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a b s t r a c t

In this study, we propose a novel approach to predict the distances of the detected objects in an
observed scene. The proposed approach modifies the recently proposed Convolutional Support Esti-
mator Networks (CSENs). CSENs are designed to compute a direct mapping for the Support Estimation
(SE) task in a representation-based classification problem. We further propose and demonstrate that
representation-based methods (sparse or collaborative representation) can be used in well-designed
regression problems especially over scarce data. To the best of our knowledge, this is the first
representation-based method proposed for performing a regression task by utilizing the modified
CSENs; and hence, we name this novel approach as Representation-based Regression (RbR). The initial
version of CSENs has a proxy mapping stage (i.e., a coarse estimation for the support set) that is
required for the input. In this study, we improve the CSEN model by proposing Compressive Learning
CSEN (CL-CSEN) that has the ability to jointly optimize the so-called proxy mapping stage along
with convolutional layers. The experimental evaluations using the KITTI 3D Object Detection distance
estimation dataset show that the proposed method can achieve a significantly improved distance
estimation performance over all competing methods. Finally, the software implementations of the
methods are publicly shared at https://github.com/meteahishali/CSENDistance.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
,

1. Introduction

Distance estimation has been a crucial task since its applica-
ion plays a vital role in many autonomous frameworks, e.g., au-
onomous driving, unmanned aerial vehicles, and robotics. One
an estimate the object specific distance from the depth scene
roduced by depth sensors such as LiDAR or utilizing such meth-
ds that use only visual information. Naturally, the latter is
referable because of the extra cost of LiDAR. Moreover, even
hough the LiDAR sensor can operate under varying weather
onditions, it has a limited coverage area such as 5% of the image
pace (Wang et al., 2019). Hence, there have been various meth-
ds (Casser, Pirk, Mahjourian, & Angelova, 2019; Chang & Chen,
018; Gökçe, Üçoluk, Şahin, & Kalkan, 2015; Haseeb, Guan, Ristić-
urrant, & Gräser, 2018; Mahjourian, Wicke, & Angelova, 2018;
ang et al., 2019; Zhu & Fang, 2019) that focus on developing

omputer vision solutions for the depth estimation including
upervised and unsupervised approaches. For example, Chang
nd Chen (2018) has utilized multiple cameras to compensate
or the lack of sensors. On the other hand, the need for multiple
ameras and processing costs are disadvantages of a stereo-
amera based depth estimation method. Thus, several methods
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have studied monocular depth estimation (Casser et al., 2019;
Mahjourian et al., 2018), and they have revealed that by fol-
lowing recent trends in neural networks, i.e., fully convolutional
neural networks, depth estimation performance with a single
RGB image can be comparable enough with a stereo-camera
based approaches. As unsupervised learning strategies, Casser
et al. (2019) and Mahjourian et al. (2018) propose to learn
depth information from structural changes within consequent
frames. Additionally, besides using the visual data alone, a hybrid
approach combining and utilizing both visual and sensor data
can be another alternative for enhancing the noisy or erroneous
depth predictions. For example, the authors claim in Wang et al.
(2019) that their method can be integrated into various learning-
based methods that use visual information, and it can improve
the performance of the methods by sparse LiDAR measurements.

Nevertheless, the aforementioned methods except (Gökçe et al.
2015; Haseeb et al., 2018; Zhu & Fang, 2019) have focused on
producing dense depth maps which means computing a heat-
map that gives a sense of relative depth distance information in
an observed scene. On the other hand, the necessity of dense
depth maps varies among applications, i.e., in an autonomous
driving application, the distance information of the objects is
more desirable than providing the depth map of the scene. There
are only a few studies (Gökçe et al., 2015; Haseeb et al., 2018;
Zhu & Fang, 2019) proposing object distance estimation for the

objects in an observed scene.
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The pioneer study (Haseeb et al., 2018) of object distance
stimation on land proposes a two-tiers methodology: (i) first,
etection of the location, and then the classification of an object.
ii) extraction of the related features such as the bounding box
nformation (the width, the height, etc.), and class-specific ones
such as predefined average length of detected class). (iii) Finally,
sing a Multi-Layer Perceptron (MLP) to predict the camera dis-
ance of the bounding box in meters. However, their approach di-
ectly depends on the performance of object classification, while
misclassification of the given ROI may lead to a complete failure
n distance estimation. Similarly, Gökçe et al. (2015) proposes
o use only the geometric information of the bounding box as
eatures and train a Support Vector Regressor (SVR). Next, in Zhu
nd Fang (2019), a Convolutional Neural Network (CNN) is used
o extract representative features and these features have then
een used for the regression and the classification tasks by two
LPs to predict the distance of the object and its category. Since

he overall framework in Zhu and Fang (2019) is trained jointly by
ombining the classification and regression losses, the categorical
nformation of the objects has boosted the estimation of the
istance.
Overall, comparing with the recent improvements in dense

epth estimation (Casser et al., 2019; Mahjourian et al., 2018;
ang et al., 2019), there is a lack of existing research focusing
n object distance estimation. In this study, we believe that
he importance of object distance estimation is obvious as the
umber of recent advances in the state-of-the-art object detectors
as been growing and further analysis over these objects can
rovide better assistance to autonomous systems.
Deep Learning approaches with the recent advances in Con-

olutional Neural Networks (CNNs) have provided state-of-the-art
erformance levels in various computer vision tasks such as ob-
ect detection, image recognition, and image segmentation. To
chieve such performance levels, the deep learning-based ap-
roaches require a massive training dataset. On the other hand,
he proposed solution for the object distance estimation task
hould be suitable to work with relatively small-scale annotated
ata. For example, one can compare KITTI 3D Object Detec-
ion (Geiger, Lenz, & Urtasun, 2012) dataset having annotated
481 scenes with Imagenet (Russakovsky et al., 2015) having over
million samples.
To address this need, in this study, we first formulate the

istance estimation problem as a multi-class classification task
y quantizing the distance in meters and use representation-
ased classification techniques including two categories: Sparse
epresentation-based Classification (SRC) and Collaborative
epresentation-based Classification (CRC). The approaches for
RC (Wright et al., 2010; Wright, Yang, Ganesh, Sastry, & Ma,
008) and CRC (Zhang, Yang, & Feng, 2011) are well suited for the
imited data and they are commonly used for the classification
n the existing studies as follows. A representative dictionary
is constructed by grouping training samples column-wise. In

he inference phase, a test sample y will be attempted to be
epresented by the linear combination of the atoms of the formed
ictionary D, i.e., solving y = Dx for x where x is a vector of rep-
esentation coefficients. Accordingly, in SRC methods, it is aimed
o find a sparse x̂ (just have enough non-zero components so
hat the query sample is represented with a small error margin).
lternatively, in CRC, the least-square sense solution is applied,
.e., x̂ =

(
DTD+ λI

)−1 DTy, where λ is the regularization param-
ter. Overall, the same motivation is valid for both categories: the
toms having higher estimated representation coefficient values,
ˆ , are likely to have the same class label with the query sample y.
t has been observed in Zhang et al. (2011) that the CRC approach
as provided marginally reduced classification performance com-
ared to SRC methods. However, the computational complexity of
16
the methods that rely on SRC is significant considering that they
require iterative computations to solve the problem.

In this study, we propose the following approach of using a
representation-based scheme in the object distance estimation
task. First, the cropped objects are resized to have fixed size
images for each object, and then their corresponding features are
obtained by using pre-trained networks DenseNet-121 (Huang,
Liu, Van Der Maaten, & Weinberger, 2017), VGG19 (Simonyan &
Zisserman, 2014), and ResNet-50 (He, Zhang, Ren, & Sun, 2016)
over the ImageNet dataset. Next, a dictionary is created with
atoms of relative features that are from the classes obtained by
discretizing the distances of the object. Finally, a representation-
based classification method is applied to detect the class which
will correspond to the discretized distance of the query ob-
ject. The main advantage of the proposed approach is that the
categorical information of the object is not used in the dis-
tance estimation unlike the methods in Haseeb et al. (2018),
Zhu and Fang (2019); hence the classification performance of a
single-stage object detector does not affect the distance predic-
tion performance.

As an alternative approach, we propose to consider this as
a regression problem. In order to make a direct distance esti-
mation without discretization during the inference phase, we
modify Convolutional Support Estimator Network (CSEN) that
was originally proposed as a representation-based classifier in Ya-
mac, Ahishali, Kiranyaz, and Gabbouj (2020). The CSEN approach
combines the conventional representation-based classification
technique with the learning-based approach involving CNNs. We
define the task of Support Estimation (SE) to estimate locations
of the non-zero components of x. Indeed, the support of the
non-zero coefficient forms sufficient information to obtain the
class of the query sample. The previous works (Ahishali et al.,
2021; Yamaç et al., 2021; Yamac et al., 2020) have shown that
CSENs provide state-of-the-art classification performance levels
and their computational complexity are insignificant since they
can directly map the support set of the query sample. Moreover,
they are well-suited for limited annotated data since they do not
have the tendency to overfit due to their compact structures.
Up to date, the CSEN approach has never been designed and
evaluated for a regression task. In this study, we show that
using the modified CSEN configuration, it is possible to perform a
regression task that is henceforth called as Representation-based
Regression (RbR). Finally, we propose further improvements over
the CSEN framework. The initial CSEN version (Yamac et al., 2020)
has required the so-called proxy, x̃, estimation based on the
least-square solution, i.e., x̃ =

(
DTD+ λI

)−1 DTy. In this study,
we propose an end-to-end learning, the so-called Compressive
Learning CSEN (CL-CSEN) framework that jointly optimizes the
proxy mapping and SE estimation.

