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Global ECG Classification by Self-Operational
Neural Networks With Feature Injection

Muhammad Uzair Zahid , Serkan Kiranyaz , and Moncef Gabbouj

Abstract—Objective: Global (inter-patient) ECG classi-
fication for arrhythmia detection over Electrocardiogram
(ECG) signal is a challenging task for both humans and
machines. Automating this process with utmost accuracy
is, therefore, highly desirable due to the advent of wearable
ECG sensors. However, even with numerous deep learn-
ing approaches proposed recently, there is still a notable
gap in the performance of global and patient-specific ECG
classification performance. Methods: In this study, we pro-
pose a novel approach for inter-patient ECG classification
using a compact 1D Self-ONN by exploiting morphological
and timing information in heart cycles. We used 1D Self-
ONN layers to automatically learn morphological represen-
tations from ECG data, enabling us to capture the shape of
the ECG waveform around the R peaks. We further inject
temporal features based on RR interval for timing charac-
terization. The classification layers can thus benefit from
both temporal and learned features for the final arrhyth-
mia classification. Results: Using the MIT-BIH arrhythmia
benchmark database, the proposed method achieves the
highest classification performance ever achieved, i.e.,
99.21% precision, 99.10% recall, and 99.15% F1-score for
normal (N) segments; 82.19% precision, 82.50% recall,
and 82.34% F1-score for the supra-ventricular ectopic beat
(SVEBs); and finally, 94.41% precision, 96.10% recall, and
95.2% F1-score for the ventricular-ectopic beats (VEBs).
Significance: As a pioneer application, the results show
that compact and shallow 1D Self-ONNs with the feature
injection can surpass all state-of-the-art deep models with
a significant margin and with minimal computational com-
plexity. Conclusion: This study has demonstrated that us-
ing a compact and superior network model, a global ECG
classification can still be achieved with an elegant perfor-
mance level even when no patient-specific information is
used.

Index Terms—Inter-patient ECG classification, opera-
tional neural networks, real-time heart monitoring, gener-
ative neurons.
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I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) are responsible for
31% of deaths globally, according to the World Health

Organization (WHO) [1]. It is crucial to detect CVDs as early as
possible to begin effective treatment and medication. For cardiac
arrhythmia detection, a variety of methods such as blood tests,
stress tests, echocardiograms, and chest X-rays have been used.
Still, ECGs are perhaps the most popular among clinicians.
ECGs record the heart’s electrical activity over time and can
help diagnose many conditions, including premature ventricular
contractions (PVCs or V rhythms) and supraventricular prema-
ture beats (SPBs or S rhythms). An experienced cardiologist
can determine the presence of an arrhythmia, as an abnormality
of heart rate or rhythm or a change in morphological pattern,
by analyzing a recorded ECG signal. However, identifying and
classifying arrhythmias can be an erroneous, labor-intensive, and
subjective task even for cardiologists since it often requires con-
sidering each heartbeat of an ECG signal accumulated over hours
or days. With the recent advances in various low-cost portable
ECG devices [2], [3] such as chest straps and wristbands, the
opportunities for self-monitoring and auto-diagnosis have in-
creased. Therefore, it is highly desirable to have global (patient
independent or inter-patient) and reliable ECG classification
methods. However, robust and accurate classification of ECG
signals still poses a challenge because among different patients
or even for the same patient but under different temporal, psy-
chological, and physical conditions, significant variations may
occur in ECG signals’ morphological and temporal/structural
characteristics.

