and ELFN2 interacting 
through direct connections with VIRMA, a nuclear/cyto-
solic protein involved in RNA methylation/adenylation 
and implicated in different cancers [97, 98]. These results 
show that the identified non-mutated genes interact in 
cancer related biological pathways.

Gene expression, methylation and copy number analysis 
of mutated and non‑mutated genes
To investigate further the biological relevance of our 
computational findings, we assayed the gene expression 
of multiple ovarian cancer and normal cell lines using 

RNA sequencing (Additional file  1: Figures  S2 and S3). 
The set of genes that were mutated less than expected 
were found to be expressed at a higher level than genes 
mutated more than expected (Fig.  3a). We confirmed 
similar findings using the TCGA-OV patient data 
(Fig. 3b) which consists of gene expression data from 315 
ovarian cancer biopsies from 315 different patients. To 
determine if the mutation itself can affect gene expres-
sion we looked at expression distributions when a gene 
is both mutated and non-mutated in the TCGA-OV 
data and no significant difference was observed between 
mutation state and expression state in 25 out of 28 genes 
(Additional file 1: Figure S4). The best example of this is 
seen in the TP53 gene which has the most mutations; the 
expression level of the mutated and non-mutated TP53 
samples have a similar distribution (Additional file 1: Fig-
ure S4).

Fig. 2  Pathway analysis of non-mutated genes. IPA generated pathway showing the interaction of genes within one network. The non-mutated 
gene with the highest difference from random expectation, TRAPPC9, is linked to a central NF-κB pathway along with other non-mutated genes. 
The shading as shown in the legend is proportional to the ratio of observed/simulated where genes that are redder have a lower ratio. Links 
between genes are either direct (solid lines) or indirect (dashed lines)
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We also compared the expression of non-mutated 
genes between cancer cell lines and normal cell lines 
(Fig.  3c) and the expression of mutated genes between 
cancer cell lines and normal cell lines (Fig. 3d). We found 
no significant difference in either of these comparisons 
in contrast to the significant differences across the gene 
sets. Moreover, we searched across the top 50 non-
mutated genes shown in Additional file  1: Figure S2 for 
genes whose expression is low in non-cancer cells and 
high across all cancer cells. We could not identify such 
genes but we did identify several non-mutated genes 

whose expression was low in both non-cancer cell lines 
and high in three out of the four cancer cell lines. These 
genes include ELFN2, CELSR1 and TRPV6. We there-
fore conclude that non-mutated genes could play a role 
in tumor biology due to their relatively high expression 
when compared to the expression of the most mutated 
genes.

We then performed an analysis of methylation states 
comparing the aggregated methylation beta value of non-
mutated and mutated genes using the TCGA-OV data as 
described in the Methods. As shown in Additional file 1: 

Fig. 3  Gene expression distributions of non-mutated and mutated genes. Distribution of gene expression of non-mutated and mutated genes 
for our cell line data (a) and for patient data from TCGA-OV project (b). In blue is the expression distribution of top 50 non-mutated genes and in 
orange is the distribution of the top 50 mutated genes. Note that the expression of non-mutated genes is significantly higher than the expression 
of mutated genes in both the cell line and patient data. Distribution of gene expression of non-mutated genes (c) and mutated genes (d) in 
non-cancer cell lines and cancer lines. Note that there is no significant difference in gene expression difference between non-cancer and cancer cell 
lines in either mutated or non-mutated genes. The inset for each panel shows the cumulative density plots of the same data
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Figure S5a, non-mutated genes are overall significantly 
less methylated than mutated genes. Non-mutated genes 
show higher peaks than mutated genes at low beta values 
(0 to 0.2) while mutated genes show higher peaks than 
non-mutated genes at high beta values (0.8–1). Following 
the methylation analysis, we also performed copy-num-
ber analysis on the same TCGA-OV dataset as shown in 
Additional file 1: Figure S5b. Here, we also find a signifi-
cant difference between non-mutated and mutated genes 
with non-mutated genes having overall more genes with 
copy number greater than 2 while mutated genes having 
more genes with copy number less than 2. The meth-
ylation and copy number results are consistent with the 
gene expression results. Lower methylation and higher 
copy number is associated with greater gene expression 
which is what we observe when comparing non-mutated 
genes to mutated genes.

Functional effect of siRNA knockdown of non‑mutated 
genes
To determine if non-mutated genes could directly impact 
cancer cell line growth we selected nine genes for proof-
of-concept in-vitro gene silencing experiments. We 
selected seven genes among the top 10 ranked genes 
(rank 1–4, 6–7, and 9), VEGFA (rank 14), as it is known 
to be involved in angiogenesis, and SLC12A9 (rank 41), 
as it is a plasma membrane-embedded cation transporter 
which may be more easily targeted. We first determined 
that the transcripts were successfully knocked down 
at levels greater or equal to 50 percent of the nega-
tive control (Additional file  1: Figure S7). We then per-
formed silencing experiments on these nine genes with 
three different ovarian cancer cell lines (Fig. 4) and one 
non-cancer ovarian epithelial cell line (Additional file 1: 
Figure S6). We found a significant reduction of viability 
following silencing of 7 out of 9 genes in SKOV3, 9 out 
of 9 genes in OVCAR, 9 out of 9 genes in APOCC and 
2 out of 9 genes in the non-cancer ovarian epithelial cell 
line. We therefore conclude that silencing of these genes 
affects cancer cell lines significantly more than the non-
cancer cell line.