Overall, the novel and significant contributions of this study
can be summarized as follows:

• Representation-based classification approaches are used in
an object-specific distance estimation task for the first time.
• To the best of our knowledge, this is the first study that

formulates a regression task in the form of representation-
based estimation approach. The proposed methodology is
henceforth named as Representation-based Regression (RbR).
• With the proposed approach, the state-of-the-art perfor-

mance level is achieved using compact configurations and
a non-iterative SE. This does not only enables an accurate
estimation with a limited number of annotated data, it fur-
ther yields an elegant efficiency in terms of computational
complexity.
• The improved framework with CL-CSEN enables the joint

optimization of SE framework with the denoiser matrix B.
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Accordingly, the new CL-CSEN and initial CSEN models have
different input and output pairs. The latter requires so-called
proxy computation for the input, i.e., x̃ = By, whereas CL-
CSEN is an end-to-end framework that can directly map
the compressed query feature vector y to the estimated
distance d̂. In MLP part of the CL-CSEN model, we initialize
the weights of the fully-connected layer with BT with B =(
DTD+ λI

)−1 DT .
• Finally, the proposed approach performs object-specific

distance estimation, whereas the majority of the afore-
mentioned studies focus on dense depth map estimation
producing depth masks for an observed scene. Only a limited
number of studies has been proposed for object-specific
distance estimation including (Gökçe et al., 2015; Haseeb
et al., 2018; Zhu & Fang, 2019). Furthermore, the proposed
method is designed to be run on a single RGB image, while
the studies (Haseeb et al., 2018; Zhu & Fang, 2019) require
additional information such as the object class information
and camera projection matrix.

Our experimental evaluations over the KITTI benchmark datase
Geiger et al., 2012) show that the distance estimation perfor-
ance with the proposed CSEN approach outperforms all com-
eting methods, i.e., the competing distance estimator SVR (Gökçe
t al., 2015) and alternative representation-based approaches
ncluding CRC (Zhang et al., 2011) and SRC approaches (Wright
t al., 2010, 2008). Moreover, although the direct comparison of
he proposed approach is not fair against (Zhu & Fang, 2019) due
o the reasoning mentioned earlier, the proposed approach still
utperforms considering their reported performance metrics.
The rest of the paper is structured as the following: the

heoretical background and the prior art will be presented in
ection 2. Then, the proposed object distance estimation with
SEN and CL-CSEN will be detailed in Section 3. Next, the ex-
erimental evaluations over the KITTI dataset are presented in
ection 4. Finally, concluding remarks will be drawn in Section 6.

. Background and prior art

In this section, we shall first provide a brief background
f sparse representation, then, discuss the representation-based
lassification theory including SRC and CRC methods.
The following notations and terms are defined in this study.

or a vector, x ∈ Rn, the ℓp-norm is ∥x∥ℓnp =
(∑n

i=1 |xi|
p)1/p where

≥ 1, whereas the ℓ0-norm and ℓ∞-norm are defined as ∥x∥ℓn0 =
imp→0

∑n
i=1 |xi|

p
= #{j : xj ̸= 0} and ∥x∥ℓn∞ = maxi=1,...,n (|xi|)

or the vector x, respectively. Let a signal s is sparsely represented
n a domain Φ such that s = Φ x where ∥x∥0 ≤ k, then it is said
hat the signal s is strictly k-sparse since it can be represented
sing less than k + 1 non-zero coefficients in a proper domain.
hat is to say, it is possible to represent the signal s with only a
ew basis vectors in a proper domain Φ. The sparse support set Λ

s then a set that contains locations of these non-zero coefficients
f x such that Λ := {i : xi ̸= 0} and Λ ⊂ {1, 2, 3, . . . , n}.
Let A is a subspace for the signal s such that y = As. Accord-

ngly, a signal y can be projected to the subspace A as follows:

= As = AΦx = Dx, (1)

here A ∈ Rm×d is called compression matrix, D ∈ Rm×n is the
quivalent dictionary, and m << n; and hence the corresponding
ystem is underdetermined. We necessitate a priori information
egarding the unknown x to solve such an ill-posed problem in
1) since it is non-uniquely solvable. Donoho and Elad (2003) has
hown that at least k-sparse signal pairs in a sparsifying basis
are distinguishable in the dictionary D if D satisfies some s

17
roperties. Consequently, it immediately indicates that the below
olution is unique,

in
x
∥x∥0 subject to Dx = y, (2)

f ∥x∥0 ≤ k, m ≥ 2k, and the minimum number of linearly
ndependent columns in D is also greater than 2k (Donoho & Elad,
003).
On the other hand, the solution of (2) is NP hard and the

roblem is non-convex. Fortunately, we can relax the optimiza-
ion problem, ℓ0-minimization, to its closest norm based problem
efined as Basis Pursuit (Chen, Donoho, & Saunders, 2001) that is
1-norm:

in
x
∥x∥1 s.t. x ∈ ℧ (y) (3)

here ℧ (y) = {x : Dx = y}. The equivalent to the one of the
parse representation problem (2), but more tractable solution
an be achieved by solving ℓ1-minimization defined in (3) un-
er some conditions such as m > k(log(n/k)) and D satisfied
estricted Isometry Property (Candes, 2008).

.1. Generic sparse support estimation (SE)

Support estimation can be defined as finding the non-zero
ocations of a corresponding sparse signal. Indeed, in many prac-
ical problems, the full signal recovery; the recovery of the signal
agnitude, sign, and support set, may not be necessary. For ex-
mple, in a representation-based classification problem (Wright
t al., 2010, 2008; Zhang et al., 2011), estimating the locations of
on-zero elements in x so-called the support set, Λ, is enough
o determine the corresponding class. For a linear feed-forward
odel, y = Dx + z, with an additive noise z, the works in the

iterature targeting SE from y are based on by first applying a sig-
al recovery method then applying component-wise thresholding
ver the estimated signal, x̂, to compute Λ̂. Accordingly, they can
e divided into three categories depending on their reconstruc-
ion schemes: (i) estimators that are based on ℓ1-minimization,
ii) least-square sense approximate methods such as
MSEE (Reeves & Gastpar, 2012), x̂LMMSE

=
(
DTD+ λIn×n

)−1 DTy
nd Maximum Correlation (MC) (Fletcher, Rangan, & Goyal, 2009),
ˆMC
= DTy, and (iii) Deep Neural Networks.

The approaches in (i) work in an iterative manner and they
re computationally costly; and hence, not efficient if the aim
s to only recover support information. The methods in (ii) are
on-iterative and direct approaches but their performances are
imited compared to the previous ones (see Reeves & Gastpar,
012 for a detailed discussion). Finally, deep learning-based ap-
roaches (Borgerding, Schniter, & Rangan, 2017) in the group
iii) target a direct mapping for the signal reconstruction task.
owever, the major concern is that the signal reconstruction
ask is harder than SE, and it requires deep networks having
omplex architectures with millions of parameters to enable a
irect mapping. This further requires a massive size of training
ata for a proper generalization. Furthermore, these deep un-
olding networks (Borgerding et al., 2017) consist of dense layers
aking them computationally intensive and more sensitive to the
dditional noises (Yamac et al., 2020). As a remedy, our recent
pproach, CSEN (Yamac et al., 2020), which can perform direct SE
ithout first applying signal recovery, provides an alternative and
omputationally efficient solution. The compact design of CSEN
nables elegant performance even with small-scale training data.
oreover, compared to deep networks with dense layers, CSEN
ith convolution layers provide robust SE in noisy cases. For a
ore detailed analysis, the readers are referred to Yamac et al.

2020) where we compare the performances of the traditional
upport estimators with the proposed CSEN approach and we
ddress the major limitations and drawbacks with the classical

upport estimator methods.
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.2. Representation-based classification

As discussed earlier, in representation-based classification task,
redicting the locations of the non-zero elements in x is more
mportant than computing the exact values. In the following sub-
ections, we shall provide a brief explanation about how SRC and
RC methods perform classification. Basically, SRC methods are
n the aforementioned first group of support estimators, whereas
he CRC method belongs to the second group.