ECG-based arrhythmia classification is typically initiated
with a peak detection/segmentation. This study does not discuss
R-peak detection since highly accurate algorithms have already
been proposed in the literature [4], [5]. The analysis and classifi-
cation of ECG signals have been extensively studied throughout
the last decades [6]–[9]. Generally, these works can be classified
as intra-patient, inter-patient (global), and patient-specific [10].
In the intra-patient paradigm, datasets are divided into training
and test subsets according to heartbeat labels. Therefore, beats
from the same individual may appear both in training and
evaluation subsets, making the evaluation process biased [11].
The classifiers usually produce over-optimistic results (in close
vicinity of 100%) because the model learns the information
specific to the patient during the training phase [11]–[13]. The
classification performance declines due to inter-individual vari-
ability. Hence, morphological variations in ECG from different
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patients should be considered when building the model. Even
for a healthy subject’s (normal) ECG waveform, the shape of
the QRS complex, P waves, and R–R intervals may differ from
one beat to the next under various circumstances [14]. Chazal
et al. [15] presented the inter-patient paradigm where training
and testing heartbeats are collected from different patients’ ECG
recordings to adopt real-world scenarios. Some patients are
reserved for the evaluation phase and beats from other patients
are used to train the classifier so that classifier would exhibit a
better generalization capability for new unseen patients. Most
researchers have chosen to use another approach called the
“patient-specific” paradigm, i.e., [9], [16]–[18] in which other
patients and patient-specific beats of a new patient are jointly
used to train the network. Although the patient-specific paradigm
is superior to inter-patient paradigms in terms of performance,
it requires cardiologists’ labeling in advance for each (new)
patient, which is cumbersome, subjective, and labor-intensive.
Furthermore, a new network should always be trained from
scratch or fine-tuned carefully to achieve the required gener-
alization. Only then one can evaluate and test its reliability, all
of which limit its clinical application. Especially, the training
of these personalized models requires the collection of patient-
specific arrhythmic data, which requires long-term monitoring
or even may not exist. As the data volume increases, it becomes
difficult or even impossible to manually label small chunks of
data from all stored records. In a recent work [19], an adaptive
patient-specific heartbeat classification model is proposed for di-
agnosing heart arrhythmias. A general classifier was first trained
on the general population. Then, the weights in the lower part
of the general classifier were retained using patient-dependent
i-vectors and the weights in the upper part were randomized.

For several decades, feature engineering-based methods dom-
inated ECG signal recognition. Studies [20]–[23] based on tra-
ditional signal processing and machine learning methodologies
have not been successful in clinical settings. This is because there
can be significant variations in the morphological characteristics
and temporal/structural dynamics of ECG signals for different
patients or even the same patient under varying physical, psy-
chological, and temporal conditions. Such hand-crafted feature
extraction may not capture the actual characteristics of each ECG
beat variation for accurate classification. Therefore, their per-
formance level varies significantly in large ECG datasets [24].
Moreover, extreme performance variations may occur due to
increased noise levels, different ECG sensor types, inter-patient
variations in ECG signals, and different arrhythmia prevalence
between databases.

Mariano et al. [25] extracted features using both leads of
ECG, wavelet transform, and RR intervals. The floating feature
selection model was used to reduce the feature set, and finally,
eight features were fed into the classifier. Can et al. [26] extracted
morphological features using wavelet transform and dynamic
features using RR intervals. A combination of these features is
then fed into the SVM classifier. The authors reported an overall
accuracy of 86.4% in the patient-specific evaluation. In another
study [27], a weighted variant of the conditional random fields
classifier (CRF) was used with L1 regularization and achieved an
accuracy of 85%. Khorrmi et al. conducted a comparative study
of feature extraction and classification methods. The Discrete
Wavelet Transform (DWT), Continuous Wavelet Transform

(CWT), and Discrete Cosine Transform (DCT) were compared
to extract features. Similarly, a comparison between a multilayer
perceptron (MLP) and a support vector machine (SVM) was
presented as a classifier [28]. Karpagachelvi et al. combined
discrete wavelet transform with high-order statistics and AR
modeling to extract features, while extreme learning machines
(ELMs) were used for classification [29]. For feature extraction,
the authors used a vectorcardiogram-based ECG representation.
Features were selected using the particle swarm optimization
algorithm to feed into the SVM classifier [30].

The development of deep learning models has led to the
widespread use of neural networks in many applications, in-
cluding face detection, image denoising, image classification,
and numerous one-dimensional signal processing. Recently,
one-dimensional convolutional neural networks (1D-CNN) have
also been extensively studied because of their speed and effi-
ciency when managing complex tasks, as demonstrated by var-
ious applications involving signal processing [31], [32], motor
fault detection [33], and advance warning system for cardiac
arrhythmias [34]. In a study by Kiranyaz et al. [35], only three
layers of a compact 1D CNN were used for patient-specific ECG
classification. To train each personalized classifier, the authors
used only the first 5-min section of the record and 245 common
beats randomly selected from the train partition of the MIT-BIH
dataset, following the AAMI recommendations [36].