To examine further functional effects, we selected 
ANKLE2 as it was interestingly found to play a role in 
cell division [26, 99, 100]. Silencing of ANKLE2 resulted 
in significant morphologic changes in SKOV3 (Fig.  5a) 
where cells were growing in packed scattered colo-
nies with a fibroblast-like shape before the knockdown. 
We also observed a significant reduction in migration 
in SKOV3ANKLE2−SiRNA using a scratch assay (Fig.  5b). 
Finally, we evaluated the impact of ANKLE2 knock-
down on chemoresistance. SKOV3 cells are paclitaxel/
taxol-resistant [101, 102] but we found that ANKLE2 
knockdown enhanced the cytotoxic effects of paclitaxel 

compared with negative controls as shown in Fig. 5c. In 
contrast to paclitaxel effects, no chemotherapeutic sensi-
tivity was observed with carboplatin (Fig. 5c).

Fig. 4  Cell proliferation after selected gene knockdown in three 
different ovarian cancer cell lines: SKOV3 (a), OVCAR (b) and APOCC 
(c). Fraction of cell viability is standardized against the negative 
control (CTL-) proliferation levels and the error bars are the standard 
deviations from three replicates. A reference line is drawn through 
0.5 showing that almost all genes in all tested cell lines reduced cell 
proliferation by at least 50%. Asterisks denote significant differences 
(p-value < 0. 05) between the gene knockdown and the negative 
control
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Discussion
Here we focused on better understanding the role of 
non-mutated genes in ovarian cancer. We showed that 
in a few genes there are differences between simulated 
and observed mutation frequencies in the TCGA ovarian 
cancer cohort of 316 patients. These genes fell into two 
categories—genes that are mutated more than expected 
(such as TP53) and genes that are mutated less than 
expected which we call here non-mutated genes. The 
non-mutated gene set was especially interesting because 
this was a set of genes that could be selected against 
mutation due to their role in tumor biology and that 
could offer new therapeutic strategies. The TCGA study 
in ovarian cancer uncovered 9,984 genes mutated in 316 
patients with a very heterogeneous distribution among 
patients [94]. Not only are there many mutations but, 
with the exception of TP53, patients share few mutations. 
This mutational diversity makes treatment strategies that 
target mutated genes difficult as every patient may have a 
different combination of mutated genes. However, treat-
ment strategies that target non-mutated genes may be 
more effective as these non-mutated genes would be the 
same in different patients if the observed non-mutation 
is due to selection against mutation. Indeed, one of the 
genes we identified as non-mutated is VEGFA, which is 
known to be involved in promoting cancer angiogenesis 
[65–67, 69, 103].

We found that the non-mutated genes are members 
of cancer-relevant networks. For example, SHROOM3 
has a role in regulating cell shape in tissues [30] and is 
connected with the SNF complex, which mobilizes 
nucleosomes, remodels chromatin and opens up the 
transcription-binding domains leading to an increase in 
transcription [104]. Growing studies support the role of 
SNF complex in cancer development, as several subu-
nits possess intrinsic tumor-suppressor activity [105]. 
Furthermore, several non-mutated genes interact indi-
rectly and directly with the AKT network which modu-
lates the function of numerous substrates involved in 
the regulation of cell survival, cell cycle progression and 
cellular growth, and neo-vascularization [106, 107]. One 
of the most interesting genes we observed to be signifi-
cantly non-mutated was ANKLE2, which is a member 
of the LEM family of inner nuclear membrane proteins. 
This gene functions as a mitotic regulator through the 

post-mitotic formation of the nuclear envelope [26]. 
Our inhibition strategy confirmed the important role of 
ANLKE2 in different tumor-associated phenotypic traits.

We observed that generally non-mutated genes are 
well-expressed in both non-cancer and cancer tissues. 
This could limit the clinical use of targeting non-mutated 
genes as there could be significant side effects due to del-
eterious effects on non-cancer cells. However, targeting 
non-mutated genes could still be a viable strategy if can-
cer cells display greater sensitivity than non-cancer cells 
to inhibition of non-mutated genes. The greater sensi-
tivity of cancer cells to radiation or chemotherapy com-
pared to non-cancer cells  has resulted in the wide use 
of these treatment modalities although with significant 
side effects. We have performed one experiment showing 
that non-cancer ovarian epithelial cells are less suscepti-
ble than cancer cell lines to the effects of silencing in our 
viability assay. While these results are promising, they 
need to be further validated across different cell lines and 
esp ecially across different cellular contexts. Cells grown 
in 2D monocultures are very different from cells grown 
in co-culture with other cells or in 3D organoids  and 
from cells in tissues. It will be interesting to explore the 
differential sensitivity of cancer cells and non-cancer 
cells to non-mutated gene inhibition in future studies. 
Furthermore, we identified several non-mutated genes 
where three out of four cancer cells had high expression 
but where expression was low in non-cancer cells. These 
genes may be interesting therapeutic targets if this pat-
tern is also seen across more cancer and non-cancer cells 
as targeting them could result in reduced toxicity t o non-
cancer cells.