.2.1. Sparse representation-based classification
When a test sample y is introduced, the query sample y is

tried to be represented as a linear combination of the atoms
of the dictionary D. In general, SRC methods estimate sparse
representation coefficients x̂ that only a few non-zero coefficients
xist to represent the query sample. We expect that these active
omponents of x̂ will correspond to the samples having the same
abel as the test sample. There are many existing studies that
tilize the SRC approach for various classification tasks such as
ace recognition (Wright et al., 2010), coronavirus disease 2019
COVID-19) recognition (Yamaç et al., 2021), early COVID-19 de-
ection (Ahishali et al., 2021), human action recognition (Guha
Ward, 2011), and hyper-spectral image classification (Li & Du,
016).
In the previous discussion regarding (2) and (3), the state-

ents were valid for the exactly k-sparse signal pairs, whereas
n practice, the signal x may not be exactly k-sparse due to the
odeling errors or noise in the data. Consequently, given the
easurement with the additive noise: y = Dx + z, the exact

recovery of the signal is unfeasible. However, the stable signal
recovery is still possible in which the stable recovery refers that
x̂ obeys

x− x̂
 ≤ κ ∥z∥ hold for the estimated sparse signal x̂,

where κ is a relatively small constant. For instance, it is provided
in Candes and Plan (2011) that using the following so-called Lasso
formulation:

min
x

{
∥Dx− y∥22 + λ ∥x∥1

}
(4)

the partial recovery of the sparse x is achievable. Correspondingly,
it is also proven that ℓ1 solution can still provide exact computing
of x in noise-free cases.

Wright et al. (2010) proposes to follow a four-step approach
instead of using (4) directly: (i) normalize all the atoms in D
nd y to have unit ℓ2-norm, (ii) apply the signal reconstruction
tep: x̂ = argminx ∥x∥1 s.t. ∥y− Dx∥2, (iii) residual finding: ei =
y− Dix̂i


2, where x̂i is the estimated coefficients corresponding

he class i, (iv) estimated label: Class (y) = argmin (ei). Although
his four-step solution introduces an additional residual finding
tep, it provides performance improvements over direct SE with
4) since the samples from different classes are actually correlated
s in real life. The other SRC techniques (Guha & Ward, 2011; Li
Du, 2016) have followed similar multi-step approaches for the

lass estimation.

.2.2. Collaborative representation-based classification
The study in Zhang et al. (2011) proposes to follow ℓ2-

inimization instead of ℓ1-minimization in (4) as follows:

ˆ = argmin
x

{
∥y− Dx∥22 + λ ∥x∥22

}
(5)

ence, they form the CRC approach by changing the second step
f the four-step solution in Wright et al. (2010) with the following
losed-form solution: x̂ =

(
DTD+ λIn×n

)−1 DTy. The motivation
s that for a given a query signal y or vectorized image, the
omputed x̂ should have minimum energy with relatively small
oefficients that correspond to samples in the dictionary D from
he same class with the query y. Hence, due to the least-square
18
ense minimization technique, a collaborative representation is
ought between the atoms of the dictionary. In representation-
ased classification scheme, the dictionary D mostly fails to sat-
sfy the defined exact or robust recovery properties due to the
orrelation between samples. It is indeed discussed in Zhang et al.
2011) that if formulating the problem with the collaborative
epresentation operates the classification rather than the sparse
epresentation.

It is reported that the followed ℓ2-minimization based solution
rovides especially high classification performances for a high
ompression ratio that is defined as m/d. In those cases, the CRC
approach can even produce comparable or better classification
results comparing with SRC. Note the fact that the CRC approach
is considerably faster due to the presence of the closed-form
solution in (5).

3. The proposed methodology

In the sequel, we will introduce the feature extraction
procedure and the framework about using classical representation
based classification methods: SRC and CRC on the distance es-
timation task with the quantization. Then, the proposed CSEN
based regression approach will be presented to directly predict
the distance information without the quantization in the infer-
ence. Finally, a novel CL-CSEN framework will be introduced that
is specifically designed to jointly optimize the denoiser and the
regression parts of the CSEN during the training phase.

3.1. Estimation via representation-based classification

The representative dictionary that is needed to form in the
representation-based classification methods can be formed by
vectorized samples. However, we have revealed in Yamac et al.
(2020) that for some cases, the atoms of the collected dictio-
nary for a representation-based classification method are not
representative enough if they are formed by directly putting the
vectorized raw images. Hence, in the regression task as well, we
propose to use a pre-trained CNN to produce more representative
information.

The selected pre-trained models for this feature extraction
procedure are DenseNet-121 (Huang et al., 2017), VGG19 (Si-
monyan & Zisserman, 2014), and ResNet-50 (He et al., 2016) that
are trained over the ImageNet dataset with more than one million
images:

• DenseNet-121 is a fully connected convolutional network:
an L-layer DenseNet-121 has a total of L(L + 1)/2 connec-
tions whereas the corresponding traditional version of the
convolutional network would have only L connections.
• VGG19 is a deep neural network consisting of convolu-

tional and fully connected (dense) layers (as a generic CNN
structure) without any skip-connections.
• ResNet-50 is based on residual learning having skip-

connections between every other layer in the network.

verall, DenseNet-121 and ResNet-50 are in the form of convolu-
ional layers consisting of only convolutional layers except for the
utput layer, whereas VGG19 has multiple fully connected layers.
Accordingly, we compose the features before the last convo-

utional layers of DenseNet-121 and ResNet-50 and before the
ully connected layers of VGG19. Then, the collected multiple
eature maps are flattened by applying global max-pooling oper-
tion. Consequently, the described feature extraction procedure
rovides the mapping φ : RN×N×3

→ Rd to produce a feature
vector, si = φ (Ii), where Ii is the ith object cropped from
the observed frame and resized using bilinear interpolation to
a predetermined size i.e., N × N as demonstrated in Fig. 1. The
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Fig. 1. The proposed framework for the object distance estimation is based on representation-based classification methodologies including Sparse Representation-based
Classification (SRC) and Collaborative Representation-based Classification (CRC). The output class estimation yields the quantized estimated distance.
feature vector dimension d = 1024, 512, and 2048 for DenseNet-
121, VGG19, and ResNet-50, respectively. The composed features
for n number of objects are collected column-wise to have the
matrix, Φ ∈ Rd×n. The representative dictionary D is then formed
as D = AΦ using the compression matrix A ∈ Rm×d as PCA. When
forming the dictionary, we quantize the distances to interpret the
regression problem as a classification problem. For example, let
the desired sensitivity is selected as 1 m, then there would be 60-
classes for a distance estimation task for the range of 1–60 m. This
dictionary formation procedure is illustrated in Fig. 2. Apparently,
the distance information in the extracted features comes from the
resolution of the cropped input images since the distant objects
tend to have blurry appearances due to the rescaling small-scale
distant objects as observed in Fig. 2. Next, representation-based
classification approaches with SRC and CRC can be used to predict
the class which will correspond to the quantized distance. As
illustrated in Fig. 1, the aforementioned four-step approach in
Section 2 is used in the framework including the residual finding
step.

3.2. The proposed representation-based regression (RbR) with CSENs

With the proposed approach, it is possible to produce exact
estimates instead of quantized distances during the inference.
Hence, to the best of our knowledge, as the first time in the liter-
ature, we are introducing the utilization of a representative dic-
tionary for a complete regression task. Accordingly, the proposed
approach that will be detailed next is called Representation-based
Regression (RbR).

Since the traditional approaches first fully reconstruct the sig-
nal before the actual SE task, the performance of the SE becomes
highly dependent on the performance of the signal recovery. As
discussed earlier, the signal reconstruction is not guaranteed if
the required sparsity of x does not hold due to practical reasons
such as the presence of significant noise or high correlation be-
tween samples as observed in some classification problems such
as face recognition. Nevertheless, it is still possible to recover
Λ fully (Rad, 2011; Scarlett & Cevher, 2016; Wainwright, 2007;
Wang, Wainwright, & Ramchandran, 2008) or partially (Reeves
& Gastpar, 2008, 2013; Scarlett & Cevher, 2016). With this mo-
tivation, we aim to learn a direct mapping to the corresponding
support set Λ̂ for a given query sample y.

The proposed SE follows a compact architecture that also max-
imizes the performance with a minimum number of annotated
data. To this end, compact CSENs used in the previous work (Ya-
mac et al., 2020) have been modified to enable regression in the
distance estimation task. The proposed modified CSEN inherits
the same capabilities and advantages. On the other hand, the
initial network was a fully convolutional network consisting of
only convolutional layers. In this study, we keep this strategy for

SE as well and use MLP only for the regression over the predicted

19
Fig. 2. To form the representative dictionary D, samples are collected with the
increasing order of the distances. Then, they are resized and fed to the feature
extractor. Next, after additional dimensional reduction operation with the matrix
A, they are stacked in such a way that the first-class category corresponds to
1 m and the Cth class to C meters.

support sets. One may consider using an MLP-like structure for SE
which is originally proposed for SR (Borgerding et al., 2017). How-
ever, the followed topology in CSENs brings several advantages
over MLPs as proven by Yamac et al. (2020): low computational
complexity, robustness to the noise, and learning capability with
a limited amount of training data thanks to the compact structure
of CSEN and significantly less number of parameters compared to
the MLP.