Several global ECG classification methods [29], [37]–[41]
based on deep CNN models have recently been proposed. They
naturally have high complexity and require large volumes of
labeled ECG data for training. In addition, because they re-
quire parallelized hardware to function, they cannot be directly
implemented on low-power or mobile devices. Finally, most
methods tested on unseen patients do not perform well in the
inter-patient paradigm. As opposed to beat-wise classification,
alternative deep learning approaches used ECG segments in-
stead. In their study, Acharya et al. used two and five seconds of
ECG data with a 10-layer CNN model [42]. The deep network
architecture proposed by Li et al. consists of densely connected
CNNs (DenseNet) further connected to gated recurrent units
(GRU). 10-second ECG segments were analyzed, and the F1
score was only 61.25% for SVEB detection and 89.75% for
VEB detection [43]. The results have shown that even with
deep network models, especially the SVEB detection perfor-
mance is relatively poor in general, which hinders their clinical
usage.

Recent studies [44]–[49] have pointed out that CNNs are
homogeneous networks with an ancient linear neuron model that
originated in the 1950s (McCulloch-Pitts). The linear neuron
model is a crude representation of biological neurons with
specialized electrophysiological and biochemical properties in
highly heterogeneous biological networks [29]. Following this,
Operational Neural Networks (ONNs) [44], [50] have been
proposed to address such drawbacks. ONNs derived from Gen-
eralized Operational Perceptrons (GOPs) [44]–[49] are het-
erogeneous networks with a nonlinear neuron model, which
permits them to learn highly complex and multimodal functions
or spaces with minimal network complexity and training data.
Studies [51]–[53] have proposed the latest ONN variant, Self-
Organized ONNs (Self-ONNs), for various image processing
and regression tasks.
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Fig. 1. An illustration of the 1D nodal operations with the 1D kernels of the kh CNN (left), ONN (middle), and Self ONN (right) neurons at layer
l [54].

In this study, we propose a novel inter-patient ECG classi-
fication approach to address the aforementioned issues. The
proposed method is based on compact 1D Self-ONNs, with
feature injection/fusion ability. In our method, normalized ECG
signals are divided into 230 samples (639 ms) of fixed-duration
frames using the R peak as a reference point. To accomplish
a multi-scale representation, each frame is decomposed into
the time-frequency domain using Discrete Wavelet Transform
(DWT) at nine different scales to achieve the scale invariance.
As arrhythmia affects not only the morphology of the heart
cycle but also varies the timing of beat, four R-R interval-
based features are extracted and injected into the Self-ONN
model to enrich the learned features. We evaluate the pro-
posed approach on the MIT-BIH database. Overall, the novel
and significant contributions of this study can be enlisted as
follows:

1. We developed a compact architecture with 1D Self-ONN
layers for global ECG classification that significantly
outperforms all state-of-the-art methods.

2. This is the first study that proposes Self-ONNs with
feature injection to perform a joint classification in the
same network.

3. A multi-scale approach using DWT is proposed to trans-
form the raw ECG signal before feeding it to the network
and thus achieve the scale invariance.

4. Finally, over the MIT-BIH benchmark dataset, we show
that without changing or fine-tuning the model, the perfor-
mance of our model remains the same for unseen patients
despite the morphological variations.

The rest of the paper is organized as follows: Section II
outlines the ECG datasets used in this study. The proposed
approach is presented in Section III. In Section IV, the perfor-
mance of the proposed system is evaluated over the MIT-BIH
database using the standard performance metrics, and the results
are compared with the recent state-of-the-art works. Finally,
Section V concludes the paper and suggests topics for future
research.

II. 1D SELF-ORGANIZED OPERATIONAL NEURAL NETWORKS

Fig. 1 shows 1D nodal operations of a CNN, ONN with
fixed (static) nodal operators, and Self-ONN with generative
neuron which can approximate any arbitrary nodal function, ψ,
(including the conventional types such as linear, exponential,
Gaussian, or harmonic functions) for each kernel element of each
connection. With such generation ability, obviously, Self-ONNs
have the potential to achieve greater operational diversity and
flexibility, allowing the optimal nodal operator function to be
formed for each kernel element to maximize the learning per-
formance. Another crucial advantage over conventional ONNs
is that Self-ONNs do not use an operator set library or a prior
search process to select the best nodal operator.