A related point that could affect therapeutic effective-
ness is if these genes might be non-mutated because 
they are housekeeping genes and any mutation would 
be highly deleterious to all cells. The commonly known 
housekeeping genes are the ACTB gene, which is part of 
actin protein family, RAB7A, which belongs to the RAS 
oncogene family, and the GAPDH gene (Glyceraldehyde 
3-phosphate dehydrogenase). In our study, they did not 
display any selection against mutation. The top 50 non-
mutated genes identified are not part of classical house-
keeping genes to our knowledge.

Our analysis is novel, as most studies have focused on 
mutated genes. Further data can help refine our analysis, 

Fig. 5  ANKLE2 knockdown in SKOV3 cell line. a Representative fluorescent images of microscopic imaging of SKOV3 after ANKLE2 and 
CTL- knockdowns. b Migration assay for SKOV3 after knockdown with selected genes. Images at the top were taken just after the scratch while the 
lower images were taken after 48 h. The blue lines denote the margins of the scratch. The white horizontal line is 200 µm. The chart to the right 
shows quantification of the migration normalized to the negative control at two different time points. The p-value (P) of a pairwise t-test combining 
the differences at the 24HR and 48HR time points is shown in the chart. c Chemosensitivity of CTL- (negative control) and ANKLE2 knockdown in 
SKOV3 cells with and without paclitaxel/taxol (T) and carboplatin (C) in serum containing and serum free media. Errors bars are the standard error 
of the mean of three replicates. Values are normalized to the negative control (CTL-). Asterisks denote significant differences between the indicated 
pairs

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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as we used only the restricted publicly available datasets 
in this work. Sequencing with better coverage, such as 
whole-genome sequencing, would be an improvement 
to this analysis since we would get a much better cover-
age distribution. In addition, it would be interesting in 
future studies to develop single-cell and deep sequencing 
experiments in rapidly div iding cancer cells in culture 
across different time points to determine the distribution 
of mutations including low frequency mutations. With 
sufficient coverage it will also be possible to determine if 
there are significantly non-mutated genes in this context.

Comparing our data to the TCGA-OV study [4] shows 
that among the top 50 mutated genes we identified are 
two of the nine genes the TCGA identified as being sig-
nificant. These genes are TP53 and RB1. The TCGA-OV 
used complex statistical models considering sequence 
context in addition to considering the ove rall prevalence 
of mutations. Our random mutation model here is rela-
tively simple and the mutation probability of a specific 
base is independent of any other base. One possibility 
this limitation raises is that genes can be observed to be 
non-mutated not because they are selected against but 
because they have a sequence context that greatly reduces 
the chance of mutation. While these mutation-resistant 
genes could still make interesting targets if cancer cells 
are sensitive to them, their identification would require 
both high coverage data and improved mutation simula-
tion models. Our overall approach here was to combine 
random simulation results with pathway analysis, gene 
expression and functional testing of selected genes.

In this study, we exploited large-scale cancer genomic 
databases and bioinformatics approaches to discover 
novel therapeutic candidates. Our combined bioinfor-
matics and silencing approach could potentially lead to 
discoveries of interesting candidates without the need for 
complex, costly, high-throughput screening approaches. 
Understanding the broader landscape of non-mutated 
genes using combined TCGA datasets could lead to 
understanding key selection processes in place in cancer 
evolution and identifying critical steps that could be used 
as therapeutic targets.

Conclusions
While extensive cancer research has focused on under-
standing genes whose mutations are selected for 
(mutated genes), comparatively little is known about 
genes whose mutation is selected against (non-mutated 
genes). Identifying non-mutated genes could lead to 
new therapies as non-mutated genes could be impor-
tant for cancer survival and growth. We first identified 
potential non-mutated genes by comparing mutations 
observed in an ovarian cancer cohort with mutations 
expected in a random mutagenesis model and selecting 

genes with the greatest difference from random expec-
tation. We then found that non-mutated genes interact 
in known pathways and are well-expressed in cell lines 
and patient tumors suggesting functional importance. 
Finally, we found that when we reduced the expression 
of selected non-mutated genes in ovarian cancer cell 
lines, the growth of all the cell lines was significantly 
reduced. This study is a first proof-of-concept showing 
that targeting non-mutated genes is a plausible cancer 
therapy approach.
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