A CSEN network is designed to produce a binary mask v ∈
{0, 1}n by the following mapping P (y,D) : Rn

↦→ [0, 1]n.
Accordingly, it produces a probability vector p of each index
to be counted as a support. The estimated support set, Λ̂ ={
i ∈ {1, 2, . . . , n} : v̂i = 1

}
, is then obtained by thresholding p

with a fixed threshold. During the training phase, CSEN takes x̃
as the input and produces v̂ as the SE, where v̂, x̃ ∈ Rn; hence
the learned transformation would be v̂← P

(
x̃
)
. Here, the input

of CSEN is a rough estimation and it is called proxy. The proxy
x̃ can be the Maximum Correlation x̃ = DTy or LMMSE (Reeves
& Gastpar, 2012)

(
DTD+ λI

)−1 DTy. The input proxy x̃ is then
reshaped to a 2-D plane and convolved with the weight kernels
{w1,w2, . . . ,wN

}. After the addition of biases {b1, b2, . . . , bN},
1 1 1 1 1 1
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Fig. 3. The proposed framework for the object distance estimation based on Convolutional Support Estimator Networks (CSEN). The modified CSEN performs regression
over the estimated support sets using the reshaped proxy signal x̃ = By where B =

(
DTD+ λI

)−1 DT .
the feature tensor F1 = {f11, f
2
1, . . . , f

N
1 } in the first hidden layer

with N number of weight kernels is formed:

F1 = {S(ReLu(bi1 +wi
1 ∗ x̃))}

N
i=1, (6)

where S(.) is the down- or up-sampling operation and ReLu(x) =
max(0, x). This is illustrated in Fig. 3. At the layer l, the kth feature
can be defined as follows:

fkl = S(ReLu(bkl +
Nl−1∑
i=1

wi,k
l ∗ f

i
l−1)). (7)

Accordingly, an L-layer CSEN network would have the following
trainable weight and bias {w, b}, parameters: ΘCSEN =

{wi
1, b

i
1}

N1
i=1, {w

i
2, b

i
2}

N2
i=1, . . . , {w

i
L, b

i
L}

NL
i=1

}
.

In SRC, the dictionary is collected by stacking training samples,
or example, by concatenating the same class samples together.
hus, group ℓ1-minimization can be used instead of (4):

in
x

{
∥Dx− y∥22 + λ

c∑
i=1

xG,i

2

}
(8)

here xG,i is the group of coefficients from class i. Therefore, the
ost function for a CSEN can be expressed as,

(x) =
∑
p

(PΘ

(
x̃
)
p − vp)2 + λ

c∑
i=1

PΘ

(
x̃
)
G,i


2
. (9)

here PΘ

(
x̃
)
p and vp are the actual output and binary mask of

he sparse code x for pth pixel, respectively.
The introduced regularization may bring additional compu-

ational complexity; hence, in the previous study (Yamac et al.,
020), an approximation of (9) is adopted for CSEN by applying
verage pooling over the output and then performing SoftMax
peration to produce the class probabilities directly. However,
or the regression problem, which is undertaken in this study,
e propose to modify the architecture by replacing the aver-
ge pooling with the max pooling and inserting an additional
onvolutional layer and fully connected layer right after the max-
ooling as illustrated in Fig. 3. The included layers form the
egression part of the modified CSEN. Then, the loss function of
he modified CSEN for the regression can be expressed as LCSEN =

i∈M smoothℓ1 (PΘ

(
x̃i

)
− di) over a batch M , where PΘ

(
x̃i

)
, di

re the predicted and real distance values for the ith object and
mooth ℓ1-loss is expressed as,

smoothℓ1 (x) = 0.5x2 if |x| < 1 (a)
|x| − 0.5 else . (b)

(10)

he selected loss function combines ℓ1 and ℓ2 penalizations such
hat if the absolute value of the error is smaller than 1, it behaves
ike ℓ2-loss. In this way, oscillations are prevented when the

odel state is closer to the convergence point. On the other

20
Fig. 4. Conventional dictionary design versus the proposed dictionary design
for the CSEN. In the conventional dictionary design, samples are collected with
the increasing order of the distances. The first, second, third class categories
correspond to 1 m, 2 m, 3 m, respectively, and the Cth class corresponds to C
meters.

hand, if the absolute value is large, thanks to the ℓ1 behavior, the
loss function is more robust to outliers and provides more stable
gradients. The input proxy is selected as x̃i =

(
DTD+ λI

)−1 DTyi
from LMMSE where yi = Afi is obtained for the extracted object
feature fi = φ (Ii), and the input and output pair of the proposed
method for the regression is

(
x̃train, dtrain

)
for the training.

Note the fact that the proposed RbR method can directly map
the exact distance values and it is possible to train the model
using the exact distance information. The quantized distances
are only used when forming the dictionary D with the selected
quantized dictionary samples. In Section 3.1, we have detailed
the distance estimation utilizing representation-based classifica-
tion with SRC and CRC approaches since they can only estimate
the quantized distances that correspond to a classification task,
i.e., class c corresponds to objects of c meter away from the
camera. Therefore, the grouped features from different objects
(e.g., car, person, and truck), but from the same distances (c-
meter) as shown in Fig. 2. In this way, we will have a categorical
invariant distance estimator unlike the literature work (Haseeb
et al., 2018; Zhu & Fang, 2019).

In the traditional approaches with SRC and CRC, one can
directly use the collected representative dictionary D having the
samples collected in a random order as long as the ordering is
known since the recovery of x is obtained from y = Dx. However,
in the CSENs, direct mapping from y is performed using 2-D con-
volutional layers. Hence, in the proposed CSENs, it is important
to group samples with the same quantized distances together
after reshaping the proxy x̃ since the grouped coefficients are max
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Fig. 5. The proposed Compressive Learning CSEN (CL-CSEN) framework that jointly optimizes proxy mapping with support estimation and regression parts during
the training.
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pooled in the feed-forward phase as discussed. Accordingly, the
columns of the dictionary D are re-ordered in such a way that
after reshaping the proxy into a 2-D plane, the samples with the
same distances in the quantized level are grouped together. This
proposed re-ordering topology is illustrated in Fig. 4 where 1-
D coefficient vector x is reshaped to a 2-D plane that yields X.
Correspondingly, one can directly say that the input size of the
CSEN depends on the collected dictionary size and the stride size
(also kernel size) of the average pooling depends on the number
of samples within the same distance level.

3.3. Compressive learning CSEN (CL-CSEN) approach

In the CSEN approach, the input is the reshaped proxy signal, x̃,
hich is obtained directly by x̃ =

(
DTD+ λI

)−1 DTy. Ultimately,
he performance of the CSEN was therefore limited to this proxy
apping stage i.e., x̃ = By since B is treated as a constant during

he training. To overcome this limitation, we propose to fine-
une the denoiser matrix B as follows: we include two additional
ully-connected (dense) layers right before the first convolutional
ayer of the CSENs. The neurons connecting the input layer to
he first hidden dense layer are initialized with BT where B =
DTD+ λI

)−1 DT . Next, the output of the first hidden dense layer
s reshaped to form the input of the first hidden convolutional
ayer.

The CL-CSEN framework is illustrated in Fig. 5 where the map-
ing from low-dimensional to high-dimensional space is learned
uring training. In this way, the proxy mapping layer is jointly
ptimized with the CSEN part of the CL-CSEN model to maximize
he regression performance. Hence, the input and output pair of
he proposed method with CL-CSEN will be

(
ytrain, dtrain

)
for the

raining.

. Experimental evaluation

The performance of the proposed approach is evaluated over
he KITTI 3D Object Detection (Geiger et al., 2012) dataset. KITTI
rovides 3D bounding boxes for the detected objects as well as
heir categories. Besides having 3D object dimensions including
ength, height, and width, the dataset has the information of the
D object locations: x,y, and z in camera coordinates. Hence,
e use the z location information as the ground truth for the
bject distance estimation task. The collected frames are captured
y a moving platform/vehicle from rural areas, a mid-size city,
nd highways. One challenge with this dataset is that there are
verlapping samples on the observed scene as illustrated in Fig. 6.
21
.1. Experimental setup

The KITTI annotations consist of 7481 images and there are
total of 40 570 objects having the distance information. The
ajority of them, 38 307 objects are in the range of [0.5, 60.5]
eters. In this study, the objects between the given range are
elected for the evaluation in order to remove the outlier objects
hat are significantly far or close to the camera. The selected and
ropped objects are then resized to 64× 64 images and fed to the
ifferent feature extractor networks. We have created two differ-
nt experimental setups. In the first one, a total of 19 769 samples
re randomly selected for the training split and the remaining 18
38 samples are for the testing. In the second, only 4800 samples
re used for training while the majority (33 507 samples) are
sed for the test. Consequently, these scenarios fulfill the aim
f this study, i.e., evaluation of the learning capability with the
imited amount of data (approximately 50% and less than 13% of
he annotated data in the first and latter scenarios, respectively).

.1.1. CSEN and CL-CSEN configurations
To form the dictionary D, we allocate 1200 samples from the

raining split and quantize those samples using 61 partitions in
uch a way that at the end, there are 20 samples per meter
20 × 60 = 1200 objects in total) within the selected distance
ange. Recall the fact that these selected samples for each meter
onsist of different object categories such as person, car, truck,
nd trailer. Thus, D consists of 1200 samples in the proposed
pproaches with the CSEN and CL-CSEN. The compression ratio
s set to CR = m/d = 0.5 using the PCA matrix A that is
omputed using the allocated samples for the dictionary forma-
ion. Consequently, after the compression is applied, the size of
he equivalent dictionary D would be m × 1200 where m =
12, 256, and 1024 for DenseNet-121, VGG19, and ResNet-50,
espectively. Consequently, the corresponding denoiser matrix
=

(
DTD+ λI

)−1 DT would be 1200×m. Therefore, the reshaped
version of the computed proxy signal x̃ = By, x̃ ∈ Rn=1200 has the
size of 80 × 15 in the 2-D plane. Finally, the remaining training
samples are used for the training of CSEN and CL-CSEN.