The Qth order truncated approximation, formally known as
the MacLaurin polynomial, takes the form of the following finite
summation:

ψ (x)(Q) =

Q∑
n = 0

ψ(n) (0)

n!
xn (1)

The above formulation can approximate any function
ψ(x) sufficiently well near 0. When the activation function
bounds the neuron’s input feature maps in the vicinity of 0 (e.g.,
tanh) the formulation of (1) can be exploited to form a composite

nodal operator where the power coefficients, ψ
(n)(0)
n! can be the

learned parameters of the network during training.
It was shown in [52] that the nodal operator of the kth gen-

erative neuron in the lth layer can take the following general
form:

ψ̃lk

(
w

l(Q)
ik (r) , yl−1

i (m+ r)
)

=

Q∑
q = 1

w
l(Q)
ik (r, q)

(
yl−1
i (m+ r)

)q
(2)
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Fig. 2. Block diagram of the proposed approach and model architecture for classification of ECG signals.

x̃lik (m) =

K−1∑
r = 0

Q∑
q = 1

w
l(Q)
ik (r, q)

(
yl−1
i (m+ r)

)q
(3)

where K is the size of the 1D kernel of the ith neuron at layer l.
One can simplify (3) as follows:

x̃lik =

Q∑
q=1

Conv1D
(
w
l(Q)
ik ,

(
yl−1
i

)q)
(4)

Hence, the formulation can be accomplished by summation of
Q 1D convolution operations. Finally, the output of this neuron
can be formulated as follows:

xlk = blk +

Nl−1∑
i = 0

x̃lik (5)

where blk is the bias associated with this neuron. The 0th order
term, q = 0, the DC bias, is omitted as its additive effect can
be compensated by the learnable bias parameter of the neuron.
With the Q = 1 setting, a generative neuron reduces back to a
convolutional neuron.

The raw-vectorized formulations of the forward propagation,
and detailed formulations of the Back-Propagation (BP) training
in raw-vectorized form can be found in [52] and [53].

III. METHODOLOGY

The proposed global ECG classification approach is illus-
trated in Fig. 2. The single-channel raw ECG signal is the
first unit normalized and partitioned into the segment of 230
samples. Then continuous wavelet transform is employed to
convert the 1-D ECG beat into a nine-channel time-frequency
beat representation (9x230) which is fed into the proposed 1D
Self-ONN model. The temporal features are then injected into
the Self-ONN classifier to accomplish the final classification of
the ECG beat.

Fig. 3. Transformation patterns of a normal heartbeat (top) and an
abnormal heartbeat due to premature ventricular contractions (bottom).

A. Problem Formulation

In general, abnormalities in the ECG signals can be linked
to two main aspects: ECG beat morphology (morphological
variations) and the time interval between ECG beats (temporal
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Fig. 4. (a) On top, the S beat exhibits temporal variation. In contrast, the beat morphology of successive S and N beats is almost identical. We
can observe variation in the subsequent N and V beat morphology in the bottom plot. (b) ECG cardiac cycle and intervals between different waves.

variations). As illustrated in Fig. 4, the top figure shows a
premature beat (temporal variance between R peaks), and the
bottom figure shows ill-shaped QRS complexes (morphological
variance). The morphology of each heartbeat plays a vital role in
classifying arrhythmia. Moreover, the timing or location of the
heartbeat is also a crucial feature. Segment-based classification
can detect abnormalities without looking at timing data explic-
itly since the input is based on multiple beats or cardiac cycles.
On the other hand, when a continuous ECG signal is divided
into frames, each with a single beat, this will cause the loss
of temporal information. It is relatively difficult to distinguish
a beat from another by just examining its morphology. As
can be seen in the figure, a regular N-beat and S-beat look
similar. However, exploiting the beat location makes it easy to
distinguish between them. This is the main reason for injecting
the R-R-based features into the feature representation learned
from Self-ONN layers to make the final classification.