The proposed compact CSEN structure given in Fig. 3 consists
of only two convolutional (both with 5 × 5 filter sizes) and one
dense layer. The first convolutional layer has 64 weight kernels
that is followed by max-pooling with 4 × 5 pooling size. The sec-
ond convolutional layer has only one kernel that creates a feature
map that is flattened and connected to the single output neuron.
In the CL-CSEN, there are additional two fully connected dense
layers with the number of neurons corresponding to the size of
BT as previously discussed. In this way, the followed compact
structure brings the ability to learn from a limited amount of
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ata. All the layers have ReLu as the activation function except
he output that has the SoftPlus activation function.

The CSEN is trained with 100 epochs and batch size of 16 by
dam optimizer (Kingma & Ba, 2014) using the proposed default
arameter values as a learning rate α = 10−3, β1 = 0.9, and

β2 = 0.999. From the training set, we separate 20% of samples
for the validation to select the best network model to be used
for testing. The experiments have been performed using Python
on a PC with NVidia

®
1080 Ti GPU card, Intel

®
i9 − 7900X

PU having 128 GB system memory. The CSEN and CL-CSEN are
mplemented with the Tensorflow library (Abadi et al., 2016).
he hyper-parameter of λ is first searched in log-scale within
he range λ∗ ∈ [10−13, 103

]. Afterwards, the fine-tuned version
s set with few more steps by slight adjustment such that λ =
∗
± 10log(λ∗).

.1.2. Competing methods
Since we propose to use RbR by utilizing the regularized least-

quare sense solution as the coarse estimation of the support
ets, the performance analysis will be performed against the
ase model with CRC (Zhang et al., 2011), and then, the im-
rovement over CRC by the proposed CSEN and CL-CSEN will
e reported. Moreover, we use various different solvers for SRC
pproach including ADMM (Boyd, Parikh, Chu, Peleato, Eckstein,
t al., 2011), Primal and Dual Augmented Lagrangian Methods,
PALM and DALM) (Yang, Zhou, Balasubramanian, Sastry, & Ma,
013), Orthogonal Matching Pursuit (OMP) (Yang et al., 2013),
omotopy (Malioutov, Cetin, & Willsky, 2005), Gradient Pro-
ection for Sparse Reconstruction (GPSR) (Figueiredo, Nowak, &
right, 2007), ℓ1 regularized Least Squares (ℓ1-LS) (Koh, Kim,
Boyd, 2007), ℓ1-magic (Candes & Romberg, 2005). Next, the

ollowing two representation based classification approaches are
lso included in the evaluation: Superposed Linear Representa-
ion Classifier (SLRC) (Deng, Hu, & Guo, 2018) and Nonnegative
epresentation-based Classifier (NRC) (Xu, An, Zhang, & Zhang,
019). The SLRC approach contains both ℓ1 and ℓ2 minimization
epending on the selected regularization of the coding coeffi-
ients. In this study, SLRC-ℓ1 version is used for the comparisons.
Additionally, the SVR approach that has been used by Gökçe
et al. (2015) and Zhu and Fang (2019) for distance estimation
is included in comparisons. Note that compared to Gökçe et al.
(2015) and Zhu and Fang (2019), we use the enhanced fea-
tures obtained by the feature extraction method explained earlier.
22
The SVR configuration is developed by searching the optimal
hyper-parameters. Accordingly, the grid-search is applied over
the validation set with the following kernel functions: linear,
Radial Basis Function (RBF), and polynomial using the following
parameters: γ parameter (kernel coefficients for the RBF and
polynomial kernels) in the range [10−3, 103

] by varying in the
log-scale, the degree of the polynomial {2, 3, 4}, the regularization
parameter (C parameter) in the range [10−3, 103

] by varying in
the log-scale.

To make a fair comparison with the competing methods, the
training set of SVR includes also the dictionary samples in addi-
tion to the training samples that are used in the proposed CSEN
and CL-CSEN. Similarly, the dictionary samples in SRC and CRC
methods include the training samples plus the dictionary samples
of CSEN and CL-CSEN. The same feature extraction procedure in
the proposed method is used in the SRC, CRC, and SVR (i.e., φ (Ii)
here φ is the pre-trained network for the cropped and resized
bject Ii). The same CR is used by the PCA for SRC and CRC. In SVR,
t is not feasible to compute the exact solution due to the scale
f the data; and hence, we use Nystroem method (Williams &
eeger, 2001; Yang, Li, Mahdavi, Jin, & Zhou, 2012) for the kernel
pproximation in order to approximate m = CR × d number of
eature maps where CR = 0.5. Overall, we keep the same CR value
for all the methods in the experimental evaluations.

4.2. Experimental results

The same performance metrics as used in many studies (Casser
et al., 2019; Chang & Chen, 2018; Haseeb et al., 2018; Mahjourian
et al., 2018; Wang et al., 2019; Zhu & Fang, 2019) are used to
evaluate the distance estimation performance of the proposed ap-
proach including Absolute Relative Distance (ARD), Squared Rela-
tive Distance (SRD), Root of Mean Squared Error (RMSE), the root
of Mean Squared logarithmic Error (RMSElog), and thresholded
atio between the ground-truth and prediction.

The distance estimation performance of the proposed method
s presented in Table 1. In these results, we report the RbR
erformance with the proposed CSEN and CL-CSEN models where
he quantization is not applied for the training and testing sam-
les, but is only used for the dictionary reconstruction. Corre-
pondingly, the train:test splits are chosen as approximately 1:1
roportion. Note the fact that multiple pre-trained networks are
tilized for feature extraction. In this way, we aim to evaluate the
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f the proposed approach against the competing methods
the metrics, ↓:lower is better and ↑: higher is better.
1.25 ↑ δ < 1.252

↑ δ < 1.253
↑

908 ± 0.002 0.8862 ± 0.003 0.9433 ± 0.003

447 ± 0.002 0.6821 ± 0.003 0.8055 ± 0.003

268 ± 0.008 0.8630 ± 0.003 0.9367 ± 0.002

870 ± 0.006 0.9361 ± 0.005 0.9704 ± 0.003

752 ± 0.006 0.8325 ± 0.004 0.9172 ± 0.001

266 ± 0.004 0.6492 ± 0.006 0.7682 ± 0.007

058 ± 0.006 0.8510 ± 0.009 0.9307 ± 0.008

448 ± 0.006 0.9164 ± 0.004 0.9623 ± 0.003
004 ± 0.004 0.8989 ± 0.002 0.9519 ± 0.001

712 ± 0.002 0.7193 ± 0.001 0.8443 ± 0.002

902 ± 0.008 0.8983 ± 0.004 0.9533 ± 0.002

148 ± 0.005 0.9439 ± 0.004 0.9730 ± 0.002

23
Table 1
The statistical (mean and standard deviations) performance metrics are reported from five different runs to show the object distance estimation performance o
over the KITTI dataset and using different feature extractor networks, φ : RN×N×3

→ Rd . The train:test splits are selected as approximately 1:1 proportion. In
φ (·) Method ARD ↓ SRD ↓ RMSE ↓ RMSElog ↓ δ <

D
en

se
N
et
-1
21 Support Vector Regressor (SVR) (Gökçe et al., 2015) 0.2588 ± 0.003 1.7764 ± 0.041 5.3239 ± 0.013 0.4189 ± 0.006 0.6

Base Model (CRC-light) (Zhang et al., 2011) 0.4183 ± 0.008 6.9585 ± 0.346 12.0007 ± 0.164 0.7462 ± 0.014 0.4

CSEN (Proposed) 0.2828 ± 0.006 2.2385 ± 0.091 6.2951 ± 0.061 0.4344 ± 0.052 0.6

CL-CSEN (Proposed) 0.2005 ± 0.009 1.2137 ± 0.084 4.3413 ± 0.048 0.2720 ± 0.014 0.7

VG
G
19

Support Vector Regressor (SVR) (Gökçe et al., 2015) 0.3496 ± 0.007 3.1122 ± 0.131 6.9459 ± 0.045 0.4690 ± 0.023 0.5

Base Model (CRC-light) (Zhang et al., 2011) 0.4029 ± 0.003 6.1675 ± 0.134 12.2411 ± 0.112 0.8556 ± 0.031 0.4

CSEN (Proposed) 0.2917 ± 0.013 2.3542 ± 0.150 6.4498 ± 0.037 0.4581 ± 0.081 0.6

CL-CSEN (Proposed) 0.2221 ± 0.010 1.5034 ± 0.116 4.8132 ± 0.044 0.3021 ± 0.012 0.7

Re
sN

et
-5
0 Support Vector Regressor (SVR) (Gökçe et al., 2015) 0.2509 ± 0.004 1.7669 ± 0.052 5.3531 ± 0.049 0.3613 ± 0.004 0.7

Base Model (CRC-light) (Zhang et al., 2011) 0.3781 ± 0.004 5.6263 ± 0.146 10.9210 ± 0.082 0.6472 ± 0.011 0.4

CSEN (Proposed) 0.2400 ± 0.006 1.6777 ± 0.073 5.5212 ± 0.087 0.3459 ± 0.011 0.6

CL-CSEN (Proposed) 0.1934 ± 0.009 1.1710 ± 0.097 4.0849 ± 0.044 0.2604 ± 0.008 0.8
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Fig. 7. Predicted vs. actual distances of the objects in the test set for the proposed CSEN and CL-CSEN and compared methods using different feature extractor networks.
In the scattering plot, each point represents a sample object in the KITTI dataset that is partitioned to train:test corresponding approximately 1:1 proportion.
Fig. 8. Predicted vs. actual distances of the objects in the test set for the proposed CSEN and CL-CSEN and compared methods using different feature extractor
networks. In the scattering plot, each point represents a sample object in the KITTI dataset that is partitioned to train:test corresponding approximately 1:17
proportion. The selected distance sensitivity (with quantization) is one meter.
performance effect of different network architectures in feature
extraction. DenseNet-121 has skip-connections that connect each
layer to every other layer so that each layer is densely connected,
ResNet-50 only has skip-connections between every second layer,
and VGG-19 does not have any such shortcut connection be-
tween the layers. Based on Table 1, a higher estimation accuracy
is achieved by the proposed approach compared to SVR and
the performance is highly improved compared to our base CRC
model. Moreover, the proposed method outperforms (Zhu & Fang,
2019) even though they use additional information such as the
categorical class information of the objects and the projection
matrix for the training. For a more fair comparison, the proposed
method is also compared with the base model of Zhu and Fang
(2019) without classification; and the performance gap becomes
even higher as expected. Additionally, scattering plots are pro-
vided in Fig. 7 demonstrating the actual distance versus the
predicted distance by all methods. Correspondingly, we expect to
see an identity transformation ideally. In the plots, the sample
point sizes are purposely selected bigger to better illustrate the
misdetections. Thus, considering the number of samples, most of
them located at the identity line region and give a constant color
view. Hence, it is observed that the CL-CSEN method provides the
least scattered samples compared to the other methods especially
when ResNet-50 features are used. Even though the reported
metrics in Table 1 show improvements achieved by the proposed
method; the performance gain is more visible for distant objects
considering that the gap is significant in the squared metrics.

Next, the performance comparison is provided in Table 2
egarding the proposed method with CSEN and CL-CSEN versus
ther representation-based classification approaches. In this set
f experiments, contrary to Table 1, we have applied quantization
o the training and testing samples of the CSEN and CL-CSEN
24
approaches as previously discussed. Even though they can be
trained for the full regression task, the competing representation-
based classification methods do not have this ability; and hence,
we wanted to compare the proposed approach fairly with them.
In the table, CRC-light corresponds to our coarse estimation for
the CSEN and CL-CSEN methods where the same number of dic-
tionary samples are used in the CSEN approach. Based on Table 2,
it is clear that both proposed methods have achieved a significant
performance gap over the competing methods. It is also shown
that the CSEN and CL-CSEN methods are able to learn from such
a limited number of training samples (only 4800 samples are
used for training compared to 33 507 testing samples). Similarly,
the scattering plot is provided in Fig. 8 for the second set of
the experiments and the best-performing methods from Table 2.
Based on the plots, CL-CSEN has less distributed scatters due
to the improved distance estimation performance: most of the
test samples are overlapped near the identity transformation
where few test samples are separated or distinguishable from the
others since they are detected in error and located far from the
overlapped points. The visual difference from the previous plot
in Fig. 7 is that expectedly, the samples are located with 1 m
distances due to the applied quantization.

Three sample frames are shown in Fig. 9 with their corre-
sponding true and the estimated object-specific distances by the
three best-performing methods: SVR, CSEN, and CL-CSEN. The
first frame (first column in Fig. 9) represents a typical sample
from the KITTI 3D Object Detection dataset in which there are
overlapping objects. Moreover, even though the dataset may have
some well-separated samples, the illumination conditions make it
harder to perform analysis as observed in the third sample frame
in Fig. 9. Visual inspection based on these frames indicates that
even though CL-CSEN provides enhanced performance than CSEN
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d the selected distance sensitivity (with quantization) is

5 ↑ δ < 1.252
↑ δ < 1.253

↑

± 0.002 0.6802 ± 0.004 0.8018 ± 0.003
± 0.002 0.7091 ± 0.003 0.7887 ± 0.002
± 0.002 0.7731 ± 0.002 0.8737 ± 0.001
± 0.003 0.7753 ± 0.003 0.8706 ± 0.002
± 0.003 0.7386 ± 0.003 0.9019 ± 0.002
± 0.003 0.7764 ± 0.003 0.8806 ± 0.002
± 0.001 0.7824 ± 0.001 0.8777 ± 0.001
± 0.002 0.6840 ± 0.004 0.7584 ± 0.004
± 0.003 0.7695 ± 0.002 0.8655 ± 0.001
± 0.003 0.6919 ± 0.082 0.8117 ± 0.002
± 0.004 0.6935 ± 0.007 0.8440 ± 0.006
± 0.002 0.7881 ± 0.002 0.8826 ± 0.001
± 0.023 0.8215 ± 0.025 0.9132 ± 0.020
± 0.004 0.8555 ± 0.004 0.9313 ± 0.002
± 0.004 0.6498 ± 0.005 0.7664 ± 0.007
± 0.002 0.6576 ± 0.006 0.7333 ± 0.008
± 0.001 0.7829 ± 0.003 0.8799 ± 0.001
± 0.002 0.7697 ± 0.002 0.8656 ± 0.002
± 0.003 0.7621 ± 0.002 0.8598 ± 0.001
± 0.002 0.7931 ± 0.002 0.8921 ± 0.001
± 0.002 0.7773 ± 0.002 0.8711 ± 0.001
± 0.003 0.6432 ± 0.007 0.7166 ± 0.009
± 0.002 0.7692 ± 0.002 0.8652 ± 0.001
± 0.001 0.7267 ± 0.003 0.8059 ± 0.005
± 0.005 0.7372 ± 0.003 0.8714 ± 0.002
± 0.002 0.7870 ± 0.002 0.8836 ± 0.001
± 0.019 0.7978 ± 0.021 0.9000 ± 0.017
± 0.009 0.8404 ± 0.009 0.9265 ± 0.006
± 0.001 0.7184 ± 0.003 0.8410 ± 0.002
± 0.003 0.7786 ± 0.005 0.8562 ± 0.004
± 0.002 0.8038 ± 0.002 0.8979 ± 0.002
± 0.003 0.8128 ± 0.004 0.9019 ± 0.002
± 0.003 0.7813 ± 0.004 0.8761 ± 0.002
± 0.001 0.8098 ± 0.002 0.9069 ± 0.002
± 0.003 0.8127 ± 0.003 0.9012 ± 0.002
± 0.003 0.7657 ± 0.005 0.8419 ± 0.004
± 0.002 0.8083 ± 0.003 0.8979 ± 0.002
± 0.003 0.7855 ± 0.004 0.8643 ± 0.004
± 0.003 0.8476 ± 0.003 0.9378 ± 0.002
± 0.003 0.8278 ± 0.003 0.9136 ± 0.002
± 0.020 0.8481 ± 0.016 0.9280 ± 0.011
± 0.005 0.8510 ± 0.004 0.9261 ± 0.003

25
Table 2
The statistical (mean and standard deviations) performance metrics are reported from five different runs to show the object distance estimation performance o
over the KITTI dataset and using differenta feature extractor networks, φ : RN×N×3

→ Rd . The train:test splits are selected as approximately 1:17 proportion an
1 m. In the metrics, ↓:lower is better and ↑: higher is better.
φ (·) Method ARD ↓ SRD ↓ RMSE ↓ RMSElog ↓ δ < 1.2