B. Data Processing

Beat Segmentation: Each heartbeat’s morphology is crucial to
classifying arrhythmias. In some studies, the R peak is used as a
center to segment the ECG signals. However, this is not a good
approach in practice as the QT interval is approximately double
the PR interval in duration. We do not need the morphological
information before the P wave as it falls within the previous
heart cycle boundary. PR intervals are generally between 0.12
and 0.20 seconds in duration and extend from the onset of
the P wave to the beginning of the QRS complex. The QRS
complex usually lasts between 0.06 and 0.10 seconds. The QT
interval can range from 0.20 to 0.44 seconds depending upon
heart rate. To avoid any information loss, the upper bound of
each duration is considered. A detailed description of one ECG
cycle and its waves are presented in Fig. 4. By keeping the
upper bound of these intervals and sampling frequency of 360Hz
into consideration, the ECG signal from a single channel was
segmented into heartbeats using the R peak as a reference point,
taking 250msec before and 390msec after the peak.

Temporal Features: In order to derive information about the
timing of the ECG beat or, more precisely, about the temporal
variation, we extracted four widely used R-R-based features,
i.e., prior R-R interval, post R-R interval, a ratio of prior to post
R-R interval and average R-R interval over ±10 seconds from
the current beat.

Multi-scale ECG representation: Multi-scale ECG represen-
tation plays an important role in the classification of ECG sig-
nals. Any feature that can be used to discriminate abnormal beats
from normal ones can be revealed in different frequency scales.
Such features can represent the time-frequency characteristics of
the raw ECG signal. Some prior studies have investigated several
methods for transforming ECG signals into different scales
before feeding them to the classifier network. Among them, the
DWT is considered to be the most efficient for processing ECG
signals. When using DWT, ECG information can be retrieved
both in the frequency and time domains, which is far superior
to the DFT, which can only analyze ECG information in the
frequency domain. This study applies DWT based on the Ricker
(Mexican-hat) wavelet to transform ECG beats at nine different
scales to generate one-dimensional DWT patterns in each scale.
The overall multi-scale representation can be viewed as a 9-
channel representation of the original signal in different subband
frequencies. Fig. 3 shows examples of DWT transformation
patterns from normal and arrhythmic ECG signals. Over an ECG
segment x(t), its DWT with respect to a given mother wavelet
ψ is defined as follows:

Wx (a, b) =
1√
a
∫∞−∞ x (t)ψ

(
t− b

a

)
dt (6)

where a is a scale parameter and b is a translation parameter.
The scale can be converted to frequency by

F =
Fc .a

fs
(7)

where Fc is the center frequency of the wavelet basis, fs is the
sampling frequency of the signal. In this study, we used a specific
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set of 9 scales. The corresponding band frequencies of the scales
range from 10 Hz to 90 Hz with a gap of 10 Hz.

Finally, we used the Ricker wavelet basis defined as,

ψ (t) =
2√
3. 4
√
π
e

−t
2

(
1− t2

)
(8)

C. Data Augmentation

To achieve a more balanced distribution of classes so that
underrepresented arrhythmias would become more prominent,
we augmented the arrhythmia beats instead of excluding the
majority class samples during the training of the classification
model. Data augmentation is crucial to achieving the network’s
robustness and invariance with limited or imbalanced training
samples across different classes. We found that arrhythmia beats
(S and V beats) are far less frequent than the normal beats in the
MIT-BIH dataset. As described in [5], we generated augmented
arrhythmic rhythms from the 20-second ECG segments contain-
ing one or more arrhythmia beats by adding baseline wander and
motion artifacts from the Noise Stress Test Database [55].

D. Network Architecture

We have implemented the 1D Self-ONN model as illustrated
in Fig. 2. This model, in brief, consists of two operational layers
to extract learned features, fused with the injected temporal
features, and two dense layers to analyze the combined features
for classification. The first operational layer has 32 neurons
with a filter size of 1x3, followed by a max-pooling layer of
size 1x7. The second operational layer has 64 neurons with
a filter size of 1x3, followed by an adaptive max-pooling of
size 1x1, which applies the 1D adaptive max pooling over an
input signal composed of several input planes. Both Self-ONN
layers are followed by batch normalization and a hyperbolic
tangent activation function (tanh). The output feature maps of
operational layers are concatenated with the injected temporal
features and fed into the dense layer where there are 32 neurons
followed by rectified linear activation function (ReLu). The
network’s output layer size is 3, which computes the class score
corresponding to each ECG class.

IV. EXPERIMENTAL RESULTS

In this section, we first present the benchmark dataset, MIT-
BIH, used for training and evaluation of the proposed approach.
Then the metrics used for evaluating the proposed approach
will be presented. Next, we will present a comprehensive set
of experiments and comparative evaluations against the current
state-of-the-art methods from the literature over the MIT-BIH
dataset.

A. Dataset

As the gold-standard benchmark dataset, the MIT-BIH ar-
rhythmia dataset [56] was used for performance evaluation in
this study. Each recording on the MIT/BIH dataset is about a
30-minute duration and includes two-channel ECG signals. Each
record is taken from the 24-hour ECG signals of 47 subjects.
Every ECG record is preprocessed using band-pass filtering at

TABLE I
MAPPING THE MIT-BIH ARRHYTHMIA DATABASE HEARTBEAT TYPES TO THE

AAMI HEARTBEAT CLASSES [23]

0.1–100 Hz and then sampled at 360 Hz. Independent experts
have annotated both timing and beat class information in the
database. Advancement of Medical Instrumentation (AAMI)
classifies heartbeats in this database into 15 classes. Further,
it divides them into five categories, which are normal (N),
supraventricular ectopic beats (SVEB), ventricular ectopic beats
(VEB), fusion beats (F) and unknown beats (Q), as shown in
Table I. While the MIT-BIH arrhythmia dataset is frequently
used, few studies follow the AAMI class division scheme and a
more realistic evaluation protocol (inter-patient paradigm).

A widely used data division method proposed by de Chazal
et al. [11] is utilized to split the database in order to make
a fair comparison with existing works. ECG recordings from
44 patients were divided into two datasets: DS1 and DS2,
each containing ECG data from 22 recordings of approximately
equal proportions of beat types. There are approximately 50000
heartbeats in both partitions, including routine and complex
arrhythmia recordings. The first dataset (DS1) was used to train
and validate the classifier, while the second dataset (DS2) served
as the basis for the final performance evaluation.

In Table II, ECG record partitions and the number of heart-
beats for each class are presented. According to the AAMI
recommended practice, we removed the four recordings (102,
104, 107, and 217) containing paced beats from the analysis
because those patients were all wearing cardiac pacemakers
that could potentially interfere with the analysis. Among the
44 ECG records from the MIT/BIH arrhythmia database, there
are records with patient IDs in the range of 100 to 124 that reflect
the common clinical ECG patterns. Other patient records with
patient IDs ranging from 200 to 234 contain less common to
very rare arrhythmia beats including ventricular, junctional, and
supraventricular arrhythmias.
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TABLE II
EACH PARTITION’S RECORDS AND THE NUMBER OF REPRESENTATIVE BEATS FOR EACH CLASS

B. Evaluation Metrics

In this section, we present five of the most commonly used
performance metrics to evaluate arrhythmia classification meth-
ods: accuracy (Acc), specificity (Spe), sensitivity (Se), positive
predictive (Ppr), and F1-score. The majority class figures can
significantly distort overall accuracy. As the classes for heartbeat
types in the MIT-BIH database are highly imbalanced, the other
four metrics are more relevant to compare the methods.

Acc =
TP + TN

TP + FP + TN + FN
× 100 (9)

Sen (Recall) =
TP

TP + FN
× 100 (10)

Spe =
TN

TN + FP
× 100 (11)

Ppr (Precision) =
TP

TP + FP
× 100 (12)

F1 =
2 × Sen × Ppr

Sen+ ppr
× 100 (13)

where TP is true positive, TN is true negative, FP is false positive
and FN is false negative. As in the competing methods, we
evaluated the classification performance for N, S, and V beats
individually.

In addition, receiver operating characteristics (ROCs) were
used to illustrate the diagnostic ability of a binary classification
system with different thresholds of discrimination (specifically
S and V beats). Due to the wide range of thresholds, ROC curves
can provide comprehensive information regarding performance.