D
en

se
N
et
-1
21

CRC-light (Zhang et al., 2011) 0.4157 ± 0.0.10 6.9163 ± 0.362 12.0034 ± 0.159 0.7442 ± 0.010 0.4337
CRC (Zhang et al., 2011) 0.3384 ± 0.003 4.9194 ± 0.110 11.1735 ± 0.068 0.9687 ± 0.007 0.5060
ADMM (Boyd et al., 2011) 0.3662 ± 0.001 5.7964 ± 0.109 9.7512 ± 0.092 0.5286 ± 0.004 0.5429
DALM (Yang et al., 2013) 0.3502 ± 0.003 5.3903 ± 0.108 9.7558 ± 0.107 0.5566 ± 0.006 0.5498
OMP (Yang et al., 2013) 0.4279 ± 0.004 8.0630 ± 0.142 11.1767 ± 0.072 0.6326 ± 0.005 0.5203
Homotopy (Malioutov et al., 2005) 0.3747 ± 0.004 5.8120 ± 0.075 9.5982 ± 0.053 0.4917 ± 0.003 0.5415
GPSR (Figueiredo et al., 2007) 0.3357 ± 0.003 4.9460 ± 0.099 9.4322 ± 0.089 0.5456 ± 0.003 0.5547
ℓ1-LS (Koh et al., 2007) 0.3550 ± 0.003 5.4403 ± 0.096 11.9869 ± 0.090 1.0916 ± 0.010 0.4932
ℓ1-magic (Candes & Romberg, 2005) 0.3579 ± 0.004 5.6748 ± 0.141 9.9567 ± 0.114 0.5695 ± 0.006 0.5457
PALM (Yang et al., 2013) 0.3262 ± 0.003 4.6281 ± 0.109 10.6396 ± 0.075 0.8858 ± 0.006 0.5278
SLRC (Deng et al., 2018) 0.3144 ± 0.003 3.6487 ± 0.064 9.6575 ± 0.099 0.5511 ± 0.005 0.4094
NRC (Xu et al., 2019) 0.3356 ± 0.005 5.0012 ± 0.184 9.4777 ± 0.095 0.5260 ± 0.004 0.5581
CSEN (Proposed) 0.3308 ± 0.036 3.0487 ± 0.534 6.9950 ± 0.367 0.5370 ± 0.217 0.5668
CL-CSEN (Proposed) 0.3167 ± 0.006 2.8268 ± 0.083 6.2036 ± 0.046 0.3753 ± 0.017 0.6378

VG
G
19

CRC-light (Zhang et al., 2011) 0.4018 ± 0.002 6.1850 ± 0.083 12.2543 ± 0.101 0.8549 ± 0.032 0.4163
CRC (Zhang et al., 2011) 0.3591 ± 0.004 5.3996 ± 0.057 12.1625 ± 0.075 1.0796 ± 0.016 0.4727
ADMM (Boyd et al., 2011) 0.3506 ± 0.005 5.3399 ± 0.138 9.4499 ± 0.066 0.5114 ± 0.005 0.5547
DALM (Yang et al., 2013) 0.3535 ± 0.004 5.4561 ± 0.129 9.8062 ± 0.062 0.5653 ± 0.006 0.5466
OMP (Yang et al., 2013) 0.3946 ± 0.004 6.7427 ± 0.119 10.2869 ± 0.028 0.5589 ± 0.004 0.5395
Homotopy (Malioutov et al., 2005) 0.3532 ± 0.005 5.2429 ± 0.186 9.1591 ± 0.039 0.4624 ± 0.002 0.5604
GPSR (Figueiredo et al., 2007) 0.3301 ± 0.003 4.7034 ± 0.108 9.3988 ± 0.062 0.5679 ± 0.007 0.5540
ℓ1-LS (Koh et al., 2007) 0.3683 ± 0.005 5.6823 ± 0.077 12.5880 ± 0.092 1.1247 ± 0.018 0.4641
ℓ1-magic (Candes & Romberg, 2005) 0.3541 ± 0.004 5.4787 ± 0.118 9.8251 ± 0.058 0.5669 ± 0.006 0.5464
PALM (Yang et al., 2013) 0.3175 ± 0.001 4.2531 ± 0.026 10.3851 ± 0.041 0.8573 ± 0.009 0.5261
SLRC (Deng et al., 2018) 0.3089 ± 0.002 3.6981 ± 0.101 9.2953 ± 0.033 0.5066 ± 0.005 0.4573
NRC (Xu et al., 2019) 0.3280 ± 0.002 4.6455 ± 0.058 9.3277 ± 0.049 0.5190 ± 0.005 0.5584
CSEN (Proposed) 0.3401 ± 0.039 3.1667 ± 0.563 7.2027 ± 0.331 0.6763 ± 0.264 0.5392
CL-CSEN (Proposed) 0.3062 ± 0.010 2.6452 ± 0.140 6.3759 ± 0.122 0.4222 ± 0.059 0.6091

Re
sN

et
-5
0

CRC-light (Zhang et al., 2011) 0.3752 ± 0.003 5.5853 ± 0.081 10.8963 ± 0.066 0.6454 ± 0.014 0.4605
CRC (Zhang et al., 2011) 0.2817 ± 0.002 3.3945 ± 0.063 9.1777 ± 0.080 0.7371 ± 0.013 0.5598
ADMM (Boyd et al., 2011) 0.3155 ± 0.003 4.2173 ± 0.062 8.6938 ± 0.062 0.4798 ± 0.006 0.5680
DALM (Yang et al., 2013) 0.2916 ± 0.003 3.6398 ± 0.075 8.4626 ± 0.082 0.4981 ± 0.008 0.5791
OMP (Yang et al., 2013) 0.3352 ± 0.003 4.9965 ± 0.089 9.5783 ± 0.067 0.5639 ± 0.005 0.5550
Homotopy (Malioutov et al., 2005) 0.3239 ± 0.005 4.2413 ± 0.103 8.4395 ± 0.026 0.4424 ± 0.004 0.5711
GPSR (Figueiredo et al., 2007) 0.2928 ± 0.003 3.6532 ± 0.094 8.4384 ± 0.100 0.4963 ± 0.007 0.5791
ℓ1-LS (Koh et al., 2007) 0.2849 ± 0.004 3.4606 ± 0.090 9.4654 ± 0.078 0.7684 ± 0.011 0.5540
ℓ1-magic (Candes & Romberg, 2005) 0.2940 ± 0.002 3.6942 ± 0.057 8.5528 ± 0.059 0.5061 ± 0.007 0.5758
PALM (Yang et al., 2013) 0.2767 ± 0.003 3.2185 ± 0.090 8.9170 ± 0.088 0.6784 ± 0.012 0.5668
SLRC (Deng et al., 2018) 0.2431 ± 0.001 2.3720 ± 0.037 7.4747 ± 0.034 0.3850 ± 0.006 0.5718
NRC (Xu et al., 2019) 0.2729 ± 0.003 3.1236 ± 0.058 8.0496 ± 0.064 0.4742 ± 0.009 0.5932
CSEN (Proposed) 0.2835 ± 0.035 2.2479 ± 0.437 6.2142 ± 0.333 0.5074 ± 0.155 0.6076
CL-CSEN (Proposed) 0.3359 ± 0.010 2.9720 ± 0.106 6.0765 ± 0.041 0.3735 ± 0.005 0.6398
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Fig. 9. Three sample frames are shown with the object bounding boxes and their corresponding ground-truth distances (GTD) in the first row: (a), (b), and (c). Then,
the estimated distances for the objects by the three best-performing methods in this work: SVR, CSEN, and CL-CSEN are illustrated in the second (d - e - f), third
(g - h - i), and the last (j - k - l) rows, respectively. The approximate 1:1 ratio is followed in train:test splits.
Table 3
The number of trainable parameters is given in (a) for the proposed CSEN and
CL-CSEN models. The elapsed times using the aforementioned PC setup are given
in (b) for the methods.
(a) The trainable parameters using different feature extractors φ.

φ : RN×N×3
→ Rd Model Number of parameters

d ∈ {1024, 512, 2048} CSEN 3,326
d = 1024 CL-CSEN 618,926
d = 512 CL-CSEN 311,726
d = 2048 CL-CSEN 1,233,326

(b) Average elapsed times in milliseconds (ms)
for the estimation of a test object sample. The
given computational times are obtained in the
case of ResNet-50 features.

Method Time (ms)

SVR 0.0035
CRC-light 2.0242
CRC 14.258
ADMM 198.14
DALM 3574.0
OMP 241.22
Homotopy 30.591
GPSR 1547.0
ℓ1-LS 223.84
ℓ1-magic 2698.2
PALM 10996.0
CSEN 0.0348
CL-CSEN 0.0320
SLRC 678.2256
NRC 127.8132

according to the quantitative analysis, for the close objects, CSEN
seems to provide more accurate results. However, CSEN starts to
underperform compared to CL-CSEN when the objects are distant
from the camera.

4.3. Computational complexity analysis

The number of trainable parameters is provided in Table 3a
or the proposed CSEN and CL-CSEN models. Accordingly, the
SEN model has only a few thousand trainable parameters since
he denoiser matrix B is not trainable, whereas in the CL-CSEN
26
model, depending on the size of B the trainable parameters vary.
Nevertheless, both are still compact architectures only with a
few layers. The elapsed times are reported in Table 3b on the
aforementioned PC setup. On the other hand, SRC methods suffer
drastic time complexity whereas elapsed times for CSEN and
CL-CSEN methods are comparable with the SVR method. Note
the fact that even though the CL-CSEN pipeline has more train-
able parameters, the required time for the inference is less than
CSEN. Because; the proxy mapping and reshaping stages for the
following convolutional layers are implemented on GPU as an
end-to-end pipeline that brings the computational efficiency that
was lacking in the initial CSEN approach. Note that even though
CSEN and CL-CSEN utilize the proxy mapping stage of the CRC
approach, they are still computationally efficient because CRC-
light and CRC require additional residual finding step that was
explained in Section 2.2.