C. Experimental Setup

The proposed Self-ONN model is implemented using the Fas-
tONN library, a fast GPU-enabled library developed in Python
and PyTorch to implement and train operational neural net-
works. The optimized PyTorch implementation of Self-ONNs
is publically shared in [57]. The Adam optimizer is used with a
learning rate (LR) of 0.01 and an LR scheduler, which drops by
0.1 every 10 epochs. Kaiming initializer was used to initialize
the weights of the model. The model is trained for 35 epochs
with a batch size of 128. Patient-wise, 5-folds cross-validation
is used to train the model and tune the hyper-parameters. We
used the cross-entropy loss as the objective function for training
the network [2], which is then summed over all the samples in
a mini-batch. The experiments were conducted on a computer
equipped with an Intel Core i7-8750H, 16GB memory, 6 GB

TABLE III
THE CONFUSION MATRIX REPRESENTS THE RESULTS OF THE BEAT

CLASSIFICATION IN THE MIT-BIH ARRHYTHMIA DATABASE FOR 24 RECORDS
IN DS2 (TOP) AND 24 RECORDS IN DS1 (BOTTOM)

NVIDIA GeForce GTX 1060 graphics card, and a 2.21 GHz
processor.

Additionally, the only parameter of the 1D Self-ONN (aside
from the network configuration and the common hyperparam-
eters) is the setting of Q (the order of the Taylor polynomial),
which represents the degree of non-linearity for each neuron.
When this value is set high, higher-order polynomials can be
generated, resulting in a higher degree of nonlinearity, but at
the expense of increasing the number of network parameters
and complexity. In contrast, setting it too low will result in the
opposite outcome. Setting it to Q = 1 will result in Self-ONN
being identical to a CNN, resulting in reduced learning and gen-
eralization performance. In order to achieve a balanced network,
we choose Q = 3 for all layers/neurons.

D. Performance Evaluation

Two experiments were conducted so that we could compare
the model’s performance in real-world scenarios and demon-
strate the robustness of the model. To begin with, we treated the
ECG records in DS2 as unseen patient records and used those
records as the test set, whereas DS1 was used for model training.
Next, we will swap the training/evaluation sets, i.e., training on
DS2 and evaluation on DS1. The three major classes (N, S and V)
were considered in the experiments, while the other two classes,
F and Q are ignored as in several studies [30]. In Table III, the
confusion matrix is shown for all the records in both partitions
of data (DS1 and DS2) of the MIT-BIH arrhythmia database
using Q = 3 in all Self-ONN layers. A more extensive and
accurate comparison of performance evaluation is conducted
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TABLE IV
CLASSIFICATION PERFORMANCE OF THE PROPOSED 1D SELF-ONN WITH Q = 3 AND FIVE COMPETING ALGORITHMS. THE BEST RESULTS ARE IN BOLD.

THE PERFORMANCE LEVELS BELOW 80% ARE SHOWN IN RED

1Training on DS1 and evaluation on DS2.
2Training on DS2 and evaluation on DS1.
3Using the same 1D Self-ONN network as proposed in [53], we evaluated the method for interpatient settings.

Fig. 5. Five seconds interval from patient 234’s ECG record with the ground truth labels.

by comparing the performance of the proposed system with the
six existing algorithms, including the self-ONN network model,
presented in [53]. Table IV presents the performance metrics of
all methods.

Several interesting observations can be made from the results
in Table IV. First, for S-beat detection, sensitivity and positive
predictivity rates are comparably lower than V-beat detection,
while a high-specificity performance is achieved. The first and
foremost reason for slightly worse performance in detecting
S-beats as compared to V-beats is that the S class is underrepre-
sented in the training data, and, hence, relatively more S beats are
misclassified as normal beats. Another reason is the pattern-wise
similarity of the S and N beats. Sometimes it becomes almost
impossible to distinguish S-beats from the N-beats even with
a trained eye. In some records (e.g., patients 202, 222, 232
and 234) several S beats are present in the sequence, yet only
the first S beat displays the timing anomaly, while the others
are usually perfectly symmetric but with considerably reduced

time intervals. For example, Patient 234 has an episode of
junctional tachycardia which last around 25 seconds. It has
50 consecutive beats of supraventricular ectopy (S-beat). The
5 seconds interval of consecutive S beats from this patient’s
ECG record is shown in Fig. 5. This issue arises as the proposed
method is limited to beat-by-beat classification. All algorithms
that target beat-by-beat classification will eventually suffer in the
patient’s recording with consecutive S beats. But the proposed
method has a superior learning capability and hence the overall
performance specially for S beats is much improved compared
to earlier “global” ECG classification methodologies in the
literature.