4.4. Discussion: 1-D versus 2-D proxy signal representation

The presented distance estimation results are obtained using
the proposed CSEN and CL-CSEN approaches that contain 2-D
convolution operations. One can investigate operating directly
over the 1-D proxy signal without further reshaping it as the
input of the first convolutional layer. Hence, we present the
distance estimation results in Table 4 using 1-D convolutional
layers in the proposed approaches. Accordingly, the CSEN-1D
and CL-CSEN-1D models do not have any reshaping operations
contrary to 2-D versions illustrated in Figs. 3 and 5. It is observed
that using the same number of trainable parameters, i.e., 25 × 1
filter sizes for each convolutional layer, the comparable results
are obtained by performing 1-D inference on the proxy signal.

5. Limitations of the study

There are two possible feature extraction procedures that can
be considered when building the representative dictionary: i.
traditional hand-crafted feature extraction such as PCA and using
bounding box dimensions as features and ii. extracting learned
features. If the first category features are used in the dictio-
nary, there is no requirement for prior resizing and one can
select the first d principal components for PCA features, e.g., d ∈
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Table 4
The statistical (mean and standard deviations) performance metrics are reported from five different runs using the 1D versions of the proposed approaches (CSEN-1D
and CL-CSEN-1D) over the KITTI dataset and using different feature extractor networks, φ : RN×N×3

→ Rd . In the metrics, ↓:lower is better and ↑: higher is better.
(a) The train:test splits are selected as approximately 1:1 proportion.

φ(·) DenseNet-121 VGG19 ResNet-50

CSEN-1D CL-CSEN-1D CSEN-1D CL-CSEN-1D CSEN-1D CL-CSEN-1D

ARD ↓ 0.3000 ± 0.013 0.2092 ± 0.005 0.3071 ± 0.011 0.2289 ± 0.004 0.2507 ± 0.006 0.1978 ± 0.005
SRD ↓ 2.4741 ± 0.155 1.3051 ± 0.059 2.5457 ± 0.129 1.5757 ± 0.058 1.7831 ± 0.077 1.2107 ± 0.060
RMSE ↓ 6.3539 ± 0.029 4.4239 ± 0.024 6.5480 ± 0.049 4.8954 ± 0.026 5.5808 ± 0.037 4.1575 ± 0.027
RMSElog ↓ 0.5490 ± 0.092 0.2885 ± 0.006 0.5717 ± 0.064 0.3083 ± 0.009 0.4283 ± 0.060 0.2660 ± 0.004
δ < 1.25 ↑ 0.6182 ± 0.006 0.7765 ± 0.004 0.5957 ± 0.004 0.7364 ± 0.001 0.6762 ± 0.009 0.8087 ± 0.002
δ < 1.252

↑ 0.8492 ± 0.006 0.9297 ± 0.002 0.8375 ± 0.007 0.9111 ± 0.001 0.8845 ± 0.008 0.9414 ± 0.002
δ < 1.253

↑ 0.9251 ± 0.006 0.9672 ± 0.002 0.9199 ± 0.006 0.9602 ± 0.002 0.9432 ± 0.006 0.9716 ± 0.001

(b) The train:test splits are selected as approximately 1:17 proportion and the distance sensitivity (with quantization) is 1 m.

φ(·) DenseNet-121 VGG19 ResNet-50

CSEN-1D CL-CSEN-1D CSEN-1D CL-CSEN-1D CSEN-1D CL-CSEN-1D

ARD ↓ 0.3365 ± 0.023 0.3457 ± 0.018 0.3365 ± 0.033 0.3195 ± 0.012 0.2923 ± 0.017 0.3608 ± 0.017
SRD ↓ 3.0839 ± 0.351 3.3374 ± 0.293 3.0596 ± 0.492 2.8948 ± 0.212 2.3585 ± 0.227 3.3650 ± 0.225
RMSE ↓ 7.0004 ± 0.207 6.5406 ± 0.144 7.0975 ± 0.293 6.6121 ± 0.209 6.2865 ± 0.234 6.3010 ± 0.079
RMSElog ↓ 0.7130 ± 0.193 0.3893 ± 0.007 0.8101 ± 0.201 0.4091 ± 0.054 0.6495 ± 0.210 0.3913 ± 0.011
δ < 1.25 ↑ 0.5573 ± 0.012 0.6219 ± 0.005 0.5408 ± 0.015 0.5944 ± 0.008 0.6056 ± 0.014 0.6273 ± 0.006
δ < 1.252

↑ 0.8064 ± 0.016 0.8417 ± 0.005 0.7930 ± 0.014 0.8323 ± 0.004 0.8478 ± 0.012 0.8385 ± 0.007
δ < 1.253

↑ 0.9003 ± 0.015 0.9221 ± 0.004 0.8930 ± 0.013 0.9230 ± 0.004 0.9247 ± 0.013 0.9172 ± 0.006
Table 5
Objects (o1 - o5) are given with their corresponding distances after cropping and resizing operations. The ARD errors
are calculated for SVR, CSEN, and CL-CSEN approaches.

o1: 16.31 m o2: 22.1 m o3: 23.25 m o4: 41.53 m o5: 41.9 m

Cr
op

pe
d

Re
si
ze

d
AR

D SVR: 0.102 SVR: 0.405 SVR: 0.277 SVR: 0.151 SVR: 0.198

CSEN: 0.186 CSEN: 0.015 CSEN: 0.017 CSEN: 0.043 CSEN: 0.240

CL-CSEN: 0.030 CL-CSEN: 0.085 CL-CSEN: 0.087 CL-CSEN: 0.133 CL-CSEN: 0.066
{1024, 512, 2048} and stack them column-wise. A similar feature
extraction procedure is followed by Wright et al. (2010, 2008),
Zhang et al. (2011), e.g., in gray-level face recognition. The bound-
ing box dimension has been used by Haseeb et al. (2018) in the
distance estimation problem. The corresponding drawback is that
it requires the classification of the objects. Because, the dimen-
sions of different object categories are different, e.g., truck versus
pedestrian. Obviously, the distance estimation accuracy depends
on the classification performance and in practice, it is unfeasible
to define a sufficient number of object categories. For example,
even if the object is correctly classified as a truck, a distance
estimation algorithm using the bounding box dimensions would
likely fail in measuring the distance of a small truck (having a
small bounding box) and a large truck with a large bounding box.

In this study, we found out that when the dictionary D is
constructed by PCA features or a bounding box dimension with
an additional classification framework, the methods were un-
able to provide any reasonable performance and most often the
convergence did not happen. We observe that more descriptive
features are needed since the task is more challenging compared
to the aforementioned studies. Therefore, we propose to use
27
learned features extracted by DenseNet-121, VGG19, and ResNet-
50. The limitation of the pre-trained feature extractors is that they
need fixed-size input images and as discussed in Section 3.1 and
illustrated in Fig. 2, the cropped objects are therefore resized to a
fixed-size in order to feed them into the networks. We limit the
effect of the resizing operation by using a simple bilinear inter-
polation. For instance, it is shown in Fig. 2 and Table 5 (e.g., o4
and o5) that up-sampling does not produce sharper images for
distant objects. In the previous discussion, we mentioned that
the blurry appearance of the objects can be correlated with the
distance and the distant objects tend to have blurry appearances
after resizing. One can argue that blurry appearances might occur
also in closer objects if they are captured already in a blur.
Therefore, in the experimentation of this study, we have observed
that objects are either captured with no blur or with the relative
blurry appearances due to motion or other factors, that have been
learned during the training since the camera has a fixed focus.
It is also observed that the CL-CSEN method is more robust to
blurriness than other methods. For example, in Table 5, o4 and
o5 have approximately the same distances to the camera, but
the latter has a blurrier appearance. A similar observation can be
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ade for o2 and o3 where the blurriness is not equal between
he two objects even though they have similar distances. In both
ases, it can be seen that CL-CSEN is able to produce small ARD
rrors comparable to o1.

. Conclusion

In this study, we first propose a novel CSEN-based distance
stimation method using a single camera. CSENs were recently
roposed to directly estimate support sets of a signal instead of
he traditional approach, i.e., first reconstructing the sparse signal
nd applying a threshold. Using the modified CSENs for regres-
ion, we demonstrate that it is possible to utilize representative
ictionaries for a regression task; and to the best of authors’
nowledge, this makes the pioneer study in this domain. Hence,
e introduce the term Representation-based Regression (RbR) to
eflect this fact. Similar to SRC and CRC methods, the introduced
bR approach is able to operate over scarce data. Moreover, utiliz-
ng the introduced representative dictionary design by collecting
he samples with the same distances in the quantization level, the
erformance of the proposed distance estimators becomes class
nvariant unlike the several existing studies (Haseeb et al., 2018;
hu & Fang, 2019).
Finally, we propose a novel CSEN architecture in the CL-CSEN

odel by introducing the ability to fine-tune the proxy mapping
atrix during the training procedure. Therefore, the proposed
L-CSEN method is a complete, one-to-one support estimator
etwork in which the denoiser matrix B is directly connected to

the convolutional layers using fully connected dense layers. Thus,
it provides a superior distance estimation performance and effi-
cient single-stage inference. Overall, it is observed that CSEN and
CL-CSEN architectures significantly outperform the competing
methods used in this study. Finally, with their compact network
models, we have shown that both CSEN and CL-CSEN are able
to learn with a limited number of annotated data, e.g., with less
than 13% annotated data used in the training to demonstrate this
competence.
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