The results clearly indicate that the proposed approach
achieved the top performance in all metrics for N and S beat clas-
sification. For V beats, the top performance has been achieved for
positive predictivity (Precision) while competitive performance
levels have been achieved with the two competing methods for
sensitivity and specificity. However, one can note that in [58],
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Fig. 6. ROC curves and AUC for S and V beats.

[30], and [59], slightly better specificity levels are obtained at the
expense of low (<80%) positive predictivity (precision) levels as
shown in red in the table. Similarly, [60] and [58] obtain slightly
better sensitivity levels; however, their performance levels are
quite low in other metrics, including S beat classification (e.g.,
[58] obtained as low as 30.44% precision level in S-beat clas-
sification). The 1D Self-ONN model in [53] achieved the top
specificity level in V beat classification; however, it failed in S
beat classification too. Such poor performance levels make those
competing methods useless and unreliable in clinical practice.
Finally, our approach has led to significant improvements in
arrhythmia beat detections, especially in S beat classification
in all performance metrics over all competing methods. The
performance gap sometimes reaches to 30% or even above
against [30], [53], [58], [59] and [61].

In Fig. 6, the ROC curves for the proposed method are plotted
to show the diagnostic ability of binary classifiers (S Vs Non-S
and V Vs Non-V). The ROC curve shows the trade-off between
sensitivity (or TPR) and FPR (or 1-specificity). Classifiers that
give curves closer to the top-left corner indicate better perfor-
mance. It is obvious from the ROC curves and area under the

TABLE V
COMPUTATIONAL COMPLEXITY OF THE NETWORKS

curve (AUC) that the proposed system is doing an excellent job
in the detection of S and V beats.

E. Computational Complexity Analysis

As part of the computation complexity analysis, the total
number of layers, total number of neurons, and total number
of trainable parameters for each network configuration are cal-
culated and reported in Table V.

As the numbers in the table indicate, along with the compact
CNN model proposed in [61], the proposed 1D Self-ONN ar-
chitecture is the most compact, shallowest network architecture
with the least number of parameters. Obviously, the compact
CNN model in [61] yields the worst performance level in all
metrics shown in Table V. Simultaneously, the proposed method
with a similar computational complexity achieves the best per-
formance levels with a significant margin in general.

V. CONCLUSION

We have presented a novel approach for classifying heart
rhythms from ECG recordings without using any patient-specific
data. With the proposed feature injection scheme into the Self-
ONN network, our approach exploits both morphological and
temporal information of ECG beats to maximize the classifi-
cation performance. Another critical factor is that each gener-
ative neuron in an operational layer is capable of optimizing
the nodal operator function of each kernel. Such neuron-level
heterogeneity further improves the network diversity and, thus,
the learning performance. Finally, with the employed multi-
scale signal representation, a high degree of discrimination is
accomplished when dealing with normal and arrhythmic ECG
signals, especially the S beats. An extensive set of comparative
evaluations, performed on the benchmark MIT/BIH arrhythmia
database, revealed that our approach outperforms all state-of-
the-art methods usually with a significant performance gap
in SVEB detection. Only the proposed approach can consis-
tently achieve sufficiently high-performance levels required for
clinical usage among all the competing methods. Finally, this
pioneering study significantly narrows the performance gap
between global and state-of-the-art patient-specific approaches
such as [53] and [62]. Besides the performance superiority, the
proposed model is also compact, and thus it can be used in
real-time, especially over low-power mobile devices. Due to
its highly accurate ECG classification without patient-specific
labeled data, our method can serve as an additional diagnostic
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tool in clinical settings as well as for wearable ECG sensors such
as wristbands or smartwatches.

In future work, we plan to further improve the performance
and reduce the complexity of the model by exploring improved
neuron models in Self-ONNs such as the super (generative) neu-
ron model [63]. Additionally, we intend to expand our research
on arrhythmia classification and its generalization to Holter
ECGs with low-quality ECG records. In a recent study [64] we
showed that the performance of R peak detection drastically
decreases when algorithms that are developed for clean ECG
signals are applied to noisy and low-quality Holter ECG data.
For this purpose, we are planning to use the China Physiological
Signal Challenge (2020) database (CPSC-DB) [65], [66], the
largest Holter ECG database which contains more than one
million beats.
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